JPH08229641A - Production of r-fe-b permanent magnet cast slab - Google Patents

Production of r-fe-b permanent magnet cast slab

Info

Publication number
JPH08229641A
JPH08229641A JP7062087A JP6208795A JPH08229641A JP H08229641 A JPH08229641 A JP H08229641A JP 7062087 A JP7062087 A JP 7062087A JP 6208795 A JP6208795 A JP 6208795A JP H08229641 A JPH08229641 A JP H08229641A
Authority
JP
Japan
Prior art keywords
roll
nozzle
permanent magnet
slab
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7062087A
Other languages
Japanese (ja)
Other versions
JP3535253B2 (en
Inventor
Hiroki Tokuhara
宏樹 徳原
Naoyuki Ishigaki
尚幸 石垣
Michio Yamada
道夫 山田
Masami Ueda
雅己 植田
Takashi Kojima
尊 児嶋
Yukiyoshi Watanabe
幸良 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP06208795A priority Critical patent/JP3535253B2/en
Publication of JPH08229641A publication Critical patent/JPH08229641A/en
Application granted granted Critical
Publication of JP3535253B2 publication Critical patent/JP3535253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To provide the production method of R-Fe-B permanent magnet cast slab having excellent and stable magnet property of coercive force, etc., by which problem of molten metal/single roll in horizontally pouring method is solved and deterioration of corrosion resistance of R-Fe-B permanent magnet is prevented or grain structure is stably micronized. CONSTITUTION: By eliminating a cushion material between a nozzle 4 and roll 5 and specifying/optimizing the clearance length between the nozzle 4 and roll 5 and the position relationship between the nozzle 4 and roll 5, the deterioration of corrosion resistance of R-Fe-B permanent magnet is prevented and the grain structure is stably refined, the R-Fe-B permanent magnet having excellent and stable magnet property is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、微細均質組織を有す
るR−Fe−B系永久磁石用鋳片の製造方法に係り、R
−Fe−B系合金溶湯を溶解炉にて溶解後、タンディッ
シュ先端部のノズルより、溶湯を特定の空隙長に配置さ
れ、且つ特定角度に配置された急冷片ロールに注湯して
急冷凝固して、Rリッチ相が微細に分散した均質組織を
有する特定厚の急冷鋳片を得ることを特徴とするR−F
e−B系永久磁石用鋳片の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a slab for an R-Fe-B type permanent magnet having a fine homogeneous structure,
After melting the -Fe-B alloy melt in a melting furnace, the melt is poured from a nozzle at the tip of the tundish into a quench piece roll arranged at a specific gap length and at a specific angle, and rapidly solidified. Then, an R-F characterized by obtaining a quenched slab of a specific thickness having a homogeneous structure in which an R-rich phase is finely dispersed.
The present invention relates to a method for manufacturing a slab for an e-B system permanent magnet.

【0002】[0002]

【従来の技術】高性能永久磁石として代表的なR−Fe
−B系永久磁石(特開昭59−46008号)は、三元
系正方晶化合物の主相とRリッチ相を有する組織にて高
い磁石特性が得られ、一般家庭の各種電器製品から大型
コンピューターの周辺機器まで幅広い分野で使用され、
用途に応じた種々の磁石特性を発揮するよう種々の組成
のR−Fe−B系永久磁石が提案されている。
2. Description of the Related Art R-Fe, which is a typical high-performance permanent magnet
The B-type permanent magnet (Japanese Patent Laid-Open No. 59-46008) has high magnet characteristics due to the structure having the main phase of the ternary tetragonal compound and the R-rich phase. Used in a wide range of fields including
R-Fe-B based permanent magnets having various compositions have been proposed so as to exhibit various magnet characteristics according to applications.

【0003】R−Fe−B系焼結磁石の残留磁束密度
(Br)を高めるためには、1)強磁性相であり、主相
のR2Fe14B相の存在量を多くすること、2)焼結体
の密度を主相の理論密度まで高めること、3)さらに、
主相結晶粒の磁化容易軸方向の配向度を高めることが要
求される。
In order to increase the residual magnetic flux density (Br) of the R-Fe-B system sintered magnet, 1) increase the abundance of the R 2 Fe 14 B phase, which is a ferromagnetic phase and is the main phase, 2) Increasing the density of the sintered body to the theoretical density of the main phase 3) Further,
It is required to increase the degree of orientation of the main phase crystal grains in the easy axis direction of magnetization.

【0004】すなわち、前記1)項の達成のためには、
磁石の組成を上記R2Fe14Bの化学量論的組成に近づ
けることが重要であるが、上記組成の合金を溶解し、鋳
型に鋳造した合金塊を、出発原料としてR−Fe−B系
焼結磁石を作製しようとすると、合金塊に晶出したα−
Feや、R−rich相が局部的に遍在していることな
どから、特に微粉砕時に粉砕が困難となり、組成ずれを
生ずる等の問題があった。
That is, in order to achieve the above item 1),
It is important to bring the composition of the magnet close to the stoichiometric composition of the above R 2 Fe 14 B, but the alloy ingot having the above composition melted and cast in a mold is used as a starting material in the R—Fe—B system. When trying to make a sintered magnet, α-
Since Fe and the R-rich phase are locally ubiquitous, it is difficult to pulverize especially during fine pulverization, and there is a problem that composition shift occurs.

