JP4786897B2 - ソース駆動回路と駆動回路及び液晶ディスプレイ装置とその駆動方法 - Google Patents

ソース駆動回路と駆動回路及び液晶ディスプレイ装置とその駆動方法 Download PDF

Info

Publication number
JP4786897B2
JP4786897B2 JP2004314670A JP2004314670A JP4786897B2 JP 4786897 B2 JP4786897 B2 JP 4786897B2 JP 2004314670 A JP2004314670 A JP 2004314670A JP 2004314670 A JP2004314670 A JP 2004314670A JP 4786897 B2 JP4786897 B2 JP 4786897B2
Authority
JP
Japan
Prior art keywords
voltage
source
data line
circuit
source driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004314670A
Other languages
English (en)
Other versions
JP2005134910A (ja
Inventor
圭榮 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/880,118 external-priority patent/US7907108B2/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005134910A publication Critical patent/JP2005134910A/ja
Application granted granted Critical
Publication of JP4786897B2 publication Critical patent/JP4786897B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Description

本発明はLCD(Liquid Crystal Display)のようなフラットパネルディスプレイを駆動する回路及び方法に係り、特にフラットパネルディスプレイのデータラインを駆動するソースドライバ回路及び方法、そしてフラットパネルディスプレイの共通電極を駆動する共通電圧ドライバ回路及び方法に関する。
LCD、プラズマディスプレイパネル(PDP)、電子発光ディスプレイパネルのような様々なタイプのフラットパネルディスプレイが伝統的なCRT(Cathode Ray Tube)に代替するために開発された。このようなフラットパネルディスプレイは小型、軽量、低電力消耗を要求する装置及び応用に適している。例えば、LCDは低電圧電源により駆動できて電力消耗が少ないために、LSI(Large Scale Integration)ドライバを使用して動作されうる。したがって、LCDはラップトップコンピュータ、携帯電話、ポケットコンピュータ、自動車、及びカラーテレビなどに広く採用されてきた。すなわち、LCDの軽量、小型、低電力消耗のような特徴がLCDが携帯用装置と共に用いられるようにする。
図1は、従来のディスプレイシステムを示す概略図である。ディスプレイシステム10は、LCDのようなディスプレイパネル11及びディスプレイパネル11を駆動して制御する複数個の構成要素、すなわちソース駆動IC 12、ゲート駆動IC 13、GRAM(Graphic Random Access Memory)を有する制御器14、及び電源発生器15を備える。制御器14は電源発生器15、ソース駆動IC 12、及びゲート駆動IC 13を制御するために制御信号を発生させる。
ディスプレイパネル11は、ソース駆動IC 12に連結される複数個のデータラインD〜D及びゲート駆動IC 13に連結される複数個のゲートラインG1〜Gmを備える。ディスプレイパネル11は行と列のマトリックスに配列される複数個の画素/副画素を備える。いずれか1つの行に配列される画素/副画素はいずれか1つのゲートラインに共通連結され、いずれか1つの列に配列される画素/副画素はいずれか1つのデータラインに共通連結される。応用/設計によって、1つの画素/副画素がゲートラインとデータラインとの各交差点に構成される。
ディスプレイパネル11がTFT(Thin Film Transistor)−LCDであれば、ディスプレイパネル11はマトリックス形態に配列された複数個の画素/副画素を含むTFTボードを備える。図1に示されたように、それぞれの画素/副画素単位はTFT、TFTのドレーン電極と共通電極VCOM間に連結される液晶キャパシタCp、液晶キャパシタCpと並列に連結される薄膜ストレージキャパシタCstとを含む。ストレージキャパシタCstはディスプレイ上のイメージが非選択区間の間に維持されるように電荷を保存する。液晶キャパシタCpはカラーフィルタプレートの共通電極VCOM、TFTの画素電極、及びこの電極間の液晶材料によって形成される。TFTのソース電極はデータラインに連結されてTFTのゲート電極はゲートラインに連結される。TFTはゲートライン上のゲートドライバ信号VGHがTFTのゲートに印加される時、データライン上のソース電圧を画素電極に印加するスイッチとしての役割をする。
電源発生器15は複数個の基準電圧、すなわちソース駆動IC 12に印加されるソースドライバ電源AVDD、ガンマ基準電圧GVDD、及びパネル11の共通電圧電極VCOMに印加されるハイ共通電極電圧VCOMH及びロー共通電極電圧VCOML、そして選択されたゲートラインを駆動するためにゲート駆動IC 13に印加されるゲートドライバターンオン電圧VGH及びゲートドライバターンオフ電圧VGOFFを発生させる。
制御器14はイメージ供給源(例えば、コンピュータの主基板)から出力される複数個の駆動データ信号及び駆動制御信号を入力として受信する。駆動データ信号はディスプレイパネル11上にイメージを形成するR、G、Bデータを含む。駆動制御信号は垂直同期信号Vsynch、水平動期信号Hsync、データイネーブル信号DE、及びクロック信号Clkを含む。制御器14はR、G、Bデータに対応する複数個のディスプレイデータ信号DDATA及びソース制御信号をソース駆動IC 12に出力する。制御器14はゲート駆動IC 13を制御するためにゲート制御信号を出力する。制御器14はデータ及び制御信号がソース駆動IC 12及びゲート駆動IC 13から出力されるタイミングを制御する。例えば、所定の動作モードで、制御器14はゲート駆動IC 13が連続的な方式でゲートドライバ出力信号VGHを各ゲートラインG1〜Gmに伝達し、データ電圧が順に1つずつ活性化される行に配列された各画素/副画素に選択的に印加されるように、ソース及びゲート制御信号を発生させる。所定の他の動作モードでは、第1列に配列された画素/副画素を順次スキャニングした後、次の列に配列された画素/副画素をスキャニングすることによって、画素/副画素がチャージされうる。
ゲート駆動IC 13は、それぞれ対応するゲートラインG1〜Gmを駆動する複数個のゲートドライバを含む。ソース駆動IC 12は対応するデータラインD〜Dを駆動する複数個のソースドライバ回路12−1ないし12−nを含む。
図2は、従来のソースドライバ回路20を概略的に示す。ソースドライバ回路20は、ディスプレイパネル11のデータラインを駆動するために図1のシステム10に適用されうる。一般的に、図2に示されたようにソースドライバ回路20は該当データラインDiを駆動するソースドライバ12−i及びグレイスケール電圧発生器23を備える。図2のソースドライバ回路20は図1のソースドライバIC 12の従来の構造を示し、ここで各データライン(またはRGBチャンネル)に対して1つのソースドライバ12−iがある。グレイスケール電圧発生器23の出力はソースドライバIC 12の各ソースドライバ12−1ないし12−nに共通に印加される。
一般的に、ソースドライバ12−iは極性反転回路21、ラッチ回路22、ガンマデコーダ24、及び駆動バッファ25を備える。ソースドライバ12−iは複数個の制御信号、すなわち、極性制御信号M、ラッチ制御信号S_LATCH、及びモード制御信号GRAY_ON(gradient mode enable signal)及びBIN_ON(binary mode enable signal)により制御される。前記制御信号は以下でさらに説明される。ソースドライバ12−iはグレイスケール電圧発生器23によって発生するグレイスケール基準電圧を入力として受信する。
