JP4791119B2 - 窒化物系半導体発光素子の製造方法 - Google Patents

窒化物系半導体発光素子の製造方法 Download PDF

Info

Publication number
JP4791119B2
JP4791119B2 JP2005270807A JP2005270807A JP4791119B2 JP 4791119 B2 JP4791119 B2 JP 4791119B2 JP 2005270807 A JP2005270807 A JP 2005270807A JP 2005270807 A JP2005270807 A JP 2005270807A JP 4791119 B2 JP4791119 B2 JP 4791119B2
Authority
JP
Japan
Prior art keywords
layer
light
substrate
type semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005270807A
Other languages
English (en)
Other versions
JP2007081333A (ja
Inventor
弘 大澤
高史 程田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005270807A priority Critical patent/JP4791119B2/ja
Publication of JP2007081333A publication Critical patent/JP2007081333A/ja
Application granted granted Critical
Publication of JP4791119B2 publication Critical patent/JP4791119B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は窒化物系半導体発光素子の製造方法に関し、特に基板剥離工程を含んだ上下電極構造をとる窒化物系半導体発光素子の製造方法に関する。
近年、短波長光発光素子用の半導体材料としてGaN系化合物半導体材料が注目を集めている。GaN系化合物半導体は、サファイア単結晶をはじめとして、種々の酸化物基板やIII−V族化合物を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。
サファイア単結晶基板はGaNとは格子定数が10%以上も異なるが、AlNやAlGaNなどのバッファ層を形成することにより、その上に良好な窒化物半導体が形成でき、一般的に広く用いられている。サファイア単結晶基板を用いた場合、n型半導体層、発光層、p型半導体層がこの順で積層される。サファイア基板は絶縁体であるので、その素子構造は一般的に、p型半導体層上に形成された正極と、n型半導体層上に形成された負極が存在することになる。この種の発光素子には、ITOなどの透明電極を正極に使用しp型半導体側から光を取り出すフェイスアップ方式、Agなどの高反射膜を正極に使用してサファイア基板側から光を取り出すフリップチップ方式の2種類が知られている。
このようにサファイア単結晶基板は発光素子用基板として一般的に広く用いられているが、絶縁体であるためにいくつかの問題点がある。第一に、負極を形成するために発光層をエッチングなどにより一部除去してn型半導体層を露出させるために、負極の部分だけ発光層の面積が減ってしまい、その分、出力が低下する。第二に、正極と負極が同一面にあるために、電流の流れが水平方向になってしまい、局部的に電流密度の高いところができてしまい素子が発熱してしまう。第三に、サファイア基板の熱伝導率は低いので、発生した熱が拡散せず、発光素子の温度が上昇してしまう。
以上の問題を解決させるために、サファイア単結晶基板上にn型半導体層、発光層、p型半導体層をこの順で積層した素子に導電性基板を接着し、その後にサファイア単結晶基板を除去して、正極と負極を上下に配置させる方法が開示されている。(特許文献1参照)
更に、導電性基板を接着させるのではなく、メッキにより基板を作成する方法が開示されている。(特許文献2参照)
特許第3511970号公報 特開2004−47704号公報
前記従来の導電性基板を接着させる方法には、AuSnなどの低融点金属化合物を接着材として接着させる方法や、真空中でアルゴンプラズマなどで接合面を活性化させて接着させる活性化接合などの方法が知られている。
この方法であると接着面は極めて平滑であることが要求されパーティクルなどの異物があると、その部分が浮いてしまい、接着が良好にできないなど、均一な接着面を形成することが難しい問題がある。
