JP2007081312A - 窒化物系半導体発光素子の製造方法 - Google Patents

窒化物系半導体発光素子の製造方法 Download PDF

Info

Publication number
JP2007081312A
JP2007081312A JP2005270565A JP2005270565A JP2007081312A JP 2007081312 A JP2007081312 A JP 2007081312A JP 2005270565 A JP2005270565 A JP 2005270565A JP 2005270565 A JP2005270565 A JP 2005270565A JP 2007081312 A JP2007081312 A JP 2007081312A
Authority
JP
Japan
Prior art keywords
layer
nitride
substrate
based semiconductor
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005270565A
Other languages
English (en)
Inventor
Hiroshi Osawa
弘 大澤
Takashi Hodota
高史 程田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005270565A priority Critical patent/JP2007081312A/ja
Priority to PCT/JP2006/318658 priority patent/WO2007032546A1/en
Priority to TW095134064A priority patent/TWI318014B/zh
Priority to CNB2006800332231A priority patent/CN100565949C/zh
Priority to US12/066,575 priority patent/US7939351B2/en
Priority to KR1020087005871A priority patent/KR100976311B1/ko
Priority to EP06810350A priority patent/EP1925039A4/en
Publication of JP2007081312A publication Critical patent/JP2007081312A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】 基板剥離後のソリが少なく、側面から効率よく光取り出しができる窒化物系半導体発光素子の製造方法を提供することを目的とする。
【解決手段】 複数の窒化物系半導体発光素子2を製造する方法であって、基板101上に、少なくともn型半導体層103、発光層104、p型半導体層105をこの順で積層して積層体を形成する工程と、基板101上に溝4を形成することにより、積層体を製造しようとする各窒化物系半導体発光素子2に対応させて分割する工程と、溝4を犠牲層106で充填する工程と、p型半導体層105上および犠牲層106上にメッキ法によりメッキ基板111を形成するメッキ工程とを備える方法とする。
【選択図】 図2

Description

本発明は窒化物系半導体発光素子および、その製造方法に関し、特に基板剥離工程を含んだ上下電極構造をとる窒化物系半導体発光素子において、光取り出し効率を向上させる構造およびその製造方法に関する。
近年、短波長光発光素子用の半導体材料としてGaN系化合物半導体材料が注目を集めている。GaN系化合物半導体は、サファイア単結晶をはじめとして、種々の酸化物基板やIII―V族化合物を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。
サファイア単結晶基板は、GaNとは格子定数が10%以上も異なるが、AlNやAlGaNなどのバッファ層を形成することにより、その上に良好な窒化物半導体が形成でき、一般的に広く用いられている。サファイア単結晶基板を用いた場合、n型半導体層、発光層、p型半導体層がこの順で積層される。サファイア基板は絶縁体であるので、その素子構造は、p型半導体層上に形成された正極とn型半導体層上に形成された負極が同一面上に存在することになる。ITOなどの透明電極を正極に使用しp型半導体側から光を取り出すフェイスアップ方式、Agなどの高反射膜を正極に使用してサファイア基板側から光を取り出すフリップチップ方式の2種類がある。
このようにサファイア単結晶基板は一般的に広く用いられているが、絶縁体であるためにいくつかの問題点がある。第一に負極を形成するために発光層をエッチングなどにより除去してn型半導体層を露出させるために、負極の部分だけ発光層の面積が減ってしまい、その分、出力が低下する。第二に正極と負極が同一面にあるために電流の流れが水平方向になってしまい局部的に電流密度の高いところができてしまい素子が発熱してしまう。第三にサファイア基板の熱伝導率は低いので発生した熱が拡散せず素子の温度が上昇してしまう。
以上の問題を解決させるために、サファイア単結晶基板上にn型半導体層、発光層、p型半導体層がこの順で積層した素子に導電性基板を接着し、その後にサファイア単結晶基板を除去して、正極と負極を上下に配置させる方法が開示されている(特許文献1)。さらに、導電性基板を接着させるのではなく、メッキにより作成する方法が開示されている(特許文献2)。
特許第3511970号公報 特開2004−47704号公報
導電性基板を接着させる方法には、AuSnなどの低融点金属化合物を接着材として接着させる方法や、真空中でアルゴンプラズマなどで接合面を活性化させて接着させる活性化接合などの方法がある。この方法であると接着面は極めて平滑であることが要求されパーティクルなどの異物があると、その部分が浮いてしまい接着がうまく行かないなど、均一な接着面を形成することが難しい。
サファイアなどの基板上に積層されるGaNは、1〜10μmと厚膜であること、積層時の温度が1000度付近と高温であることなどから、極めて高い膜応力を有している。例えば、板圧0.4mm厚のサファイア基板にGaNを5μm積層した場合、50〜100μm程度のソリが発生してしまう。
メッキ法で支持基板を作成する場合、サファイアよりも機械強度が弱いこと、生産上の効率性から膜厚が10μm〜200μmと限定されることから、基板剥離後のソリの影響はさらに大きくなってしまう。