ソースドライバ12−iはGRAM 14からR、G、またはBのためのディスプレイデータDDATAのnビットブロックを入力として受信する。極性反転回路21はディスプレイデータブロックDDATAを受信し、極性制御信号Mに応答してnビットデータの極性を制御する。例えば、極性制御信号Mが論理“0”であれば、ディスプレイデータDDATAの極性が同一に維持される。すなわち、本来のディスプレイデータ(ポジティブ極性)が維持される。一方、極性制御信号Mが論理“1”であれば、ディスプレイデータDDATAの極性がネガティブ極性に反転される。図2の実施例で、極性反転回路21は排他的OR(すなわち、XOR)ゲートを使用して具現される。
ラッチ回路22はラッチ制御信号S_LATCHに応答して極性反転回路21から出力されるnビットデータブロックをラッチする。図2の実施例で、ラッチ回路22はクロックドnビットラッチを使用して具現される。ラッチ回路22はラッチされたディスプレイデータブロックCD[n−1:0]をガンマデコーダ24に出力する。グレイスケール電圧発生器23は2個の相異なるグレイスケール基準電圧VG[2−1:0]を発生させ、ガンマデコーダ24に出力する。ガンマデコーダ24はラッチ回路22から出力されるnビットディスプレイデータブロックCD[n−1:0]をデコードし、1つのグレイスケール電圧を選択して駆動バッファ25に出力する。それぞれの画素(RGB副画素を含む)において、nビットグレイスケール構造を利用して各画素に対して発生できるグレイスケール(または他のカラー)の数は2(R)2(G)2(B)=23nである。
駆動バッファ25は第1ドライバ26、第1ドライバ出力スイッチS1、及び第2ドライバ27を備える。第1ドライバ26はガンマデコーダ24から出力されるグレイスケール電圧をバッファリングして増幅する。第2ドライバ27はラッチされたディスプレイデータCD[n−1:0]のMSB(Most Significant Bit)CD[n−1]をバッファリングして増幅する。駆動バッファ25は対応するデータラインDiを駆動するソースドライバ出力信号Snを発生させる。ソースドライバ出力信号Snは選択される動作モード、すなわち2進モード(8−カラーモード)またはグラジエントモード(23nカラーモード)によって変わる。
グラジエントモードで、スイッチS1を活性化させるために制御信号GRAY_ONがイネーブルされ(論理“1”)、これにより第1ドライバ26がバッファリングされたグレイスケール電圧を出力しうる。また、グラジエントモードで、第2ドライバ27に印加される制御信号BIN_ONは第2ドライバ27を非活性化させるために、ディスエーブルされる(論理“0”)。一方、2進モードで制御信号GRAY_ONはスイッチS1を非活性化させるためにディスエーブルされ(論理“0”)、これにより第1ドライバ26がバッファリングされたグレイスケール電圧をSnとして出力することが防止される。そして、制御信号BIN_ONは第2ドライバ27を活性化させるためにイネーブルされる(論理“1”)。
2進モードで、第2ドライバ27はラッチされたディスプレイデータCD[n−1:0]のMSBの論理レベルによって、ソースドライバ電源電圧AVDDまたはソースドライバのための接地電圧AVSSのソースドライバ出力電圧Snを出力する。
図3は、図2のソースドライバ回路の2進動作モードを示すタイミング図である。図3で、RGBデータの解像度は6ビット(すなわちn=6)であり、値00H(2進000000)、3FH(2進111111)、07H(2進000111)及び19H(2進011001)を有するラッチされたディスプレイデータCD[n−1:0]がラッチ22から順次出力されると仮定する。図3に示されたように、2進モードで制御信号BIN_ONは論理“1”に固定されて制御信号GRAY_ONは論理“0”に固定される。したがって、スイッチS1がオープンされて第2ドライバ27が活性化される。
また、図3に示されたように、時間Tの前に値00HのラッチされたディスプレイデータCD[5:0]は論理“0”の最上位ビットCD[5]を有し、その結果第2ドライバ27からソースドライバのための接地電圧AVSSのソースドライバ出力信号Snが出力される。時間Tに、ラッチ制御信号S_LATCHによってディスプレイデータCD[5:0]は最上位ビットCD[5]が論理“1”の値3FHとなる。これに応答して、第2ドライバ27から出力されるソースドライバ出力信号SnはAVSSからソースドライバ電源電圧レベルAVDDに遷移する。そして時間Tに、ラッチ制御信号S_LATCHによってディスプレイデータCD[5:0]は最上位ビットCD[5]が論理“0”の値07Hとなる。これに応答して、第2ドライバ27から出力されるソースドライバ出力信号SnはAVDDからAVSSに遷移する。そして時間Tに、ラッチ制御信号S_LATCHによってディスプレイデータCD[5:0]は最上位ビットCD[5]が論理“0”の値19Hとなる。これに応答して、ソースドライバ出力信号SnはAVSSに維持される。
図4は、図2のソースドライバ回路のグラジエント動作モードを示すタイミング図である。図4で、RGBデータの解像度は6ビット(すなわちn=6)であり、値00H(2進000000)、3FH(2進111111)、07H(2進000111)、及び19H(2進011001)を有するラッチされたディスプレイデータCD[n−1:0]がラッチ22から順次出力されると仮定する。図4に示されたように、2進モードで制御信号BIN_ONは論理“0”に固定されて制御信号GRAY_ONは論理“1”に固定される。したがって、第2ドライバ27は非活性化されてスイッチS1は活性化され、第1ドライバ26はデコーダ24によって選択されたグレイスケール電圧をSnとしてバッファリングして出力する。
特に、図4のタイミング図に示されたように時間Tの前に、00HのラッチされたディスプレイデータCD[5:0]によってソースドライバ出力信号Snは値VG[0]になる。
時間Tに、ラッチ制御信号S_LATCHによってディスプレイデータCD[5:0]は値3FHになり、これによってSnがVG[0]からVG[63]に遷移する。そして、時間Tに、ラッチ制御信号S_LATCHによってディスプレイデータCD[5:0]は値07Hになり、これによってSnがVG[63]からVG[7]に遷移する。そして、時間Tに、ラッチ制御信号S_LATCHによってディスプレイデータCD[5:0]は値19Hになり、これによってSnがVG[7]からVG[25]に遷移する。
図5は、ディスプレイパネル11の共通電極VCOMを駆動するための図1のシステム10に具現された従来の共通電圧ドライバ回路を概略的に示す。一般的に、共通電圧ドライバは第1及び第2ドライバ31、32、スイッチ33、34、及びキャパシタ35、36を備える。第1ドライバ31は、ハイ共通電圧VCOMHをバッファリングして出力する。以下、説明される通り、電源発生回路15のVCOMH電圧発生器はAVDD電源からVCOMHを発生させる。キャパシタ35は出力電圧を安定化させるために第1ドライバ31の出力に連結される。スイッチ33は第1ドライバ31の出力をVCOMノードNに選択的に連結し、VCOMをハイ共通電圧VCOMHに駆動するために制御信号VCMH_ONによって制御される。
第2ドライバ32は、ロー共通電圧VCOMLをバッファリングして出力する。以下、説明される通り、電源発生回路15のVCOML電圧発生器はVCL(−VCI)電源からVCOMLを発生させる。キャパシタ36は出力電圧を安定化させるために第2ドライバ32の出力に連結される。スイッチ34は第2ドライバ32の出力をVCOMノードNに選択的に連結し、VCOMをロー共通電圧VCOMLに駆動するために制御信号VCML_ONによって制御される。
図6は、図5の回路を使用して共通電極を駆動する従来の方法を示すタイミング図である。図6を参照すれば、時間Tに極性制御信号M及び制御信号VCMH_ONがイネーブルされ、制御信号VCML_ONがディスエーブルされる。その結果、スイッチ33は活性化されてスイッチ34は非活性化され、VCOMは第1ドライバ31によってVCOMHからVCOMLに駆動される。時間Tに、極性制御信号M及び制御信号VCMH_ONがディスエーブルされ、制御信号VCML_ONがイネーブルされる。その結果、スイッチ33は非活性化されてスイッチ34は活性化され、VCOMは第2ドライバ32によってVCOMLからVCOMHに駆動される。