【0005】最近、鋳塊粉砕法によるR−Fe−B系合
金粉末の欠点たる結晶粒の粗大化、α−Feの残留、偏
析を防止するために、R−Fe−B系合金溶湯を双ロー
ル法により、特定板厚の鋳片となし、前記鋳片を通常の
粉末冶金法に従って、焼結磁石を製造する方法が提案
(特開昭63−317643号公報)されている。
Recently, in order to prevent coarsening of crystal grains, residual α-Fe, and segregation, which are defects of the R-Fe-B alloy powder by the ingot crushing method, a molten alloy of R-Fe-B alloy is used. A method has been proposed (Japanese Patent Laid-Open No. 63-317643) in which a slab having a specific plate thickness is formed by a roll method, and the slab is manufactured by a conventional powder metallurgy method.

【0006】また、R−Fe−B系合金溶湯を片ロール
を用いて、横注ぎストリップキャスト法により永久磁石
用急冷鋳片を製造する方法として、タンディッシュ先端
部の水平方向に所要幅のノズルを設け、このノズルに隣
接させて片ロールを水平方向に軸支配置し、高周波溶解
炉にて溶解した溶湯をタンディッシュに収容後、該ノズ
ルから溶湯を水平配置されて連続回転する片ロール面に
注湯して、急冷凝固させて急冷鋳片を製造する方法が提
案(特開平5−222488号公報、特開平6−846
24号公報)されている。
Further, as a method for producing a quenching cast piece for a permanent magnet by a horizontal pouring strip casting method using a single roll of R-Fe-B alloy melt, a nozzle having a required width in the horizontal direction of the tip of the tundish. Is provided, and one roll is horizontally supported adjacent to this nozzle, and after the molten metal melted in the high-frequency melting furnace is accommodated in the tundish, the molten roll is horizontally arranged from the nozzle and continuously rolled. A method for producing a rapidly-quenched slab by pouring the molten metal into the molten steel and rapidly solidifying it is proposed (JP-A-5-222488 and JP-A-6-846).
No. 24).

【0007】[0007]

【発明が解決しようとする課題】一般に、横注ぎストリ
ップキャスト法の場合、前記ノズルと片ロール間の空隙
より溶湯の漏洩流出を防止するため、前記空隙にはアル
ミナ、シリカ等の耐火物からなるクッション材を介在さ
せて、ノズル部を片ロールに押圧して使用していた。し
かし、前記クッション材が溶湯に接触しているため、凝
固した鋳片がクッション材に固着し、鋳片がクッション
材を徐々に引き裂きながら鋳造されるため、前記クッシ
ョン材が鋳片中に混入し、混入した耐火物は焼結時に磁
石合金の液相により還元され、例えば、耐火物がアルミ
ナの場合は、Al23が還元されてできたAlの回りに
希土類酸化物が集積した異常組織となり、焼結磁石の耐
食性を劣化する問題があった。
Generally, in the horizontal pouring strip casting method, in order to prevent the molten metal from leaking out through the gap between the nozzle and one roll, the gap is made of a refractory material such as alumina or silica. The cushion part was used and the nozzle part was pressed against one roll and used. However, since the cushion material is in contact with the molten metal, the solidified slab adheres to the cushion material, and the slab is cast while gradually tearing the cushion material, so that the cushion material is mixed in the slab. The mixed refractory is reduced by the liquid phase of the magnet alloy during sintering. For example, when the refractory is alumina, an abnormal structure in which rare earth oxides are accumulated around Al formed by reducing Al 2 O 3. Therefore, there is a problem that the corrosion resistance of the sintered magnet is deteriorated.

【0008】また、横注ぎストリップキャスト法の場合
は、溶湯温度や溶湯と片ロールの熱伝達係数等が一定で
あれば、ノズル部の湯面高さとロール周速度、すなわち
溶湯と片ロールの接触長とロール周速度により、鋳片の
板厚および結晶組織が決定されるが、操業上、湯面高さ
を一定にすることは難しく、板厚が変動するために結晶
組織は大小にばらつく問題がある。かかる結晶組織の短
軸方向の結晶粒径の大きさとそのバラツキは、磁石特
性、特に保磁力を変動させるため、安定した磁石特性が
得難い問題があった。さらに、鋳片と片ロールの接触時
間が短かいと、鋳片の冷却が不十分で、鋳片が片ロール
を離れた時の鋳片温度が高いため、結晶粒は成長して粗
大化するため、磁石特性、特に保磁力が低下する問題が
あった。
In the case of the horizontal pouring strip casting method, if the molten metal temperature and the heat transfer coefficient between the molten metal and the one roll are constant, the height of the molten metal at the nozzle and the peripheral speed of the roll, that is, the contact between the molten metal and the one roll. The plate thickness and crystal structure of the slab are determined by the length and the peripheral speed of the roll, but it is difficult to keep the height of the molten metal surface constant during operation, and there is a problem that the crystal structure varies depending on the plate thickness. There is. The size of the crystal grain size in the minor axis direction of the crystal structure and the variation thereof change the magnet characteristics, especially the coercive force, so that there is a problem that it is difficult to obtain stable magnet characteristics. Furthermore, when the contact time between the slab and the one roll is short, the slab is insufficiently cooled, and the slab temperature when the slab leaves the one roll is high, so that the crystal grains grow and become coarse. Therefore, there is a problem in that the magnet characteristics, especially the coercive force is lowered.

【0009】この発明は、横注ぎストリップキャスト法
における溶湯と片ロールとの問題点を解消し、R−Fe
−B系永久磁石の耐食性の劣化を防止でき、また、結晶
組織を安定的に微細化でき、保磁力などの磁石特性がす
ぐれかつ安定したR−Fe−B系永久磁石用鋳片の製造
方法の提供を目的としている。
The present invention solves the problems of molten metal and single roll in the horizontal pouring strip casting method, and
A method for producing a slab for an R-Fe-B system permanent magnet, which can prevent deterioration of corrosion resistance of a B system permanent magnet, can stably refine a crystal structure, and has excellent and stable magnet characteristics such as coercive force. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】この発明は、発明者は、
横注ぎストリップキャスト法のクッション材の問題を解
消するため、ノズルとロール間のクッション材をなくす
ることを目的に種々検討した結果、ノズルとロール間の
空隙長はロール周速度によって変化し、周速度が速い
程、空隙長を大きくすることができ、又鋳造時の急冷片
ロールの熱膨張により空隙長が変化することより、予め
急冷片ロールの材質、周速度等により、空隙長を所要長
さに調整する必要があり、前々空隙長を0.01〜3.
0mmに設定することが重要であることを知見した。
The present invention is
As a result of various studies aimed at eliminating the cushioning material between the nozzle and the roll in order to solve the problem of the cushioning material in the horizontal pouring strip casting method, the air gap length between the nozzle and the roll changes depending on the peripheral speed of the roll. The faster the speed, the larger the void length.Also, the void length changes due to the thermal expansion of the quench strip roll during casting. It is necessary to adjust the gap length to 0.01-3.
It was found that setting to 0 mm is important.

【0011】また、発明者は鋳片の厚みを0.03mm
〜10mmにして、その組織を微細化するため、ノズル
とロールとの位置関係について種々検討した結果、急冷
片ロールの最上部と中心点を結ぶ線とノズルとのなす角
度が30°〜90°になるよう配置することにより、急
冷片ロールにより鋳造される鋳片の厚みを0.03〜1
0mmの所要厚みとなし、その組織を微細化できること
を知見し、この発明を完成した。
The inventor has made the thickness of the cast piece 0.03 mm.
As a result of various studies on the positional relationship between the nozzle and the roll in order to make the structure finer by 10 mm to 10 mm, the angle formed by the nozzle and the line connecting the uppermost point of the quenching piece roll and the center point is 30 ° to 90 °. By arranging so that the thickness of the slab cast by the quenching piece roll is 0.03 to 1
The present invention has been completed by finding that the required thickness is 0 mm and the structure can be miniaturized.

【0012】すなわち、この発明は、真空中又は不活性
雰囲気でR−Fe−B系合金溶湯をノズルより急冷片ロ
ールに注湯して急冷鋳片を得るR−Fe−B系永久磁石
用鋳片の製造方法において、前記合金溶湯を収容するタ
ンディッシュ先端部のノズルを、急冷片ロールの最上部
と中心点を結ぶ線に対して、30°〜90°の角度範囲
位置に臨ませて配置し、かつ急冷片ロール表面と前記ノ
ズル端間の空隙長を0.01mm〜3.0mmにしたこ
とを特徴とするR−Fe−B系永久磁石用鋳片の製造方
法である。
That is, the present invention is a casting for an R-Fe-B system permanent magnet, in which a molten R-Fe-B system alloy is poured from a nozzle into a quenching piece roll in a vacuum or in an inert atmosphere to obtain a quenching cast piece. In the method for manufacturing a piece, the nozzle of the tip of the tundish containing the molten alloy is arranged so as to face an angle range of 30 ° to 90 ° with respect to a line connecting the uppermost part of the quenching piece roll and the center point. And the gap length between the surface of the quenched piece roll and the end of the nozzle is 0.01 mm to 3.0 mm, which is a method for producing a cast piece for an R-Fe-B system permanent magnet.

【0013】以下にこの発明においてR−Fe−B系永
久磁石を製造する合金鋳片の好ましい合金組成を説明す
る。この発明の永久磁石鋳片に含有される希土類元素R
はイットリウム(Y)を包含し、軽希土類及び重希土類
を包含する希土類元素である。Rとしては、軽希土類を
もって足り、特にNd,Prが好ましい。また通常Rの
うち1種もって足りるが、実用上は2種類以上の混合物
(ミッシュメタル、ジジム等)を入手上の便宜等の理由
により用いることができ、Sm,Y,La,Ce,Gd
等は他のR、特にNd,Pr等との混合物として用いる
ことができる。なお、このRは純希土類元素でなくても
よく、工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差し支えない。
The preferred alloy composition of the alloy slab for producing the R-Fe-B system permanent magnet in the present invention will be described below. Rare earth element R contained in the permanent magnet slab of the present invention
Is a rare earth element including yttrium (Y) and including light rare earths and heavy rare earths. As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as convenience of availability, and Sm, Y, La, Ce, Gd.
Etc. can be used as a mixture with other R, especially Nd, Pr, etc. It should be noted that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0014】Rは、R−Fe−B系永久磁石を製造する
合金鋳片の必須元素であって、10原子%未満では高磁
気特性、特に高保磁力が得られず、30原子%を越える
と残留磁束密度(Br)が低下して、すぐれた特性の永
久磁石が得られない。よって、Rは10原子%〜30原
子%の範囲とする。
R is an essential element of the alloy slab for producing R-Fe-B system permanent magnets. If it is less than 10 atomic%, high magnetic properties, particularly high coercive force cannot be obtained, and if it exceeds 30 atomic%. The residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is in the range of 10 atom% to 30 atom%.

【0015】Bは、R−Fe−B系永久磁石を製造する
合金鋳片の必須元素であって、2原子%未満では高い保
磁力(iHc)は得られず、28%原子を越えると残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られない。よって、Bは2原子%〜28原子%の範囲
とする。
B is an essential element of an alloy slab for producing an R-Fe-B system permanent magnet. If it is less than 2 atom%, a high coercive force (iHc) cannot be obtained, and if it exceeds 28% atom, it remains. Since the magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

【0016】Feは、R−Fe−B系永久磁石を製造す
る合金鋳片の必須元素であって、42原子%未満では残
留磁束密度(Br)が低下し、88%原子を超えると高
い保磁力が得られないので、Feは42原子%〜88原
子%に限定する。また、Feの一部をCo、Niの1種
又は2種で置換可能であり、これは永久磁石の温度特性
を向上させる効果及び耐食性を向上させる効果が得られ
るためであるが、Co、Niの1種又は2種はFeの5
0%を越えると高い保磁力が得られず、すぐれた永久磁
石が得られない。よって、Co、Niの1種又は2種の
置換量はFeの50%を上限とする。
Fe is an essential element of alloy slabs for producing R-Fe-B system permanent magnets. If it is less than 42 atomic%, the residual magnetic flux density (Br) is lowered, and if it exceeds 88% atomic level, it is high. Since no magnetic force can be obtained, Fe is limited to 42 atom% to 88 atom%. Further, a part of Fe can be replaced with one or two of Co and Ni. This is because the effect of improving the temperature characteristics of the permanent magnet and the effect of improving corrosion resistance can be obtained. 1 or 2 is Fe 5
If it exceeds 0%, a high coercive force cannot be obtained and an excellent permanent magnet cannot be obtained. Therefore, the upper limit of the substitution amount of one or two of Co and Ni is 50% of Fe.

【0017】この発明による合金鋳片において、高い残
留磁束密度と高い保磁力を共に有するすぐれた永久磁石
を得るためには、R12原子%〜16原子%、B4原子
%〜12原子%、Fe72原子%〜84原子%が好まし
い。、また、この発明による合金鋳片は、R、B、Fe
の他、酸素、C、Ca、Mgなどの工業的生産上不可避
的不純物の存在を許容できるが、Bの一部を4.0原子
%以下のC、3.5原子%以下のP、2.5原子%以下
のS、3.5原子%以下のCuのうち少なくとも1種、
合計量で4.0原子%以下で置換することにより、磁石
合金の製造性改善、低価格化が可能である。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the alloy slab according to the present invention, R12 atom% to 16 atom%, B4 atom% to 12 atom%, Fe72 atom % To 84 atom% is preferable. Further, the alloy slab according to the present invention is made of R, B, Fe.
In addition to the above, the presence of impurities such as oxygen, C, Ca, and Mg that are unavoidable in industrial production is acceptable, but part of B is 4.0 atomic% or less of C, 3.5 atomic% or less of P, 2 .5 atomic% or less of S, 3.5 atomic% or less of at least one of Cu,
By substituting the total amount by 4.0 atomic% or less, it is possible to improve the manufacturability of the magnet alloy and reduce the cost.

【0018】さらに、前記R、B、Fe合金あるいはC
oを含有するR−Fe−B合金に、9.5原子%以下の
Al、4.5原子%以下のTi、9.5原子%以下の
V、8.5原子%以下のCr、8.0原子%以下のM
n、5原子%以下のBi、12.5原子%以下のNb、
10.5原子%以下のTa、9.5原子%以下のMo、
9.5原子%以下のW、2.5原子%以下のSb、7原
子%以下のGe、35原子%以下のSn、5.5原子%
以下のZr、5.5原子%以下のHfのうち少なくとも
1種添加含有させることにより、永久磁石合金の高保磁
力が可能になる。この発明のR−Fe−B系永久磁石に
おいて、結晶相は主相が正方晶であることが不可欠であ
り、特に、微細で均一な合金粉末を得て、すぐれた磁気
特性を有する焼結永久磁石を作製するのに効果的であ
る。
Further, the R, B, Fe alloy or C
8. O-containing R-Fe-B alloy, 9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8. M of 0 atomic% or less
n, 5 atomic% or less Bi, 12.5 atomic% or less Nb,
10.5 atomic% or less Ta, 9.5 atomic% or less Mo,
W of 9.5 atomic% or less, Sb of 2.5 atomic% or less, Ge of 7 atomic% or less, Sn of 35 atomic% or less, 5.5 atomic%
A high coercive force of the permanent magnet alloy becomes possible by adding at least one of the following Zr and 5.5 at% or less of Hf. In the R-Fe-B system permanent magnet of the present invention, it is essential that the main phase of the crystal phase is a tetragonal crystal, and in particular, a fine and uniform alloy powder is obtained to obtain a sintered permanent having excellent magnetic properties. It is effective for making magnets.

【0019】この発明において、Rリッチ相が微細に分
散した組織を有する磁石材料の鋳片の板厚を0.03m
m〜10mmに限定した理由は、0.03mm未満では
急冷効果が大となり、結晶粒径が3μmより小となり、
粉末化した際に酸化しやすくなるため、磁気特性の劣化
を招来するとともに、微粉砕後の粒子が多結晶となり配
向度が低下しBrが低下するので好ましくなく、また1
0mmを越えると、冷却速度が遅くなり、α−Feが晶
出しやすく、結晶粒径が大となり、Ndリッチ相の遍在
も生じるため、磁気特性、特に保磁力が低下するので好
ましくないことによる。より好ましくは板厚0.05m
m〜3mmである。
In the present invention, the plate thickness of the cast slab of the magnetic material having a structure in which the R-rich phase is finely dispersed is 0.03 m.
The reason for limiting the thickness to m to 10 mm is that if it is less than 0.03 mm, the quenching effect is large, and the crystal grain size is smaller than 3 μm.
Since it is easily oxidized when pulverized, the magnetic properties are deteriorated, and the finely pulverized particles become polycrystals, which lowers the degree of orientation and Br, which is not preferable.
If it exceeds 0 mm, the cooling rate becomes slow, α-Fe is easily crystallized, the crystal grain size becomes large, and the Nd-rich phase becomes ubiquitous. . More preferably the plate thickness is 0.05 m
It is m to 3 mm.

【0020】この発明のストリップキャスティング法に
より得られた特定組成のR−Fe−B系合金の断面組織
は、主相のR2Fe14B結晶が従来の鋳型に鋳造して得
られた鋳塊のものに比べて、約1/10以上も微細であ
り、例えば、その短軸方向の寸法は0.1μm〜50μ
m、長軸方向は5μm〜200μmの微細結晶であり、
かつその主相結晶粒を取り囲むようにRリッチ相が微細
に分散されており、局部に遍在している領域において
も、その大きさは20μm以下である。
The cross-sectional structure of the R-Fe-B type alloy having a specific composition obtained by the strip casting method of the present invention is an ingot obtained by casting the R 2 Fe 14 B crystal of the main phase in a conventional mold. The size is about 1/10 or more finer than that of, for example, the dimension in the minor axis direction is 0.1 μm to 50 μm.
m, the long axis direction is a fine crystal of 5 μm to 200 μm,
In addition, the R-rich phase is finely dispersed so as to surround the main phase crystal grains, and the size is 20 μm or less even in the locally ubiquitous region.

【0021】[0021]

【作用】この発明による製造方法の作用を図に基づいて
詳述する。図1はこの発明のストリップキャスティング
法に使用する装置の概略を示す説明図である。真空中も
しくは不活性雰囲気となした密閉室1内には、高周波溶
解炉2と先端部にノズル4を有するタンディッシュ3、
これに隣接配置する急冷用片ロール5、さらに急冷用片
ロール5面に接触させて設けるスクレパー6、並びに鋳
片回収容器7が配置、収容されている。急冷用片ロール
5は、水平方向に軸配置されて図示しない回転駆動装置
にて所定の回転数で水平回転する構成で、また、図示し
ない水冷装置で冷却されている。
The operation of the manufacturing method according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing the outline of an apparatus used in the strip casting method of the present invention. A high frequency melting furnace 2 and a tundish 3 having a nozzle 4 at the tip end are provided in a closed chamber 1 in vacuum or in an inert atmosphere,
A quenching piece roll 5 disposed adjacent to this, a scraper 6 provided in contact with the surface of the quenching piece roll 5 and a cast piece collecting container 7 are arranged and housed. The quenching piece roll 5 is axially arranged in the horizontal direction and horizontally rotated at a predetermined rotation speed by a rotation driving device (not shown), and is cooled by a water cooling device (not shown).

【0022】タンディッシュ3の先端部のノズル4は、
上記の急冷用片ロール5の最上部5aと中心点5bを結
ぶ線に対して、θ=30°〜90°の角度範囲位置に臨
むように配置され、かつ急冷用片ロール5表面より、空
隙長Tを0.01mm〜3.0mmに設定してある。溶
解炉2にて溶解したR−Fe−B系磁石組成の合金溶湯
8をタンディッシュ3内に傾注した後、タンディッシュ
3内の溶湯8は、急冷用片ロール5に対して所定の角度
範囲位置に所定の空隙長をもって配置されるノズル4よ
り、矢印方向に回転中の急冷用片ロール5面に注湯さ
れ、冷却されたロール面で急冷凝固して板厚0.03m
m〜10mmの鋳片となり、次いでスクレパー6にて掻
きとられたのち鋳片回収容器7に収納される。
The nozzle 4 at the tip of the tundish 3 is
With respect to the line connecting the uppermost part 5a of the quenching piece roll 5 and the central point 5b, it is arranged so as to face an angle range position of θ = 30 ° to 90 °, and a gap is formed from the surface of the quenching piece roll 5 The length T is set to 0.01 mm to 3.0 mm. After the molten alloy 8 of the R-Fe-B based magnet composition melted in the melting furnace 2 is poured into the tundish 3, the molten metal 8 in the tundish 3 has a predetermined angle range with respect to the quenching piece roll 5. From a nozzle 4 arranged with a predetermined gap length at a position, the melt is poured onto the surface of a single roll 5 for rapid cooling, which is rotating in the direction of the arrow, and rapidly cooled and solidified on the surface of the cooled roll to obtain a plate thickness of 0.03 m.
It becomes a slab of m to 10 mm, which is scraped by the scraper 6 and then stored in the slab collecting container 7.

【0023】この発明において、急冷片ロールの最上部
と中心線を結ぶ線に対してノズルの位置を30°〜90
°に限定した理由は、30°未満では鋳片とロールとの
接触時間が短く、鋳片の冷却が十分でなく、またノズル
部の湯面高さの変動による鋳片の板厚変動を生じ、鋳片
内組織の変化が大であり、所要の組織を得ることができ
ず、さらに90°を越えると溶湯がロール面を滑りやす
く、ノズル部での溶湯の凝固によるノズルづまりを発生
し易くなり好ましくないことによる。より好ましい角度
範囲はは45°〜80°である。
In the present invention, the position of the nozzle is 30 ° to 90 ° with respect to the line connecting the uppermost portion of the quenching piece roll and the center line.
The reason for limiting the temperature to 30 ° is that if it is less than 30 °, the contact time between the slab and the roll is short, the slab is not sufficiently cooled, and the plate thickness of the slab changes due to the change in the height of the molten metal at the nozzle. However, the change in the structure inside the slab is large, the required structure cannot be obtained, and if it exceeds 90 °, the molten metal tends to slip on the roll surface, and the nozzle clogging due to the solidification of the molten metal in the nozzle portion easily occurs. Because it is not preferable. A more preferable angle range is 45 ° to 80 °.

【0024】又、この発明において、タンディッシュの
ノズル先端とロール面間の空隙長を0.01mm 〜
3.0mmに限定した理由は、0.01mm未満では急
冷ロールとノズルが接触してロール表面に疵を生成した
り、ノズル先端部が欠ける恐れがあり好ましくなく、ま
た、3.0mmを越えるとロール面とノズル間より湯洩
れを生ずるので好ましくない。好ましい空隙長は0.1
mm〜0.5mmである。
Further, in the present invention, the gap length between the tip of the tundish nozzle and the roll surface is 0.01 mm.
The reason for limiting the thickness to 3.0 mm is not preferable when the thickness is less than 0.01 mm because the quenching roll and the nozzle may come into contact with each other to form a flaw on the roll surface or the tip of the nozzle may be chipped, and when it exceeds 3.0 mm. It is not preferable because hot water leaks between the roll surface and the nozzle. The preferred void length is 0.1
mm to 0.5 mm.

【0025】[0025]

【実施例】【Example】

実施例1 図1に示す溶解炉、ノズルを有するタンディッシュ及び
急冷片ロールが収容される密閉室を真空となし、31.
0Nd−1.0Dy−1.1B−3.0Co−63.9
Fe(wt%)磁石になる如く、溶解炉にて溶解した。
急冷片ロールには、径300mm、回転数130rpm
の水冷Cuロールを用い、タンディッシュ先端部のノズ
ルは、水冷Cuロール最上部と中心点を結ぶ線に対して
角度60°並びに0.3mmの空隙をもって配置され、
Ar300Torrの雰囲気にした後、前記溶湯をタン
ディッシュ内に収容後、水冷Cuロール上に溶湯をノズ
ル部の湯面高さ20mmでノズルより注湯して、幅10
0mm、長さ10〜300mmの急冷鋳片を得た。
Example 1 The melting chamber shown in FIG. 1, a closed chamber accommodating a tundish having a nozzle and a quenching piece roll was evacuated, 31.
0Nd-1.0Dy-1.1B-3.0Co-63.9
It was melted in a melting furnace so that it became a Fe (wt%) magnet.
The quenching piece roll has a diameter of 300 mm and a rotation speed of 130 rpm.
Nozzle at the tip of the tundish is arranged with an angle of 60 ° and a gap of 0.3 mm with respect to the line connecting the top of the water-cooled Cu roll and the center point.
After making the atmosphere of Ar300 Torr, the molten metal is housed in a tundish, and then the molten metal is poured on a water-cooled Cu roll from the nozzle at a surface height of the nozzle portion of 20 mm, and the width is 10 mm.
Quenched slabs having a length of 0 mm and a length of 10 to 300 mm were obtained.

【0026】鋳片300枚を任意に選びその鋳片厚を測
定した結果、板厚0.23〜0.35mm、平均値0.
31mmであった。前記鋳片の結晶粒径は短軸方向の寸
法0.5μm〜15μm、長軸方向寸法は10μm〜2
50μmであり、Rリッチ相は主相を取囲むように1μ
m以下に微細に分散して存在することを確認した。
As a result of arbitrarily selecting 300 slabs and measuring the slab thickness, a plate thickness of 0.23 to 0.35 mm and an average value of 0.
It was 31 mm. The crystal grain size of the slab is 0.5 μm to 15 μm in the minor axis direction, and 10 μm to 2 in the major axis direction.
50 μm, the R-rich phase is 1 μm so as to surround the main phase
It was confirmed that the particles were finely dispersed in a size of m or less.

【0027】前記鋳片を公知の方法で粗粉砕、微粉砕し
て、平均粒度3.5μm合金粉末を得た後、磁場強度1
5kOe中で圧力1.0T/にて成型し、1060℃に
3時間の条件にて焼結後、600℃に1時間の時効処理
を行い、永久磁石を得た。得られた永久磁石の磁石特性
及び耐食性試験結果を表1に示す。なお、耐食性試験は
焼結磁石を15mm×15mm×8mm寸法に加工後、
膜厚25μmのエポキシ樹脂塗装をした後、磁石10個
を80℃×90%RHの環境に200時間保持した後、
その外観を検査する方法で行った。
The slab was roughly pulverized and finely pulverized by a known method to obtain an alloy powder having an average particle size of 3.5 μm, and then the magnetic field strength was 1
After molding in 5 kOe at a pressure of 1.0 T /, sintering at 1060 ° C. for 3 hours, aging treatment at 600 ° C. for 1 hour was performed to obtain a permanent magnet. Table 1 shows the magnetic properties and corrosion resistance test results of the obtained permanent magnets. The corrosion resistance test is performed after processing the sintered magnet into a size of 15 mm × 15 mm × 8 mm,
After applying an epoxy resin coating with a film thickness of 25 μm, after holding 10 magnets in an environment of 80 ° C. × 90% RH for 200 hours,
The appearance was inspected.

【0028】比較例1 実施例1と同一の磁石組成を有する溶湯をタンディッシ
ュのノズルと急冷ロール間に厚み3mmのアルミナのク
ッション材を介在させる以外は、実施例1と同一の鋳造
条件、製造条件にて磁石を得た。得られた鋳片の結晶粒
径は実施例の場合とほぼ同一であった。また、得られた
永久磁石の磁石特性及び実施例1と同一の耐食性試験結
果を表1に表す。耐食性試験結果は、表に示すごとく、
磁石10個中63の塗膜に直径0.5〜2mmのフクレ
が認められた。
Comparative Example 1 The same casting conditions and production as in Example 1 except that a molten metal having the same magnet composition as in Example 1 was interposed between a tundish nozzle and a quenching roll with a 3 mm thick alumina cushion material. A magnet was obtained under the conditions. The crystal grain size of the obtained slab was almost the same as that of the example. Table 1 shows the magnet characteristics of the obtained permanent magnet and the same corrosion resistance test results as in Example 1. The results of the corrosion resistance test are as shown in the table.
Blisters having a diameter of 0.5 to 2 mm were recognized in the coating film of 63 of the 10 magnets.

【0029】上記のフクレ部の塗膜を除去してEPMA
により調査した結果、Alの周りにNd酸化物が集積し
ていることが確認された。鋳片に混入したAl23製の
クッション材が焼結時にNdリッチな液相により還元さ
れ、Alの周りにNd酸化物が集積するNd酸化物は耐
食性がきわめて悪く、水分と反応してNd(OH)3
変化するため、塗膜がふくれることが確認された。
The coating film on the blisters is removed to remove the EPMA
As a result of the investigation, it was confirmed that Nd oxide was accumulated around Al. The cushioning material made of Al 2 O 3 mixed in the slab is reduced by the Nd-rich liquid phase during sintering, and the Nd oxide that accumulates Nd oxide around Al has extremely poor corrosion resistance and reacts with moisture. It was confirmed that the coating film swelled because it changed to Nd (OH) 3 .

【0030】比較例2 実施例1と同一磁石組成を有する溶湯を、ノズルと水冷
Cuロールの最上部と中心点を結ぶ線に対する角度が2
0°で、湯面高さ11mmで実施例1と同一の鋳造条
件、磁石化製造条件にて磁石を得た。得られた鋳片の寸
法は幅100mm長さ10〜300mmであり、鋳片3
00枚を任意に選び、厚みを測定した結果、板厚0.1
8〜0.42mm平均値0.32mmであった。また、
この比較例の鋳片結晶粒径は短軸方向は寸法3μm〜3
0μm、長軸方向寸法は30μm〜200μmであっ
た。得られた永久磁石の磁石特性及び耐食性試験結果を
第1表に表す。
Comparative Example 2 A molten metal having the same magnet composition as in Example 1 was formed at an angle of 2 with respect to the line connecting the nozzle and the top of the water-cooled Cu roll with the center point.
A magnet was obtained under the same casting conditions and magnetizing production conditions as in Example 1 at 0 ° and a molten metal height of 11 mm. The size of the obtained slab is 100 mm in width and 10 to 300 mm in length.
As a result of arbitrarily selecting 00 sheets and measuring the thickness, the plate thickness is 0.1
The average value was 8 to 0.42 mm and 0.32 mm. Also,
The slab crystal grain size of this comparative example is 3 μm to 3 in the minor axis direction.
The dimension in the long axis direction was 0 μm and was 30 μm to 200 μm. Table 1 shows the magnetic properties and corrosion resistance test results of the obtained permanent magnets.

【0031】比較例3 実施例1と同一磁石組成を有する溶湯を、ノズルと水冷
Cuロールの最上部と中心点を結ぶ線に対する角度が1
00°で湯面高さ18mm以外は実施例1と同一の鋳造
条件で溶湯をノズルより注湯した。鋳造開始後12秒で
ノズル部で溶湯が凝固し、ノズルづまりが発生し、鋳造
できなくなった。
Comparative Example 3 A molten metal having the same magnet composition as in Example 1 was formed at an angle of 1 with respect to the line connecting the nozzle and the top of the water-cooled Cu roll and the center point.
Molten metal was poured from a nozzle under the same casting conditions as in Example 1 except that the height of the molten metal was 00 ° and the height of the molten metal was 18 mm. Twelve seconds after the start of casting, the molten metal solidified at the nozzle, nozzle clogging occurred, and casting could not be performed.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】この発明は、横注ぎストリップキャスト
法における溶湯と片ロールとの問題点を解消するため、
ノズルとロール間のクッション材をなくし、かつノズル
とロール間の空隙長並びにノズルとロールとの位置関係
を特定し最適化することにより、実施例に明らかなよう
にクッション材の混入によるR−Fe−B系永久磁石の
耐食性の劣化を防止でき、また、結晶組織を安定的に微
細化でき、保磁力などがすぐれかつ安定した磁石特性の
R−Fe−B系永久磁石を得ることが可能な同系磁石用
鋳片を安定的に製造できる。
The present invention solves the problems of molten metal and single roll in the horizontal pouring strip casting method.
By eliminating the cushioning material between the nozzle and the roll and specifying and optimizing the gap length between the nozzle and the roll and the positional relationship between the nozzle and the roll, as is apparent from the examples, R-Fe due to the mixing of the cushioning material It is possible to prevent deterioration of the corrosion resistance of the -B system permanent magnet, to stably refine the crystal structure, to obtain an R-Fe-B system permanent magnet having excellent coercive force and stable magnet characteristics. A slab for similar magnets can be stably manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のストリップキャスティング法に使用
する装置の概略を示す説明図である。
FIG. 1 is an explanatory view showing an outline of an apparatus used for a strip casting method of the present invention.

【符号の説明】[Explanation of symbols]

1 密閉室 2 高周波溶解炉 3 タンディッシュ 4 ノズル 5 急冷用片ロール 5a 最上部 5b 中心点 6 スクレパー 7 鋳片回収容器 8 合金溶湯 1 Closed Chamber 2 High Frequency Melting Furnace 3 Tundish 4 Nozzle 5 Piece Roll for Quenching 5a Top 5b Center Point 6 Scraper 7 Cast Piece Recovery Container 8 Alloy Molten Metal

フロントページの続き (72)発明者 植田 雅己 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内 (72)発明者 児嶋 尊 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内 (72)発明者 渡辺 幸良 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内Front page continuation (72) Inventor Masaki Ueda 2-19-1 Minamisuita, Suita-shi, Osaka Sumitomo Special Metals Co., Ltd. Suita Works (72) Inventor Takashi Kojima 2-1-1 Minamisuita, Suita, Osaka Sumitomo Special Metals Co., Ltd. Suita Works (72) Inventor Yuki Watanabe 2-19-1 Minami Suita, Suita City, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Suita Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空中又は不活性雰囲気でR−Fe−B
系合金溶湯をノズルより急冷片ロールに注湯して急冷鋳
片を得るR−Fe−B系永久磁石用鋳片の製造方法にお
いて、前記合金溶湯を収容するタンディッシュ先端部の
ノズルを、急冷片ロールの最上部と中心点を結ぶ線に対
して、30°〜90°の角度範囲位置に臨ませて配置
し、かつ急冷片ロール表面と前記ノズル端間の空隙長を
0.01mm〜3.0mmにしたことを特徴とするR−
Fe−B系永久磁石用鋳片の製造方法。
1. R-Fe-B in vacuum or in an inert atmosphere
In a method for producing a slab for an R-Fe-B system permanent magnet, which comprises pouring a molten alloy into a quenching piece roll from a nozzle to obtain a quenched slab, a nozzle at a tip of a tundish containing the molten alloy is rapidly cooled. It is arranged so as to face an angle range position of 30 ° to 90 ° with respect to a line connecting the uppermost portion of the one roll and the center point, and the gap length between the surface of the rapidly cooled one roll and the nozzle end is 0.01 mm to 3 mm. R- characterized by being set to 0.0 mm
The manufacturing method of the cast piece for Fe-B type | system | group permanent magnets.
JP06208795A 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet Expired - Lifetime JP3535253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06208795A JP3535253B2 (en) 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06208795A JP3535253B2 (en) 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet

Publications (2)

Publication Number Publication Date
JPH08229641A true JPH08229641A (en) 1996-09-10
JP3535253B2 JP3535253B2 (en) 2004-06-07

Family

ID=13189934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06208795A Expired - Lifetime JP3535253B2 (en) 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet

Country Status (1)

Country Link
JP (1) JP3535253B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030595A1 (en) * 2000-10-06 2002-04-18 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
JP2003077717A (en) * 2001-09-03 2003-03-14 Showa Denko Kk Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
US7160398B2 (en) 2002-08-08 2007-01-09 Neomax Co., Ltd. Method of making rapidly solidified alloy for magnet
CN100371106C (en) * 2002-08-08 2008-02-27 株式会社新王磁材 Method and producing device for making rapidly solidified alloy for magnet
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
JP2010227993A (en) * 2009-03-30 2010-10-14 Hitachi Metals Ltd Tundish and method for manufacturing r-t-b based alloy using tundish
CN102179493A (en) * 2011-04-20 2011-09-14 钢铁研究总院 Vacuum continuous casting apparatus for high-temperature alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030595A1 (en) * 2000-10-06 2002-04-18 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US7004228B2 (en) 2000-10-06 2006-02-28 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US7547365B2 (en) 2000-10-06 2009-06-16 Hitachi Metals, Ltd. Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
JP2003077717A (en) * 2001-09-03 2003-03-14 Showa Denko Kk Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
US7160398B2 (en) 2002-08-08 2007-01-09 Neomax Co., Ltd. Method of making rapidly solidified alloy for magnet
CN100371106C (en) * 2002-08-08 2008-02-27 株式会社新王磁材 Method and producing device for making rapidly solidified alloy for magnet
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
JP2010227993A (en) * 2009-03-30 2010-10-14 Hitachi Metals Ltd Tundish and method for manufacturing r-t-b based alloy using tundish
CN102179493A (en) * 2011-04-20 2011-09-14 钢铁研究总院 Vacuum continuous casting apparatus for high-temperature alloy

Also Published As

Publication number Publication date
JP3535253B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US5641363A (en) Sintered magnet and method for making
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JP4106099B2 (en) Method for producing slab for R-Fe-B magnet alloy
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
KR0151244B1 (en) Permanent magnet
JP3492823B2 (en) Quenching roll for magnet alloy production
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet
JPH10317110A (en) Raw material alloy for rare earth magnet and its production
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JPH07272914A (en) Sintered magnet, and its manufacture
JP3479168B2 (en) Method for producing cast piece for R-Fe-BC magnet alloy having excellent corrosion resistance
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP3445405B2 (en) Manufacturing method of alloy slab and scraper for manufacturing alloy slab
JP3256413B2 (en) Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same
JP2003213383A (en) Rare earth alloy, production method therefor and permanent magnet
JP2003077717A (en) Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
JPH05320832A (en) Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term