GaNのソリの影響を軽減するためには、基板上に積層されたGaNをあらかじめ分割してしまうことが有効である。GaNが分割された部分で応力緩和が起き基板全体のソリが低減される。
しかし、GaNを分割してからメッキ支持基板を作成する場合、基板全体のソリ低減には有効であるが、以下の2つの問題点が発生する。
(1)n型半導体層が露出してしまうので、そのままメッキするとn型半導体層とp型半導体層が短絡してしまう。
(2)露出したp型半導体層、発光層、n型半導体層の側面にもメッキが入り込んでしまうために側面からの光取出しが出来なくなる。
(1)についてはp型半導体層、発光層、n型半導体層の側面に保護膜を形成すれば容易に解決できるが、(2)については側面の深さが1〜10μmと深いことから容易に解決することが難しい。
本発明は、上記事情に鑑みてなされたもので、基板剥離後のソリが少なく、側面から効率よく光取り出しができる窒化物系半導体発光素子の製造方法を提供することを目的とする。
本発明者等は上記問題を解決するために、鋭意努力検討した結果、少なくともn型半導体層、発光層、p型半導体層を積層してなる積層体を各窒化物系半導体発光素子に対応させて分割し、分割することによって形成された発光素子間の溝をメッキ基板を形成した後に除去される犠牲層で充填することで、その後にメッキ基板を作成する際に積層体の側面にメッキが入り込むことを防ぐことができ、メッキ後に犠牲層を除去することで積層体の側面からの光取り出し効率に優れたものが得られ、しかも、基板を剥離した場合のソリを少なくできることを見出した。即ち本発明は以下に関する。
(1)複数の窒化物系半導体発光素子を製造する方法であって、基板上に、少なくともn型半導体層、発光層、p型半導体層をこの順で積層して積層体を形成する工程と、前記基板上に溝を形成することにより、前記積層体を製造しようとする各窒化物系半導体発光素子に対応させて分割する工程と、前記溝を犠牲層で充填する工程と、前記p型半導体層上および前記犠牲層上にメッキ法によりメッキ基板を形成するメッキ工程とを備えることを特徴とする窒化物系半導体発光素子の製造方法。
(2)前記犠牲層を除去する工程を備えることを特徴とする(1)に記載の窒化物系半導体発光素子の製造方法。
(3)前記メッキ工程の前に、前記p型半導体層上に金属層を積層することを特徴とする(1)に記載の窒化物系半導体発光素子の製造方法。
(4)前記積層体を形成する前に、前記基板上にバッファ層を形成し、前記メッキ工程の後に、前記基板および前記バッファ層を除去することにより前記n型半導体層を露出させることを特徴とする(1)〜(3)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(5)前記金属層が複数の金属層からなり、前記溝を犠牲層で充填する前に、前記複数の金属層のうち前記p型半導体層上のみに配置される金属層を形成することを特徴とする(3)または(4)に記載の窒化物系半導体発光素子の製造方法。
(6)前記基板をレーザにより除去することを特徴とする(4)または(5)に記載の窒化物系半導体発光素子の製造方法。
(7)前記犠牲層が、レジストからなることを特徴とする(1)〜(6)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(8)前記金属層が、オーミック接触層を含むことを特徴とする(3)〜(7)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(9)前記金属層が、反射層を含むことを特徴とする(3)〜(8)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(10)前記金属層が、密着層を含むことを特徴とする(3)〜(9)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(11)前記オーミック接触層が、Pt、Ru、Os、Rh、Ir、Pd、またはAgの単体金属およびそれらの合金で構成されることを特徴とする(8)に記載の窒化物系半導体発光素子の製造方法。
(12)前記反射層が、Ag合金またAl合金で構成されることを特徴とする(9)に記載の窒化物系半導体発光素子の製造方法。
(13)前記密着層が、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの単体金属およびそれらの合金で構成されることを特徴とする(10)に記載の窒化物系半導体発光素子の製造方法。
(14)前記メッキ基板の膜厚が、10μm〜200μmであることを特徴とする(1)〜(13)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(15)前記メッキ基板が、NiP合金、Cu,またはCu合金により形成されることを特徴とする(1)〜(14)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(16)前記メッキ工程の後、100℃〜300℃で熱処理をすることを特徴とする(1)〜(15)のいずれかに記載の窒化物系半導体発光素子の製造方法の製造方法。
(17)前記金属層と前記メッキ基板との間に、前記メッキ基板に接してメッキ密着層を形成すること特徴とする(1)〜(16)のいずれかに記載の窒化物系半導体発光素子の製造方法。
(18)前記メッキ密着層が、前記メッキ基板の50wt%以上を占める主成分と同一の組成を50wt%以上有することを特徴とする(17)に記載の窒化物系半導体発光素子の製造方法。
(19)前記メッキ密着層が、NiP合金またはCu合金により形成されることを特徴とする(17)または(18)に記載の窒化物系半導体発光素子の製造方法。
本発明によれば、基板上に積層体を形成し、前記基板上に溝を形成することにより、前記積層体を各窒化物系半導体発光素子に対応させて分割し、前記溝を犠牲層で充填した後、p型半導体層上および犠牲層上にメッキ法によりメッキ基板を形成するので、メッキ基板を作成する際に積層体の側面にメッキが入り込むことを防ぐことができる。
また、メッキ後に犠牲層を除去することで、積層体の側面からの光取り出し効率に優れたものが得られる。
さらに、積層体を各窒化物系半導体発光素子に対応させて分割してからメッキ基板を形成するので、基板を剥離した場合のソリを少なくできる。よって、信頼性が高く、出力の高い窒化物系半導体発光素子を作成することが可能になる。
以下、本発明の実施の形態について、図面を参照にして説明する。ただし、本発明は以下の各実施形態に限定されるものではなく、例えばこれら実施形態の構成要素同士を適宜組み合わせても良い。