LCDパネルのようなディスプレイシステムが小型携帯用の装置に具現される際は、バッテリ電源を保全するためにディスプレイシステムを駆動するために必要な電力消耗を減少させることが重要である。一般的に、平板パネルディスプレイを駆動するために必要な電力は主にソースドライバ及びVCOMドライバから消耗される。特に、データラインを駆動するためにソースドライバによって発生する電圧はディスプレイの駆動速度を向上させるために(すなわち、液晶キャパシタCpを素早くチャージさせるために)、比較的に高いレベルを有するように設計される。しかし、駆動電圧が高まれば、これに比例して電力消耗が増加する。また、共通電圧の極性がサイクル毎に反転されるため、共通電極を駆動することが電力消耗の重要な原因のうち1つである。
一般的に、ソース及びVCOM駆動電圧は所定の電圧発生器によって発生する内部電圧であり、前記電圧発生器は中間基準電圧源から出力される電圧を昇圧させることで駆動電圧を発生させる。例えば、図7は図1の電源発生器15の従来構造を示すブロック図である。一般的に、電源発生器15は中間基準電圧源VCIを使用して複数個の内部基準電圧を発生させる。特に、電源発生器15は中間基準電圧VCIを所定の量αほど昇圧させることによってソースドライバ電源電圧AVDDを発生させる第1電源発生器15−1を含む。AVDD電圧はソースドライバ12に印加されてGVDD及びVCOMHを発生させるために他の電源発生器(図示せず)に入力される。第2電源発生器15−2は入力として基準電圧AVDDを受信し、AVDDを所定の量βほど昇圧させることによってVGHを発生させる。第3電源発生器15−3は入力として基準電圧VGHを受信してVGL(ここで、VGL=−VGH)を発生させる。第4電源発生器15−4は入力として中間基準電圧VCIを受信してVCL(ここで、VCL=−VCI)を発生させる。
従来のソース及びVCOMドライバ回路の問題点は、データライン及びVCOMを駆動するために昇圧電圧を使用するによって発生する電力消耗の増加であった。特に図2を参照すれば、駆動バッファ25の第1及び第2ドライバ26、27はデータラインを駆動するために昇圧電源AVDDを使用する。昇圧電源AVDDはVCOMHを発生させ、ディスプレイパネル11の共通電極VCOMを駆動するために使われる。AVDDに対して、電力消耗PAVDDはIAVDD×AVDD、すなわちα×IAVDD×VCIとなり、駆動電流IAVDDは中間電源VCIから供給される。駆動電流IAVDDのための電流消費はVCI電源から誘導されるが、AVDD電源に基づいた実際の電力消耗はαが1より大きい時、さらに大きくなる。したがって、データライン及びVCOMを駆動するための昇圧電源AVDD及びVCOMHは同一電流消費に対してさらに多い電力消耗を招く。
本発明が解決しようとする技術的課題は、フラットパネルディスプレイのデータライン駆動において、減少された電力消耗を提供するソースドライバ回路及び方法を提供するところにある。
本発明が解決しようとする他の技術的課題は、フラットパネルディスプレイの共通電極の駆動において、減少された電力消耗を提供する共通電圧ドライバ回路及び方法を提供するところにある。
前記の技術的課題を達成するための本発明の望ましい実施例は、電力消耗を減少させて電荷リサイクルを提供するために完全に昇圧された駆動電圧のみを使用せず、各駆動サイクルにおいて中間基準電圧と昇圧された駆動電圧をも共に使用するソースドライバ回路及び方法、そして共通電圧ドライバ回路及び方法を含む。
本発明の望ましい一実施例で、ディスプレイのデータラインを駆動するソース駆動回路は、ディスプレイデータを受信して前記受信されたディスプレイデータに対応するソース駆動電圧を発生させ、前記ソース駆動電圧をディスプレイのデータラインに印加するソースドライバ回路と、中間ソース駆動電圧を発生させる電圧発生回路と、及び前記データラインを前記中間ソース駆動電圧から前記ソース駆動電圧に駆動するために前記ソースドライバ回路によって前記ソース駆動電圧が前記データラインに印加される前に、前記データラインを前記中間ソース駆動電圧に駆動するために前記中間ソース駆動電圧を前記データラインに印加する制御回路と、を備えることを特徴とする。
前記制御回路は、前記受信されたディスプレイデータを以前に受信されたディスプレイデータと比較して比較信号を発生させる比較器、及び前記中間ソース駆動電圧を前記電圧発生回路から前記データラインに選択的に印加するために前記比較信号に応答するスイッチを備える。前記制御回路は前記以前に受信されたディスプレイデータを前記比較器に出力するラッチをさらに備える。前記比較器は前記受信されたディスプレイデータの最上位ビットを前記以前に受信されたディスプレイデータの最上位ビットと比較する。前記比較器は、前記受信されたディスプレイデータの最上位ビットと前記以前に受信されたディスプレイデータの最上位ビットとが同一である時、前記スイッチを非活性化させるために制御信号を発生させる。
本発明の他の望ましい実施例で、ディスプレイのデータラインを駆動する回路は、n−ビットディスプレイ信号及び極性制御信号を受信し、前記極性制御信号に応答して前記n−ビットディスプレイ信号の極性を反転させるか、またはそのまま維持させる極性制御回路と、第1ラッチ制御信号に応答して前記極性制御回路から出力される前記n−ビットディスプレイ信号をラッチする第1ラッチと、複数個のグレイスケール基準電圧及び前記第1ラッチから出力される前記n−ビットディスプレイ信号を入力として受信し、前記グレイスケール基準電圧のうち1つを選択的に出力するために前記n−ビットディスプレイ信号をデコードするデコーダと、ソース駆動電圧を発生させてディスプレイのデータラインに印加し、第1動作モードで前記デコーダから出力される前記グレイスケール基準電圧から前記ソース駆動電圧を発生させるために第1モード制御信号に応答し、第2動作モードで前記第1ラッチから出力される前記n−ビットディスプレイ信号の最上位ビットに基づいて前記ソース駆動電圧を発生させるために第2モード制御信号に応答するバッファと、中間ソース駆動電圧を発生させる電圧発生回路と、及び前記データラインを前記中間ソース駆動電圧から前記ソース駆動電圧で駆動するために前記バッファ回路によって前記ソース駆動電圧が前記データラインに印加される前に、前記データラインを前記中間ソース駆動電圧で駆動するために前記中間ソース駆動電圧を前記データラインに印加する制御回路と、を備えることを特徴とする。
本発明の望ましい一実施例で、ディスプレイの共通電極を駆動する共通電圧ドライバ回路は、高共通電圧を出力する第1ドライバ回路と、低共通電圧を出力する第2ドライバ回路と、第1制御信号に応答して前記ディスプレイパネルの共通電極に前記第1ドライバ回路の出力を選択的に連結する第1スイッチと、第2制御信号に応答して前記共通電極に前記第2ドライバ回路の出力を選択的に連結する第2スイッチと、及び1つまたはそれ以上の中間制御信号に応答して前記共通電極に1つまたはその以上の中間共通電圧を出力する中間電圧出力回路と、を備えることを特徴とする。
前記共通電圧ドライバ回路は、前記高共通電圧を出力する前に前記1つまたはその以上の中間共通電圧で前記共通電極を駆動することにより、前記共通電極を前記低共通電圧から前記高共通電圧で駆動する。前記共通電圧ドライバ回路は、前記低共通電圧を出力する前に前記1つまたはそれ以上の中間共通電圧で前記共通電極を駆動することにより、前記共通電極を前記高共通電圧から前記低共通電圧に駆動する。
前記中間電圧出力回路は1つまたはそれ以上のスイッチング素子を備え、各スイッチング素子は前記中間共通電圧のうち対応するものを前記共通電極に選択的に連結するために前記中間制御信号のうち対応するものに応答する。
前記中間共通電圧の少なくとも1つは接地電圧であり、前記中間共通電圧の少なくとも1つは前記高共通電圧の約1/2ないし約3/4の範囲にある電圧である。
本発明と本発明の動作上の利点及び本発明の実施によって達成される目的を十分に理解するためには、本発明の望ましい実施例を例示する添付図面及び貼付図面に記載された内容を参照せねばならない。
本発明によるソースドライバ回路及び方法、並びに共通電圧ドライバ回路及び方法は電力消耗を減少させられる。
以下、添付した図面を参照して本発明の望ましい実施例を説明することによって本発明を詳細に説明する。各図面に提示された同じ参照符号は同じ部材を示す。