メッキによってメッキ金属支持基板を作成する場合、最終的に素子にするためにはダイシングによって素子に分割する必要性がある。ダイシングはセラミックスやSiなどの脆性の高いものには極めて有効であるが、金属などの粘性の高い材質には、ダイシングブレードに削られた金属が付着してしまい良好な分割をすることができない問題がある。
本発明者等は上記問題を解決するために、鋭意努力検討した結果、基板上に少なくともn型半導体層、発光層、p型半導体層が順で積層され、更に構造においては金属膜層、メッキ層が前記の層の上にこの順で積層され、かつ、基板上で素子に分割されてなる構造において、素子間が脆性透光性絶縁体部によって充填され、しかる後に、サファイアなどの基板剥離を実施し、脆性透光性絶縁体部の部分をダイシングにより素子分離することにより、容易で素子化しやすくなることを見出した。
即ち本発明は以下に関する。
なくともn型半導体層、発光層、p型半導体層が積層されて発光素子部が構成され、前記n型半導体層、発光層、p型半導体層の発光素子部の周囲に脆性透光性絶縁体部が設けられてなる窒化物系半導体発光素子を製造するに際し、
基板上に少なくともバッファ層、n型半導体層、発光層、p型半導体層を積層し、これらの積層体を基板上で素子分割して発光素子部を形成し、その後に前記分割された個々の発光素子部上にそれぞれ金属膜層とメッキ金属板を積層し、次いで発光素子部間に脆性透光性絶縁体部を充填し、
この後に前記基板とバッファ層を除去して前記n型半導体層表面を露出させ、前記発光素子部単位で前記脆性透光性絶縁体部をダイシングして分割することを特徴とする窒化物系半導体発光素子の製造方法
記基板をレーザにより除去することを特徴とする前項(1)に記載の窒化物系半導体発光素子の製造方法
記メッキ金属板を無電解メッキ法により形成することを特徴とする前項(1)または(2)に記載の窒化物系半導体発光素子の製造方法
) 前記メッキ金属板を形成後、100℃〜300℃で熱処理することを特徴とする前項(1)〜(3)のいずれかに記載の窒化物系半導体発光素子の製造方法
記n型半導体層表面を露出させた後、前記n型半導体層に接続する負電極を形成するとともに、前記メッキ基板に接続する正電極を形成することを特徴とする前項(1)〜(4)のいずれかに記載の窒化物系半導体発光素子の製造方法
以上述べたように本発明によれば、基板上に少なくともn型半導体層、発光層、p型半導体層を積層してなる構造、あるいはこの構造に加えて金属膜層、メッキ層をこの順で更に積層し、かつ、基板上で素子に分割されてなる構造において、素子間が透光性絶縁体によって充填され、しかる後に、サファイアなどの基板剥離を実施し、透光性絶縁体の部分をダイシングにより素子分離することにより、容易に素子化しやすくなることを可能にし、収率が高く信頼性の高い素子を得ることが可能になった。
本発明において脆性透光性絶縁体部としての透光性とは、350nm〜550nmの波長範囲で光の透過性を有することを意味する。窒化物半導体発光素子として光取り出し性を良好にするためには、脆性透光性絶縁体部として透光性を80%以上とすることが好ましい。
以下、本発明の実施の形態について、図面を参照にして説明する。ただし、本発明は以下の各実施形態に限定されるものではなく、例えばこれら実施形態の構成要素同士を適宜組み合わせても良い。
図1は、本実施形態に係る窒化物半導体発光素子の一例の断面模式図を示すもので、この例の窒化物半導体発光素子Aは、n型半導体層1、発光層2、p型半導体層3からなる発光素子部5を備え、更にp型半導体層3上にオーミックコンタクト層7と反射層8からなる金属膜層4を形成し、更に前記反射層8上に密着層9とメッキ密着層10とメッキ基板11を形成し、n型半導体層1からメッキ基板11までの積層体31の側面全部を脆性透光性絶縁体部6にて覆って概略構成され、更に、前記n型半導体層1の下面側に負極12が形成され、前記メッキ基板11の上面側に正極13が形成された上下電極配置構造されている。
なお、前記n型半導体層1〜メッキ基板11までの積層体31の平面形状は4角型、丸形あるいはその他の形状で差し支えないが、脆性透光性絶縁体部6は前記積層体31の側面全部を覆っていることが好ましい。しかし、本願発明において脆性透光性絶縁体部6が積層体31の側面全部を完全に覆っていることを要するものではない。
図1に示す構造の窒化物半導体発光素子Aを製造するには、例えば、図2に示す如く基板19上に複数の窒化物半導体発光素子Aとなり得る窒化物半導体部分を整列形成し、これらを素子分離するとともに個々に基板19から分離することで製造することができる。
例えば、基板19上に図2に示す如くバッファ層20を形成する。
ここで基板19にはサファイア単結晶(Al;A面、C面、M面、R面)、スピネル単結晶(AgAl)、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶、GaAs単結晶などの公知の基板材料を何ら制限無く用いることができる。