図1は、本発明の製造方法を用いて得られた窒化物系半導体発光素子の断面を示した模式図であり、図2は、図1に示す窒化物系半導体発光素子の製造方法を説明するための模式図である。なお、図2においては、図面を見やすくするために、製造される複数の窒化物系半導体発光素子のうち、2つの窒化物系半導体発光素子のみを示している。
図1に示す窒化物系半導体発光素子2「以下、発光素子と略記する」は、n型半導体層103と発光層104とp型半導体層105とからなる窒化物系半導体層(積層体)3を備えたものである。窒化物系半導体層3の側面5は露出されており、窒化物系半導体層3のp型半導体層105側の面(図1では上面)の中央部には、金属層6を構成するオーミック接触層107と反射層108と密着層109とが下から順に積層されている。密着層109は、反射層108の上面と、オーミック接触層107および反射層108の側面と、p型半導体層105上の縁部とを覆う被覆部109bと、被覆部109bと連続して設けられ、p型半導体層105の端部から外部に向かって延びる鍔部109aとからなる。密着層109上には、メッキ密着層110を介してメッキ基板111が形成されている。さらに、メッキ基板111の上面には正極212が形成され、n型半導体層103の下面には負極213が形成されている。
図1に示す発光素子2を製造するには、図2に示すように、まず、基板101を用意し、基板101上にバッファ層102を形成する。
基板101としては、サファイア単結晶(Al;A面、C面、M面、R面)、スピネル単結晶(AgAl)、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶、GaAs単結晶などの公知の基板材料を何ら制限無く用いることができる。基板101としてSiCなどの導電性基板を用いれば、正極212と負極213を上下に配置させた発光素子2を、基板101を剥離することなく形成できる。しかし、その場合には、基板101上に、絶縁体であるバッファ層102を使用することができなくなるので、バッファ層102の上に成長する窒化物系半導体層3の結晶が劣化して良好な発光素子2を形成することができない場合が生じる。したがって、本実施形態においては、基板101として導電性のSiC、Siを用いた場合でも後の工程において基板101の剥離を行なう。
バッファ層102は、n型半導体層103を構成する材料の結晶性を向上させるためのものである。例えば、基板101としてサファイア単結晶基板を用い、n型半導体層103としてGaNを用いる場合には、基板101とn型半導体層103との格子定数が10%以上も異なる。この場合に、バッファ層102として、基板101とn型半導体層103との中間の格子定数を有するAlNやAlGaNなどを用いることで、n型半導体層103を構成するGaNの結晶性を向上させることができる。
次に、バッファ層102上に、少なくともn型半導体層103、発光層104、p型半導体層105をこの順で積層して窒化物系半導体層3を形成する。窒化物系半導体層3は、例えばn型半導体層103、発光層104、p型半導体層105からなるヘテロ接合構造で構成される。窒化物系半導体層3としては、一般式AlxInyGa1−x−yN(0≦x<1、0≦y<1、x+y<1)で表される半導体が多数知られており、本発明においても一般式AlxInyGa1−x−yN(0≦x<1、0≦y<1、x+y<1)で表される窒化物系半導体が何ら制限なく用いられる。
これらの窒化物系半導体層3は、有機金属化学気相成長法(MOCVD)、ハイドライド気相成長法(HPVE)、分子線エピタキシー法(MBE)、などIII族窒化物系半導体を成長させることが可能である全ての成長方法を適用して製造できる。好ましい成長方法としては、膜厚制御性、量産性の観点からMOCVD法である。
MOCVD法では、キャリアガスとして水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてはアンモニア(NH)、ヒドラジン(N)などが用いられる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマン(GeH)を用い、p型にはMg原料としては例えばビスシクロペンタジエニルマグネシウム(CpMg)またはビスエチルシクロペンタジエニルマグネシウム((EtCp)2Mg)を用いる。
図2に示すように、続いて、基板101上に溝4を形成することにより、窒化物系半導体層3を製造しようとする各発光素子2に対応させて分割する。溝4の内壁には窒化物系半導体層3の側面5が露出されており、溝4の底面にはバッファ層2が露出されている。
例えば、基板101としてサファイア基板を用いた場合に、基板101上に形成された窒化物系半導体層3を分割する方法としては、エッチング法、レーザカッティング法など公知の技術を何ら制限なく用いることが出来る。レーザリフトオフ法を用いる場合、窒化物系半導体3が分割されるが、良好な基板101を剥離するためにはサファイア基板にはダメージを与えないようにすることが好ましい。したがって、エッチング法で分割する場合、窒化物系半導体層3に対してはエッチングレートが早く、サファイア基板に対してはエッチングレートが遅い手法を用いることが好ましい。レーザで分割する場合は窒化物系半導体層3とサファイア基板に対する吸収波長の違いから、300−400nmの波長を持ったレーザを用いることが好ましい。
次に、図2に示すように、溝4を犠牲層106で充填する。窒化物系半導体層3を各発光素子2に対応させて分割した場合、窒化物系半導体3の側面5を露出する溝4の幅は1〜30μm程度、深さは1〜10μm程度となる。この溝4を埋める手段としては、CVD、スパッタ、蒸着などによる成膜手法では、成膜レートが遅く、実用的な生産手段として用いることは困難である。本発明においては、この溝4を埋めるために、犠牲層106を形成している。
犠牲層106としては、犠牲層106を除去するときに、化物系半導体層3や、密着層109、メッキ基板111にダメージを与えない材質を選択することが好ましい。犠牲層106の材料としては、レジスト材料、樹脂、セラミックスなどが好ましい。特にレジスト材料は現像すれば、そのまま選択的に溝を埋めることができ、かつ、専用の剥離材を使用すれば容易に除去することができるのでさらに好ましい。セラミックを用いる場合は、SiOがHFにより容易に除去できるので好ましい。さらに、SiOを形成する際にはSOG(スピン・オン・グラス)材料を用いることが、溝を十分に充填することができ好ましい。
犠牲層106としてレジストを用いる場合、レジストによって溝4を充填する前に、パターニングをする金属層6を形成しておくことが好ましい。特に、p型半導体層105上のみに配置されるオーミック接触層107や反射層108は、レジストによって溝4を埋める前に実施することがさらに好ましい。これは、パターニングするためにレジストを用いるので、先にレジストによって溝4が埋められていると、溝4に埋められたレジストが剥離してしまうためである。