図8は、本発明の望ましい実施例によるソース駆動回路を示す概略図である。図8に示された望ましい実施例は、図2に示されたソース駆動回路20の拡張であり、この実施例はディスプレイパネルのデータライン駆動に消耗される電力をかなり減少させる。一般的に、ソース駆動回路80は対応するデータラインDiを駆動するためにソースドライバ出力信号Snを発生させるソースドライバ81、グレイスケール発生器23、及び中間電圧発生器90を備える。図8のソース駆動回路80は望ましい実施例による構造を示しており、このソース駆動回路80は図1のディスプレイシステムでソースドライバIC 12内に具現されうる。ソース駆動回路80で、各データラインDi(または、RGBチャンネル)に対して1つのソースドライバ81が割り当てられ、グレイスケール発生器23及び中間電圧発生器90はすべてのソースドライバのために共通に具現される。
ソースドライバ81が極性反転回路21、ラッチ回路22、ガンマデコーダ24、及び駆動バッファ25を備えるという点では、図2のソースドライバ12−iの構造と類似している。しかし、ソースドライバ81は現在の最上位ビットMSBを以前の最上位ビットMSBと比較し、比較結果によって中間電圧発生器90から出力される中間電圧にデータラインDiを連結する比較回路82をさらに備える。中間電圧発生器90は、動作モード(2進またはグラジエント)によって他の中間電圧を出力する。
特に、比較回路82はラッチ回路83、XOR回路84、ANDゲート85、及びスイッチ素子S2を備える。望ましい実施例でラッチ回路83は、ラッチ制御信号PD_LATCHに応答してラッチ22に保存されたディスプレイデータの現在ラッチされたブロックの最上位ビットCD[n−1]をラッチし、以前にラッチされたディスプレイデータの最上位ビットPD[n−1]を出力する1ビットクロックドD型ラッチに構成される。
XOR回路84は、ラッチ22からディスプレイデータCD[n−1:0]の現在ブロックの最上位ビットCD[n−1]、及びラッチ83から以前にラッチされたディスプレイデータの最上位ビットPD[n−1]を入力として受信する。XORゲート84は、最上位ビットCD[n−1]と最上位ビットPD[n−1]とが異なる時に論理“1”を出力し、最上位ビットCD[n−1]と最上位ビットPD[n−1]とが同一である時に論理“0”を出力する。ANDゲート85は、XORゲート84の出力及び制御信号VCIRを受信する2−入力ANDゲートに構成される。ANDゲート85は、スイッチS2の活性化/非活性化を制御するために、制御信号VCIRに応答してXORゲート84の出力を伝達するゲーティング回路としての役割をする。本発明の実施例で、スイッチS2はANDゲート85の出力が論理“1”である時(最上位ビットCD[n−1]と最上位ビットPD[n−1]とが異なる時)に活性化され、スイッチS2はANDゲート85の出力が論理“0”である時(最上位ビットCD[n−1]と最上位ビットPD[n−1]とが同一である時)に非活性化される。
スイッチS2が活性化される時、中間電圧発生器90から出力される中間電圧がデータラインDiを駆動するために印加される。XORゲート84及びANDゲート85は同一機能を有する他の論理ゲートに代替されうる。
中間電圧発生器90は、増幅器に該当する第3ドライバ91及びスイッチS3を含んで選択的にキャパシタ92をさらに含みうる。第3ドライバ91は、グレイスケール発生器23から出力されるグレイスケール基準電圧VGの1つをVCI電源を使用してバッファリングして出力する。望ましい実施例で、第3ドライバ91はグレイスケール基準電圧VG[2n−1−1]を受信する。ここで、基準電圧VG[2n−1−1]はVCI電源より低いことが望ましい。スイッチS3は、電圧選択制御信号BIN_FLAGに応答して第1中間電圧VCIが印加される第1ノードN1に連結されるか、または第2中間電圧VG[2n−1−1]が印加される第2ノードN2(第3ドライバ91の出力)に連結される。キャパシタ92は出力電圧を安定化させるために第3ドライバ91の出力に選択的に連結されうる。
本発明の望ましい実施例で、中間ソース駆動電圧VCIはソース駆動電圧AVDDのフルスイング電圧の約1/2ないし1/3の範囲にある。例えば、AVDDが約5〜6ボルトであれば、VCIは約2〜3ボルトであってAVSSは約0ボルトである。
2進モードで、電圧選択制御信号BIN_FLAGが論理“1”である時、S3が第1ノードN1に連結されて中間電圧VCIがS2に伝達される。グラジエントモードで、電圧選択制御信号BIN_FLAGが論理“0”である時は、S3が第2ノードN2に連結されて中間電圧VG[2n−1−1]がS2に伝えられる。それぞれの制御信号M、S_LATCH、BIN_ON、GRAY_ON、VCIR、BIN_FLAGは図1に示されたコントローラ14のようなコントローラで発生する。前記の説明通りに、中間電圧発生器90はソースドライバIC内のすべてのソースドライバ81によって共通に使われる。
図9は、本発明の望ましい実施例によるデータラインを駆動するソース駆動方法を示すタイミング図である。説明の便宜のために、図9の方法は図8のソース駆動回路80を参照して説明される。図9の方法は、図8のソースドライバ回路の2進動作モードに該当する。図9で、RGBデータの解像度は6ビット(すなわちn=6)であり、値00H(2進000000)、3FH(2進111111)、07H(2進000111)、及び19H(2進011001)を有するラッチされたディスプレイデータCD[n−1:0]がラッチ22から順次出力されると仮定する。また、2進モードで制御信号GRAY_ONは論理“0”に固定され(スイッチS1がオープンされる)、制御信号BIN_FLAGは論理“1”に固定される(スイッチS3がノードN1に連結される)と仮定する。
図9に示されたように時間T前に、ラッチされたディスプレイデータCD[5:0]の値00Hがn−ビットラッチ回路22から出力される。ラッチされたディスプレイデータCD[5:0]の最上位ビットCD[5]は論理“0”である。また、時間T前に、制御信号BIN_ONが論理“1”になって第2ドライバ27がターンオンされる。最上位ビットCD[5]が論理“0”であれば、第2ドライバ27はソースドライバのための接地電圧AVSSのソースドライバ出力信号SnをデータラインDiに出力する。時間T前に活性化されるラッチ制御信号PD_LATCHは、1−ビットラッチ83がディスプレイデータ00Hの最上位ビットCD[5]=論理“0”をラッチするように制御する。図9に示されたように、ラッチ制御信号PD_LATCHは、ラッチ制御信号S_LATCHがディスプレイデータの次のブロックをラッチするために活性化される前に活性化される。
次に、時間Tで、ラッチ制御信号S_LATCHが活性化され、これによってラッチ22は最上位ビットCD[5]が論理“1”であるディスプレイデータCD[5:0]の値3FHをラッチして出力する。また、時間Tの後、区間Pの間にゲーティング信号VCIRは活性化されて制御信号BIN_ONは非活性化される。制御信号BIN_ONが非活性化されれば、第2ドライバ27はターンオフされる。また、ゲーティング信号VCIRが活性化されれば、XORゲート84の出力はスイッチS2に印加される。現在の最上位ビットCD[n−1]と以前の最上位ビットPD[n−1]とが異なるため(すなわち、CD[5]が1であり、PD[5]が0)、ANDゲート85の出力は論理“1”になり、これによってスイッチS2は活性化される。S2が活性化されて第2ドライバがターンオフされれば、VCI電源電圧はソース駆動出力信号Snを有するデータラインDiを区間Pの間にAVSSから中間電圧VCIに駆動する。
時間Tで、VCIRは非活性化されてBIN_ONは活性化され、これによってスイッチS2がオープンされて(データラインDiからVCIが切れる)第2ドライバ27がターンオンされる。現在の最上位ビットCD[5]が論理“1”であれば、第2ドライバ27は区間Tの間に出力信号SnをVCIからAVDDに駆動する。区間Pの最後の部分でPD_LATCHが活性化され、これによって1−ビットラッチ83はディスプレイデータ3FHの最上位ビットCD[5]=論理“1”をラッチしてPD[5]=論理“1”を出力する。
続いて時間Tで、S_LATCHが活性化され、これによってn−ビットラッチ22は最上位ビットCD[5]が論理“0”であるディスプレイデータCD[5:0]の値07Hをラッチして出力する。また、T後の区間Pの間に、VCIRは活性化されてBIN_ONは非活性化される。制御信号BIN_ONが非活性化されれば、第2ドライバ27はターンオフされる。また、ゲーティング信号VCIRが活性化されれば、XORゲート84の出力はスイッチS2に印加される。現在の最上位ビットCD[n−1]と以前の最上位ビットPD[n−1]とが異なるため(すなわち、CD[5]が0であってPD[5]が1)、ANDゲート85の出力は論理“1”になり、これによってスイッチS2は活性化される。S2が活性化されれば、データラインDiがVCI電源に連結され、これによってソースドライバ出力信号SnがAVDDから中間電圧VCIにディスチャージされる。