また、SiCなどの導電性基板を用いれば、正極と負極を上下に配置させた窒化物半導体発光素子Aの作成は基板剥離をしなくとも可能であるが、その場合、絶縁体であるバッファ層を使用することができなくなるので、その上に成長する窒化物系半導体層(n型半導体層21、発光層22、p型半導体層23の結晶が劣化してしまい良好な発光素子を形成することができない。本発明においては、導電性のSiC、Siを用いた場合でも基板剥離を実施することが好ましい。
前記バッファ層20は、例えばサファイア単結晶の基板19とGaNの格子定数が10%以上も異なるために、その中間の格子定数を有するAlNやAlGaNなどがGaNの結晶性を向上させるために一般的に使用されており、本発明においてもAlNやAlGaNを何ら制限なく適用できる。
次に、窒化物系半導体(発光素子部5)の基になる層として、先のバッファ層20上にn型半導体層21、発光層22、p型半導体層23を順次積層する。
本実施の形態において窒化物系半導体は、例えばn型半導体層21、発光層22、p型半導体層23からなるヘテロ接合構造で構成される。窒化物系半導体層としては一般式AlInGa1−x−yN(0≦x<1、0≦y<1、x+y<1)で表される半導体が多数知られており、本発明においても一般式AlInGa1−x−yN(0≦x<1、0≦y<1、x+y<1)で表される窒化物系半導体が何ら制限なく用いられる。
これらの窒化物系半導体の基になる各層の成長方法は特に限定されず、有機金属化学気相成長法(MOCVD)、ハイドライド気相成長法(HPVE)、分子線エピタキシー法(MBE)、などIII族窒化物系半導体を成長させることが知られている全ての方法を適用できる。好ましい成長方法としては、膜厚制御性、量産性の観点からMOCVD法である。
MOCVD法では、キャリアガスとして水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてはアンモニア(NH)、ヒドラジン(N)などが用いられる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマン(GeH)を用い、p型にはMg原料としては例えばビスシクロペンタジエニルマグネシウム(CpMg)またはビスエチルシクロペンタジエニルマグネシウム((EtCp)Mg)を用いる。
n型半導体層23、発光層24、p型半導体層25を順次積層したならば、製造しようとする窒化物系半導体発光素子の平面形状に合わせてこれらの積層膜にバッファ層20まで達する分離溝18を形成して素子分割する。
図3に素子分離する場合の各積層体の平面形状の一例を示すが、この例においては基板19上に正方形状の積層体を4つ形成した状態を示した。
窒化物系半導体(発光素子部5)の基になる部分をサファイアの基板19上で分割する方法としては、エッチング法、レーザカッティング法など公知の技術を何ら制限なく用いることが出来る。レーザリフトオフ法を用いる場合、窒化物系半導体が分割されるが、サファイア基板にはダメージが与えられないようにすることが良好な基板剥離をするためには好ましい。従って、エッチング法で分割する場合、窒化物系半導体に対してはエッチングレートが早く、サファイア基板に対してはエッチングレートが遅い手法を用いることが好ましい。レーザで分割する場合はGaNとサファイアに対する吸収波長の違いから、300−400nmの波長を持ったレーザを用いることが好ましい。
次に、p型半導体層25上に、オーミックコンタクト層27、反射層28、密着層29、メッキ密着層30を形成する。また、これらの積層体において、オーミックコンタクト層27と反射層28とを積層した部分が金属膜層24を構成する。
なお、図2に示す積層構造において反射層28、密着層29、メッキ密着層30は必要に応じて設ける層であるので、これらの層の内、いずれかを略しても良い。
オーミックコンタクト層27に要求される性能としては、p型半導体層との接触抵抗が小さいことが必須である。オーミックコンタクト層27の材料はp型半導体層との接触抵抗の観点から、Pt、Ru、Os、Rh、Ir、Pd等の白金族またはAgが好ましい。さらに好ましくはPt,Ir,RhおよびRuである。Ptが特に好ましい。Agを用いることは良好な反射を得るためには好ましいが、接触抵抗はPtよりも低い。したがって、接触抵抗がそれほど要求されない用途にはAgを用いることも可能である。
オーミックコンタクト層7の厚さは、低接触抵抗を安定して得るために0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、均一な接触抵抗が得られる。
