JP3278431B2 - Rare earth metal-iron-boron anisotropic permanent magnet powder - Google Patents

Rare earth metal-iron-boron anisotropic permanent magnet powder

Info

Publication number
JP3278431B2
JP3278431B2 JP2000314786A JP2000314786A JP3278431B2 JP 3278431 B2 JP3278431 B2 JP 3278431B2 JP 2000314786 A JP2000314786 A JP 2000314786A JP 2000314786 A JP2000314786 A JP 2000314786A JP 3278431 B2 JP3278431 B2 JP 3278431B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
iron
earth metal
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000314786A
Other languages
Japanese (ja)
Other versions
JP2001176712A (en
Inventor
山本  和彦
裕一 三宅
力 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2000314786A priority Critical patent/JP3278431B2/en
Publication of JP2001176712A publication Critical patent/JP2001176712A/en
Application granted granted Critical
Publication of JP3278431B2 publication Critical patent/JP3278431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁石特性に優れた
希土類金属−鉄−ボロン系異方性永久磁石用粉末に関す
る。
The present invention relates to a rare earth metal-iron-boron based anisotropic permanent magnet powder having excellent magnet properties.

【0002】[0002]

【従来の技術】従来、永久磁石用合金鋳塊は、溶融した
合金を金型に鋳造する金型鋳造法により製造されている
のが一般的である。しかし該金型鋳造法により合金溶融
物を凝固させる場合、合金溶融物の抜熱過程において、
抜熱初期では鋳型伝熱律速であるが、凝固が進行する
と、鋳型−凝固相間及び凝固相における伝熱が抜熱律速
となり、金型冷却能を向上させても鋳塊内部と鋳型近傍
の鋳塊では、冷却条件が異なり、特に鋳塊厚が厚いほど
このような現象が生じる。このように鋳塊の内部と表面
付近での冷却条件の相違が大きい場合には、特に磁石組
成における高残留磁束密度側の鋳造組織に、初晶γ−F
eが多く存在し、このため鋳塊の中央部に粒径10〜1
00μmのα−Feが残存し、同時に主相を取り巻く希
土類金属に富んだ相の大きさも大きくなる。また前記金
型鋳造法により得られる鋳塊組織中に、短軸方向0.1
〜50μm、長軸方向0.1〜100μmの結晶粒径を
有する結晶が存在することが知られているが、該結晶の
含有率は僅かであって、磁石特性に良好な影響を及ぼす
には至っていない。一方、磁石粉末製造工程における均
質化処理過程においては、通常、1000℃付近で均質
化処理されるが、前記金型鋳造法で得られる鋳塊の場合
には、粒径の大きいα−Fe及び希土類金属に富んだ大
きな相を含有するので、均質化が困難であり、またその
後の水素化処理による再結晶化の際に、異方化しにく
く、最終的に得られる永久磁石の磁気特性が低下すると
いう欠点がある。さらに、希土類金属元素、コバルト及
び必要に応じて、鉄、銅、ジルコニウムを添加し、ルツ
ボ中で溶解させた後、双ロール、単ロール、双ベルト等
を組み合わせたストリップキャスティング法等で0.0
1〜5mmの厚さとなるように凝固させる希土類金属磁
石用合金の製造法が提案されている。該方法では、金型
鋳造法に比して組成の均一な鋳塊が得られるが、原料成
分が、希土類金属元素、コバルト及び必要に応じて、
鉄、銅、ジルコニウムを組み合わせた成分であるため
に、前記ストリップキャスティング法による磁石性能の
向上が充分に得られない等の問題がある。
2. Description of the Related Art Conventionally, alloy ingots for permanent magnets are generally manufactured by a mold casting method of casting a molten alloy into a mold. However, when the alloy melt is solidified by the die casting method, during the heat removal process of the alloy melt,
Heat transfer is limited in the early stage of heat removal, but as solidification progresses, heat transfer between the mold and solidification phase and in the solidification phase becomes heat removal rate. Ingots have different cooling conditions, and such a phenomenon occurs particularly as the thickness of the ingot increases. As described above, when the difference in cooling conditions between the inside and the surface of the ingot is large, the primary crystal γ-F
e is present in a large amount, so that a grain size of 10 to 1
The α-Fe of 00 μm remains, and at the same time, the size of the rare earth metal-rich phase surrounding the main phase also increases. Further, in the ingot structure obtained by the die casting method, 0.1
It is known that there is a crystal having a crystal grain diameter of about 50 μm and a major axis direction of 0.1 to 100 μm. Not reached. On the other hand, in the homogenization process in the magnet powder manufacturing process, the homogenization process is usually performed at around 1000 ° C., but in the case of the ingot obtained by the die casting method, α-Fe and Contains a large phase rich in rare earth metals, which makes it difficult to homogenize, and is less likely to be anisotropic during subsequent recrystallization by hydrogenation, resulting in lower permanent magnet magnetic properties. There is a disadvantage of doing so. Further, after adding a rare earth metal element, cobalt and, if necessary, iron, copper, and zirconium and dissolving them in a crucible, 0.0 roll by a strip casting method or the like combining a twin roll, a single roll, a twin belt and the like.
A method for producing an alloy for a rare earth metal magnet which is solidified so as to have a thickness of 1 to 5 mm has been proposed. In this method, an ingot having a uniform composition is obtained as compared with the die casting method, but the raw material components are rare earth metal elements, cobalt and, if necessary,
Since the composition is a combination of iron, copper, and zirconium, there is a problem that the magnet performance cannot be sufficiently improved by the strip casting method.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、高い
異方性を示し、且つ永久磁石の特性に最も良い影響を与
える結晶組織を有する希土類金属−鉄−ボロン系異方性
永久磁石用粉末を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rare earth metal-iron-boron anisotropic permanent magnet having a high anisotropy and having a crystal structure most affecting the properties of the permanent magnet. It is to provide a powder.