続いて時間Tに、VCIRは非活性化されてBIN_ONは活性化される。これによって、スイッチS2がオープンされ(すなわち、データラインDiからVCIが切れる)、第2ドライバ27がターンオンされる。CD[5]が0であれば、第2ドライバ27は区間Pの間にSnをVCIからAVSSに駆動する。区間Pの最後の部分でPD_LATCHが活性化され、これによって1−ビットラッチ83はディスプレイデータ07Hの最上位ビットCD[5]=論理“0”をラッチしてPD[5]=論理“0”を出力する。
次に時間TにS_LATCHが活性化され、これによってn−ビットラッチ22は最上位ビットCD[5]が論理“0”であるディスプレイデータCD[5:0]の値19Hをラッチして出力する。また、T後の区間Pの間に、VCIRは活性化されてBIN_ONは非活性化される。制御信号BIN_ONが非活性化されれば、第2ドライバ27はターンオフされる。また、ゲーティング信号VCIRが活性化されれば、XORゲート84の出力はスイッチS2に印加される。現在の最上位ビットCD[n−1]と以前の最上位ビットPD[n−1]とが同一であるため(すなわち、CD[5]が0であってPD[5]が0)、ANDゲート85の出力は論理“0”になり、これによってスイッチS2は非活性化状態を維持する。S2が非活性化されれば、ソースドライバ出力信号SnはAVSSに維持される(すなわち、VCIにチャージされない)。時間Tの後に、VCIRは非活性化されてBIN_ONは活性化される。CD[5]が0であれば、第2ドライバ27はSnをAVSSに維持させる。
図10は、本発明の望ましい他の実施例によるデータラインを駆動するソース駆動方法を示すタイミング図である。説明の便宜のために、図10の方法は図8のソース駆動回路80を参照して説明される。図10の方法は、図8のソースドライバ回路のグラジエント動作モードに該当する。図10で、RGBデータの解像度は6ビット(すなわち、n=6)であり、値00H(2進000000)、3FH(2進111111)、07H(2進000111)、及び19H(2進011001)を有するラッチされたディスプレイデータCD[n−1:0]がラッチ22から順次出力されると仮定する。また、グラジエントモードで制御信号BIN_ONは論理“0”に固定され(第2ドライバ27が非活性化される)、制御信号BIN_FLAGは論理“0”に固定される(スイッチS3が第3ドライバ91の出力であるノードN2に連結される)と仮定する。
図10に示されたように時間Tの前に、ラッチされたディスプレイデータCD[5:0]の値00Hがn−ビットラッチ回路22から出力される。ラッチされたディスプレイデータCD[5:0]の最上位ビットCD[5]は論理“0”である。また、時間Tの前に、制御信号GRAY_ONが論理“1”になってスイッチS1が短絡される。これにより、第1ドライバ26はソースドライバ出力信号Snを有するデータラインDiを中間電圧VG[31]より低いグレイスケール電圧VGに駆動する。時間Tの前に活性化されるラッチ制御信号PD_LATCHは、1−ビットラッチ83がディスプレイデータ00Hの最上位ビットCD[5]=論理“0”をラッチしてPD[5]=論理“0”を出力するように制御する。図10に示されたように、ラッチ制御信号PD_LATCHはラッチ制御信号S_LATCHがディスプレイデータの次のブロックをラッチするために活性化される前に、活性化される。
次に時間Tで、ラッチ制御信号S_LATCHが活性化され、これによってラッチ22は最上位ビットCD[5]が論理“1”であるディスプレイデータCD[5:0]の値3FHをラッチして出力する。また、時間Tの後、区間Pの間にゲーティング信号VCIRは活性化されて制御信号GRAY_ONは非活性化される。制御信号GRAY_ONが非活性化されればスイッチS1がオープンされる。また、ゲーティング信号VCIRが活性化されれば、XORゲート84の出力はスイッチS2に印加される。現在の最上位ビットCD[n−1]と以前の最上位ビットPD[n−1]とが異なるため(すなわち、CD[5]が1であってPD[5]が0)、ANDゲート85の出力は論理“1”になり、これによってスイッチS2は活性化される。S2が活性化されてS1がオープンされれば、第3ドライバ91がソース駆動出力信号Snを有するデータラインDiを区間Pの間にVG[0]から中間電圧VG[31]に駆動する。
時間Tで、VCIRは非活性化されてGRAY_ONは活性化され、これによってスイッチS2がオープンされて(データラインDiから第3ドライバ91の出力が切れる)スイッチS1が短絡される。CD[5:0]が3FHであれば、第1ドライバ26は区間Tの間に出力信号SnをVG[31]からVG[63]に駆動する。区間Pの最後の部分でPD_LATCHが活性化され、これによって1−ビットラッチ83はディスプレイデータ3FHの最上位ビットCD[5]=論理“1”をラッチしてPD[5]=論理“1”を出力する。
次に、時間TでS_LATCHが活性化され、これによってn−ビットラッチ22は最上位ビットCD[5]が論理“0”のディスプレイデータCD[5:0]の値07Hをラッチして出力する。また、T後の区間Pの間に、VCIRは活性化されてGRAY_ONは非活性化される。制御信号GRAY_ONが非活性化されればスイッチS1がオープンされ、ゲーティング信号VCIRが活性化されれば、XORゲート84の出力はスイッチS2に印加される。現在の最上位ビットCD[n−1]と以前の最上位ビットPD[n−1]とが異なるため(すなわち、CD[5]が0であってPD[5]が1)、ANDゲート85の出力は論理“1”になり、これによってスイッチS2は活性化される。S2が活性化されればデータラインDiがノードN2に連結され、これによってドライバ91がソースドライバ出力信号SnをVG[63]から中間電圧VG[31]にディスチャージさせる。
続いて時間Tで、VCIRは非活性化されてGRAY_ONは活性化される。これによって、スイッチS2がオープンされて(すなわち、データラインDiからノードN2が切れる)スイッチS1が短絡される。CD[5:0]が07Hであれば、第1ドライバ26は区間Pの間にSnをVG[31]からVG[7]で駆動する。区間Pの最後の部分でPD_LATCHが活性化され、これによって1−ビットラッチ83はディスプレイデータ07Hの最上位ビットCD[5]=論理“0”をラッチしてPD[5]=論理“0”を出力する。
次に時間Tで、S_LATCHが活性化され、これによってn−ビットラッチ22は最上位ビットCD[5]が論理“0”であるディスプレイデータCD[5:0]の値19Hをラッチして出力する。また、T後の区間Pの間に、VCIRは活性化されてGRAY_ONは非活性化される。制御信号GRAY_ONが非活性化されればスイッチS1がオープンされ、ゲーティング信号VCIRが活性化されれば、XORゲート84の出力はスイッチS2に印加される。現在の最上位ビットCD[n−1]と以前の最上位ビットPD[n−1]とが同一であるため(すなわち、CD[5]が0であってPD[5]が0)、ANDゲート85の出力は論理“0”になり、これによってスイッチS2は非活性化状態を維持する。S2が非活性化されれば、ソースドライバ出力信号Snは区間Pの間にVG[7]に維持される(すなわち、VG[31]にチャージされない)。時間Tの後に、VCIRは非活性化されてGRAY_ONは活性化される。CD[5:0]が19Hであれば、第1ドライバ26はSnをVG[25]に駆動する。
図8、9、及び10を参照して説明されたソース駆動回路及び方法は、図2、3、及び4を参照して説明された従来の回路及び方法に比べて大幅に電力消耗を減少させる。特に、図9の区間PでデータラインDiを部分的に駆動するためにVCI電源を使用することにより、データラインを駆動するために昇圧電源(AVDD)が使われる図3の従来の方法に比べて電力消耗が減少される。また、区間Pでデータラインを駆動するためにVCI電源を使用することにより、VCI電源に対する“ネガティブ”電流に起因して電荷リサイクル動作が誘発される。
そのうえ、図10でグラジエント動作モードは第3ドライバ91に対してVCI電源を使用することにより、図4の従来の方法に比べて電力消耗を大きく減少させる。特に、図10で、データラインをVG[31]で駆動するために第3ドライバ91が昇圧されていないVCI電源を使用することにより、区間Pで電力消耗が減少され、区間PでVCI電源に対するネガティブ電流が電荷リサイクル動作を誘発する。