オーミックコンタクト層27上には、Ag合金などの反射層28を用いても良い。Pt,Ir,Rh、Ru、OS,PdなどはAg合金と比較すると可視光から紫外領域の反射率が低い。したがって、発光層からの光が十分に反射せずに出力の高い素子を得ることが難しい。この場合、オーミックコンタクト層27を光が十分に透過するほどに薄く形成し、Ag合金などの反射層を形成して反射光を得る方が、良好なオーミック接触が得られ、かつ出力の高い素子を作成することができる。この場合、オーミックコンタクト層27の膜厚は30nm以下とすることが好ましい。さらに好ましくは10nm以下である。
オーミックコンタクト層27および反射層28の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。
着層29の材料としては、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの単体金属あるいはそれらを組み合わせた合金を用いることができる。
更に、メッキ基板31との密着性を向上させるためにメッキ密着層30を形成しても良い。メッキ密着層30の材料は、使用するメッキによって異なってくるが、メッキ成分に主に含まれる物質を含んでいたほうが密着性を向上させる。例えば、NiPメッキを用いる場合、メッキ密着層30にはNi系合金を用いることが好ましい。さらに好ましくはNiPを用いることである。
密着層29、メッキ密着層30の厚さは良好な密着性を得るために0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、均一な密着性が得られる。厚さの上限は特に限定されないが、生産性の観点から2μm以下にすることが好ましい。
密着層29、メッキ密着層30の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。スパッタ法はスパッタ粒子が高エネルギーを持って基板表面に衝突して成膜されるので、密着性の高い膜を得ることができる。したがって、スパッタ法を用いる方がさらに好ましい。
次に、メッキ密着層30の上にメッキ処理によりメッキ基板31を形成する。
ここでメッキは、導電性の部分に積層されていくので、素子分割した部分はメッキにより埋まらない。ただし、n型半導体層21はキャリー密度が高いためにメッキが成長してしまう可能性もある。これを防ぐためにn型半導体層21、発光層22、p型半導体層23の側面に絶縁性の保護層を設けても良い。
メッキを実施する前には、汎用の中性洗剤等を用いて脱脂洗浄することが好ましい。また、硝酸などの酸を用いてメッキ密着層などの表面を化学エッチングを施すことによりメッキ密着層上の自然酸化膜を除去するのが好ましい。
メッキ基板31を形成するためのメッキには無電解メッキを用いることができる。無電解メッキの場合、材料としてはNiP合金メッキを用いることが好ましい。
メッキの厚さは、基板としての強度を保つために10μm以上とすることが好ましい。厚くなるとメッキの剥離が起こりやすくなり、かつ生産性も低くなるので200μm以下であることが好ましい。
NiPメッキなどのメッキ処理方法としては、メッキ浴として、例えば、硫酸ニッケル、塩化ニッケルなどのニッケル源と、次亜リン酸塩などのリン源を含むものを用いた無電解メッキ処理法を採用することができる。無電解メッキ法に用いられるメッキ浴として好適な市販品としては、上村工業製のニムデンHDXなどがある。無電解メッキ処理を行う際のメッキ浴のpHは4〜10、温度は30〜95℃とすることが好ましい。
このようにして得られたメッキ層からなるメッキ基板31の密着性を向上させるために熱処理することが好ましい。熱処理温度は100〜300℃が密着性向上のために好ましい。これ以上温度を上げると密着性はさらに向上するかもしれないが、オーミック性が低下してしまう危険性がある。
以上の説明において、発光素子部25を分割している分離溝18はp型半導体層25の上に積層されるオーミックコンタクト層27、反射層28、密着層29、メッキ密着層30によって埋められることはなく、更にメッキ基板31によっても埋められることがないので、分離溝18はバッファ層20の上からメッキ基板31の側面側まで存在していることとなる。
次に、前記分離溝18に脆性透光性絶縁体26を充填する。
前述の如くメッキ層のメッキ基板31を形成した場合、メッキ基板31は素子間の分離溝18側には形成されないので、脆性透光性絶縁体26を素子間の分離溝18に充填形成することがでできる。
脆性透光性絶縁体26を充填するには、露出した分離溝18に後述するSOG(スピン・オン・グラス)などの液体塗布材料を充填して脆性透光性絶縁体部26を形成する。
ついで、基板19の剥離を実施し、さらにバッファ層20を除去する。その後、正電極13、負電極12を形成する。最終的にはメッキ基板を脆性透光性絶縁体部26の部分で分割することにより発光素子が形成される。
発光素子部25間の分離溝18の幅は1〜30μm程度、その深さは、発光素子部25から金属膜層24、メッキ層のメッキ基板31までを含めると、1〜200μm程度となる。この分離溝18を埋める手段としては、CVD、スパッタ、蒸着などによる成膜手法では、成膜レートが遅く、実用的な生産手段として用いることは困難である。このような厚膜を形成するためには、脆性透光性絶縁体としてSOG(スピン・オン・グラス)などの液体塗布材料が適している。
SOG材料としては、メチルシロキサン系、ハイメチルシロキサン系、水素化メチルメチルシロキサン系、燐ドープシリケート系、ポリシラザン系など透光性を有してる絶縁体であれば公知の材料を何ら制限なく用いることが出来る。
前記脆性透光性絶縁体部26の透光性は350nm〜550nmの範囲で透過率80%以上であることが好ましい。
SOG材料の塗布後に加湿条件で処理することが、シリカガラスへの転化が容易に進むために好ましい。
SOG材料の塗布後に100℃〜500℃でベークすることが、剛性向上やSOG中に含まれる水分や有機成分の除去のために好ましい。
SOG材料の塗布には、スピンコート法、スプレー法、ディップコート法など公知の方法を何ら制限無く用いることができるが、生産性の観点からスピンコート法を用いることが好ましい。
脆性透光性絶縁体部26の充填形成後、サファイアの基板19の剥離を実施する。基板19の剥離の方法としては、研磨法、エッチング法、レーザリフトオフ法など公知の技術を何ら制限なく用いることが出来る。
基板19を剥離した後、研磨法、エッチング法などによりバッファ層20を除去し、n型半導体層21を露出させる。次いで、n型半導体層21上に負極12を形成する。負極12としては、各種組成および構造の負極が公知であり、これら公知の負極を何ら限なく用いることが出来る。
正極はAu,Al,NiおよびCu等の材料を用いた各種構造が公知であり、これら公知の材料を何ら制限なく用いることが出来る。
素子への最終的な分割はダイシングを用いて、脆性透光性絶縁体26の部分に沿って切削することにより容易に実施することができる。
メッキ基板31を含めた発光素子全体の分離についても先の素子分離あるいは基板19の剥離の場合と同様の手法を適用することができる。
メッキ基板31を分割して窒化物系半導体発光素子Aをメッキ基板31から素子単位で分離する際、脆性透光性絶縁体部26の部分は他の積層膜の部分に比べて切削やエッチング、レーザ切断による分離が容易であるので、メッキ基板31の分割は極めて容易に行うことができる。
以上説明した工程を実施することにより、図1に示す断面構造の窒化物系半導体発光素子Aを製造することができるが、この窒化物系半導体発光素子Aにあっては、発光素子部5と金属膜層24とメッキ基板31の周囲に光透過率の高い脆性透光性絶縁体部6を設けているので、発光素子部5の周囲に向けて放射された光を遮ることなく出力光として利用できるので、光出力の高い窒化物系半導体発光素子Aとすることができる。また、特に脆性透光性絶縁体部6が波長350nm〜550nmの範囲の光の透過率80%以上であるならば、可視光として認識できる波長範囲において短波長側の青色発光領域とその周辺波長域の光を減衰することなく発光できる。
以下、実施例を示して本発明の作用効果を明確にする。ただし、本発明は以下の実施例に限定されるものではない。
(実施例1)
本実施例では図1に示す断面構造の窒化物系半導体発光素子を図2を基に先に説明した手順に基づいて作製した。
図2を基に先に説明した場合と同様に、サファイアからなる2インチ基板上に、AlNからなるバッファ層(厚さ10nm)を介して、厚さ5μmのSiドープn型GaNコンタクト層、厚さ30nmのn型In0.1Ga0.9Nクラッド層、厚さ30nmのSiドープGaN障壁層、および、厚さ2.5nmのIn0.2Ga0.8N井戸層を5回積層し、最後に障壁層を設けた多重井戸構造の発光層、厚さ50nmのMgドープp型Al0.07Ga0.93Nクラッド層、厚さ150nmのMgドープp型GaNコンタクト層を順に積層して窒化物半導体に必要な積層膜を得た。
次いで、ドライエッチングによりバッファ層に至るまで上記積層膜を掘り込み、図2に示すように分離溝を形成した。
窒化物系半導体のp型コンタクト層上に厚さ1.5nmのPt層をオーミックコンタクト層として図2に示すようにスパッタ法により成膜した。その上に反射層としてAg層を厚さ20nmになるようにスパッタ法により成膜した。Pt、Agのパターンは、公知のフォトリソグラフィー技術およびリフトオフ技術を用いた。
その後、密着層としてCrを厚さ20nmになるようにスパッタ法により成膜し、その上にメッキ密着層としてNiP合金(Ni:80at%、P:20at%)を厚さ30nmになるようにスパッタ法により成膜した。
次いでNiP合金膜表面を硝酸水溶液(5N)に浸漬し、温度25℃、時間30秒処理し酸化皮膜を除去した。
次いで、メッキ浴(上村工業製、ニムデンHDX−7G)を用いて、NiP合金膜上に厚さ50μmのNiP合金からなる無電解メッキを形成し、メッキ(金属)基板を得た。この際の、処理条件はpH4.6、温度90℃、時間3時間とした。この状態においてメッキ基板が形成されるが、先に形成した分離溝はメッキ材料及びその他の成膜材料で埋められることはなく、分離溝はバッファ層の上からメッキ基板まで達していた。
次いで、このメッキ金属基板を水洗、乾燥した後、クリーンオーブンを用いて250℃の条件下で1時間処理した。
その後、メッキ層のメッキ基板まで積層された素子間の分離溝をSOGを用いて溝埋めを実施した。SOG材料にはClariant社製のポリシラザンSOD Signiflow100を用いた。塗布後150℃で2分間プリベークし、その後、50℃、80%RHで30分間加湿処理をし、300℃30分間N雰囲気で処理を実施した。
次いで、サファイアの基板およびバッファー層をレーザリフトオフ法により剥離しn型半導体層を露出させた。
次いで、n型半導体層表面にITO(SnO:10wt%)を厚さ400nmになるように蒸着により成膜した。次いで、ITO表面上の中央部にCr(40nm)、Ti(100nm)、Au(1000nm)からなる負極を蒸着法により成膜した。負電極のパターンは、公知のフォトリソグラフィー技術およびリフトオフ技術を用いた。
次に、p型半導体の表面上にAu(1000nm)からなる正極を蒸着法により成膜した。
次いで、ダイシングによりSOGの部分を分割し350μm角の窒化物系半導体発光素子を得た。ここでのダイシングは、SOGの部分が脆いために容易に行うことができた。
(比較例1)
本比較例では、図4に示す断面構造の窒化物半導体発光素子を作製した。
即ち、サファイアからなる2インチ基板41上に、AlNからなるバッファ層(厚さ10nm)42を介して、厚さ5μmのSiドープn型GaNコンタクト層43を形成し、更に厚さ30nmのn型In0.1Ga0.9Nクラッド層、厚さ30nmのSiドープGaN障壁層および厚さ2.5nmのIn0.2Ga0.8N井戸層を5回積層し、最後に障壁層を設けた多重井戸構造の発光層44を形成し、厚さ50nmのMgドープp型Al 0.07Ga0.93Nクラッド層、厚さ150nmのMgドープp型GaNコンタクト層を順に積層してp型半導体層45とした。
窒化物系半導体のp型半導体層45上に厚さ1.5nmのPt層(オーミックコンタクト層)46を図4に示すようにスパッタ法により成膜した。その後、Pt層46上に厚さ30nmのAg層(反射層)47をスパッタ法により成膜した。PtおよびAgのパターンは、公知のフォトリソグラフィー技術およびリフトオフ技術を用いた。
次に厚さ30nmのNiP合金(Ni:80at%、P:20at%)(メッキ密着層48)をスパッタ法により成膜してメッキ基板た。
NiP合金膜表面を硝酸水溶液(5N)に浸漬し、温度25℃、時間30秒処理し酸化皮膜を除去した。
次いで、メッキ浴(上村工業製、ニムデンHDX−7G)を用いて、NiP合金膜上に50μmのNiP合金からなる無電解メッキを形成し、メッキ金属基板49を得た。この際の、処理条件はpH4.6、温度90℃、時間3時間とした。次いで、このメッキ金属基板49を水洗、乾燥した後、クリーンオーブンを用いて250℃の条件下で1時間処理した。
次いで、サファイアの基板41およびバッファー層42を研磨法により剥離しn型半導体層43を露出させた。
n型半導体層43の表面にITO(SnO:10wt%)を400nm蒸着により成膜した。次いで、ITO表面上の中央部にCr(40nm)、Ti(100nm)、Au(1000nm)からなる負極を蒸着法により成膜した。負電極のパターンは、公知のフォトリソグラフィー技術およびリフトオフ技術を用いた。
p型半導体表面上にはAu(1000nm)からなる正極を蒸着法により成膜した。
次いで、ダイシングにより分割し窒化物系半導体発光素子を得た。
以上の製造方法により、図5に断面構造を示し、透明電極51上にn型半導体層53、発光層54、p型半導体層55、オーミックコンタクト層56、反射層57、メッキ密着層58、メッキ金属板59、正電極60が積層されるとともに、透明電極51の下面側に負電極52が形成された窒化物系半導体発光素子を得た。
実施例1、比較例1でそれぞれ5枚づつ同一のダイシングブレードを用いて加工収率を出した。割れ、欠け、形状不良を不良品として計上した。
実施例1においては加工良品率は98%、比較例1においては加工収率41%と実施例1が優れた特性を示した。
本発明によって提供される窒化物系半導体素子は、優れた形状特性と安定性を有し、発光ダイオードおよびランプ等の材料として有用である。