犠牲層106を形成する方法としては、スピンコート法、スプレー法、ディップコート法など公知の方法でレジストを塗布する方法を用いることが好ましい。さらに、生産性の観点からスピンコート法を用いることが好ましい。
次に、図2に示すように、p型半導体層105上に、オーミック接触層107と反射層108と密着層109とからなる金属層6を積層する。
まず、各発光素子2に対応するp型半導体層105上の中央部に、オーミック接触層107を形成する。オーミック接触層107に要求される性能としては、p型半導体層105との接触抵抗が小さいことが必須である。オーミック接触層107の材料はp型半導体層105との接触抵抗の観点から、Pt、Ru、Os、Rh、Ir、Pd等の白金族またはAgが好ましい。さらに好ましくはPt,Ir,RhおよびRuである。Ptが特に好ましい。Agを用いることは良好な反射を得るためには好ましいが、接触抵抗はPtよりも低い。したがって、接触抵抗がそれほど要求されない用途にはAgを用いることも可能である。
オーミック接触層107の厚さは、低接触抵抗を安定して得るために0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、均一な接触抵抗が得られる。
次に、オーミック接触層107上に、光の反射を向上させるために反射層108を形成する。反射層108としては、Ag合金などを用いることができる。Pt,Ir,Rh、Ru、OS,PdなどはAg合金と比較すると可視光から紫外領域の反射率が低い。したがって、発光層104からの光が十分に反射せず、出力の高い発光素子2を得ることが難しい。この場合、オーミック接触層107を光が十分に透過するほどに薄く形成し、Ag合金などの反射層108を形成して反射光を得る方が、良好なオーミック接触が得られ、かつ出力の高い発光素子2を作成することができる。この場合、オーミック接触層107の膜厚は30nm以下とすることが好ましい。さらに好ましくは10nm以下である。
オーミック接触層107および反射層108の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。
次に、図2に示すように、オーミック接触層107および反射層108の側面と、反射層108上と、p型半導体層105上の縁部と、犠牲層106上とを覆うように、密着層109を形成する。密着層109は、反射層108やp型半導体層105と、メッキ基板111との密着性を向上させるためのものである。密着層109には、p型半導体層105と密着性の良い金属を用いることができる。密着層109の材料としては、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの単体金属あるいはそれらを組み合わせた合金を用いることができる。
次に、密着層109上にメッキ密着層110を形成する。メッキ密着層110は、メッキ基板111と密着層109との密着性を向上させるためのものである。メッキ密着層110の材料は、使用するメッキ成分によって異なるが、メッキ成分に主に含まれる物質を含んでいたほうが密着性を向上させる。例えば、NiPメッキを用いる場合、メッキ密着層110にはNi系合金を用いることが好ましい。さらに好ましくはNiPを用いることである。Cuメッキを用いる場合は、メッキ密着層110にはCu系合金を用いることが好ましい。さらに好ましくはCuを用いることである。
密着層109、メッキ密着層110の厚さは、良好な密着性を得るために0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、均一な密着性が得られる。厚さの上限は特に限定されないが、生産性の観点から2μm以下にすることが好ましい。
密着層109、メッキ密着層110の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。スパッタ法はスパッタ粒子が高エネルギーを持って基板表面に衝突して成膜されるので、密着性の高い膜を得ることができる。したがって、スパッタ法を用いる方がさらに好ましい。
次に、p型半導体層105上および犠牲層106上にメッキ法によりメッキ基板111を形成する。メッキには無電解メッキ、電解メッキどちらを用いることができる。無電解メッキの場合、材料としてはNiP合金メッキを用いることが好ましい。電解メッキの場合は、材料としてはCu、またはCu合金を用いることが好ましい。
メッキ基板111の厚さは、基板としての強度を保つために10μm以上とすることが好ましい。しかし、厚くなるとメッキ基板111の剥離が起こりやすくなり、かつ生産性も低くなるので200μm以下であることが好ましい。
メッキを実施する前には、汎用の中性洗剤等を用いて脱脂洗浄することが好ましい。また、硝酸などの酸を用いてメッキ密着層110などの表面に化学エッチングを施すことによりメッキ密着層110上の自然酸化膜を除去するのが好ましい。
NiPメッキなどのメッキ処理方法としては、メッキ浴として、例えば、硫酸ニッケル、塩化ニッケルなどのニッケル源と、次亜リン酸塩などのリン源を含むものを用いた無電解メッキ処理法を採用することができる。無電解メッキ法に用いられるメッキ浴として好適な市販品としては、上村工業製のニムデンHDXなどがある。無電解メッキ処理を行う際のメッキ浴のpHは4〜10、温度は30〜95℃とすることが好ましい。
CuまたはCu合金のメッキ処理方法としては、メッキ浴として、例えば硫酸銅などのCu源を用いる電解メッキ処理法を採用することができる。電気メッキ処理を行う際のメッキ浴のpHは2以下の強酸条件下で実施することが好ましい。温度は10〜50℃とすることが好ましく、さらには常温(25℃)で実施することがさらに好ましい。電流密度は0.5〜10A/dm2で実施することが好ましい。さらに好ましく電流密度は2〜4A/dm2で実施することである。表面を平滑化させるためにレベリング剤を添加することがより好ましい。レベリング剤に用いられる市販品としては、例えば上村工業製のETN−1−AやETN−1−Bなどが用いられる。
このようにして得られたメッキ基板111の密着性を向上させるために熱処理することが好ましい。熱処理温度は100〜300℃が密着性向上のために好ましい。これ以上温度を上げると密着性はさらに向上するかもしれないが、オーミック性が低下してしまう危険性がある。
メッキ基板111の形成後、基板101およびバッファ層102を除去する。基板101を剥離する方法としては、研磨法、エッチング法、レーザリフトオフ法など公知の技術を何ら制限なく用いることが出来る。基板101を剥離した後、研磨法、エッチング法などによりバッファ層102を除去し、n型半導体層103を露出させる。
基板101を除去した後に、犠牲層106を除去する。犠牲層106の除去方法としては、ウエットエッチング法、ドライエッチング法など公知の方法を何ら制限なく用いることが出来る。
次に、n型半導体層103上に負極213を形成する。負極213としては、各種組成および構造の負極が公知であり、これら公知の負極を何ら限なく用いることが出来る。
正極213はAu,Al,NiおよびCu等の材料を用いた各種構造が公知であり、これら公知の材料を何ら制限なく用いることが出来る。
続いて、メッキ基板111を分割することにより、図1に示す発光素子2が形成される。
以下、実施例を示して本発明の作用効果を明確にする。ただし、本発明は以下の実施例に限定されるものではない。
(実施例1)
図1に示す発光素子2を以下に示すようにして作成した。
すなわち、図2に示すように、サファイアからなる基板101上に、AlNからなる厚さ10nmのバッファ層102を形成し、バッファ層102上に、厚さ5μmのSiドープn型GaNコンタクト層、厚さ30nmのn型In0.1Ga0.9Nクラッド層(n型半導体層103)、厚さ30nmのSiドープGaN障壁層および厚さ2.5nmのIn0.2Ga0.8N井戸層を5回積層し、最後に障壁層を設けた多重井戸構造の発光層104、厚さ50nmのMgドープp型Al0.07Ga0.93Nクラッド層、厚さ150nmのMgドープp型GaNコンタクト層(p型半導体層105)を順に積層し、窒化物系半導体層3を得た。
次いで、ドライエッチングによりバッファ層102に至るまで窒化物系半導体層3を掘って溝4を形成し、窒化物系半導体層3を各発光素子2に対応させて分割した。次いで、窒化物系半導体層3のp型コンタクト層上に、オーミック接触層107として、厚さ1.5nmのPt層をスパッタ法により成膜した。さらに、オーミック接触層107の上に、反射層108としてAgを20nmスパッタ法により成膜した。Pt、Agのパターンは、公知のフォトリソグラフィー技術およびリフトオフ技術を用いて形成した。
その後、窒化物系半導体層3を分割することによって得られた各発光素子2間の溝4を、犠牲層106であるレジストを塗布することにより埋めた。レジスト材料にはlariant社製のAZ5214を用いた。レジストを塗布した後110℃で30分間プリベークし、露光、現像を実施し、110℃で15分間ポストベークを実施した。その後、密着層109としてCrを20nmスパッタ法により成膜し、密着層109の上にメッキ密着層110としてNiP合金(Ni:80at%、P:20at%)を30nmスパッタ法により成膜した。次いで、密着層110の表面を、硝酸水溶液(5N)に浸漬し、温度25℃、時間30秒処理し酸化皮膜を除去した。
次いで、メッキ浴(上村工業製、ニムデンHDX−7G)を用いて、密着層110上に50μmのNiP合金からなる無電解メッキを形成し、メッキ基板111を得た。この際の、処理条件はpH4.6、温度90℃、時間3時間とした。次いで、このメッキ基板111を水洗、乾燥し、クリーンオーブンを用いて250℃の条件下で1時間処理した。次いで、基板101およびバッファ層102をレーザリフトオフ法により剥離し、n型半導体層103を露出させた。
次いで、剥離材としてN―メチル−2−ピロリドン(NMP)を用いて犠牲層106を除去した。その後、n型半導体層103の表面にITO(SnO:10wt%)を400nm蒸着により成膜した。次いで、ITO表面上の中央部にCr(40nm)、Ti(100nm)、Au(1000nm)からなる負極213を蒸着法により成膜した。負電極213のパターンは、公知のフォトリソグラフィー技術およびリフトオフ技術を用いた。
また、p型半導体層105の表面上にはAu(1000nm)からなる正極212を蒸着法により成膜した。次いで、ダイシングによりメッキ基板111を分割し350μm角の図1に示す発光素子2を得た。
得られた発光素子2については、TO−18缶パッケージに実装してテスターによって印加電流20mAにおける発光出力を測定した。発光出力は18mWであった。
(実施例2)
メッキ密着層110としてNiP合金膜の代わりにCuをスパッタ法より30nm成膜し、かつ、メッキとしてはNiP合金膜の代わりにCuを電解メッキで50μm成膜した以外は実施例1と同様の処理を施した。
Cuのメッキ条件としては、CuSO4:80g/L、硫酸:200g/L、レベリング剤(上村工業製ETN−1−A:1.0mL/L,ETN−1−B:1−mL/L)を使用し、電流密度2.5A/dm2で常温にてメッキを実施した。メッキ時間は3時間とし50μmのCu膜を成膜した。また陽極には含リン酸銅を使用した。
得られた素子については、TO−18缶パッケージに実装してテスターによって印加電流20mAにおける、発光出力を測定した。発光出力は18mWであった。
(比較例)
溝4内に露出した窒化物系半導体層3の側面5にSiOを100nm成膜した。SiOの成膜方法としてCVDを用いた。それ以外は実施例1と同様に処理を実施した。
得られた発光素子については、TO−18缶パッケージに実装してテスターによって印加電流20mAにおける発光出力を測定した。発光出力は12mWであった。
実施例1および実施例2では、溝4に犠牲層106としてレジストを充填することにより、窒化物系半導体層3の側面5からのメッキの入り込みを防いだので、犠牲層106を除去した後は、窒化物系半導体層3の側面5からの光取り出しが可能なった。よって、実施例1では、18mWと高い出力が得られた。メッキ基板にCuを用いた実施例2においても同様に18mWと高い出力が得られた。
これに対し、比較例では、窒化物系半導体層3の側面5にメッキが入り込んでしまったため、窒化物系半導体層3の側面5からの光取り出しが出来なかった。このため出力が12mWと低くなった。
(産業上の利用可能性)
本発明によって提供される窒化物系半導体素子は、優れた特性と安定性を有し、発光ダイオードおよびランプ等の材料として有用である。
図1は、本発明の製造方法を用いて得られた窒化物系半導体発光素子の断面を示した模式図である。 図2は、図1に示す窒化物系半導体発光素子の製造方法を説明するための模式図である。
符号の説明
2・・・発光素子(窒化物系半導体発光素子)、3・・・窒化物系半導体層(積層体)、4・・・溝、5・・・側面、6・・・金属層、101・・・基板、102・・・バッファ層、103・・・n型半導体層、104・・・発光層、105・・・p型半導体層、106・・・犠牲層、107・・・オーミック接触層、108・・・反射層、109・・・密着層、109a・・・鍔部、109b・・・被覆部、110・・・メッキ密着層、111・・・メッキ基板、212・・・正極、213・・・負極。

Claims (19)

  1. 複数の窒化物系半導体発光素子を製造する方法であって、
    基板上に、少なくともn型半導体層、発光層、p型半導体層をこの順で積層して積層体を形成する工程と、
    前記基板上に溝を形成することにより、前記積層体を製造しようとする各窒化物系半導体発光素子に対応させて分割する工程と、
    前記溝を犠牲層で充填する工程と、
    前記p型半導体層上および前記犠牲層上にメッキ法によりメッキ基板を形成するメッキ工程とを備えることを特徴とする窒化物系半導体発光素子の製造方法。
  2. 前記犠牲層を除去する工程を備えることを特徴とする請求項1に記載の窒化物系半導体発光素子の製造方法。
  3. 前記メッキ工程の前に、前記p型半導体層上に金属層を積層することを特徴とする請求項1または2に記載の窒化物系半導体発光素子の製造方法。
  4. 前記積層体を形成する前に、前記基板上にバッファ層を形成し、
    前記メッキ工程の後に、前記基板および前記バッファ層を除去することにより前記n型半導体層を露出させることを特徴とする請求項1〜3のいずれかに記載の窒化物系半導体発光素子の製造方法。
  5. 前記金属層が複数の金属層からなり、
    前記溝を犠牲層で充填する前に、前記複数の金属層のうち前記p型半導体層上のみに配置される金属層を形成することを特徴とする請求項3または請求項4に記載の窒化物系半導体発光素子の製造方法。
  6. 前記基板をレーザにより除去することを特徴とする請求項4または5に記載の窒化物系半導体発光素子の製造方法。
  7. 前記犠牲層が、レジストからなることを特徴とする請求項1〜6のいずれかに記載の窒化物系半導体発光素子の製造方法。
  8. 前記金属層が、オーミック接触層を含むことを特徴とする請求項3〜7のいずれかに記載の窒化物系半導体発光素子の製造方法。
  9. 前記金属層が、反射層を含むことを特徴とする請求項3〜8のいずれかに記載の窒化物系半導体発光素子の製造方法。
  10. 前記金属層が、密着層を含むことを特徴とする請求項3〜9のいずれかに記載の窒化物系半導体発光素子の製造方法。
  11. 前記オーミック接触層が、Pt、Ru、Os、Rh、Ir、Pd、またはAgの単体金属およびそれらの合金で構成されることを特徴とする請求項8に記載の窒化物系半導体発光素子の製造方法。
  12. 前記反射層が、Ag合金またAl合金で構成されることを特徴とする請求項9に記載の窒化物系半導体発光素子の製造方法。
  13. 前記密着層が、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの単体金属およびそれらの合金で構成されることを特徴とする請求項10に記載の窒化物系半導体発光素子の製造方法。
  14. 前記メッキ基板の膜厚が、10μm〜200μmであることを特徴とする請求項1〜13のいずれかに記載の窒化物系半導体発光素子の製造方法。
  15. 前記メッキ基板が、NiP合金、Cu,またはCu合金により形成されることを特徴とする請求項1〜14のいずれかに記載の窒化物系半導体発光素子の製造方法。
  16. 前記メッキ工程の後、100℃〜300℃で熱処理をすることを特徴とする請求項1〜15のいずれかに記載の窒化物系半導体発光素子の製造方法の製造方法。
  17. 前記金属層と前記メッキ基板との間に、前記メッキ基板に接してメッキ密着層を形成すること特徴とする請求項1〜16のいずれかに記載の窒化物系半導体発光素子の製造方法。
  18. 前記メッキ密着層が、前記メッキ基板の50wt%以上を占める主成分と同一の組成を50wt%以上有することを特徴とする請求項17に記載の窒化物系半導体発光素子の製造方法。
  19. 前記メッキ密着層が、NiP合金またはCu合金により形成されることを特徴とする請求項17または18に記載の窒化物系半導体発光素子の製造方法。

JP2005270565A 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法 Pending JP2007081312A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005270565A JP2007081312A (ja) 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法
PCT/JP2006/318658 WO2007032546A1 (en) 2005-09-16 2006-09-14 Production method for nitride semiconductor light emitting device
TW095134064A TWI318014B (en) 2005-09-16 2006-09-14 Production method for nitride semiconductor light emitting device
CNB2006800332231A CN100565949C (zh) 2005-09-16 2006-09-14 氮化物半导体发光器件的制造方法
US12/066,575 US7939351B2 (en) 2005-09-16 2006-09-14 Production method for nitride semiconductor light emitting device
KR1020087005871A KR100976311B1 (ko) 2005-09-16 2006-09-14 질화물 반도체 발광장치 제조 방법
EP06810350A EP1925039A4 (en) 2005-09-16 2006-09-14 METHOD FOR PRODUCING A LIGHT-EMITTING NITRIDE SEMICONDUCTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270565A JP2007081312A (ja) 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法

Publications (1)

Publication Number Publication Date
JP2007081312A true JP2007081312A (ja) 2007-03-29

Family

ID=37941257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270565A Pending JP2007081312A (ja) 2005-09-16 2005-09-16 窒化物系半導体発光素子の製造方法

Country Status (3)

Country Link
JP (1) JP2007081312A (ja)
CN (1) CN100565949C (ja)
TW (1) TWI318014B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872678B1 (ko) 2007-07-23 2008-12-10 엘지이노텍 주식회사 반도체 발광소자의 제조 방법
KR100962900B1 (ko) 2008-11-18 2010-06-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP2011040535A (ja) * 2009-08-10 2011-02-24 Sony Corp 半導体発光素子及びその製造方法
CN102208496A (zh) * 2010-03-30 2011-10-05 索尼公司 制造半导体器件的方法
JP2011211015A (ja) * 2010-03-30 2011-10-20 Sony Corp 半導体発光素子およびその製造方法
JP2012028779A (ja) * 2010-07-23 2012-02-09 Lg Innotek Co Ltd 発光素子、これを含む発光素子パッケージ及び照明システム
JP2012248795A (ja) * 2011-05-31 2012-12-13 Toshiba Corp 半導体発光素子およびその製造方法
US8786056B2 (en) 2010-06-09 2014-07-22 Nichia Corporation Semiconductor light emitting elements comprising a plating substrate with a projecting tab, or comprising an exposed seed layer
JP2019004161A (ja) * 2009-10-15 2019-01-10 エルジー イノテック カンパニー リミテッド 発光素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083923A2 (en) * 2010-01-07 2011-07-14 Seoul Opto Device Co., Ltd. Light emitting diode having electrode pads
CN102130221B (zh) * 2010-01-13 2013-03-27 晶元光电股份有限公司 发光二极管的形成方法
CN103681980B (zh) * 2012-09-25 2016-12-21 上海蓝光科技有限公司 一种含背镀反射层的发光二极管的切割方法
KR101969308B1 (ko) * 2012-10-26 2019-04-17 삼성전자주식회사 반도체 발광소자 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098403A (ja) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子
JP2004047704A (ja) * 2002-07-11 2004-02-12 Sharp Corp 窒化物系半導体発光素子の製造方法およびその製品
JP2004363532A (ja) * 2003-06-03 2004-12-24 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオードの製造方法
JP2005522873A (ja) * 2002-04-09 2005-07-28 オリオール, インク. 縦方向構造を有するledの製作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098403A (ja) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子
JP2005522873A (ja) * 2002-04-09 2005-07-28 オリオール, インク. 縦方向構造を有するledの製作方法
JP2004047704A (ja) * 2002-07-11 2004-02-12 Sharp Corp 窒化物系半導体発光素子の製造方法およびその製品
JP2004363532A (ja) * 2003-06-03 2004-12-24 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオードの製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872678B1 (ko) 2007-07-23 2008-12-10 엘지이노텍 주식회사 반도체 발광소자의 제조 방법
WO2009014345A2 (en) * 2007-07-23 2009-01-29 Lg Innotek Co., Ltd Light emitting device and method of manufacturing the same
WO2009014345A3 (en) * 2007-07-23 2009-03-19 Lg Innotek Co Ltd Light emitting device and method of manufacturing the same
US8008098B2 (en) 2007-07-23 2011-08-30 Lg Innotek Co., Ltd. Light emitting device and method of manufacturing the same
KR100962900B1 (ko) 2008-11-18 2010-06-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP2011040535A (ja) * 2009-08-10 2011-02-24 Sony Corp 半導体発光素子及びその製造方法
US8436379B2 (en) 2009-08-10 2013-05-07 Sony Corporation Semiconductor light emitting device and method for manufacturing the same
US10636944B2 (en) 2009-10-15 2020-04-28 Lg Innotek Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
JP2019004161A (ja) * 2009-10-15 2019-01-10 エルジー イノテック カンパニー リミテッド 発光素子
US11335830B2 (en) 2010-03-30 2022-05-17 Sony Corporation Photo-emission semiconductor device and method of manufacturing same
JP2011211015A (ja) * 2010-03-30 2011-10-20 Sony Corp 半導体発光素子およびその製造方法
CN102208496A (zh) * 2010-03-30 2011-10-05 索尼公司 制造半导体器件的方法
US9490388B2 (en) 2010-06-09 2016-11-08 Nichia Corporation Semiconductor light emitting element fabrication method
US8786056B2 (en) 2010-06-09 2014-07-22 Nichia Corporation Semiconductor light emitting elements comprising a plating substrate with a projecting tab, or comprising an exposed seed layer
US9356195B2 (en) 2010-07-23 2016-05-31 Lg Innotek Co., Ltd. Light emitting device, light emitting device package comprising the same and lighting system
US8872212B2 (en) 2010-07-23 2014-10-28 Lg Innotek Co., Ltd. Light emitting device, light emitting device package comprising the same and lighting system
US8766300B2 (en) 2010-07-23 2014-07-01 Lg Innotek Co., Ltd. Light emitting device, light emitting device package comprising the same and lighting system
US10141478B2 (en) 2010-07-23 2018-11-27 Lg Innotek Co., Ltd. Structure of a reflective electrode and an OHMIC layer of a light emitting device
KR101125025B1 (ko) * 2010-07-23 2012-03-27 엘지이노텍 주식회사 발광소자 및 그 제조방법
JP2012028779A (ja) * 2010-07-23 2012-02-09 Lg Innotek Co Ltd 発光素子、これを含む発光素子パッケージ及び照明システム
JP2012248795A (ja) * 2011-05-31 2012-12-13 Toshiba Corp 半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
CN101263611A (zh) 2008-09-10
CN100565949C (zh) 2009-12-02
TWI318014B (en) 2009-12-01
TW200731567A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP2007081312A (ja) 窒化物系半導体発光素子の製造方法
JP5278317B2 (ja) 発光ダイオードの製造方法
KR100976311B1 (ko) 질화물 반도체 발광장치 제조 방법
JP5232971B2 (ja) 窒化物系半導体発光素子の製造方法
US7892891B2 (en) Die separation
JP4841909B2 (ja) 窒化物系半導体発光素子
JP4951443B2 (ja) 発光ダイオードの製造方法
US20140154821A1 (en) Method for fabricating vertical light emitting diode (vled) structure using a laser pulse to remove a carrier substrate
JP2009105123A (ja) 発光ダイオードおよびその製造方法
JP5232975B2 (ja) 発光ダイオードの製造方法及び発光ダイオード、並びにランプ
JP5074138B2 (ja) 発光ダイオードの製造方法
KR20080060223A (ko) 금속 지지 기판을 가지는 반도체 발광 장치
JP2009099675A (ja) 発光ダイオードの製造方法及び発光ダイオード、並びにランプ
JP2010093186A (ja) 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体素子の積層構造及び窒化ガリウム系化合物半導体発光素子、並びにランプ
US7786489B2 (en) Nitride semiconductor light emitting device and production method thereof
JP4799975B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4202353B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4799974B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4749809B2 (ja) 窒化物系半導体発光素子
JP4791119B2 (ja) 窒化物系半導体発光素子の製造方法
JP2008227544A (ja) 窒化物系半導体発光素子及びその製造方法
JP5047482B2 (ja) 窒化物系半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522