例えば、IがAVSSからAVDDまでの総駆動電流であって区間Pでの駆動電流がID1、区間Pでの駆動電流がID2、I=ID1+ID2であると仮定する。そして、AVSSが0ボルトであってAVDDがα×VCIであると仮定し、データラインを駆動するためにVCI電源が部分的に使われる図9の本発明の方法によれば、区間P、Pでの総駆動電力消耗Pは次の数式によって求められる。
P=ID1×(VCI−AVSS)+ID2×(AVDD−VCI)
=ID1×VCI+{ID2×(VCI×α)−ID2×VCI}}
=VCI×(ID1−ID2+α×ID2
これと対照的に図3の従来方法によれば、区間P、Pでの総駆動電力消耗P’は次の数式によって求められる。
P’=I×(AVDD−AVSS)
=I×AVDD
=I×(α×VCI)
=VCI×(α×ID1+α×ID2
総駆動電流が従来方法及び本発明について同一であると仮定すれば、αが1より大きい時に、従来方法による総駆動電力消耗P’が本発明の方法による総駆動電力消耗Pより大きい。すなわち、従来の方法に比べて本発明による方法において電力消耗が減少される。
したがって、図9及び図10の本発明の望ましい方法によれば、区間Pの間にVCI電源を使用することによって従来の方法に比べて1/αの電力を消耗する。また、前記のように、区間PでVCI電源に対するネガティブ電流に起因して電荷リサイクルが発生する。
図11は本発明の望ましい実施例による共通電圧ドライバ回路40を示す。共通電圧ドライバ回路40は第1及び第2ドライバ31、32、スイッチ33、34、及びキャパシタ35、36を備えるというところにおいて、図5のドライバ回路30と類似している。共通電圧ドライバ回路40は、1つまたはそれ以上の中間制御信号に応答して1つまたはその以上の中間共通電圧を共通電極VCOMノードNに出力する中間電圧出力回路41を備える。
特に、図11に示された望ましい実施例で、中間電圧出力回路41は基準電圧VCIをバッファリングして出力する第3ドライバ42、及びそれぞれ中間電圧制御信号VCIR、VSSRによって制御されるスイッチ43、44を備える。スイッチ43はドライバ42の出力をVCOMノードNに連結するために制御され、スイッチ44はVCOMノードNを接地電圧AVSSに連結するために制御される。本発明の望ましい実施例で、VCOMHは約4ボルト、VCIは約2〜3ボルト、AVSSは0ボルト、そしてVCOMLは約−1ボルトである。
図12を参照して以下で説明される通りに、図11のドライバ回路40を使用して共通電極を駆動する方法は図5の駆動回路30と比較して電力消耗が大幅に減少される。
図12は、本発明の望ましい実施例によって共通電極を駆動する方法を示すタイミング図である。特に、図12は図11の共通電圧ドライバ40の動作モードを示す。図12を参照すれば、時間T前の区間で極性制御信号Mが論理“0”である時に、制御信号VCML_ONはイネーブルされて(スイッチ34が短絡される)制御信号VCMH_ON、VCIR、及びVSSRはディスエーブルされる(スイッチ33、43、及び44がオープンされる)。したがって、共通電極VCOMが第2ドライバ32によってVCOMLで駆動される。
時間Tで、極性制御信号Mはディスプレイデータを反転させるために論理“1”に変わり、VCML_ONがディスエーブルされてスイッチ34がオープンされる。そして、制御信号VSSRはイネーブルされ、これによってスイッチ44が短絡されてVCOMノードNが中間電圧AVSS(すなわち接地電圧)に連結される。時間区間Pの間に、VCOMがVCOMLからAVSSに駆動される。次に、時間Tに、VSSRがディスエーブルされてスイッチ44がオープンされ、VCIRがイネーブルされてスイッチ43が短絡され、そして、VCOMノードNが第3ドライバ42の出力に連結される。したがって、区間Pの間に、VCOMがVCI電源を使用してAVSSから中間電圧VCIに駆動される。次に、時間Tで、VCIRがディスエーブルされてスイッチ43がオープンされ、制御信号VCMH_ONがイネーブルされてスイッチ33が短絡され、そして、第1ドライバ31の出力がVCOMノードNに連結される。したがって、区間Pの間に、VCOMが第1ドライバ31によって中間電圧VCIからVCOMHに駆動される。
次に、時間Tで、極性制御信号Mはポジティブ極性を有するディスプレイデータを示す論理“0”に変わり、VCMH_ONがディスエーブルされてスイッチ33がオープンされる。そして、制御信号VCIRはイネーブルされ、これによってスイッチ43が短絡されてVCOMノードNが第3ドライバ42の出力に連結される。したがって、区間Pの間に、VCOMはドライバ42によってVCOMHからVCIに駆動される。次に、時間Tで、VCIRがディスエーブルされてスイッチ43がオープンされ、VSSRがイネーブルされてスイッチ44が短絡され、そして、VCOMノードNが接地AVSSに連結される。したがって、区間Pの間に、VCOMがVCIからVSSに駆動される。次に時間Tで、VSSRがディスエーブルされてスイッチ44がオープンされ、制御信号VCML_ONがイネーブルされてスイッチ34が短絡され、そして、VCOMノードNが第2ドライバ32の出力に連結される。したがって、区間Pの間に、VCOMが中間電圧AVSSからVCOMLに駆動される。
図11及び12の共通電圧駆動回路及び方法は、図6及び7の従来の共通電圧駆動回路及び方法に比べて大幅に電力消耗を減少させる。例えば、区間Pで、VCOMをVCOML(すなわち、−1ボルト)からAVSS(すなわち、0ボルト)に駆動するために接地を使用することによって電力が消耗されない。その上、区間Pで、昇圧電源AVDDの代りにVCI電源を使用してVCOMをAVSS(接地)からVCIに駆動することによって前記のように電力消耗が1/αほど減少される。しかも、区間Pで、VCI電源に対するネガティブ電流供給に起因して電荷リサイクル動作が発生する。また、区間Pで、接地を使用してVCIをAVSSにシンキングすることによって電力が消耗されない。
以上、図面及び明細書で最適実施例が開示された。ここで、特定の用語が使われたが、これは単に本発明を説明するための目的で使われたものに過ぎず、意味限定や特許請求の範囲に記載された本発明の範囲を制限するために使われたものではない。したがって、当業者であればこれより多様な変形及び均等な他の実施例が可能だという点を理解するであろう。よって、本発明の真の技術的な保護範囲は特許請求の範囲の技術的思想によって決まらなければならない。
本発明によるソースドライバ回路及び方法、並びに共通電圧ドライバ回路及び方法はLCDやPDP、電子発光ディスプレイの駆動に採用されうる。
従来のディスプレイシステムを示す概略図である。 従来のソースドライバ回路を示す概略図である。 図2のソースドライバ回路の2進動作モードを示すタイミング図である。 図2のソースドライバ回路のグラジエント動作モードを示すタイミング図である。 従来の共通電極VCOMドライバ回路を示す概略図である。 図5の共通電極VCOMドライバの動作モードを示すタイミング図である。 図1の電源発生器の従来の構造を示すブロック図である。 本発明の望ましい実施例によるソース駆動回路を示す概略図である。 本発明の望ましい実施例による図8のソース駆動回路の2進動作モードを示すタイミング図である。 本発明の望ましい実施例による図8のソース駆動回路のグラジエント動作モードを示すタイミング図である。 本発明の望ましい実施例による共通電極VCOMドライバ回路を示す概略図である。 図11の共通電極VCOMドライバの動作モードを示すタイミング図である。
符号の説明
21 極性反転回路
22 n−ビットラッチ回路
23 グレイスケール発生器
24 ガンマデコーダ
25 駆動バッファ
26 第1ドライバ
27 第2ドライバ
80 ソース駆動回路
81 ソースドライバ
82 比較回路
83 ラッチ回路
84 XOR回路
85 ANDゲート
90 中間電圧発生器
91 第3ドライバ
92 キャパシタ
AVDD ソースドライバ電源電圧
AVSS ソースドライバ接地電圧
Di データライン
M、BIN_ON、GRAY_ON、BIN_FLAG 制御信号
N1 第1ノード
N2 第2ノード
S_LATCH、PD_LATCH ラッチ制御信号
S1、S2、S3 スイッチ素子
Sn ソースドライバ出力信号
VCI 中間ソース駆動電圧
VCIR ゲーティング信号