図1は本発明に係る窒化物半導体発光素子の実施形態を示す断面図。 図2は同実施形態の窒化物半導体発光素子を製造する途中において基板上に複数の素子を作り込んだ状態を示す断面図である。 図3は基板上に形成した発光素子部の平面形状の一例を示す図である。 図4は比較例において製造した窒化物系半導体発光素子の製造途中の状態を示す断面図である。 図5は同比較例において製造された窒化物系半導体発光素子の一例を示す断面図である。
符号の説明
A 窒化物半導体発光素子
1、21 n型半導体層
2、22 発光層
3、23 p型半導体層
4、24 金属膜層
5、25 発光素子部
6、26 脆性透光性絶縁体部
7、27 オーミックコンタクト層
8、28 反射層
9、29 密着層
10、30 メッキ密着層
11、31 メッキ基板
12 負極
13 正極
19 基板
20 バッファ層


Claims (5)

  1. 少なくともn型半導体層、発光層、p型半導体層が積層されて発光素子部が構成され、前記n型半導体層、発光層、p型半導体層の発光素子部の周囲に脆性透光性絶縁体部が設けられてなる窒化物系半導体発光素子を製造するに際し、
    基板上に少なくともバッファ層、n型半導体層、発光層、p型半導体層を積層し、これらの積層体を基板上で素子分割して発光素子部を形成し、その後に前記分割された個々の発光素子部上にそれぞれ金属膜層とメッキ金属板を積層し、次いで発光素子部間に脆性透光性絶縁体部を充填し、
    この後に前記基板とバッファ層を除去して前記n型半導体層表面を露出させ、前記発光素子部単位で前記脆性透光性絶縁体部をダイシングして分割することを特徴とする窒化物系半導体発光素子の製造方法。
  2. 前記基板をレーザにより除去することを特徴とする請求項に記載の窒化物系半導体発光素子の製造方法。
  3. 前記メッキ金属板を無電解メッキ法により形成することを特徴とする請求項またはに記載の窒化物系半導体発光素子の製造方法。
  4. 前記メッキ金属板を形成後、100℃〜300℃で熱処理することを特徴とする請求項のいずれかに記載の窒化物系半導体発光素子の製造方法。
  5. 前記n型半導体層表面を露出させた後、前記n型半導体層に接続する負電極を形成するとともに、前記メッキ基板に接続する正電極を形成することを特徴とする請求項のいずれかに記載の窒化物系半導体発光素子の製造方法。
JP2005270807A 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法 Active JP4791119B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270807A JP4791119B2 (ja) 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270807A JP4791119B2 (ja) 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法

Publications (2)

Publication Number Publication Date
JP2007081333A JP2007081333A (ja) 2007-03-29
JP4791119B2 true JP4791119B2 (ja) 2011-10-12

Family

ID=37941274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270807A Active JP4791119B2 (ja) 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法

Country Status (1)

Country Link
JP (1) JP4791119B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381551B (zh) 2008-08-01 2013-01-01 Epistar Corp 一種包含複合電鍍基板之發光元件
JP5612873B2 (ja) * 2010-03-03 2014-10-22 スタンレー電気株式会社 光半導体素子および光半導体装置
KR101556337B1 (ko) 2014-07-11 2015-09-30 동국대학교 산학협력단 반도체 소자, 반도체 발광 소자 및 이의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098345A (ja) * 1995-06-21 1997-01-10 Hitachi Cable Ltd 発光ダイオードアレイチップ
JPH11161933A (ja) * 1997-11-28 1999-06-18 Showa Denko Kk メッキ処理基板、磁気記録媒体およびこれらの製造方法
JP3736181B2 (ja) * 1998-05-13 2006-01-18 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
JPH11340558A (ja) * 1998-05-21 1999-12-10 Nec Corp リッジ導波路型半導体レーザ及びその製造方法
JP2000261042A (ja) * 1999-03-05 2000-09-22 Toshiba Corp 半導体発光素子及びその製造方法
JP2004095765A (ja) * 2002-08-30 2004-03-25 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP3795007B2 (ja) * 2002-11-27 2006-07-12 松下電器産業株式会社 半導体発光素子及びその製造方法
JP4547933B2 (ja) * 2003-02-19 2010-09-22 日亜化学工業株式会社 窒化物半導体素子
JP4110524B2 (ja) * 2003-03-20 2008-07-02 信越半導体株式会社 発光素子及び発光素子の製造方法
JP4415572B2 (ja) * 2003-06-05 2010-02-17 日亜化学工業株式会社 半導体発光素子およびその製造方法
JP2005072527A (ja) * 2003-08-28 2005-03-17 Tomio Inoue 発光素子およびその製造方法

Also Published As

Publication number Publication date
JP2007081333A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
US8097478B2 (en) Method for producing light-emitting diode
KR101147705B1 (ko) GaN계 반도체 발광소자 및 그것의 제조방법
JP2007081312A (ja) 窒化物系半導体発光素子の製造方法
US7939351B2 (en) Production method for nitride semiconductor light emitting device
JP4951443B2 (ja) 発光ダイオードの製造方法
JP4841909B2 (ja) 窒化物系半導体発光素子
JP2010093186A (ja) 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体素子の積層構造及び窒化ガリウム系化合物半導体発光素子、並びにランプ
JP5074138B2 (ja) 発光ダイオードの製造方法
JP2007165611A (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法
JP2009099675A (ja) 発光ダイオードの製造方法及び発光ダイオード、並びにランプ
EP1925036B1 (en) Nitride semiconductor light emitting device and production method thereof
JP4799975B2 (ja) 窒化物系半導体発光素子及びその製造方法
US7939845B2 (en) Nitride semiconductor light-emitting device and production method thereof
KR101428066B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
JP4799974B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4202353B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4791119B2 (ja) 窒化物系半導体発光素子の製造方法
JP4749809B2 (ja) 窒化物系半導体発光素子
JP2008227544A (ja) 窒化物系半導体発光素子及びその製造方法
JP5047482B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4920223B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4179942B2 (ja) Iii族窒化物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350