JP4802321B2 - Carbon nanotube growth method - Google Patents

Carbon nanotube growth method Download PDF

Info

Publication number
JP4802321B2
JP4802321B2 JP2005026562A JP2005026562A JP4802321B2 JP 4802321 B2 JP4802321 B2 JP 4802321B2 JP 2005026562 A JP2005026562 A JP 2005026562A JP 2005026562 A JP2005026562 A JP 2005026562A JP 4802321 B2 JP4802321 B2 JP 4802321B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
substrate
small
carbon nanotubes
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005026562A
Other languages
Japanese (ja)
Other versions
JP2006213551A (en
Inventor
英樹 佐藤
浩一 畑
和政 平松
秀人 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2005026562A priority Critical patent/JP4802321B2/en
Publication of JP2006213551A publication Critical patent/JP2006213551A/en
Application granted granted Critical
Publication of JP4802321B2 publication Critical patent/JP4802321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体等の基板上に細径のカーボンナノチューブを成長させる製造方法に関わる。   The present invention relates to a manufacturing method for growing small-diameter carbon nanotubes on a substrate such as a semiconductor.

カーボンナノチューブを工業的に応用するには、品質制御およびコストの点から合成方法の選択が重要な要素となっている。カーボンナノチューブの成長方法としては、一般的に1)アーク放電法 2)レーザー蒸発法 3)化学気相成長法(CVD法)が用いられるが、中でもCVD法が有望と考えられている。CVD法は、Siウエハー、化合物半導体、ガラス、金属板等の平面基板に直接カーボンナノチューブを成長させることが可能であり、電子デバイスへの応用に際しては、最も有望な方法であることがその理由である。この場合、成長させるカーボンナノチューブの直径や長さなどを制御する技術の確立が必要となる。   For industrial application of carbon nanotubes, selection of a synthesis method is an important factor in terms of quality control and cost. As a method for growing carbon nanotubes, 1) arc discharge method, 2) laser evaporation method, and 3) chemical vapor deposition method (CVD method) are generally used, and CVD method is considered promising. The CVD method can grow carbon nanotubes directly on a flat substrate such as a Si wafer, a compound semiconductor, glass, and a metal plate, and is the most promising method for application to electronic devices. is there. In this case, it is necessary to establish a technique for controlling the diameter and length of the carbon nanotubes to be grown.

カーボンナノチューブの電子デバイスへの応用の代表的用途例として、FED(フィールド・エミッション・ディスプレー)用陰極(電子放出源)およびリチウムイオン電池用の負極等がある。例えば陰極として用いる場合には、カーボンナノチューブの直径をできるだけ細くすることが、低電力消費の上から好ましいことが知られている(例えば非特許文献1)。ここで、非特許文献1においては、以下の方法でカーボンナノチューブを成長させている。1)シリコン基板表面をエッチングし、円錐状のシリコンチップを作成する。2)基板表面に金属触媒を堆積させる。3)熱化学気相成長法により該シリコンチップ上にカーボンナノチューブを成長させる方法が紹介されている。
又、非特許文献2は、CVD法によってカーボンナノチューブを成長させる時の、触媒金属微粒子と成長するカーボンナノチューブの直径の関係について論じている。
Typical examples of application of carbon nanotubes to electronic devices include cathodes (electron emission sources) for FED (field emission display) and negative electrodes for lithium ion batteries. For example, when used as a cathode, it is known that the diameter of the carbon nanotube is preferably as small as possible from the viewpoint of low power consumption (for example, Non-Patent Document 1). Here, in Non-Patent Document 1, carbon nanotubes are grown by the following method. 1) Etch the silicon substrate surface to create a conical silicon chip. 2) Deposit a metal catalyst on the substrate surface. 3) A method for growing carbon nanotubes on the silicon chip by thermal chemical vapor deposition has been introduced.
Non-Patent Document 2 discusses the relationship between the catalyst metal fine particles and the diameter of the growing carbon nanotube when the carbon nanotube is grown by the CVD method.

ETL NEWS(工業技術院電子技術総合研究所)「超低電圧動作カーボンナノチューブ・フィールドエミッタの開発に成功」、日本、2000年、603巻、P8−11ETL NEWS (Electronics Research Institute, National Institute of Advanced Industrial Science and Technology) “Successfully developed ultra-low voltage carbon nanotube field emitter”, Japan, 2000, 603, P8-11 R.F.Ren, Z.P.Huang, J.W.Xu, J.H.Wang, Science, vol282, PP1105-1107,1998R.F.Ren, Z.P.Huang, J.W.Xu, J.H.Wang, Science, vol282, PP1105-1107,1998

さらに、特許文献1では、カーボンナノチューブの直径及び長さの平均値を制御する方法、および基板上の任意の部位のみに選択的に垂直方向にカーボンナノチューブを成長させる方法として、ガラス又はSiウエハー上に触媒金属のパターンを形成し、このパターン部のみにプラズマCVD法によりカーボンナノチューブを成長させる方法を提案している。
又、本発明者らによる特許文献2では、基板上に配列パターンを制御性良く且つ容易にカーボンナノチューブを成長させる方法として、半導体プロセスで用いるパターン形成法と触媒金属上にカーボンナノチューブをCVD法等で成長させる方法を組合せることにより解決する方法を提案している。
Further, in Patent Document 1, as a method for controlling the average value of the diameter and length of carbon nanotubes and a method for selectively growing carbon nanotubes in a vertical direction only at an arbitrary portion on a substrate, the method is performed on a glass or Si wafer. A method is proposed in which a catalytic metal pattern is formed on the substrate and carbon nanotubes are grown only on the pattern portion by plasma CVD.
Further, in Patent Document 2 by the present inventors, as a method for easily growing an array pattern on a substrate with good controllability, a pattern formation method used in a semiconductor process, a carbon nanotube on a catalyst metal, a CVD method, etc. We propose a method to solve this problem by combining the growth methods.

特開2001−48512号JP 2001-48512 A 特開2004−182537号JP 2004-182537 A

上記の文献等から、CVD法によるカーボンナノチューブの成長条件と成長するカーボンナノチューブのサイズとの関係については、以下のことが知られている。例えば、得られるカーボンナノチューブの長さはその成長時間に依存するため、成長時間の選択により制御が可能である。一方、カーボンナノチューブの直径については、現状ではその制御が困難である。   From the above-mentioned documents and the like, the following is known regarding the relationship between the growth conditions of carbon nanotubes by CVD and the size of the growing carbon nanotubes. For example, since the length of the obtained carbon nanotube depends on its growth time, it can be controlled by selecting the growth time. On the other hand, it is difficult to control the diameter of the carbon nanotube at present.

CVD法においてカーボンナノチューブの直径制御が困難である原因、特に直径の細いカーボンナノチューブを効率よく得ることが困難である原因として、触媒金属微粒子の制御が困難であることがあげられる。
ここにおいて、本発明が解決しようとする課題は、触媒金属の微粒子化と、該触媒金属の微粒上に細径のカーボンナノチューブを成長させる方法を提供することにある。
The reason why it is difficult to control the diameter of carbon nanotubes in the CVD method, particularly the reason why it is difficult to efficiently obtain carbon nanotubes having a small diameter, is that it is difficult to control the catalyst metal fine particles.
The problem to be solved by the present invention is to provide a method for making catalyst metal fine particles and growing a carbon nanotube having a small diameter on the catalyst metal fine particles.

本発明者らは上記の課題を解決するため、基板上に付着させた薄膜状の触媒金属が、CVD法の工程中に加熱によりその形態を変化させる状態を詳細に観察し、本発明に至った。
すなわち、薄膜上の触媒金属には、その表面自由エネルギーが小さくなる方向に状態を変えようとする力が常に働いているが、加熱により状態変化の駆動力が与えられ、微粒子化する。このようにして形成された触媒金属の微粒子は、図1に示すように、その表面自由エネルギーを小さくするため、基板上を移動して相互に合体し、より大径の粒子となり、通常小さいもので10nm、大きいものでは100nm以上に達する。そこで、本発明者等は、図2に示すように、触媒金属微粒子の移動が妨げられるように基板表面に微細な突起を形成することに思い至り、本発明を完成した。
In order to solve the above-mentioned problems, the present inventors have observed in detail the state in which the thin-film catalyst metal deposited on the substrate changes its form by heating during the CVD process, leading to the present invention. It was.
That is, the catalyst metal on the thin film always has a force to change the state in the direction in which the surface free energy decreases, but is given a driving force for changing the state by heating, and becomes fine particles. As shown in FIG. 1, the fine particles of the catalytic metal formed in this way move on the substrate and coalesce with each other in order to reduce the surface free energy, resulting in larger diameter particles that are usually small. It reaches 10 nm at a maximum, and reaches 100 nm or more at a large one. Therefore, the present inventors have come up with the idea of forming fine protrusions on the substrate surface so as to prevent the movement of the catalytic metal fine particles, as shown in FIG. 2, and completed the present invention.

すなわち本発明は、平滑な基板表面を乾式エッチングして底辺長および高さが50〜200nm、かつ、突起形成前の表面積の2〜5倍となるピラミッド状の微細突起を形成する。該微細突起上に膜厚が0.5nm〜50nmの金属触媒の薄膜を蒸着させる工程と、該触媒金属上に化学気相成長法(CVD法)によりカーボンナノチューブを成長させる工程を含むことを特徴とする細径カーボンナノチューブの製造方法に関わる。
That is, the present invention is base length and height by dry etching a smooth substrate surface 50 to 200 nm, and that form a pyramid-shaped fine protrusions serving as 2-5 times the surface area before projection formation. Characterized in that it comprises a step of film thickness on the fine projections to deposit thin films of a metal catalyst 0.5 nm to 50 nm, a chemical vapor deposition on the catalyst metal a step of growing carbon nanotubes by chemical vapor deposition (CVD) The present invention relates to a method for producing a small-diameter carbon nanotube.

ここにおいて、基板としてSi、窒化ガリウム(GaN)等の化合物半導体又はガラス基板が好ましく、又乾式エッチングとして装置チャンバー内でプラズマを発生させ、生成したイオンやラジカルを利用してエッチングする反応性イオンエッチング法が好ましい。又、金属触媒として鉄(Fe)、コバルト(Co)、ニッケル(Ni)、タングステン(W),モリブデン(Mo)、クロム(Cr),白金(Pt)、パラディウム(Pd)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)又はアルミニウム(Al)から選ばれる何れの金属を使用しても良いが、特に鉄(Fe)、コバルト(Co)、ニッケル(Ni)の何れかの金属又はその合金が好ましい。更には、細径カーボンナノチューブとして、カーボンナノチューブの外径が1nm〜60nmのものが好ましい。 Here, a compound semiconductor such as Si or gallium nitride (GaN) or a glass substrate is preferable as the substrate, and reactive ion etching is performed by generating plasma in the apparatus chamber and performing etching using generated ions and radicals as dry etching. The method is preferred. In addition, as a metal catalyst, iron (Fe), cobalt (Co), nickel (Ni), tungsten (W), molybdenum (Mo), chromium (Cr), platinum (Pt), palladium (Pd), titanium (Ti), Any metal selected from zirconium (Zr), hafnium (Hf), and aluminum (Al) may be used, and in particular, any metal of iron (Fe), cobalt (Co), nickel (Ni) or its Alloys are preferred. Further, as the small-diameter carbon nanotube, those having an outer diameter of 1 nm to 60 nm are preferable.

本発明により外径が60nm以下の細径カーボンナノチューブが効率的に得られ、該細径カーボンナノチューブを利用したFED用陰極材、リチウムイオン2次電池用負極材、集積回路用層間配線材、又は走査型プローブ顕微鏡用探針用等の用途が期待できる。   According to the present invention, a fine carbon nanotube having an outer diameter of 60 nm or less can be efficiently obtained, and a cathode material for FED, a negative electrode material for a lithium ion secondary battery, an interlayer wiring material for an integrated circuit using the fine carbon nanotube, or Applications such as a probe for a scanning probe microscope can be expected.

本発明の目的は、1nm〜60nmの細径カーボンナノチューブを効率的に得ることにある。この目的を実現するためには、金属触媒の粒径を制御すること、更には、粒径の制御された金属触媒微粒子を得るために基板に微細な突起を形成することが、本発明の骨子である。具体的には、基板の微細突起の高さは5nm〜1μm好ましくは10nm〜500nmとし、基板上に蒸着する金属触媒薄膜の厚さは0.5nm〜50nm好ましくは1nm〜30nmとする。   An object of the present invention is to efficiently obtain small-diameter carbon nanotubes of 1 nm to 60 nm. In order to achieve this object, it is essential to control the particle size of the metal catalyst, and to form fine protrusions on the substrate in order to obtain metal catalyst fine particles having a controlled particle size. It is. Specifically, the height of the fine protrusions on the substrate is 5 nm to 1 μm, preferably 10 nm to 500 nm, and the thickness of the metal catalyst thin film deposited on the substrate is 0.5 nm to 50 nm, preferably 1 nm to 30 nm.

基板に微細突起を形成する手段として湿式または乾式のエッチング法が一般的に用いられるが、形状を微細制御する方法としては乾式エッチング法が望ましい。特に反応性イオンエッチング法(RIE法)は、生産性の点で優れている。
反応性イオンエッチング法によりSi等の半導体基板をエッチングすると、基板が単結晶体か多結晶体かによって異なるが、単結晶体の場合には四角錐等の錐状体又はその類似体が形成される。結果として、エッチング後の表面積は、エッチング前の表面積の2〜5倍に増加する。
A wet or dry etching method is generally used as a means for forming fine protrusions on the substrate, but a dry etching method is desirable as a method for finely controlling the shape. In particular, the reactive ion etching method (RIE method) is excellent in terms of productivity.
When a semiconductor substrate such as Si is etched by the reactive ion etching method, it depends on whether the substrate is a single crystal or a polycrystal, but in the case of a single crystal, a pyramid such as a quadrangular pyramid or its analog is formed. The As a result, the surface area after etching increases 2 to 5 times the surface area before etching.

基板上への触媒金属の蒸着は、スパッタリング法等によって行うが、必ずしもこれに限定しない。触媒金属の蒸着は、カーボンナノチューブを成長させたい特定箇所に蒸着させることが望ましいことは言うまでもない。又、基板への触媒金属の密着性を向上させるため、該触媒金属を蒸着する前に前処理としてTi,V,Cr,Mn,Zr,Nb,Mo、Al又はTaの何れかの金属を蒸着しても良い。 The catalytic metal is deposited on the substrate by sputtering or the like, but is not necessarily limited thereto. Needless to say, it is desirable to deposit the catalytic metal at a specific location where the carbon nanotubes are to be grown. Also, in order to improve the adhesion of the catalyst metal to the substrate, any metal of Ti, V, Cr, Mn, Zr, Nb, Mo, Al, or Ta is deposited as a pre-treatment before the catalyst metal is deposited. You may do it.

CVD法としては、熱CVD法、光CVD法およびプラズマCVD法があるが、プラズマCVD法は低温製膜及び大面積対応に優れているため、本発明に好適に用いられるが、必ずしもこれに限定されるものではない。 The CVD method includes a thermal CVD method, a photo CVD method, and a plasma CVD method. The plasma CVD method is excellent in low-temperature film formation and large area correspondence, and is therefore preferably used in the present invention, but is not necessarily limited thereto. Is not to be done.

以下に本発明の好適な一実施の形態を実施例によって説明するが、本発明の技術的範囲は下記の実施形態によって限定されるものでなく、その要旨を変更することなく様々に改変して実施することができる。 Preferred embodiments of the present invention will be described below by way of examples. However, the technical scope of the present invention is not limited by the following embodiments, and various modifications can be made without changing the gist thereof. Can be implemented.

<基板表面上への微細突起の形成>
Si基板(縦、横、厚さ)を用い、平行平板型RFプラズマ反応性イオンエッチング(RIE)装置にて、該基板に乾式エッチング処理を行った。ここで、ガス導入前の真空度は3×10−3Pa、放電周波数は13.56MHz、放電電力200W,放電時間 、プロセスガスとして塩素ガスを用い、塩素ガスの圧力を、10,15,20Paの3段階とした。得られた結果をSEM写真にて図3に示すが、塩素ガスの圧力が低いほど基板の表面突起は微細であった。
<Formation of fine protrusions on the substrate surface>
Using a Si substrate (vertical, horizontal, thickness), the substrate was dry-etched with a parallel plate RF plasma reactive ion etching (RIE) apparatus. Here, the degree of vacuum before introducing the gas is 3 × 10 −3 Pa, the discharge frequency is 13.56 MHz, the discharge power is 200 W, the discharge time is chlorine gas as the process gas, and the pressure of the chlorine gas is 10, 15, 20 Pa. It was made into three steps. The obtained result is shown in FIG. 3 as an SEM photograph. The lower the chlorine gas pressure, the finer the surface protrusions of the substrate.

<触媒金属の蒸着>
1×10−5Paの真空度で純鉄を基板上に5分間蒸着し、約30nmの金属触媒薄膜を得た。
<Deposition of catalytic metal>
Pure iron was deposited on the substrate at a vacuum of 1 × 10 −5 Pa for 5 minutes to obtain a metal catalyst thin film of about 30 nm.

<カーボンナノチューブの成長>
カーボンナノチューブの成長方法として、マイクロ波プラズマCVD法を用い、以下の条件でカーボンナノチューブを成長させた。この時の真空度6.7Pa、放電周波数2.45GHz、放電電力500W,圧力270Pa,プロセスガス H,CH,流量 H/CH=80/20 ml/min、処理時間 5分であった。
<Growth of carbon nanotubes>
As a carbon nanotube growth method, a microwave plasma CVD method was used, and carbon nanotubes were grown under the following conditions. At this time, the degree of vacuum was 6.7 Pa, the discharge frequency was 2.45 GHz, the discharge power was 500 W, the pressure was 270 Pa, the process gas H 2 , CH 4 , the flow rate H 2 / CH 4 = 80/20 ml / min, and the treatment time was 5 minutes. It was.

図4に、RIE装置中で15Paの塩素ガスにより微細突起を形成した基板と、比較として未処理基板上にカーボンナノチューブを成長させた断面SEM写真を示す。図4に示すように、RIEエッチングにより基板表面はピラミッド状の微細突起が形成されており、突起の底辺長および高さは50−200nmであった。又、触媒金属は微粒状化しており、その上にカーボンナノチューブが成長していた。ここで、カーボンナノチューブの外径は、乾式エッチングが未処理の場合に平均50nmであり、一方15Paの塩素ガスでエッチング処理した場合には、約1/2の25nmであった。 FIG. 4 shows a cross-sectional SEM photograph in which carbon nanotubes were grown on a substrate on which fine protrusions were formed with chlorine gas of 15 Pa in an RIE apparatus and an untreated substrate as a comparison. As shown in FIG. 4, pyramidal fine protrusions were formed on the substrate surface by RIE etching, and the base length and height of the protrusions were 50-200 nm. Further, the catalytic metal was finely granulated, and carbon nanotubes were grown on it. Here, the outer diameter of the carbon nanotubes was an average of 50 nm when dry etching was not performed, whereas it was about 1/2 of 25 nm when etched with 15 Pa of chlorine gas.

平滑基板上に蒸着された触媒金属の薄膜が、加熱により微粒子化し、さらに合体により大粒径になることを示す概念図。The conceptual diagram which shows that the thin film of the catalyst metal vapor-deposited on the smooth board | substrate is micronized by heating, and also becomes a large particle size by coalescence. 微細な凹凸を形成した基板上に蒸着された触媒金属の薄膜が、加熱により微粒子かするが、基板の微細突起が障壁となって微粒相互の合体が限定されることを示す概念図。The conceptual diagram which shows that the catalyst metal thin film vapor-deposited on the board | substrate with which the fine unevenness | corrugation was formed turns into microparticles | fine-particles by heating, but the microprotrusion of a board | substrate becomes a barrier and a coalescence of microparticles is limited. Siウエハの表面を、濃度の異なる塩素ガスを用いたRIE法により処理した後の表面状態をSEMにより観察した結果を示す図。The figure which shows the result of having observed the surface state after processing the surface of Si wafer by RIE method using the chlorine gas from which a density | concentration differs by SEM. カーボンナノチューブの外径に及ぼす、基板表面上の微細突起の有無の影響を示すSEM断面写真図。The SEM cross-sectional photograph figure which shows the influence of the presence or absence of the microprotrusion on the substrate surface which acts on the outer diameter of a carbon nanotube.

Claims (5)

平滑な基板表面を乾式エッチングして、底辺長および高さが50〜200nm、かつ、突起形成前の表面積の2〜5倍となるピラミッド状の微細突起を形成する工程と、
該微細突起上に膜厚が0.5nm〜50nmの金属触媒の薄膜を蒸着させる工程と、該触媒金属上に化学気相成長法(CVD法)によりカーボンナノチューブを成長させる工程を含むことを特徴とする細径カーボンナノチューブの製造方法。
A step of dry etching a smooth substrate surface to form pyramidal fine protrusions having a base length and height of 50 to 200 nm and 2 to 5 times the surface area before forming the protrusions;
The method includes a step of depositing a metal catalyst thin film having a thickness of 0.5 nm to 50 nm on the fine protrusions, and a step of growing carbon nanotubes on the catalyst metal by a chemical vapor deposition method (CVD method). A method for producing a small-diameter carbon nanotube.
前記乾式エッチング法が反応性イオンエッチング法であることを特徴とする請求項1に記載の細径カーボンナノチューブの製造方法。 The method for producing a small-diameter carbon nanotube according to claim 1, wherein the dry etching method is a reactive ion etching method. 前記金属触媒が鉄(Fe),コバルト(Co),ニッケル(Ni)の何れかである又はそれらの合金であることを特徴とする請求項1〜2に記載の細径カーボンナノチューブの製造方法。 3. The method for producing a small-diameter carbon nanotube according to claim 1, wherein the metal catalyst is any one of iron (Fe), cobalt (Co), nickel (Ni) or an alloy thereof. 前記基板が、シリコン(Si)、化合物半導体又はガラスであることを特徴とする請求項1〜3に記載の細径カーボンナノチューブの製造方法。   The said substrate is a silicon | silicone (Si), a compound semiconductor, or glass, The manufacturing method of the small diameter carbon nanotube of Claims 1-3 characterized by the above-mentioned. 前記細径カーボンナノチューブの外径が1nm〜60nmであることを特徴とする請求項1〜4に記載の細径カーボンナノチューブの製造方法。 The outer diameter of the said small diameter carbon nanotube is 1-60 nm, The manufacturing method of the small diameter carbon nanotube of Claims 1-4 characterized by the above-mentioned.
JP2005026562A 2005-02-02 2005-02-02 Carbon nanotube growth method Active JP4802321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026562A JP4802321B2 (en) 2005-02-02 2005-02-02 Carbon nanotube growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026562A JP4802321B2 (en) 2005-02-02 2005-02-02 Carbon nanotube growth method

Publications (2)

Publication Number Publication Date
JP2006213551A JP2006213551A (en) 2006-08-17
JP4802321B2 true JP4802321B2 (en) 2011-10-26

Family

ID=36977088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026562A Active JP4802321B2 (en) 2005-02-02 2005-02-02 Carbon nanotube growth method

Country Status (1)

Country Link
JP (1) JP4802321B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698982B2 (en) * 2008-09-30 2015-04-08 凸版印刷株式会社 Illumination lamp, nanocarbon material composite substrate, and manufacturing method thereof
JP5673325B2 (en) * 2011-04-20 2015-02-18 富士通株式会社 Carbon nanotube formation method and thermal diffusion apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740295B2 (en) * 1997-10-30 2006-02-01 キヤノン株式会社 Carbon nanotube device, manufacturing method thereof, and electron-emitting device
JP2004182537A (en) * 2002-12-04 2004-07-02 Mie Tlo Co Ltd Method of forming arranged structure of nanocarbon material

Also Published As

Publication number Publication date
JP2006213551A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
Meyyappan et al. Carbon nanotube growth by PECVD: a review
US7879398B2 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
Ostrikov et al. Plasma-aided nanofabrication: where is the cutting edge?
US20020114949A1 (en) Process for controlled introduction of defects in elongated nanostructures
JP2004168634A (en) Carbon nanotube matrix and method of growing the same
JP2004284938A (en) Method of producing carbon nanotube
KR20030028296A (en) Plasma enhanced chemical vapor deposition apparatus and method of producing a cabon nanotube using the same
US6652762B2 (en) Method for fabricating nano-sized diamond whisker, and nano-sized diamond whisker fabricated thereby
JP2005350342A (en) Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
US20040009115A1 (en) Selective area growth of aligned carbon nanotubes on a modified catalytic surface
TW200521079A (en) Method for forming carbon nanotubes
JP2006265079A (en) Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
US20030059968A1 (en) Method of producing field emission display
JP5028606B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP3913583B2 (en) Method for producing carbon nanotube
KR102165907B1 (en) Catalyst for hydrogen generation and fabrication method for the same
US7932510B2 (en) Carbon nanotube grown on catalyst and manufacture method
JP3837451B2 (en) Method for producing carbon nanotube
JP4802321B2 (en) Carbon nanotube growth method
US20150292080A1 (en) Apparatus for the generation of nanocluster films and methods for doing the same
KR100669394B1 (en) Carbon nano tube comprising magnet metal rod and method of preparing same
JP4853861B2 (en) Method and apparatus for forming carbon nanostructure
Song et al. Non-crystallization and enhancement of field emission of cupric oxide nanowires induced by low-energy Ar ion bombardment
JP4975289B2 (en) Electronic devices using carbon nanowalls
JP5154801B2 (en) Method for producing a material layer on a support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150