Claims (30)

  1. ディスプレイのデータラインを駆動するソース駆動回路において、
    ディスプレイデータを受信して前記受信されたディスプレイデータに対応するソース駆動電圧を発生させ、前記ソース駆動電圧をディスプレイのデータラインに印加するソースドライバ回路と、
    中間ソース駆動電圧を発生させる電圧発生回路と、
    前記データラインを前記中間ソース駆動電圧から前記ソース駆動電圧に駆動するために前記ソースドライバ回路により前記ソース駆動電圧が前記データラインに印加される前に、前記データラインを前記中間ソース駆動電圧に駆動するために前記中間ソース駆動電圧を前記データラインに印加する制御回路と、を備え、
    前記制御回路は、
    前記受信されたディスプレイデータを以前に受信されたディスプレイデータと比較して比較信号を発生させる比較器と、
    前記中間ソース駆動電圧を前記電圧発生回路から前記データラインに選択的に印加するために前記比較信号に応答するスイッチと、を備え、
    前記比較器は前記受信されたディスプレイデータの最上位ビットを前記以前に受信されたディスプレイデータの最上位ビットと比較し、
    前記比較器は前記受信されたディスプレイデータの最上位ビットと前記以前に受信されたディスプレイデータの最上位ビットとが同一である時に前記スイッチを非活性化させるために制御信号を発生させ、同一でない時に前記スイッチを活性化させるために制御信号を発生させ、
    前記以前に受信されたディスプレイデータとは前回に受信されたディスプレイデータであり、
    各駆動サイクルの中間基準電圧と、昇圧された駆動電圧とを共に使用して所望の出力を得る
    ことを特徴とするソース駆動回路。
  2. 前記制御回路は、
    前記以前に受信されたディスプレイデータを前記比較器に出力するラッチをさらに備える
    ことを特徴とする請求項1に記載のソース駆動回路。
  3. 前記比較器は前記受信されたディスプレイデータの最上位ビット及び前記以前に受信されたディスプレイデータの最上位ビットを入力として受信する排他的ORゲートを備える
    ことを特徴とする請求項1に記載のソース駆動回路。
  4. 前記制御回路は、
    前記比較信号を前記スイッチに選択的に印加するためにゲート制御信号に応答するゲート回路をさらに備える
    ことを特徴とする請求項1に記載のソース駆動回路。
  5. 前記ソースドライバ回路は前記ソース駆動電圧を前記データラインに印加するために第1制御信号によりイネーブルされ、前記制御回路は前記中間ソース駆動電圧を前記データラインに印加するために第2制御信号によりイネーブルされ、前記第1及び第2制御信号は前記ソース駆動電圧が前記データラインに印加される前に前記中間ソース駆動電圧が前記データラインに印加されるように排他的に活性化される
    ことを特徴とする請求項1に記載のソース駆動回路。
  6. 前記電圧発生器から出力される前記中間ソース駆動電圧はグレイスケール基準電圧である
    ことを特徴とする請求項1に記載のソース駆動回路。
  7. 前記中間ソース駆動電圧は前記ソース駆動電圧のフルスイング電圧の1/2ないし1/3の範囲にある
    ことを特徴とする請求項1に記載のソース駆動回路。
  8. ディスプレイのデータラインを駆動する回路において、
    n−ビットディスプレイ信号及び極性制御信号を受信して前記極性制御信号に応答して前記n−ビットディスプレイ信号の極性を反転させるか、またはそのまま維持させる極性制御回路と、
    第1ラッチ制御信号に応答して前記極性制御回路から出力される前記n−ビットディスプレイ信号をラッチする第1ラッチと、
    複数個のグレイスケール基準電圧及び前記第1ラッチから出力される前記n−ビットディスプレイ信号を入力として受信して前記グレイスケール基準電圧のうち1つを選択的に出力するために前記n−ビットディスプレイ信号をデコードするデコーダと、
    ソース駆動電圧を発生させてディスプレイのデータラインに印加し、
    前記デコーダから出力される前記グレイスケール基準電圧から前記ソース駆動電圧を発生させるために第1モード制御信号に応答する第1動作モードと、
    前記第1ラッチから出力される前記n−ビットディスプレイ信号の最上位ビットに基づいて前記ソース駆動電圧を発生させるために第2モード制御信号に応答する第2動作モードと、を有するバッファと、
    中間ソース駆動電圧を発生させる電圧発生回路と、
    前記データラインを前記中間ソース駆動電圧から前記ソース駆動電圧に駆動するために前記バッファ回路により前記ソース駆動電圧が前記データラインに印加される前に、前記データラインを前記中間ソース駆動電圧に駆動するために前記中間ソース駆動電圧を前記データラインに印加する制御回路と、を備え、
    前記制御回路は、前記n−ビットディスプレイ信号の最上位ビットを以前に受信されたn−ビットディスプレイ信号の最上位ビットと比較して比較信号を発生させる比較器と、前記中間ソース駆動電圧を前記データラインに選択的に印加するために前記比較信号に応答するスイッチと、を備え、
    各駆動サイクルの中間基準電圧と、昇圧された駆動電圧とを共に使用して所望の出力を得る
    ことを特徴とする駆動回路。
  9. 前記以前に受信されたディスプレイデータとは前回に受信されたディスプレイデータであり、
    前記比較の結果、同一である場合に前記スイッチを非活性化させ、同一でない場合に前記スイッチを活性化させる
    ことを特徴とする請求項8に記載の駆動回路。
  10. 前記制御回路は、
    前記以前に受信されたn−ビットディスプレイ信号の最上位ビットをラッチして前記比較器に出力する1−ビットラッチをさらに備える
    ことを特徴とする請求項9に記載の駆動回路。
  11. 前記比較器は排他的ORゲートを備える
    ことを特徴とする請求項9に記載の駆動回路。
  12. 前記比較信号を前記スイッチに選択的に出力するためにゲート制御信号に応答するゲート回路をさらに備える
    ことを特徴とする請求項9に記載の駆動回路。
  13. 前記比較信号は前記受信されたn−ビットディスプレイ信号と前記以前に受信されたn−ビットディスプレイ信号の最上位ビットとが同一である時に、前記スイッチを非活性化させる
    ことを特徴とする請求項9に記載の駆動回路。
  14. 前記バッファ回路は前記ソース駆動電圧を前記データラインに印加するために第1または第2モード制御信号によりイネーブルされ、前記制御回路は前記中間ソース駆動電圧を前記データラインに印加するために制御信号によりイネーブルされ、前記制御信号は前記ソース駆動電圧が前記データラインに印加される前に前記中間ソース駆動電圧が前記データラインに印加されるように前記第1または第2モード制御信号に対して排他的に活性化される
    ことを特徴とする請求項8に記載の駆動回路。
  15. 前記中間ソース駆動電圧は前記ソース駆動電圧のフルスイング電圧の1/2ないし1/3の範囲にある
    ことを特徴とする請求項8に記載の駆動回路。
  16. 前記第1モードはグラジエントモードであって前記第2モードは2進モードであり、
    第1モードは、前記デコーダから出力される前記グレイスケール基準電圧から前記ソース駆動電圧を発生させるために第1モード制御信号に応答し、
    第2モードは、前記第1ラッチから出力される前記n−ビットディスプレイ信号の最上位ビットに基づいて前記ソース駆動電圧を発生させるために第2モード制御信号に応答する
    ことを特徴とする請求項8に記載の駆動回路。
  17. 前記電圧発生回路は、
    中間電圧ドライバと、
    第1ノードまたは第2ノードに連結するためにスイッチ制御信号により制御されるスイッチを備え、
    前記第1ノードは中間電圧電源に連結されて前記第2ノードは前記中間電圧ドライバの出力に連結される
    ことを特徴とする請求項8に記載の駆動回路。
  18. 前記第2ノードと接地間に連結されるキャパシタをさらに備える
    ことを特徴とする請求項17に記載の駆動回路。
  19. 前記電圧発生回路は前記第2動作モードで前記中間ソース駆動電圧として前記中間電圧電源により発生する第1電圧を出力し、前記電圧発生回路は前記第1動作モードで前記中間ソース駆動電圧として前記中間電圧ドライバにより発生する第2電圧を出力する
    ことを特徴とする請求項17に記載の駆動回路。
  20. 前記中間電圧ドライバは前記中間電圧電源により発生する前記第1電圧を使用して動作する
    ことを特徴とする請求項19に記載の駆動回路。
  21. 前記中間電圧ドライバは中間ソース駆動電圧として使われる前記第2電圧としてグレイスケール基準電圧をバッファリングして出力する
    ことを特徴とする請求項20に記載の駆動回路。
  22. 前記中間ソース駆動電圧は前記ソース駆動電圧のフルスイング電圧の1/2ないし1/3の範囲にある
    ことを特徴とする請求項21に記載の駆動回路。
  23. 複数個の薄膜トランジスタ(TFT)、前記TFTのゲート電極に連結される複数個のゲートライン、前記TFTのソース電極に連結される複数個のデータラインを含む液晶ディスプレイパネルと、
    それぞれ前記液晶ディスプレイパネルの対応するゲートラインを駆動する複数個のゲートドライバ回路を含むゲートドライバと、
    それぞれ受信されたディスプレイデータに対応するソース駆動電圧を発生させて前記ソース駆動電圧を前記データラインに印加することによって前記液晶ディスプレイパネルの対応するデータラインを駆動する複数個のソースドライバ回路を含むソースドライバと、
    前記ソースドライバ回路に共通で印加される中間ソース駆動電圧を発生させる電圧発生回路と、を備え、
    前記各ソースドライバ回路は前記データラインを前記中間ソース駆動電圧から前記ソース駆動電圧に駆動するために前記ソースドライバ回路により前記ソース駆動電圧が前記データラインに印加される前に、前記対応するデータラインを前記中間ソース駆動電圧に駆動するために前記中間ソース駆動電圧を前記対応するデータラインに印加する制御回路を備え、
    前記制御回路は、
    前記受信されたディスプレイデータを以前に受信されたディスプレイデータと比較して比較信号を発生させる比較器と、
    前記中間ソース駆動電圧を前記電圧発生回路から前記データラインに選択的に印加するために前記比較信号に応答するスイッチと、を備え、
    前記比較器は前記受信されたディスプレイデータの最上位ビットを前記以前に受信されたディスプレイデータの最上位ビットと比較し、
    前記比較器は前記受信されたディスプレイデータの最上位ビットと前記以前に受信されたディスプレイデータの最上位ビットとが同一である時に、前記スイッチを非活性化させるために制御信号を発生させ、同一でない時に前記スイッチを活性化させるために制御信号を発生させ、
    前記以前に受信されたディスプレイデータとは前回に受信されたディスプレイデータであり、
    各駆動サイクルの中間基準電圧と、昇圧された駆動電圧とを共に使用して所望の出力を得る
    ことを特徴とする液晶ディスプレイ装置。
  24. 前記制御回路は、
    前記以前に受信されたディスプレイデータを前記比較器に出力するラッチをさらに備える
    ことを特徴とする請求項23に記載の液晶ディスプレイ装置。
  25. 前記比較器は前記受信されたディスプレイデータの最上位ビット及び前記以前に受信されたディスプレイデータの最上位ビットを入力として受信する排他的ORゲートを備える
    ことを特徴とする請求項23に記載の液晶ディスプレイ装置。
  26. 前記制御回路は、
    前記比較信号を前記スイッチに選択的に印加するためにゲート制御信号に応答するゲート回路をさらに備える
    ことを特徴とする請求項23に記載の液晶ディスプレイ装置。
  27. 前記ソースドライバ回路は前記ソース駆動電圧を前記データラインに印加するために第1制御信号によりイネーブルされ、前記制御回路は前記中間ソース駆動電圧を前記データラインに印加するために第2制御信号によりイネーブルされ、前記第1及び第2制御信号は前記ソース駆動電圧が前記データラインに印加される前に前記中間ソース駆動電圧が前記データラインに印加されるように排他的に活性化される
    ことを特徴とする請求項23に記載の液晶ディスプレイ装置。
  28. 前記電圧発生器から出力される前記中間ソース駆動電圧はグレイスケール基準電圧である
    ことを特徴とする請求項23に記載の液晶ディスプレイ装置。
  29. 前記中間ソース駆動電圧は前記ソース駆動電圧のフルスイング電圧の1/2ないし1/3の範囲にある
    ことを特徴とする請求項23に記載の液晶ディスプレイ装置。
  30. 請求項23に記載される液晶ディスプレイ装置のディスプレイのデータラインを駆動する方法において、
    受信されたディスプレイデータに対応するソース駆動電圧を発生させる段階と、
    中間ソース駆動電圧を発生させる段階と、
    データラインを前記中間ソース駆動電圧に駆動するために前記中間ソース駆動電圧を前記データラインに印加する段階と、
    前記データラインを前記中間ソース駆動電圧から前記ソース駆動電圧に駆動するために前記ソース駆動電圧を前記データラインに印加する段階と、を備える
    ことを特徴とする駆動方法。
JP2004314670A 2003-10-28 2004-10-28 ソース駆動回路と駆動回路及び液晶ディスプレイ装置とその駆動方法 Expired - Fee Related JP4786897B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2003-075636 2003-10-28
KR20030075636 2003-10-28
US10/880,118 2004-06-29
US10/880,118 US7907108B2 (en) 2003-10-28 2004-06-29 Source driver circuits and methods providing reduced power consumption for driving flat panel displays