【0004】[0004]

【課題を解決するための手段】本発明によれば、希土類
金属、ボロン及び鉄を含み、これらの配合割合が重量比
で25〜40:0.5〜2.0:残量であり、且つX線
回折により測定した下記式で示される配向度Fの値が6
0以上である粒径200〜400μmの希土類金属−鉄
−ボロン系異方性永久磁石用粉末が提供される。
According to the present invention, a rare earth element is provided.
Contains metals, boron and iron, and their proportions are weight ratio
25 to 40: 0.5 to 2.0: remaining amount and X-ray
When the value of the degree of orientation F measured by diffraction and represented by the following equation is 6:
A rare earth metal-iron-boron-based anisotropic permanent magnet powder having a particle size of 200 to 400 µm, which is 0 or more, is provided.

【0005】[0005]

【数2】 (Equation 2)

【0006】[0006]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。本発明の希土類金属−鉄−ボロン系異方性永久磁石
用粉末(以下、異方性永久磁石用粉末1と称す)は、短
軸方向0.1〜50μm、長軸方向0.1〜100μm
の結晶粒径を有する結晶を90容量%以上、好ましくは
98容量%以上含有し、且つ前記主相結晶粒内に、包晶
核である粒径10μm未満のα−Fe及び/又はγ−F
eを微細分散している希土類金属−鉄−ボロン系合金鋳
塊(以下、合金鋳塊2と称す)を水素化処理し、粉砕し
得ることができる。その粉末粒径は、200〜400
μmである。また、X線回折により測定した上記式で示
される配向度Fの値は60以上である
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The rare earth metal-iron-boron based anisotropic permanent magnet powder (hereinafter referred to as anisotropic permanent magnet powder 1) of the present invention has a minor axis direction of 0.1 to 50 μm and a major axis direction of 0.1 to 100 μm.
Α-Fe and / or γ-F having a crystal grain size of 90% by volume or more, preferably 98% by volume or more, and having a grain size of less than 10 μm, which is a peritectic nucleus, in the main phase crystal grains.
It can be obtained by subjecting a rare earth metal-iron-boron-based alloy ingot in which e is finely dispersed (hereinafter, referred to as alloy ingot 2) to hydrogenation treatment and pulverization . The powder particle size is 200-400
μm . Further, the value of the degree of orientation F represented by the above equation measured by X-ray diffraction is 60 or more .

【0007】前記合金鋳塊2において、特定の結晶粒径
を有する結晶の含有割合が、90容量%未満の場合に
は、得られる合金鋳塊に優れた磁石特性を付与できず、
目的とする異方性永久磁石用粉末1が得られない。また
短軸方向及び長軸方向の長さが前記範囲外である場合、
若しくは該α−Fe及び/又はγ−Feの粒径が10μ
m以上であり、且つ微細分散されていない場合には、永
久磁石用粉末製造工程における均質化処理の際に、均質
化時間が長くなり、更に最終の磁石粉末の磁気特性が低
くなるので好ましくない。
[0007] If the content ratio of crystals having a specific crystal grain size in the alloy ingot 2 is less than 90% by volume, excellent magnet properties cannot be imparted to the obtained alloy ingot,
The desired anisotropic permanent magnet powder 1 cannot be obtained. When the length in the short axis direction and the length in the long axis direction are out of the range,
Alternatively, the particle size of the α-Fe and / or γ-Fe is 10 μm.
m or more, and when not finely dispersed, it is not preferable because the homogenization time becomes longer during the homogenization treatment in the permanent magnet powder manufacturing process and the magnetic properties of the final magnet powder are further lowered. .

【0008】前記合金鋳塊2の厚さは、0.05〜15
mmの範囲であるのが好ましい。厚さが15mmを超え
る場合には、所望の結晶組織とするための後述する製造
法が困難となるので好ましくない。
The thickness of the alloy ingot 2 is 0.05 to 15
It is preferably in the range of mm. If the thickness exceeds 15 mm, it is not preferable because a later-described manufacturing method for obtaining a desired crystal structure becomes difficult.

【0009】前記異方性永久磁石用粉末1に用いる前記
合金鋳塊2を形成する原料成分は、希土類金属−鉄−ボ
ロン系であれば特に限定されるものではなく、通常製造
の際に不可避的に含まれる他の不純物成分を含んでいて
も良い。また希土類金属は、単体でも混合物であっても
良い。該希土類金属と、ボロンと、鉄との配合割合は、
通常の永久磁石用合金での配合割合と同様で良く、好ま
しくは重量比で、25〜40:0.5〜2.0:残量で
あるのが好ましい。
The raw material components forming the alloy ingot 2 used for the anisotropic permanent magnet powder 1 are not particularly limited as long as they are a rare earth metal-iron-boron system, and are inevitable during normal production. It may contain other impurity components that are included. The rare earth metal may be a simple substance or a mixture. The compounding ratio of the rare earth metal, boron, and iron is
The mixing ratio may be the same as that of an ordinary permanent magnet alloy, and is preferably 25 to 40: 0.5 to 2.0: residual amount by weight.

【0010】本発明の異方性永久磁石用粉末1を製造す
るには、まず希土類金属−鉄−ボロン系合金溶融物を、
冷却速度10〜1000℃/秒、好ましくは100〜1
000℃/秒、過冷度10〜500℃、好ましくは20
0〜500℃の冷却条件下で均一に凝固させる方法等に
より前記合金鋳塊2を得、次いで、水素雰囲気中で前記
合金鋳塊2に水素原子を侵入及び放出させることにより
主相結晶等を再結晶化させる水素化処理の後、粉砕する
方法により得ることができる。
In order to produce the powder 1 for anisotropic permanent magnet of the present invention, first, a rare earth metal-iron-boron alloy melt is mixed with:
Cooling rate 10 to 1000 ° C./sec, preferably 100 to 1
000 ° C / sec, degree of supercooling 10 to 500 ° C, preferably 20
The alloy ingot 2 is obtained by, for example, a method of uniformly solidifying under cooling conditions of 0 to 500 ° C., and then the main phase crystals and the like are formed by invading and releasing hydrogen atoms into the alloy ingot 2 in a hydrogen atmosphere. It can be obtained by a pulverization method after the hydrogenation treatment for recrystallization.

【0011】ここで、過冷度とは、(合金の融点)−
(合金溶融物の実際の温度)の値であって、冷却速度と
相関関係を有する。冷却速度及び過冷度が前記必須範囲
外の場合には、所望の組織を有する合金鋳塊が得られな
い。
Here, the degree of supercooling is (melting point of alloy) −
(Actual temperature of the alloy melt) and has a correlation with the cooling rate. If the cooling rate and the degree of subcooling are out of the essential ranges, an alloy ingot having a desired structure cannot be obtained.

【0012】前記製造方法を更に具体的に説明すると、
例えばまず、真空溶融法、高周波溶融法等により、好ま
しくはるつぼ等を用いて、不活性ガス雰囲気下、希土類
金属−鉄−ボロン系合金を溶融物とした後、該溶融物
を、例えば、単ロール、双ロール又は円板上等におい
て、前記条件下、好ましくは連続的に凝固させる等のス
トリップキャスティング法を用いた方法等により、所望
の結晶組織を有する永久磁石用合金鋳塊2を得る。即
ち、ストリップキャスティング法等で凝固させる場合に
は、合金鋳塊の厚さを、好ましくは0.05〜15mm
の範囲となるように、鋳造温度及び注湯速度等を適宜選
択し、前記条件下処理するのが最も容易な方法である。
The above-mentioned manufacturing method will be described more specifically.
For example, first, a rare earth metal-iron-boron-based alloy is melted under an inert gas atmosphere by a vacuum melting method, a high-frequency melting method, or the like, preferably using a crucible or the like. On a roll, a twin roll, a disk, or the like, the alloy ingot 2 for a permanent magnet having a desired crystal structure is obtained by a method using a strip casting method such as continuous solidification under the above conditions, preferably continuously. That is, when solidifying by a strip casting method or the like, the thickness of the alloy ingot is preferably 0.05 to 15 mm.
It is the easiest method to appropriately select the casting temperature, the pouring speed and the like so as to fall within the range described above, and to carry out the treatment under the above conditions.

【0013】次いで、得られた永久磁石用合金鋳塊2
に、水素原子を侵入及び放出させ再結晶化させるため
に、例えば1〜10mm角程度に粉砕し、好ましくは5
〜50時間、900〜1100℃にて、均質化処理を行
った後、好ましくは1気圧の水素雰囲気中において、8
00〜850℃で2〜5時間保持し水素原子を侵入さ
せ、次いで10-2〜10-3Torrにまで急速脱気して水素
原子を放出させ、それにより再結晶化た後、急冷する水
素化処理を行う。次に再結晶化した前記永久磁石用合金
鋳塊を200〜400μmまで粉砕する方法等により、
異方性永久磁石用粉末1を得ることができる。
Next, the obtained alloy ingot for permanent magnet 2
In order to infiltrate and release hydrogen atoms and recrystallize, for example, pulverize to about 1 to 10 mm square, preferably 5 to 10 mm square.
After performing a homogenization treatment at 900 to 1100 ° C. for up to 50 hours, preferably in a hydrogen atmosphere of 1 atm.
The temperature is maintained at 00 to 850 ° C. for 2 to 5 hours to allow hydrogen atoms to penetrate, and then rapidly degassed to 10 −2 to 10 −3 Torr to release hydrogen atoms, thereby recrystallizing and then rapidly cooling hydrogen. Perform the conversion process. Next, by a method of grinding the recrystallized permanent magnet alloy ingot to 200 to 400 μm, etc.
Powder 1 for anisotropic permanent magnet can be obtained.

【0014】前記異方性永久磁石用粉末1は、通常の磁
石製造法により、例えば樹脂磁石、ボンド磁石等とする
ことができる。
The anisotropic permanent magnet powder 1 can be made into, for example, a resin magnet, a bonded magnet or the like by a usual magnet manufacturing method.

【0015】[0015]

【発明の効果】本発明の希土類金属−鉄−ボロン系異方
性永久磁石用粉末は、高い異方性を示し、磁石特性が極
めて優れており、樹脂磁石、ボンド磁石等の永久磁石用
原料として有用である。
Effect of the Invention rare earth metals of the present invention - iron - powder for boron-based anisotropic permanent magnet, high have shown anisotropic, magnetic properties are extremely good, the resin magnet, a permanent magnet such as bonded magnet Useful as a raw material.

【0016】[0016]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。実施例1 ネオジム14原子%、ボロン6原子%、鉄80原子%か
らなる各金属元素を配合した合金を、アルゴンガス雰囲
気中で、アルミナるつぼを使用して高周波溶融法により
溶融物とした。次いで、得られた溶融物の温度を135
0℃に保持した後、図1に示す装置を用いて以下の方法
に従って永久磁石用合金鋳塊を得た。得られた合金鋳塊
を組織分析した結果を表1に示す。図1は、単ロールを
用いたストリップキャスト法により永久磁石用合金鋳塊
を製造するための概略図であって、1は前記高周波溶融
法により溶融した溶融物の入ったるつぼである。135
0℃に保持された溶融物2を、タンディッシュ3上に連
続的に流し込み、次いで約1m/sで回転するロール4
上において、冷却速度500℃/秒、過冷度200℃の
冷却条件となるように急冷凝固させ、ロール4の回転方
向に連続的に溶融物2を落下させて、厚さ0.2〜0.
4mmの合金鋳塊5を製造した。
The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 An alloy containing 14 atomic% of neodymium, 6 atomic% of boron and 80 atomic% of iron was made into a melt by a high frequency melting method using an alumina crucible in an argon gas atmosphere. Next, the temperature of the obtained melt is set to 135.
After maintaining the temperature at 0 ° C., an alloy ingot for permanent magnet was obtained according to the following method using the apparatus shown in FIG. Table 1 shows the results of microstructure analysis of the obtained alloy ingot. FIG. 1 is a schematic view for manufacturing an alloy ingot for permanent magnets by a strip casting method using a single roll, and 1 is a crucible containing a melt melted by the high frequency melting method. 135
A melt 2 kept at 0 ° C. is continuously poured onto a tundish 3 and then rolls 4 rotating at about 1 m / s
Above, the solidified material is rapidly solidified under cooling conditions of a cooling rate of 500 ° C./second and a supercooling degree of 200 ° C., and the melt 2 is continuously dropped in the rotation direction of the roll 4 to have a thickness of 0.2 to 0. .
A 4 mm alloy ingot 5 was produced.

【0017】得られた合金鋳塊5を5mm角に粉砕し、
1000℃にて、40時間均質化処理を行い、処理開始
前、処理開始後5、10、15、20、40時間のα−
Feの面積率を走査型電子顕微鏡による像から画像解析
により測定した。結果を表2に示す。また同走査型電子
顕微鏡により結晶粒径を測定したところ、10時間均質
化処理を行った際の長軸方向の平均結晶粒径は60μm
であった。次いで均質化処理を行った合金鋳塊を真空加
熱炉に入れ、1気圧の水素雰囲気中で820℃にて3時
間保持した後、2分以内に10-2Torrまで脱気し、冷却
器に移し急冷した。処理後の合金鋳塊を容器から取り出
し、平均粒径300μmに粉砕し、15kOeの磁場中
にて0.5t/cm2の圧力をかけ、一軸圧縮により圧
粉体を成形した。該圧粉体の結晶配向度をX線回折によ
り測定し、上述の配向度を求める式により配向度Fを算
出し、さらに磁気特性を測定した。結晶配向度を表3
に、磁気特性を表4に示す。
The obtained alloy ingot 5 is pulverized into 5 mm square,
The homogenization treatment was performed at 1000 ° C. for 40 hours, and before the start of the treatment and 5, 10, 15, 20, 40 hours after the start of the treatment,
The area ratio of Fe was measured by image analysis from an image by a scanning electron microscope. Table 2 shows the results. When the crystal grain size was measured by the same scanning electron microscope, the average crystal grain size in the long axis direction after homogenization treatment for 10 hours was 60 μm.
Met. Next, the homogenized alloy ingot is placed in a vacuum heating furnace, kept at 820 ° C. for 3 hours in a hydrogen atmosphere at 1 atm, and then degassed to 10 −2 Torr within 2 minutes. Transferred and quenched. The alloy ingot after the treatment was taken out of the container, pulverized to an average particle diameter of 300 μm, applied with a pressure of 0.5 t / cm 2 in a magnetic field of 15 kOe, and formed into a green compact by uniaxial compression. The degree of crystal orientation of the green compact was measured by X-ray diffraction, the degree of orientation F was calculated by the above-described equation for determining the degree of orientation, and the magnetic properties were further measured. Table 3 shows the degree of crystal orientation.
Table 4 shows the magnetic characteristics.

【0018】比較例1 実施例1で製造した合金溶融物を、高周波溶融法により
溶解し、金型鋳造法により厚さ25mmの永久磁石用合
金鋳塊を得た。得られた合金鋳塊を実施例1と同様に分
析した。合金鋳塊の分析結果を表1に示す。得られた合
金鋳塊を実施例1と同様に均質化処理を行い、α−Fe
の面積率を測定した。結果を表2に示す。また実施例1
と同様に10時間均質化処理を行った際の結晶粒径を測
定したところ、長軸方向の平均結晶粒径は220μmで
あった。次いで、実施例1と同様に水素化処理を行い、
粉砕し、得られた粉末の結晶配向度及び磁気特性を測定
した。結晶配向度を表3に、磁気特性を表4に示す。
Comparative Example 1 The alloy melt produced in Example 1 was melted by a high frequency melting method to obtain a 25 mm thick alloy ingot for permanent magnets by a die casting method. The obtained alloy ingot was analyzed in the same manner as in Example 1. Table 1 shows the analysis results of the alloy ingot. The obtained alloy ingot was homogenized in the same manner as in Example 1 to obtain α-Fe
Was measured. Table 2 shows the results. Example 1
When the crystal grain size after the homogenization treatment was performed for 10 hours in the same manner as in the above, the average crystal grain size in the major axis direction was 220 μm. Next, hydrogenation treatment was performed in the same manner as in Example 1,
The powder was pulverized and the degree of crystal orientation and magnetic properties of the obtained powder were measured. Table 3 shows the degree of crystal orientation, and Table 4 shows the magnetic properties.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いたストリップキャスト法により
永久磁石用合金鋳塊を製造する際の概略図である。
FIG. 1 is a schematic view when producing an alloy ingot for a permanent magnet by a strip casting method used in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C22C 33/02 H01F 1/06 A 38/00 303 1/04 H (58)調査した分野(Int.Cl.7,DB名) H01F 1/032 - 1/08 B22F 1/00 C22C 33/02 C22C 38/00 303 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 identification symbol FI // C22C 33/02 H01F 1/06 A 38/00 303 1/04 H (58) Fields surveyed (Int. Cl. 7 , (DB name) H01F 1/032-1/08 B22F 1/00 C22C 33/02 C22C 38/00 303

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類金属、ボロン及び鉄を含み、これ
らの配合割合が重量比で25〜40:0.5〜2.0:
残量であり、且つX線回折により測定した下記式で示さ
れる配向度Fの値が60以上である粒径200〜400
μmの希土類金属−鉄−ボロン系異方性永久磁石用粉
末。 【数1】
1. The method according to claim 1, comprising a rare earth metal, boron and iron.
The weight ratio of these compounds is 25 to 40: 0.5 to 2.0:
It is the remaining amount and is shown by the following equation measured by X-ray diffraction.
Particle size 200 to 400 in which the value of the degree of orientation F is 60 or more
μm rare earth metal-iron-boron based anisotropic permanent magnet powder. (Equation 1)
JP2000314786A 2000-10-16 2000-10-16 Rare earth metal-iron-boron anisotropic permanent magnet powder Expired - Lifetime JP3278431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000314786A JP3278431B2 (en) 2000-10-16 2000-10-16 Rare earth metal-iron-boron anisotropic permanent magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314786A JP3278431B2 (en) 2000-10-16 2000-10-16 Rare earth metal-iron-boron anisotropic permanent magnet powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23829992A Division JP3213638B2 (en) 1992-02-15 1992-09-07 Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet

Publications (2)

Publication Number Publication Date
JP2001176712A JP2001176712A (en) 2001-06-29
JP3278431B2 true JP3278431B2 (en) 2002-04-30

Family

ID=18793984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314786A Expired - Lifetime JP3278431B2 (en) 2000-10-16 2000-10-16 Rare earth metal-iron-boron anisotropic permanent magnet powder

Country Status (1)

Country Link
JP (1) JP3278431B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550047B2 (en) 2001-12-19 2009-06-23 Hitachi Metals, Ltd. Rare earth element-iron-boron alloy and magnetically anisotropic permanent magnet powder and method for production thereof
JP2010255098A (en) * 2009-03-30 2010-11-11 Tdk Corp Rare earth alloy powder, method for producing the same, compound for anisotropic bond magnet, and anisotropic bond magnet
JP6488744B2 (en) * 2015-02-10 2019-03-27 Tdk株式会社 R-T-B sintered magnet

Also Published As

Publication number Publication date
JP2001176712A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
KR0131333B1 (en) Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JPH1036949A (en) Alloy for rare earth magnet and its production
EP0632471B1 (en) Process of preparing a permanent magnet containing rare earth metal, boron and iron
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP4366360B2 (en) Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet
WO2002072900A2 (en) Method for controlling structure of rare earth element-containing alloy, powder material of the alloy and magnet using the same
JP2002356717A (en) Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JP3299630B2 (en) Manufacturing method of permanent magnet
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3479168B2 (en) Method for producing cast piece for R-Fe-BC magnet alloy having excellent corrosion resistance
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP2660917B2 (en) Rare earth magnet manufacturing method
JP2003077717A (en) Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
JP3256413B2 (en) Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11