Publications (2)

Publication Number Publication Date
JP2005134910A JP2005134910A (ja) 2005-05-26
JP4786897B2 true JP4786897B2 (ja) 2011-10-05

Family

ID=34656322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314670A Expired - Fee Related JP4786897B2 (ja) 2003-10-28 2004-10-28 ソース駆動回路と駆動回路及び液晶ディスプレイ装置とその駆動方法

Country Status (3)

Country Link
JP (1) JP4786897B2 (ja)
CN (1) CN1637792B (ja)
TW (1) TWI258724B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242130B2 (ja) 2007-10-31 2013-07-24 ルネサスエレクトロニクス株式会社 液晶表示パネル駆動方法、液晶表示装置、及びlcdドライバ
KR101465606B1 (ko) 2008-04-29 2014-11-28 삼성전자주식회사 적은 면적과 높은 효율을 갖는 공통 전압발생기, 이를포함하는 디스플레이 장치, 및 공통 전압 발생방법
US20110298773A1 (en) * 2009-02-18 2011-12-08 Sharp Kabushiki Kaisha Display device and method for driving same
US8072409B2 (en) * 2009-02-25 2011-12-06 Au Optronics Corporation LCD with common voltage driving circuits
KR101590155B1 (ko) 2009-08-11 2016-02-12 삼성전자주식회사 디스플레이 장치 및 상기 디스플레이 장치의 구동 회로
JPWO2011024456A1 (ja) * 2009-08-28 2013-01-24 パナソニック株式会社 表示駆動装置、表示装置及びパネル駆動方法
KR101975140B1 (ko) * 2010-03-12 2019-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
TW201239845A (en) * 2011-02-14 2012-10-01 Samsung Electronics Co Ltd Systems and methods for driving a display device
TWI560664B (en) * 2011-04-12 2016-12-01 Au Optronics Corp Bistable display panel and data driving circuit thereof
KR101885186B1 (ko) * 2011-09-23 2018-08-07 삼성전자주식회사 공유 백 채널을 통한 데이터 전송 방법 및 데이터 전송을 위한 멀티 펑션 드라이버 회로 그리고 이를 채용한 디스플레이 구동 장치
US9013386B2 (en) 2012-01-09 2015-04-21 Himax Technologies Limited Liquid crystal display and method for operating the same
TWI581229B (zh) * 2012-01-18 2017-05-01 奇景光電股份有限公司 液晶顯示器及其運作方法
US9927891B2 (en) 2012-03-29 2018-03-27 Synaptics Incorporated System and method for reducing transmitter power consumption
KR102074423B1 (ko) * 2013-07-22 2020-02-07 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
TWI579821B (zh) * 2015-09-15 2017-04-21 瑞鼎科技股份有限公司 應用於液晶顯示裝置之驅動電路
CN109713903A (zh) * 2019-03-04 2019-05-03 上海波鸿医疗器械科技有限公司 一种串联输入并联输出的软开关交错直流变换器
CN111415617B (zh) * 2020-04-02 2021-07-06 广东晟合微电子有限公司 增加锁存器提高oled面板伽马电压稳定时间的方法
CN114822405B (zh) * 2022-05-20 2023-11-21 厦门凌阳华芯科技股份有限公司 一种显示驱动电路、源极驱动电路及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028813A (ja) * 1988-06-28 1990-01-12 Nec Home Electron Ltd 液晶駆動回路
JPH08271856A (ja) * 1995-03-31 1996-10-18 Sharp Corp 液晶表示装置の駆動電圧発生装置
JP2001075536A (ja) * 1999-09-03 2001-03-23 Nec Corp 昇圧回路、電源回路及び液晶駆動装置
JP2003202839A (ja) * 2002-01-07 2003-07-18 Sony Corp 液晶駆動装置
JP3627710B2 (ja) * 2002-02-14 2005-03-09 セイコーエプソン株式会社 表示駆動回路、表示パネル、表示装置及び表示駆動方法
JP3687648B2 (ja) * 2002-12-05 2005-08-24 セイコーエプソン株式会社 電源供給方法及び電源回路
JP4353759B2 (ja) * 2003-09-22 2009-10-28 Necエレクトロニクス株式会社 駆動回路

Also Published As

Publication number Publication date
JP2005134910A (ja) 2005-05-26
TW200527346A (en) 2005-08-16
CN1637792B (zh) 2012-01-11
CN1637792A (zh) 2005-07-13
TWI258724B (en) 2006-07-21

Similar Documents

Publication Publication Date Title
US7907108B2 (en) Source driver circuits and methods providing reduced power consumption for driving flat panel displays
JP4786897B2 (ja) ソース駆動回路と駆動回路及び液晶ディスプレイ装置とその駆動方法
KR101165842B1 (ko) 모바일용 액정 표시 장치 및 그 구동 방법
US7446745B2 (en) Display driver, display device, and driver method
US10121427B2 (en) Liquid crystal display device having an overdriving data generator and method of driving the same
KR100864492B1 (ko) 액정 표시 장치 및 그 구동 방법
WO2012057044A1 (ja) 表示装置およびその表示方法、ならびに液晶表示装置
KR100806122B1 (ko) 소스 구동회로, 데이터 라인 구동 방법 및 액정 표시 장치
US20080303771A1 (en) Display and two step driving method thereof
WO2011108166A1 (ja) 表示装置およびその駆動方法、ならびに液晶表示装置
KR100637060B1 (ko) 아날로그 버퍼 및 그 구동 방법과, 그를 이용한 액정 표시장치 및 그 구동 방법
US7432902B2 (en) Liquid crystal display device and driving method thereof
US7777706B2 (en) Impulse driving apparatus and method for liquid crystal device
KR100652382B1 (ko) 플랫 패널 디스플레이를 구동하는 데 있어 감소된전력소모를 제공하는 드라이버 회로 및 방법
KR101127854B1 (ko) 게이트 구동 장치와 이를 이용한 화상 표시 장치
KR20080055331A (ko) 전기영동 표시장치와 그 구동방법
KR101472135B1 (ko) 액정표시장치
US9697785B2 (en) Display device
US7791580B2 (en) Circuits and methods for generating a common voltage
KR101192759B1 (ko) 액정 표시장치의 구동장치 및 구동방법
KR20080086060A (ko) 액정표시장치 및 이의 구동방법
JP4674985B2 (ja) 液晶表示装置ならびにそれを備える携帯電話機および携帯情報端末機器
KR20070065063A (ko) 데이터 선 구동 방법 및 이를 이용한 평판 표시 장치
KR101467213B1 (ko) 2도트 인버젼 액정표시장치의 구동 장치
US20080001149A1 (en) Data driving circuit of liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees