JP4786498B2 - Catalyst production method - Google Patents

Catalyst production method Download PDF

Info

Publication number
JP4786498B2
JP4786498B2 JP2006287759A JP2006287759A JP4786498B2 JP 4786498 B2 JP4786498 B2 JP 4786498B2 JP 2006287759 A JP2006287759 A JP 2006287759A JP 2006287759 A JP2006287759 A JP 2006287759A JP 4786498 B2 JP4786498 B2 JP 4786498B2
Authority
JP
Japan
Prior art keywords
metal oxide
catalyst
oxide fine
fine particles
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006287759A
Other languages
Japanese (ja)
Other versions
JP2008104905A (en
Inventor
勝博 城野
勇治 香山
隆喜 水野
田中  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2006287759A priority Critical patent/JP4786498B2/en
Publication of JP2008104905A publication Critical patent/JP2008104905A/en
Application granted granted Critical
Publication of JP4786498B2 publication Critical patent/JP4786498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直流電圧を印加しながら導電性基材の表面に担体用金属酸化物微粒子層を形成し、ついで、活性成分用金属を析出させる新規な触媒の製造方法に関する。
さらに詳しくは、従来のメッキ法、CVD法、塗布液法あるいは電着法等に比して極めて容易に均一で密着性、耐摩耗性、強度等に優れた金属酸化物微粒子層の形成しうる方法に関する。
The present invention relates to a novel catalyst manufacturing method in which a metal oxide fine particle layer for a carrier is formed on the surface of a conductive substrate while applying a DC voltage, and then a metal for an active component is deposited.
More specifically, a metal oxide fine particle layer excellent in adhesion, wear resistance, strength and the like can be formed very easily compared with the conventional plating method, CVD method, coating solution method or electrodeposition method. Regarding the method.

従来、成型触媒としてハニカム型触媒が知られ、石炭、重油燃焼排ガス中の窒素酸化物除去触媒(脱硝触媒)、自動車排ガス中の窒素酸化物除去触媒、自動車排ガス中の粒子状物除去触媒(特開2002−147218号公報:特許文献1)、硫化物酸化触媒、燃料電池用燃料処理触媒(例:メタネーション触媒)、脱臭触媒(特開平1−299558号公報:特許文献2)等として用いられている。   Conventionally, a honeycomb type catalyst has been known as a molded catalyst, and a catalyst for removing nitrogen oxides in coal, heavy oil combustion exhaust gas (denitration catalyst), a nitrogen oxide removal catalyst in automobile exhaust gas, a particulate matter removal catalyst in automobile exhaust gas (specialized) No. 2002-147218: Patent Document 1), sulfide oxidation catalyst, fuel cell fuel treatment catalyst (eg, methanation catalyst), deodorization catalyst (Japanese Patent Laid-Open No. 1-299558: Patent Document 2), etc. ing.

ハニカム型触媒には主に触媒成分を捏和し、押し出し成型して得られる酸化物型ハニカム型触媒と、金属製またはセラミックス製ハニカム基材に担体層を形成しこれに触媒成分を担持した触媒、あるいはハニカム基材に触媒層を形成して得られるハニカム型触媒とがある。   In the honeycomb type catalyst, mainly an oxide type honeycomb type catalyst obtained by kneading and extruding a catalyst component, and a catalyst in which a carrier layer is formed on a metal or ceramic honeycomb base material and the catalyst component is supported thereon Alternatively, there is a honeycomb type catalyst obtained by forming a catalyst layer on a honeycomb substrate.

前者は歪み、撓みが生じたり、乾燥、焼成時にクラックが入りやすく、大きなハニカム触媒を得ることが困難であり、後者は金属製またはセラミックス製ハニカム基材表面に密着性に優れた担体層または/あるいは触媒層を形成することが困難であった。   The former is distorted and bent, or cracks easily during drying and firing, and it is difficult to obtain a large honeycomb catalyst. The latter is a carrier layer or / Alternatively, it was difficult to form a catalyst layer.

このため、前者ではガラス繊維、有機繊維等の繊維状物質を使用することが行われている。(特開昭59−213442号公報:特許文献3、特開昭62−36080号公報:特許文献4)
しかしながら、ある程度歪み、撓み、クラック等が減少するものの完全になくすことは困難で生産性向上のためにさらに改良が求められていた。
For this reason, in the former, using fibrous substances, such as glass fiber and organic fiber, is performed. (Japanese Patent Laid-Open No. 59-213442: Patent Document 3, Japanese Patent Laid-Open No. 62-36080: Patent Document 4)
However, although distortion, deflection, cracks, and the like are reduced to some extent, it is difficult to eliminate them completely, and further improvement has been demanded to improve productivity.

また、後者についてはハニカム基材表面に突起を形成することが提案されている(特開2004−169111号公報:特許文献5)。
しかしながら、この方法でも担体層または触媒層の密着性が不充分で、長期にわたって使用すると触媒性能が低下したり、担体層または触媒層の剥離を生ずるなどの問題があった。
As for the latter, it has been proposed to form protrusions on the surface of the honeycomb substrate (Japanese Patent Laid-Open No. 2004-169111: Patent Document 5).
However, even with this method, the adhesion of the support layer or the catalyst layer is insufficient, and there are problems such as a decrease in catalyst performance and peeling of the support layer or the catalyst layer when used over a long period of time.

また、一般的に平板状等の簡単な構造の基材上に微粒子層を形成する方法として、導電性支持体上に半導体微粒子を電気泳動法により積層させて得られる光電池用光電変換素子が開示されている。(特開2002−100416号公報:特許文献6)
また、基板に金属酸化物で被覆したダイヤモンド砥粒を電着させることにより高密度の砥粒層を有する電着砥石の製造方法が開示されている。(特開2000−254866号公報:特許文献7)
さらに、ガス拡散電極材料としてフッ素樹脂微粒子を電気泳動法によって導電性基材の表面に析出させたガス拡散電極用フッ素樹脂含有多孔質体が開示されている。(特開2002−121697号公報:特許文献8)
特開2002−147218号公報 特開平1−299558号公報 特開昭59−213442号公報 特開昭62−36080号公報 特開2004−169111号公報 特開2002−100416号公報 特開2000−254866号公報 特開2002−121697号公報
In addition, as a method for forming a fine particle layer on a substrate having a simple structure such as a flat plate, a photoelectric conversion element for a photovoltaic cell obtained by laminating semiconductor fine particles on a conductive support by electrophoresis is disclosed. Has been. (Japanese Patent Laid-Open No. 2002-100416: Patent Document 6)
Also disclosed is a method for producing an electrodeposition grindstone having a high-density abrasive layer by electrodepositing diamond abrasive grains coated with a metal oxide on a substrate. (Japanese Patent Laid-Open No. 2000-254866: Patent Document 7)
Furthermore, a fluororesin-containing porous body for gas diffusion electrodes is disclosed in which fluororesin fine particles are deposited on the surface of a conductive substrate by electrophoresis as a gas diffusion electrode material. (Japanese Patent Laid-Open No. 2002-121697: Patent Document 8)
JP 2002-147218 A JP-A-1-299558 JP 59-213442 A JP-A-62-36080 JP 2004-169111 A JP 2002-100416 A JP 2000-254866 A JP 2002-121697 A

しかしながら、上記方法は用途が限定されているとともに微粒子層の基材への密着性や、耐摩耗性、強度等が不充分な場合があった。特に、ハミカム基材のような複雑な構造を有する基材には積層することが困難で、できたとしても密着性や、耐摩耗性、強度等に問題があった。   However, the above-mentioned method has limited applications, and in some cases, the adhesion of the fine particle layer to the substrate, wear resistance, strength, etc. are insufficient. In particular, it is difficult to laminate a base material having a complicated structure such as a Hamicam base material, and there are problems in adhesion, wear resistance, strength, and the like even if possible.

さらに、従来の触媒は基材上に触媒機能を有する金属酸化物層を形成した触媒か、あるいは、基材上に担体として金属酸化物層を形成した後、活性成分用の金属塩を含浸し、乾燥し、還元することが行われていた。   Furthermore, the conventional catalyst is a catalyst in which a metal oxide layer having a catalytic function is formed on a base material, or a metal oxide layer is formed on a base material as a carrier and then impregnated with a metal salt for an active ingredient. It was done to dry and reduce.

しかしながら、このような従来の触媒は、活性が不充分であったり、耐摩耗性、強度等に問題があり、さらに工程が多いために生産性、経済性等に問題があった。   However, such conventional catalysts have insufficient activity, have problems in abrasion resistance, strength, and the like, and also have problems in productivity, economy, and the like because of many processes.

このような状況のもと、従来の方法では困難であった微細な目開きの穴を多数有するハニカム基材等にも均一で密着性、耐摩耗性、強度等に優れた触媒層を形成することができ、さらに洗浄工程、還元工程等を必ずしも必要としない触媒の製造方法を提供することが望まれている。   Under such circumstances, a uniform catalyst layer having excellent adhesion, wear resistance, strength and the like is formed even on a honeycomb substrate having a large number of fine openings, which was difficult with the conventional method. In addition, it is desired to provide a method for producing a catalyst that does not necessarily require a washing step, a reduction step, or the like.

本発明者らは、上記問題点に鑑み、鋭意検討した結果、金属酸化物微粒子分散液に金属製ハニカム基材などの複雑な構造の基材を浸漬し、直流電圧を印加しながら金属酸化物微粒子層を形成した後、分散液に活性成分用金属塩を加え、引き続き直流電圧を印加することにより金属成分を担持し、乾燥し、必要に応じて適度に還元すれば、高い活性を有する触媒が得られることを見出して本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have immersed a substrate having a complicated structure such as a metal honeycomb substrate in a metal oxide fine particle dispersion and applied a DC voltage while applying a DC voltage. After forming the fine particle layer, a metal salt for the active ingredient is added to the dispersion, and then a direct current voltage is applied to support the metal component, dry it, and reduce it appropriately as required. As a result, the present invention has been completed.

すなわち、本発明にかかる触媒の製造方法は以下の通りである。
[1]担体用金属酸化物微粒子を含む金属酸化物微粒子分散液に導電性基材を浸漬し、導電
性基材と分散液に直流電圧を印加して導電性基材上へ金属酸化物微粒子層を形成した後、活性成分用金属塩水溶液を添加し、担体用金属酸化物微粒子表面に活性成分用金属を析出させることを特徴とする触媒の製造方法。
[2]前記担体用金属酸化物がMg、Ca、Ba(IIA族)、ランタノイド(IIIA族)、Ti、Zr(IVA族)、V(VA族)、Cr、Mo、W(YIA族)、Mn(VIIA族)、Zn(IIB族)、Al(IIIB族)、Si(IVB族)、P、Sb(VB族)から選ばれる1種以上の金属酸化物からなる微粒子であり、
金属酸化物微粒子の平均粒子径が10nm〜5μmの範囲にある[1]の触媒の製造方法。
[3]前記金属酸化物微粒子分散液がさらに繊維状微粒子を含み、該繊維状微粒子の長(L)が50nm〜10μm、径(D)が10nm〜2μm、アスペクト比(L)/(D)が5〜1,00
0の範囲にある[1]の触媒の製造方法。
[4]前記繊維状微粒子の含有量が固形分として全担体用金属酸化物微粒子の0.1〜20
重量%の範囲にある[3]の触媒の製造方法。
[5]前記担体用金属酸化物微粒子分散液が、繊維状微粒子とともに、平均粒子径2〜30
0nmの範囲にあるコロイド粒子を含む[3]または[4]の触媒の製造方法。
[6]前記コロイド粒子の含有量が固形分として全担体用金属酸化物微粒子の0.1〜20
重量%の範囲にあることを特徴とする[5]の触媒の製造方法。
[7]前記活性成分用金属塩がRu、Pt、Pd、Rh、Ir、Ni、Fe、Co(VIII族)およびAu、Ag、C
u(IB族)から選ばれる1種以上の金属の塩である[1]〜[6]の触媒の製造方法。
[8]前記活性成分金属の析出量が、最終的に得られる触媒中の0.1〜20重量%の範囲
にある[7]の触媒の製造方法。
[9]形成される金属酸化物微粒子層の厚さを10nm〜1mmの範囲とすることを特徴とする[1]〜[8]の触媒の製造方法。
That is, the method for producing a catalyst according to the present invention is as follows.
[1] A conductive base material is immersed in a metal oxide fine particle dispersion containing metal oxide fine particles for support, and a direct current voltage is applied to the conductive base material and the dispersion to form metal oxide fine particles on the conductive base material. A method for producing a catalyst comprising: forming a layer, adding an aqueous metal salt solution for active ingredient, and precipitating the active ingredient metal on the surface of the support metal oxide fine particles.
[2] The support metal oxide is Mg, Ca, Ba (Group IIA), lanthanoid (Group IIIA), Ti, Zr (Group IVA), V (Group VA), Cr, Mo, W (Group YIA), Fine particles comprising one or more metal oxides selected from Mn (Group VIIA), Zn (Group IIB), Al (Group IIIB), Si (Group IVB), P, Sb (Group VB),
The method for producing a catalyst according to [1], wherein the average particle diameter of the metal oxide fine particles is in the range of 10 nm to 5 μm.
[3] The metal oxide fine particle dispersion further contains fibrous fine particles, the length (L) of the fibrous fine particles is 50 nm to 10 μm, the diameter (D) is 10 nm to 2 μm, and the aspect ratio (L) / (D) Is 5 to 1,000
The method for producing a catalyst according to [1], which is in a range of 0.
[4] The content of the fibrous fine particles is 0.1 to 20 of the metal oxide fine particles for all carriers as a solid content.
[3] The method for producing a catalyst in the range of% by weight.
[5] The carrier-use metal oxide fine particle dispersion, together with fibrous fine particles, has an average particle size of 2 to 30
A method for producing a catalyst according to [3] or [4], comprising colloidal particles in the range of 0 nm.
[6] The content of the colloidal particles is 0.1 to 20 of the metal oxide fine particles for all carriers as a solid content.
[5] The method for producing a catalyst according to [5], wherein the catalyst is in the range of% by weight.
[7] The active ingredient metal salt is Ru, Pt, Pd, Rh, Ir, Ni, Fe, Co (Group VIII) and Au, Ag, C
A method for producing a catalyst according to [1] to [6], which is a salt of one or more metals selected from u (Group IB).
[8] The method for producing a catalyst according to [7], wherein the amount of the active component metal deposited is in the range of 0.1 to 20% by weight in the finally obtained catalyst.
[9] The method for producing a catalyst according to [1] to [8], wherein the thickness of the metal oxide fine particle layer to be formed is in the range of 10 nm to 1 mm.

本発明によれば、導電性基材の表面に担体用金属酸化物微粒子と活性成分用金属成分とからなる触媒層を極めて容易に形成することができ、従来の方法のような成型工程、洗浄工程、還元工程を必ずしも必要とせず、形成された触媒層は導電性基材への密着性がよく、耐摩耗性、強度等に優れており、活性、選択性および経済性にも優れた触媒の製造方法を提供することができる。特に、従来の方法では困難であった微細な目開きの穴を多数有するハニカム基材等にも均一で密着性、耐摩耗性、強度等に優れた触媒層を形成することができ、さらに洗浄工程、還元工程等を必ずしも必要としないので、煩雑な工程も必要としない。   According to the present invention, a catalyst layer composed of metal oxide fine particles for carrier and metal component for active ingredient can be very easily formed on the surface of the conductive substrate, and the molding process and cleaning as in the conventional method can be performed. The process and reduction process are not necessarily required, and the formed catalyst layer has good adhesion to the conductive substrate, is excellent in wear resistance, strength, etc., and is also excellent in activity, selectivity and economy. The manufacturing method of can be provided. In particular, it is possible to form a uniform catalyst layer with excellent adhesion, wear resistance, strength, etc. even on a honeycomb substrate having a large number of fine openings, which was difficult with the conventional method, and further cleaning. Since a process, a reduction process, etc. are not necessarily required, a complicated process is not required.

以下、本発明に係る触媒の製造方法ついて具体的に説明する。
本発明に係る触媒の製造方法は、担体用金属酸化物微粒子を含む金属酸化物微粒子分散液に導電性基材を浸漬し、導電性基材と分散液に直流電圧を印加して導電性基材上へ金属酸化物微粒子層を形成した後、活性成分用金属塩水溶液を添加し、担体用金属酸化物微粒子表面に活性成分用金属を析出させることを特徴としている。
Hereafter, the manufacturing method of the catalyst based on this invention is demonstrated concretely.
The method for producing a catalyst according to the present invention comprises immersing a conductive substrate in a metal oxide fine particle dispersion containing metal oxide fine particles for support, and applying a DC voltage to the conductive substrate and the dispersion to form a conductive group. After the metal oxide fine particle layer is formed on the material, an active ingredient metal salt aqueous solution is added to deposit the active ingredient metal on the surface of the support metal oxide fine particles.

導電性基材
本発明に用いる基材としては導電性を有していれば特に制限はなく従来公知の基材を用いることができる。
Conductive substrate The substrate used in the present invention is not particularly limited as long as it has conductivity, and a conventionally known substrate can be used.

具体的にはアルミニウム、錫、各種ステンレス等の金属製、または、ガラス、酸化チタン、コージライト、炭化ケイ素、窒化ケイ素等からなるセラミックス製の絶縁性基材上に導電膜を形成した導電性の基材などが使用される。絶縁性基材上の導電膜としてはアルミ、錫、金、銀、銅等の金属膜の他、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)等の導電性を有する金属酸化物からなる膜が挙げられる。   Specifically, a conductive film in which a conductive film is formed on an insulating base material made of metal such as aluminum, tin, various stainless steels, or ceramics made of glass, titanium oxide, cordierite, silicon carbide, silicon nitride, or the like. A substrate or the like is used. Conductive metal oxides such as aluminum, tin, gold, silver, copper, etc. as well as conductive metal oxides such as tin-doped indium oxide (ITO) and antimony-doped tin oxide (ATO) The film | membrane which consists of is mentioned.

基材の形状としては、平板、波板、管、ハニカム基材等が挙げられる。とくにハニカム基材は、従来の製造方法では触媒を担持させること自体が、形状が複雑であるために煩雑な工程を必要とするだけでなく、形成した触媒層にクラックの発生などの強度や耐磨耗性などが必ずしも満足するものではなかった。しかしながら、本発明によれば、極めて容易に、クラック等を生じることなく、強度、耐摩耗性等に優れた担体用金属酸化物微粒子層と該微粒子層に担持された活性成分金属とからなる触媒層を形成できる。したがって、本発明の製造方法はとりわけハニカム基材などの形状が複雑な基材に好適である。   Examples of the shape of the substrate include a flat plate, a corrugated plate, a tube, and a honeycomb substrate. In particular, the honeycomb substrate is not only complicated to support the catalyst itself in the conventional manufacturing method, but also requires complicated steps, and the formed catalyst layer has strength and resistance to cracking. Abrasion and the like were not always satisfactory. However, according to the present invention, a catalyst comprising a metal oxide fine particle layer for a carrier excellent in strength, wear resistance and the like, and an active component metal supported on the fine particle layer, without causing cracks or the like, is very easily obtained. Layers can be formed. Therefore, the production method of the present invention is particularly suitable for a substrate having a complicated shape such as a honeycomb substrate.

ハニカム型基材を用いる場合、外径が20〜200mmの範囲にある断面を有し、目開きが1〜30mmの範囲にあり、壁厚が0.01〜5mmの範囲にあり、長さが30〜1000mmの範囲にあることが好ましい。   When using a honeycomb-type substrate, the outer diameter has a cross-section in the range of 20 to 200 mm, the opening is in the range of 1 to 30 mm, the wall thickness is in the range of 0.01 to 5 mm, and the length is It is preferable that it exists in the range of 30-1000 mm.

外径が20mm未満のものは小さいためにセル数も少なく、用法に制限があることがある。
外径が200mmを超えると担体用金属酸化物微粒子層の形成が不均一となる場合があり、この場合は外径が200mm以下のものを積層して用いることが有利な場合がある。
Since those having an outer diameter of less than 20 mm are small, the number of cells is small, and usage may be limited.
If the outer diameter exceeds 200 mm, the formation of the metal oxide fine particle layer for the carrier may become non-uniform. In this case, it may be advantageous to use a laminate having an outer diameter of 200 mm or less.

また、目開きが0.5mm未満の場合は目開きが狭すぎるために触媒等として用いた場合に目詰まりを起こすことがあり、また、空塔速度が大きい反応には不向きでハニカム触媒を用いる効果が充分得られないことがある。   In addition, when the opening is less than 0.5 mm, the opening is too narrow, which may cause clogging when used as a catalyst or the like. In addition, the honeycomb catalyst is not suitable for a reaction with a high superficial velocity. The effect may not be obtained sufficiently.

目開きが30mmを超えると、触媒層を形成した後も目開きが大きすぎ、触媒等として用いた場合に反応ガスの吹き抜けがおこり、充分な触媒性能が得られないことがある。
なお、本発明の目開きは形状を特に限定するものではないが、目開きとは、円形、楕円形、四角形等で一般的に採用されるセルの径をいい、円形では直径、楕円形では長径と短径何れかまたは平均値、正方形では1辺の長さ、長方形では縦または横の長さの何れかまたはその平均値をいう。
If the opening exceeds 30 mm, the opening is too large even after the formation of the catalyst layer, and when used as a catalyst or the like, reaction gas may be blown out, and sufficient catalyst performance may not be obtained.
The aperture of the present invention is not particularly limited in shape, but the aperture refers to the diameter of a cell generally adopted in a circle, an ellipse, a rectangle, etc. Either the major axis or the minor axis or an average value, a square is the length of one side, and a rectangle is either the vertical or horizontal length or an average value thereof.

また、壁厚が0.01mm未満の場合は基材の材質にもよるが、ハニカム基材の強度が弱くなり、ハニカム触媒の製造工程、搬送、充填あるいは使用中等に変形を起こすことがある。壁厚が5mmを超えるものは、用途としての必要性がなく、非常に重量が嵩んだり、経済性の低下に加えてセル数が少なくなる欠点がある。   When the wall thickness is less than 0.01 mm, although depending on the material of the base material, the strength of the honeycomb base material is weakened, and deformation may occur during the manufacturing process, transportation, filling or use of the honeycomb catalyst. When the wall thickness exceeds 5 mm, there is no necessity as an application, and there is a disadvantage that the weight is very increased and the number of cells is reduced in addition to a decrease in economic efficiency.

また、ハニカム基材の長さが30mm未満のものは使用が不便であり、ハニカム基材の長さが1000mmを超えると均一な微粒子層の形成や均一な活性成分金属の析出が困難となったり、このため性能が充分発揮できない場合がある。   In addition, a honeycomb substrate having a length of less than 30 mm is inconvenient to use, and if the honeycomb substrate has a length exceeding 1000 mm, it is difficult to form a uniform fine particle layer or to deposit a uniform active ingredient metal. For this reason, the performance may not be sufficiently exhibited.

なお、本発明に用いる導電性ハニカム基材の形状は、立方体、円柱状、コルゲート等所望の形状を採用することができ、また、目開きの形状も円形、三角形、四角形他種々の形状を採用することができる。   In addition, the shape of the conductive honeycomb substrate used in the present invention can adopt a desired shape such as a cube, a columnar shape, a corrugated shape, and the shape of the opening can also be various shapes such as a circle, a triangle, a rectangle, etc. can do.

また、基材として、従来公知の平板状、波板、管等の基材を用いることができる。全体の大きさ(縦×横、長さ)が1000mmを越えると、均一な微粒子層の形成が困難で、電圧によっては微粒子層が形成できない部位が生じることがあり、このため、他の方法に対する優位性が得られないこともある。   Moreover, conventionally well-known base materials, such as flat form, a corrugated sheet, a pipe | tube, can be used as a base material. When the overall size (vertical x horizontal, length) exceeds 1000 mm, it is difficult to form a uniform fine particle layer, and a portion where the fine particle layer cannot be formed may be generated depending on the voltage. There may be no advantage.

本発明では、表面に凹凸を有する導電性基材を用いることができる。しかしながら、本発明では金属酸化物微粒子に後述する繊維状微粒子を配合して用いるので、必ずしも表面に凹凸を有する導電性基材を用いる必要はない。このため、凹凸を形成することもないので経済性に優れている。
金属酸化物微粒子
本発明に用いる担体用金属酸化物微粒子としては直流電圧を印加して基材上に付着させることができれば特に制限はなく、従来公知の担体として用いられる金属酸化物の微粒子を用いることができる。
In this invention, the electroconductive base material which has an unevenness | corrugation on the surface can be used. However, in the present invention, since the fibrous fine particles described later are used in combination with the metal oxide fine particles, it is not always necessary to use a conductive substrate having irregularities on the surface. For this reason, since unevenness is not formed, it is excellent in economical efficiency.
Metal Oxide Fine Particles The metal oxide fine particles for carrier used in the present invention are not particularly limited as long as they can be applied on a substrate by applying a DC voltage, and metal oxide fine particles conventionally used as a carrier are used. be able to.

なかでもIIA族、IIIA族、IVA族、VA族、VIA族、VIIA族、VIII族、IIB族、IIIB族、IVB
族、VB族元素の金属酸化物からなる微粒子が好適に用いられる。具体的にはMg、Ca、Ba、La、Ce、Ti、Zr、V、Cr、Mo、W、Mn、Zn、Al、Si、P、Sb、Co、Ni、Ruから選ばれる1種以上の元素の金属酸化物からなる金属酸化物粒子(複合酸化物微粒子を含む)を好適に用いることができる。より好ましくは、Mg、Ti、Zr、W、Zn、Al、Si、P、Co、Ni、Ruである。
Among them, IIA, IIIA, IVA, VA, VIA, VIIA, VIIA, VIII, IIB, IIIB, IVB
Fine particles composed of Group VB group metal oxides are preferably used. Specifically, one or more selected from Mg, Ca, Ba, La, Ce, Ti, Zr, V, Cr, Mo, W, Mn, Zn, Al, Si, P, Sb, Co, Ni, Ru Metal oxide particles (including composite oxide fine particles) composed of elemental metal oxides can be suitably used. More preferably, they are Mg, Ti, Zr, W, Zn, Al, Si, P, Co, Ni, Ru.

このような金属酸化物微粒子の平均粒子径は10nm〜5μm、さらには20nm〜1μmの範囲にあることが好ましい。
金属酸化物微粒子の平均粒子径が10nm未満の場合は、微粒子層を形成し、ついで活性成分金属を析出させた後、乾燥、必要に応じて還元などの加熱処理した際に微粒子層の収縮が激しく、微粒子層にクラックが生じることがある。
The average particle diameter of such metal oxide fine particles is preferably in the range of 10 nm to 5 μm, more preferably 20 nm to 1 μm.
When the average particle diameter of the metal oxide fine particles is less than 10 nm, the fine particle layer is formed, and after the active component metal is deposited, the fine particle layer shrinks when subjected to heat treatment such as drying and reduction if necessary. Severely, the fine particle layer may crack.

金属酸化物微粒子の平均粒子径が5μmを超えると、導電性基材上への積層が不充分になったり、積層しても基材との密着性が不充分となることがある。
繊維状微粒子
本発明では、前記金属酸化物微粒子分散液は、必要に応じて繊維状微粒子を含んでいてもよい。繊維状微粒子としては、前記したと同様の成分の繊維状金属酸化物微粒子を用いることができる。このとき、繊維状微粒子と金属酸化物微粒子とは同一成分であっても異なる成分であってもよい。繊維状微粒子は、基材表面に凹凸を形成して、金属酸化物微粒子層と基材との密着性を高める作用を有する。
When the average particle diameter of the metal oxide fine particles exceeds 5 μm, the lamination on the conductive substrate may be insufficient, or the adhesion to the substrate may be insufficient even when the particles are laminated.
Fibrous fine particles In the present invention, the metal oxide fine particle dispersion may contain fibrous fine particles as necessary. As the fibrous fine particles, fibrous metal oxide fine particles having the same components as described above can be used. At this time, the fibrous fine particles and the metal oxide fine particles may be the same component or different components. The fibrous fine particles have an effect of increasing the adhesion between the metal oxide fine particle layer and the substrate by forming irregularities on the surface of the substrate.

繊維状微粒子としては、繊維状シリカ、繊維状アルミナ、繊維状酸化チタン等が好適に使用される。
繊維状微粒子は長さが50nm〜10μm、好ましくは100nm〜5μmの範囲にあり、径が10nm〜2μm、好ましくは20nm〜2μmの範囲にあり、アスペクト比長さ/径が5〜1000、好ましくは10〜500の範囲である。
As the fibrous fine particles, fibrous silica, fibrous alumina, fibrous titanium oxide and the like are preferably used.
The fibrous fine particles have a length of 50 nm to 10 μm, preferably 100 nm to 5 μm, a diameter of 10 nm to 2 μm, preferably 20 nm to 2 μm, and an aspect ratio length / diameter of 5 to 1000, preferably It is in the range of 10-500.

繊維状微粒子の大きさが上記範囲にあると形成される金属酸化物微粒子層と基材との密着性が向上するだけでなく、金属酸化物微粒子層は強度、耐摩耗性にも優れている。
繊維状微粒子の長さが短い場合は、繊維状である効果が充分に発現されず、形成される金属酸化物微粒子層と基材との密着性向上効果が不充分となることがある。繊維状微粒子の長さが長すぎても、繊維状粒子同士が顕著に交絡するようになるためか形成される金属酸化物微粒子層と基材との密着性向上効果が不充分となることがある。
When the size of the fibrous fine particles is in the above range, not only the adhesion between the formed metal oxide fine particle layer and the substrate is improved, but the metal oxide fine particle layer is also excellent in strength and wear resistance. .
When the length of the fibrous fine particles is short, the effect of being fibrous is not sufficiently exhibited, and the effect of improving the adhesion between the formed metal oxide fine particle layer and the substrate may be insufficient. Even if the length of the fibrous fine particles is too long, the effect of improving the adhesion between the formed metal oxide fine particle layer and the base material may be insufficient because the fibrous particles become significantly entangled with each other. is there.

繊維状微粒子の径が小さいものは、細すぎるので繊維状粒子自体が基材との密着性が不充分であり、また基材上への繊維状微粒子による凹凸形成効果が小さいためか形成される金属酸化物微粒子層と基材との密着性向上効果が不充分となることがある。   Those with small diameters of fibrous fine particles are too thin so that the fibrous particles themselves have insufficient adhesion to the substrate, and are also formed because the effect of forming irregularities by the fibrous fine particles on the substrate is small. The effect of improving the adhesion between the metal oxide fine particle layer and the substrate may be insufficient.

繊維状微粒子の径が大きくても、かえって太すぎるため繊維状粒子自体が基材との密着性が不充分となり、形成される金属酸化物微粒子層と基材との密着性が不充分となることがある。   Even if the diameter of the fibrous fine particles is large, the fibrous particles themselves are insufficiently adhered to the base material, and the adhesion between the formed metal oxide fine particle layer and the base material is insufficient. Sometimes.

また、アスペクト比が小さいと繊維状である効果が充分に発現されず、凹凸形成効果が小さいためか形成される金属酸化物微粒子層と基材との密着性向上効果が不充分となることがある。   Also, if the aspect ratio is small, the effect of being fibrous is not sufficiently exhibited, and the effect of improving the adhesion between the metal oxide fine particle layer to be formed and the substrate may be insufficient due to the small unevenness forming effect. is there.

アスペクト比が大きすぎると、繊維状粒子同士が交絡するようになるため形成される金属酸化物微粒子層と基材との密着性向上効果が不充分となることがある。
このような繊維状微粒子の使用量は、金属酸化物微粒子の重量に対し0.1〜20重量%、さらには0.5〜10重量%の範囲にあることが好ましい。
If the aspect ratio is too large, the fibrous particles are entangled with each other, so that the effect of improving the adhesion between the formed metal oxide fine particle layer and the substrate may be insufficient.
The amount of the fibrous fine particles used is preferably in the range of 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, based on the weight of the metal oxide fine particles.

繊維状粒子の使用量が少ないと、充分な基材との密着性が得られないことがある。また繊維状粒子の使用量が多すぎると、繊維状微粒子が基材表面上で凹凸の形成に寄与する粒子と金属酸化物微粒子層中にあって金属酸化物微粒子層の強度、耐摩耗性等の向上に寄与する粒子以外の過剰の繊維状粒子の使用量となり、このため基材との密着性や強度がさらに向上することもなく、かえって金属酸化物微粒子の割合が少なくなるために用いる反応の種類によっては活性、選択性等が不充分となることがある。   If the amount of fibrous particles used is small, sufficient adhesion to the substrate may not be obtained. If the amount of fibrous particles used is too large, the fibrous fine particles are in the metal oxide fine particle layer and the particles that contribute to the formation of irregularities on the substrate surface, and the strength, wear resistance, etc. of the metal oxide fine particle layer This is the amount of excess fibrous particles used other than the particles that contribute to the improvement of the reaction, so that the adhesion and strength with the substrate are not further improved, and the reaction used to reduce the proportion of metal oxide fine particles. Depending on the type, the activity, selectivity, etc. may be insufficient.

その他成分
さらに、本発明では、平均粒子径が2〜300nm、好ましくは5〜100nmの範囲にあるコロイド粒子を用いることができる。コロイド粒子としては粒子表面に帯電した粒
子であれば特に制限はないが酸化チタン、アルミナ、シリカ、シリカ・アルミナ、ジルコニア等のコロイド粒子が挙げられる。このようなコロイド粒子を含んでいると直流電圧を印加して金属酸化物微粒子を積層させる際に金属酸化物微粒子の積層が促進される傾向があり、バインダー効果として形成された金属酸化物微粒子層の強度、耐摩耗性が向上する場合がある。
Other components Further, in the present invention, colloidal particles having an average particle diameter of 2 to 300 nm, preferably 5 to 100 nm can be used. The colloidal particle is not particularly limited as long as it is a particle charged on the particle surface, and examples thereof include colloidal particles such as titanium oxide, alumina, silica, silica / alumina, and zirconia. When such colloidal particles are included, the metal oxide fine particle layer formed as a binder effect tends to be promoted when the metal oxide fine particles are laminated by applying a DC voltage. Strength and wear resistance may be improved.

なお、コロイド粒子は前記金属酸化物微粒子と同一金属酸化物の粒子となる場合であっても好適に用いることができる。
コロイド粒子の平均粒子径が小さい場合は、用いる金属酸化物微粒子の種類によっては分散液が不安定になり、金属酸化物微粒子の積層を促進する効果、形成された金属酸化物微粒子層の強度、耐摩耗性を向上する効果が得られない場合がある。コロイド粒子の平均粒子径が大きすぎると、コロイド粒子表面の帯電量が少なくなり、金属酸化物微粒子に付着して積層を促進する効果、金属酸化物微粒子同士を結合することによる金属酸化物微粒子層の強度、耐摩耗性を向上する効果が不充分となる場合がある。
The colloidal particles can be suitably used even when they are the same metal oxide particles as the metal oxide fine particles.
When the average particle size of the colloidal particles is small, the dispersion becomes unstable depending on the type of metal oxide fine particles used, the effect of promoting the lamination of the metal oxide fine particles, the strength of the formed metal oxide fine particle layer, The effect of improving the wear resistance may not be obtained. If the average particle size of the colloidal particles is too large, the amount of charge on the surface of the colloidal particles will be reduced, the effect of adhering to the metal oxide fine particles to promote lamination, the metal oxide fine particle layer by bonding metal oxide fine particles together There are cases where the effect of improving the strength and wear resistance is insufficient.

コロイド粒子の使用量は固形分として金属酸化物微粒子、繊維状微粒子の合計重量の0.1〜20重量%、さらには0.5〜15重量%の範囲にあることが好ましい。
コロイド粒子の使用量が少ない場合は、前記積層を促進する効果が不充分であり、かつ形成された金属酸化物微粒子層の強度、耐摩耗性を向上させる効果が不充分である。コロイド粒子の使用量が多すぎると、前記積層を促進する効果、金属酸化物微粒子層の強度、耐摩耗性を向上させる効果がさらに向上することもなく、かえって担体用金属酸化物微粒子の割合が少なくなることに加えて金属酸化物微粒子を被覆するようになるためか活性、選択性等触媒性能が不充分となることがある。
The amount of colloidal particles used is preferably in the range of 0.1 to 20% by weight, more preferably 0.5 to 15% by weight, based on the total weight of the metal oxide fine particles and the fibrous fine particles as a solid content.
When the amount of colloidal particles used is small, the effect of promoting the lamination is insufficient, and the effect of improving the strength and wear resistance of the formed metal oxide fine particle layer is insufficient. If the amount of colloidal particles used is too large, the effect of promoting the lamination, the effect of improving the strength and wear resistance of the metal oxide fine particle layer will not be further improved. In addition to the decrease, the catalyst performance such as activity and selectivity may be insufficient because the metal oxide fine particles are coated.

触媒の製造方法
本発明では使用する金属酸化物微粒子分散液は、上記した金属酸化物微粒子が分散媒に分散したものである。分散媒としては、通常、水が用いられるが、場合によってはアルコール類、ケトン類、グリコール類等が含まれていてもよく、これらは混合溶媒であってもよい。アルコール類としてはメタノール、エタノール、イソプロピルアルコール、ブタノール等、ケトン類としてはアセトンなどグリコール類としてエチレングリコール、プロピレングリコール等が挙げられる。
Method for Producing Catalyst The metal oxide fine particle dispersion used in the present invention is a dispersion of the above metal oxide fine particles in a dispersion medium. As the dispersion medium, water is usually used, but alcohols, ketones, glycols and the like may be included depending on the case, and these may be a mixed solvent. Examples of alcohols include methanol, ethanol, isopropyl alcohol, and butanol. Examples of ketones include acetone and glycols such as ethylene glycol and propylene glycol.

必要に応じて、繊維状微粒子、コロイド粒子を前記金属酸化物微粒子分散液に分散させる。
分散は公知の混合方法を特に制限無く使用できる。
If necessary, fibrous fine particles and colloidal particles are dispersed in the metal oxide fine particle dispersion.
For the dispersion, a known mixing method can be used without particular limitation.

分散液の固形分濃度(金属酸化物微粒子、繊維状微粒子およびコロイド粒子を含む場合その量も含む)は1〜30重量%、さらには2〜20重量%の範囲にあることが好ましい。固形分濃度が少ないと、積層させる基材表面の面積にもよるが、濃度が薄すぎて1回の操作で所望の厚さに積層できない場合があり、繰り返し積層操作を必要となる。固形分濃度が高すぎると、分散液の粘度が高くなり、積層した微粒子層の緻密度が低下し、強度、耐摩耗性が不充分となることがある。   The solid content concentration of the dispersion (including the amount of metal oxide fine particles, fibrous fine particles and colloidal particles) is preferably in the range of 1 to 30% by weight, more preferably 2 to 20% by weight. If the solid content concentration is low, depending on the area of the substrate surface to be laminated, the concentration may be too low to be laminated to a desired thickness by a single operation, which requires repeated lamination operations. If the solid concentration is too high, the viscosity of the dispersion increases, the density of the laminated fine particle layer decreases, and the strength and wear resistance may be insufficient.

本発明の触媒の製造方法では、まず、以上のようにして調製した分散液に導電性基材を浸漬し、導電性基材と分散液に直流電圧を印加する。通常、金属酸化物粒子の電荷の属性により、導電性基材が負極とするか正極となるかが決まる。通常は、前記した金属酸化物微粒子は、プラス荷電であることが多いので導電性基材を負極として、対極を正極とする。対極としては、溶出しないものであれば特に制限されないが、通常SUSなどが使用され
る。また、導電性基材と同じ素材のものを使用することも可能である。対極の形状としても特に制限されないが、通常は平板状のものが好適である。
In the method for producing a catalyst of the present invention, first, a conductive substrate is immersed in the dispersion prepared as described above, and a DC voltage is applied to the conductive substrate and the dispersion. Usually, the charge attribute of the metal oxide particles determines whether the conductive substrate is a negative electrode or a positive electrode. Usually, since the metal oxide fine particles described above are often positively charged, the conductive substrate is used as a negative electrode and the counter electrode is used as a positive electrode. The counter electrode is not particularly limited as long as it does not elute, but SUS or the like is usually used. It is also possible to use the same material as the conductive substrate. The shape of the counter electrode is not particularly limited, but a flat plate shape is usually preferable.

印加電圧は金属酸化物微粒子の種類、導電性基材の種類等によって異なるが1〜200V(DC)、さらには10〜100V(DC)の範囲にあることが好ましい。なお、通常直流電圧が印加される。   The applied voltage varies depending on the type of metal oxide fine particles, the type of conductive base material, etc., but is preferably in the range of 1 to 200 V (DC), more preferably 10 to 100 V (DC). In general, a DC voltage is applied.

印加電圧が小さいと、微粒子の積層が不充分となり、微粒子が斑に積層したり、積層に長時間を要することがある。印加電圧が高すぎると、積層速度は速いものの、得られる微粒子層の緻密度が低下し、強度、耐摩耗性が不充分となることがある。   When the applied voltage is small, the fine particles are not sufficiently stacked, and the fine particles may be stacked in spots, or the stacking may take a long time. If the applied voltage is too high, the lamination speed is high, but the density of the resulting fine particle layer is lowered, and the strength and wear resistance may be insufficient.

印加する時間は金属酸化物微粒子の種類および量等によって異なるが、概ね1〜60分程度である。
このようにして形成された担体用金属酸化物微粒子層は、印加電圧および印加時間、分散液の濃度によるが、厚さが100nm〜1mm、さらには200nm〜0.5mmの範囲にあることが好ましい。
The application time varies depending on the type and amount of the metal oxide fine particles, but is generally about 1 to 60 minutes.
The carrier metal oxide fine particle layer formed in this way preferably has a thickness in the range of 100 nm to 1 mm, more preferably 200 nm to 0.5 mm, depending on the applied voltage and time, and the concentration of the dispersion. .

担体用金属酸化物微粒子層の厚さが薄いと、触媒性能が不充分となることがあり、担体用金属酸化物微粒子層の厚さが厚すぎると微粒子層の積層が困難であったり、積層することができたとしても、基材への密着性が不充分であったり、微粒子層の強度、耐摩耗性等が不充分となることがある。   If the metal oxide fine particle layer for the support is thin, the catalyst performance may be insufficient. If the metal oxide fine particle layer for the support is too thick, it is difficult to laminate the fine particle layer. Even if it can be done, the adhesion to the substrate may be insufficient, or the strength of the fine particle layer, wear resistance, etc. may be insufficient.

本発明では、担体用金属酸化物微粒子を基板上に積層させた後、(1)分散液に所望の活
性成分用金属塩水溶液を添加し、引き続き直流電圧を印加して金属酸化物微粒子表面に活性成分用金属を析出させる。なお、(2)他の方法としては、別の活性成分用金属塩水溶液
を入れた容器に担体用金属酸化物微粒子を積層させた基材を浸漬し、同様に直流電圧を印加して金属酸化物微粒子表面に活性成分用金属を析出させることもできる。
In the present invention, after laminating metal oxide fine particles for support on a substrate, (1) adding a desired metal salt aqueous solution for active ingredient to the dispersion, and subsequently applying a DC voltage to the surface of the metal oxide fine particles. Deposit metal for active ingredient. (2) As another method, a metal oxide fine particle for carrier is immersed in a container containing another metal salt aqueous solution for active ingredient, and a metal voltage is applied by applying a DC voltage in the same manner. It is also possible to deposit the active ingredient metal on the surface of the fine particles.

活性成分用金属塩としては触媒活性成分として有用な従来公知の金属塩を用いることができる。なかでも、比較的低電圧の印加で容易に還元しうる金属塩が好適に用いられ、Ru、Pt、Pd、Rh、Ir、Ni、Fe、Co等のVIII族の金属の塩、Au、Ag、Cu等のIB族金属の塩から選ばれる1種以上の金属の塩が挙げられる。   As the metal salt for active ingredient, a conventionally known metal salt useful as a catalyst active ingredient can be used. Among them, metal salts that can be easily reduced by applying a relatively low voltage are preferably used, and group VIII metal salts such as Ru, Pt, Pd, Rh, Ir, Ni, Fe, Co, Au, Ag And one or more metal salts selected from Group IB metal salts such as Cu.

具体的にじは、塩化ルテニウム、硝酸ルテニウム、塩化白金酸、ジクロロテトラアミン白金、硝酸パラジウム、塩化パラジウム、硝酸ロジウム、塩化ロジウム、硝酸イリジウム、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、塩化第1鉄、塩化第2鉄、硝酸コバルト、塩化コバルト、硫酸コバルト、塩化金酸、硝酸銀、硝酸銅、硫酸銅等が挙げられる。   Specifically, ruthenium chloride, ruthenium nitrate, chloroplatinic acid, dichlorotetraamine platinum, palladium nitrate, palladium chloride, rhodium nitrate, rhodium chloride, iridium nitrate, nickel nitrate, nickel sulfate, nickel chloride, ferrous chloride, Examples include ferric chloride, cobalt nitrate, cobalt chloride, cobalt sulfate, chloroauric acid, silver nitrate, copper nitrate, and copper sulfate.

このような金属塩の濃度は金属塩が必要量溶解していれば特に制限はないが、通常、金属としての濃度が0.1〜20重量%の範囲にあることが望ましい。
活性成分用金属を析出させる際の印加電圧は金属塩の種類、導電性基材の種類等によって異なるが1〜200V(DC)、さらには10〜100V(DC)の範囲にあることが好ましい。
The concentration of such a metal salt is not particularly limited as long as the required amount of the metal salt is dissolved, but it is usually desirable that the concentration of the metal salt be in the range of 0.1 to 20% by weight.
The applied voltage for depositing the active ingredient metal varies depending on the type of metal salt, the type of conductive substrate, etc., but is preferably in the range of 1 to 200 V (DC), more preferably 10 to 100 V (DC).

印加電圧が小さい場合は、金属種によっては金属の還元析出が不充分であったり、還元析出に長時間を要したりすることがある。
印加電圧が高すぎると、還元析出が早すぎるためか担体用金属酸化物微粒子層の上層表面に高濃度で析出したり、メッキ状態で析出することがあり、触媒性能(活性、選択性等)が不充分となることがある。
When the applied voltage is low, depending on the metal species, reduction deposition of the metal may be insufficient, or reduction deposition may take a long time.
If the applied voltage is too high, it may be deposited at a high concentration on the upper surface of the metal oxide fine particle layer for support, or may be deposited in a plated state, because the reduction deposition is too early. Catalyst performance (activity, selectivity, etc.) May be insufficient.

印加する時間は金属塩の種類および量等によって異なるが、概ね1〜60分程度である。
金属を析出させた後、基材を取り出し、必要に応じて洗浄し、乾燥し、さらに必要に応じて還元処理してもよい。
The application time varies depending on the type and amount of the metal salt, but is generally about 1 to 60 minutes.
After depositing the metal, the substrate may be taken out, washed if necessary, dried, and further reduced if necessary.

本発明では、金属塩を還元して金属を金属酸化物微粒子層に析出させる一方、金属塩のアニオンの殆どは導電性基材の対極上または液中に残存するので、触媒層中に残存するアニオンは少量となる。このため、活性、選択性等にアニオンが影響しない場合は洗浄する必要はないが、必要に応じて洗浄してもよい。洗浄方法としては前記アニオンを除去できれば特に制限はないが、純水、温水等を用いて容易に除去することができる。   In the present invention, the metal salt is reduced to deposit the metal in the metal oxide fine particle layer, while most of the anion of the metal salt remains on the counter electrode of the conductive substrate or in the liquid, and therefore remains in the catalyst layer. The anion becomes a small amount. For this reason, when an anion does not influence activity, selectivity, etc., it is not necessary to wash, but you may wash as needed. The washing method is not particularly limited as long as the anion can be removed, but can be easily removed using pure water, warm water or the like.

ついで、乾燥するが、乾燥方法は従来公知の方法を採用することができ、風乾することも可能であるが、通常50〜200℃で0.2〜5時間程度乾燥する。
本発明の方法では、活性成分が金属状態で析出しているので乾燥後の触媒をそのまま反応に用いて充分な性能が得られるが、乾燥後、加熱処理あるいは還元処理をすることもできる。
Subsequently, although it dries, a conventionally well-known method can be employ | adopted for the drying method, and although it can also air dry, it is normally dried at 50-200 degreeC for about 0.2 to 5 hours.
In the method of the present invention, since the active component is precipitated in the metal state, the catalyst after drying can be used for the reaction as it is, and sufficient performance can be obtained. However, after drying, heat treatment or reduction treatment can also be performed.

還元処理は、通常、200〜500℃、さらには300〜400℃の比較的低温で充分であり、処理時間は概ね1〜48時間である。還元処理する際の雰囲気は通常水素ガスあるいは不活性ガスと水素ガスの混合ガス雰囲気が採用される。なお、金属成分の種類によってはこのような還元処理に代えて不活性ガス雰囲気下、上記温度範囲で加熱処理しても充分な性能が得られる場合がある。   The reduction treatment is usually sufficient at a relatively low temperature of 200 to 500 ° C., further 300 to 400 ° C., and the treatment time is about 1 to 48 hours. The atmosphere for the reduction treatment is usually hydrogen gas or a mixed gas atmosphere of inert gas and hydrogen gas. Depending on the type of the metal component, sufficient performance may be obtained even when heat treatment is performed in the above temperature range under an inert gas atmosphere instead of such reduction treatment.

析出した活性成分用金属の含有量は最終的に得られる触媒(導電性基材を除く)中の0.1〜20重量%、さらには0.2〜15重量%の範囲にあることが好ましい。
活性成分用金属の含有量が少ないと活性が不充分となることがあり、活性成分用金属の含有量が多すぎると、活性成分金属が多すぎて金属成分の粒子径が大きくなりすぎて活性がむしろ低下することがある。
The content of the deposited metal for the active ingredient is preferably in the range of 0.1 to 20% by weight, more preferably 0.2 to 15% by weight in the finally obtained catalyst (excluding the conductive substrate). .
If the content of the metal for the active ingredient is low, the activity may be insufficient. If the content of the metal for the active ingredient is too high, the active ingredient metal is too much and the particle size of the metal component becomes too large and active. May rather decline.

以上のようにして、基板上に形成された触媒層は、厚さが10nm〜1mm、さらには20nm〜0.5mmの範囲にあることが好ましい。
触媒層の厚さが薄いと触媒性能が不充分となることがあり、触媒層の厚さが厚すぎると前記したように担体用金属酸化物微粒子層の積層が困難であったり、積層することができたとしても、基材への密着性が不充分であったり、微粒子層の強度、耐摩耗性等が不充分となることがある。
As described above, the catalyst layer formed on the substrate preferably has a thickness in the range of 10 nm to 1 mm, more preferably 20 nm to 0.5 mm.
If the thickness of the catalyst layer is thin, the catalyst performance may be insufficient. If the thickness of the catalyst layer is too thick, it is difficult or difficult to stack the metal oxide fine particle layer for the carrier as described above. Even if it is possible, the adhesion to the base material may be insufficient, and the strength, abrasion resistance, etc. of the fine particle layer may be insufficient.

[実施例]
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
繊維状微粒子(1)の調製
ルチル型酸化チタン粉末(商品名CR-EL、石原産業(株)製)60gを濃度40重量%の
NaOH水溶液10Lに混合した。この酸化チタン粉末混合アルカリ水溶液をオートクレ
ーブに充填し、150℃で25時間撹拌しながら水熱処理した。その後、室温までに冷却し、濾過分離し、1Nの塩酸20Lを掛けて洗浄し、ついで、120℃で16時間乾燥し
、ついで500℃で焼成して酸化チタンの繊維状微粒子(1)を調製した。繊維状微粒子(1)の長さ(L)、径(D)、アスペクト比(L/D)を測定した。結果を表1に示す。
[Example]
Hereinafter, although an example explains, the present invention is not limited by these examples.
[Example 1]
Preparation of fibrous fine particles (1) 60 g of rutile type titanium oxide powder (trade name CR-EL, manufactured by Ishihara Sangyo Co., Ltd.) was mixed with 10 L of NaOH aqueous solution having a concentration of 40% by weight. This autoclave was filled with this titanium oxide powder mixed alkali aqueous solution and hydrothermally treated with stirring at 150 ° C. for 25 hours. Then, it is cooled to room temperature, separated by filtration, washed with 20 L of 1N hydrochloric acid, then dried at 120 ° C. for 16 hours, and then fired at 500 ° C. to prepare titanium oxide fibrous fine particles (1). did. The length (L), diameter (D), and aspect ratio (L / D) of the fibrous fine particles (1) were measured. The results are shown in Table 1.

金属酸化物微粒子(1)の調製
塩化ジルコニウム水溶液(第1稀元素化学工業(株)製:ジルコンゾール、ZrO2
度25.1重量%)329.5gと硝酸コバルト(関西化学(株)製:CoO濃度25.7
7重量%)260.6gとを純水3630gに溶解した混合水溶液を調製した。
Preparation of metal oxide fine particles (1) Zirconium chloride aqueous solution (manufactured by Daiichi Elemental Chemical Co., Ltd .: zirconazole, ZrO 2 concentration 25.1% by weight) and 329.5 g of cobalt nitrate (manufactured by Kansai Chemical Co., Ltd.) CoO concentration 25.7
(7 wt%) A mixed aqueous solution prepared by dissolving 260.6 g in 3630 g of pure water was prepared.

水酸化ナトリウム(関東化学(株)製)129.9gを純水11000gに溶解したアルカリ水溶液を室温で撹拌しながら、これに上記混合水溶液を10分で添加して水酸化ジルコニウム、水酸化コバルトの混合ヒドロゲルを調製した。   While stirring an alkaline aqueous solution in which 129.9 g of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was dissolved in 11000 g of pure water at room temperature, the above mixed aqueous solution was added in 10 minutes to add zirconium hydroxide and cobalt hydroxide. A mixed hydrogel was prepared.

ついで、70℃で2時間熟成した後、濃度63重量%の硝酸を用いてヒドロゲルのpHを7.5〜8になるように調整した。その後、ヒドロゲルを濾過し、洗浄し、120℃で乾燥し、ついで、500℃で2時間焼成してZrO2・CoO複合酸化物を得た。これを粉
砕して平均粒子径1.4μmの粒子とし、金属酸化物微粒子(1)を調製した。金属酸化物
微粒子(1)の組成を表1に示した。
Next, after aging at 70 ° C. for 2 hours, the pH of the hydrogel was adjusted to 7.5 to 8 using nitric acid having a concentration of 63% by weight. Thereafter, the hydrogel was filtered, washed, dried at 120 ° C., and then calcined at 500 ° C. for 2 hours to obtain a ZrO 2 · CoO composite oxide. This was pulverized into particles having an average particle diameter of 1.4 μm to prepare metal oxide fine particles (1). The composition of the metal oxide fine particles (1) is shown in Table 1.

金属酸化物微粒子分散液(1)の調製
金属酸化物微粒子(1)80gを純水500gに分散させ、撹拌しながらコロイド粒子と
してチタニアゾル(触媒化成工業(株)製:HPW-18NR、平均粒子径18nm、TiO2濃度10重量%、分散媒:水)25gおよび繊維状微粒子(1)20gを加えた。ついで、30
分撹拌した後、20分間超音波を照射して金属酸化物微粒子分散液(1)を調製した。
金属酸化物微粒子層付基材(1)の調製
500mlのガラスビーカーに金属酸化物微粒子分散液(1)400gを入れ、この分散
液に負極としてハニカム基材(新日本製鉄(株)製:外径30mm、長さ50mm、壁厚30μm、目開き200cpsi、SUS製)を、正極としてSUS製(ハニカム基材と同材質)の5cm×5cmの平板を挿入した。金属酸化物微粒子分散液(1)をマグネチックス
ターラーで攪拌しながら、1mmφのSUS線で直流電源として直流電圧装置(菊水電気(株)型式PAD35―10L)と正極および負極を接続し、50V(DC)の電圧を5分
間印加して金属酸化物微粒子層を形成した。ついで、微粒子層を形成したハニカム基材を取り出し、120℃で1時間乾燥して金属酸化物微粒子層付基材(1)を調製した。
Preparation of Metal Oxide Fine Particle Dispersion (1) Disperse 80 g of metal oxide fine particles (1) in 500 g of pure water and stir as colloidal particles as titania sol (Catalyst Chemical Industries, Ltd .: HPW-18NR, average particle size) 18 g, TiO 2 concentration 10% by weight, dispersion medium: water (25 g) and fibrous fine particles (1) 20 g were added. Next, 30
After stirring for a minute, a metal oxide fine particle dispersion (1) was prepared by irradiation with ultrasonic waves for 20 minutes.
Preparation of substrate with metal oxide fine particle layer (1) 400 g of a metal oxide fine particle dispersion (1) is put in a 500 ml glass beaker, and a honeycomb substrate (manufactured by Nippon Steel Corporation): outside as a negative electrode in this dispersion A 5 cm × 5 cm flat plate made of SUS (the same material as the honeycomb substrate) was inserted as a positive electrode with a diameter of 30 mm, a length of 50 mm, a wall thickness of 30 μm, an opening of 200 cpsi, and made of SUS. While stirring the metal oxide fine particle dispersion (1) with a magnetic stirrer, a DC voltage device (Kikusui Electric Co., Ltd. model PAD35-10L) was connected as a DC power source with a 1 mmφ SUS wire, and 50 V ( DC) voltage was applied for 5 minutes to form a metal oxide fine particle layer. Next, the honeycomb substrate on which the fine particle layer was formed was taken out and dried at 120 ° C. for 1 hour to prepare a substrate (1) with a metal oxide fine particle layer.

触媒(1)の調製
250mlのガラスビーカーにRuO2として濃度5重量%の硝酸ルテニウム(小島化
学(株)製)100gを入れ、この中に負極として金属酸化物微粒子層付基材(1)を入れ
、直流電圧装置(菊水電気(株)型式PAD35―10L)と正極および負極を1mmφ
のSUS線で接続し、マグネチックスターラーで攪拌しながら、40V(DC)の電圧を、2分間印加しルテニウムを析出させた。
Preparation of catalyst (1) In a 250 ml glass beaker, 100 g of ruthenium nitrate (manufactured by Kojima Chemical Co., Ltd.) having a concentration of 5% by weight as RuO 2 was placed, and a substrate (1) with a metal oxide fine particle layer as a negative electrode was placed therein. Put the DC voltage device (Kikusui Electric Co., Ltd. model PAD35-10L) and the positive and negative electrodes to 1mmφ
The SUS wire was connected, and while stirring with a magnetic stirrer, a voltage of 40 V (DC) was applied for 2 minutes to precipitate ruthenium.

ついで、金属酸化物微粒子層付基材(1)を取り出し、純水100gで充分洗浄し、12
0℃で3時間乾燥した。その後、窒素中で500℃、2時間加熱処理してルテニウムを担持した触媒(1)を調製した。
Subsequently, the base material (1) with the metal oxide fine particle layer is taken out and sufficiently washed with 100 g of pure water.
Dry at 0 ° C. for 3 hours. Then, the catalyst (1) carrying ruthenium was prepared by heat treatment in nitrogen at 500 ° C. for 2 hours.

得られた触媒(1)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
以下のようにして評価した。結果および担持金属量を表1に示した。
金属酸化物微粒子層の厚さ
電着されたハニカム基材試料(1)をエポキシ樹脂で固め、金きり鋸で輪切りに切断し、
断面を研磨すし、この断面を走査型電子顕微鏡(SEM:日立製作所(株)製)で撮影し、写真上でノギスにより膜厚を測定し、結果を表に示した。
With respect to the obtained catalyst (1), the thickness, adhesion, and uniformity of the fine particle layer of the metal oxide fine particle layer were evaluated as follows. The results and the amount of supported metal are shown in Table 1.
Honeycomb base material sample (1) electrodeposited with metal oxide fine particle layer was hardened with epoxy resin, cut into round pieces with a gold saw,
The cross section was polished, the cross section was photographed with a scanning electron microscope (SEM: manufactured by Hitachi, Ltd.), the film thickness was measured with a caliper on the photograph, and the results are shown in the table.

密着性
ハニカム基材外表面に電着した触媒層を親指の腹で擦り、
親指に触媒粉が全然付かない ◎
親指に触媒分が多少付く ○
親指で擦ると触媒分が剥離する ×
金属酸化物微粒子層の均一性
SEM写真より目視で膜の均一性を判断した。
ハニカム基材に触媒が均一な膜を形成していた。 ◎
ハニカム基材に触媒が一部不均一に電着されていた。 ○
ハニカム基材に触媒がマダラに電着されていた。 △
ハニカム基材に触媒が電着されていなかった。 ×
性能評価
触媒(1)について、下記の方法でCOのメタネーション反応を行い、触媒性能を評価し、
結果を表に示した。
Rub the catalyst layer electrodeposited onto the outer surface of the adhesive honeycomb substrate with the belly of the thumb,
There is no catalyst powder on the thumb.
Some amount of catalyst on the thumb ○
Rub the catalyst with your thumb. ×
Uniformity of the metal oxide fine particle layer The film uniformity was visually determined from an SEM photograph.
A uniform catalyst film was formed on the honeycomb substrate. ◎
The catalyst was partially electrodeposited unevenly on the honeycomb substrate. ○
The catalyst was electrodeposited on the honeycomb substrate. △
The catalyst was not electrodeposited on the honeycomb substrate. ×
Performance evaluation The catalyst (1) was subjected to CO methanation reaction by the following method to evaluate the catalyst performance,
The results are shown in the table.

触媒性能
固定床焼流通式反応装置の反応管に触媒(1)を装填後、水素ガス(窒素50Vol%混合
ガス)を流しながら、500℃で、1時間還元した。ついで、160℃まで降温し、反応ガス(組成CO:5vol%、CO2:20vol%、CH4:2vol%、H2:バラン
ス)をSV:2000hr-1になるように流通させ、約1時間後の定常状態での生成ガスをガスクロマトグラーフイーおよび赤外分光型ガス濃度計で分析した。CO濃度は20ppmと良好な結果を得た。
[実施例2]
触媒(2)の調製
実施例1において、20V(DC)の電圧を4分間印加した以外は同様にして触媒(2)を
調製した。
Catalyst performance After loading the catalyst (1) into the reaction tube of the fixed bed firing flow reactor, the catalyst was reduced at 500C for 1 hour while flowing hydrogen gas (50% by volume of nitrogen mixed gas). Next, the temperature was lowered to 160 ° C., and the reaction gas (composition CO: 5 vol%, CO 2 : 20 vol%, CH 4 : 2 vol%, H 2 : balance) was circulated so as to be SV: 2000 hr −1 for about 1 hour. The product gas in the subsequent steady state was analyzed with a gas chromatograph and an infrared spectroscopic gas densitometer. The CO concentration was as good as 20 ppm.
[Example 2]
Preparation of catalyst (2) Catalyst (2) was prepared in the same manner as in Example 1, except that a voltage of 20 V (DC) was applied for 4 minutes.

得られた触媒(2)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(2)についてCOのメタネーション反応を行った。CO濃度
は40ppmと良好な結果を得た。
[実施例3]
触媒(3)の調製
実施例1において、60V(DC)の電圧を2分間印加した以外は同様にして触媒(3)を
調製した。
The obtained catalyst (2) was evaluated in terms of the thickness of the metal oxide fine particle layer, adhesion, and uniformity of the fine particle layer, and the amount of supported metal is shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (2). The CO concentration was as good as 40 ppm.
[Example 3]
Preparation of catalyst (3) Catalyst (3) was prepared in the same manner as in Example 1, except that a voltage of 60 V (DC) was applied for 2 minutes.

得られた触媒(3)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(3)についてCOのメタネーション反応を行った。CO濃度
は15ppmと良好な結果を得た。
[実施例4]
繊維状微粒子(4)の調製
ルチル型酸化チタン粉末(商品名CR-EL、石原産業(株)製)60gを濃度40重量%の
NaOH水溶液10Lに混合した。この酸化チタン粉末混合アルカリ水溶液をオートクレ
ーブに充填し、140℃で20時間撹拌しながら水熱処理した。その後、室温までに冷却し、濾過分離し、1Nの塩酸20Lを掛けて洗浄し、ついで、120℃で16時間乾燥し
、ついで500℃で焼成して酸化チタンの繊維状微粒子(2)を調製した。繊維状微粒子(4)の長さ(L)、径(D)、アスペクト比(L/D)を測定し、結果を表に示した。
金属酸化物微粒子分散液(4)の調製
実施例1において繊維状微粒子(4)20gを用いた以外は同様にして金属酸化物微粒子
分散液(4)を調製した。
触媒(4)の調製
実施例1において、金属酸化物微粒子分散液(4)を用いた以外は同様にして触媒(4)を調製した。
With respect to the obtained catalyst (3), the results of evaluation of the thickness, adhesion, and uniformity of the metal oxide fine particle layer and the amount of supported metal are shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (3). The CO concentration was as good as 15 ppm.
[Example 4]
Preparation of fibrous fine particles (4) 60 g of rutile type titanium oxide powder (trade name CR-EL, manufactured by Ishihara Sangyo Co., Ltd.) was mixed with 10 L of NaOH aqueous solution having a concentration of 40% by weight. This autoclave was filled with this titanium oxide powder mixed alkali aqueous solution and hydrothermally treated with stirring at 140 ° C. for 20 hours. Then, it is cooled to room temperature, separated by filtration, washed with 20 L of 1N hydrochloric acid, then dried at 120 ° C. for 16 hours, and then calcined at 500 ° C. to prepare titanium oxide fibrous fine particles (2). did. The length (L), diameter (D), and aspect ratio (L / D) of the fibrous fine particles (4) were measured, and the results are shown in the table.
Preparation of metal oxide fine particle dispersion (4) A metal oxide fine particle dispersion (4) was prepared in the same manner as in Example 1 except that 20 g of the fibrous fine particles (4) were used.
Preparation of catalyst (4) Catalyst (4) was prepared in the same manner as in Example 1, except that the metal oxide fine particle dispersion (4) was used.

得られた触媒(4)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(4)についてCOのメタネーション反応を行った。CO濃度
は25ppmと良好な結果を得た。
[実施例5]
繊維状微粒子(5)の調製
ルチル型酸化チタン粉末(商品名CR-EL、石原産業(株)製)60gを濃度40重量%の
NaOH水溶液10Lに混合した。この酸化チタン粉末混合アルカリ水溶液をオートクレ
ーブに充填し、150℃で50時間撹拌しながら水熱処理した。その後、室温までに冷却し、濾過分離し、1Nの塩酸20Lを掛けて洗浄し、ついで、120℃で16時間乾燥し
、ついで500℃で焼成して酸化チタンの繊維状微粒子(5)を調製した。繊維状微粒子(5)の長さ(L)、径(D)、アスペクト比(L/D)を測定し、結果を表に示した。
金属酸化物微粒子分散液(5)の調製
実施例1において繊維状微粒子(5)20gを用いた以外は同様にして金属酸化物微粒子
分散液(5)を調製した。
触媒(5)の調製
実施例1において、金属酸化物微粒子分散液(5)を用いた以外は同様にして触媒(5)を調製した。
With respect to the obtained catalyst (4), the results of evaluation of the thickness, adhesion, and uniformity of the metal oxide fine particle layer and the amount of supported metal are shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (4). The CO concentration was as good as 25 ppm.
[Example 5]
Preparation of fibrous fine particles (5) 60 g of rutile-type titanium oxide powder (trade name CR-EL, manufactured by Ishihara Sangyo Co., Ltd.) was mixed with 10 L of an aqueous NaOH solution having a concentration of 40% by weight. This autoclave was filled with this titanium oxide powder mixed alkali aqueous solution and hydrothermally treated with stirring at 150 ° C. for 50 hours. Thereafter, it is cooled to room temperature, separated by filtration, washed with 20 L of 1N hydrochloric acid, dried at 120 ° C. for 16 hours, and then calcined at 500 ° C. to prepare fibrous fine particles (5) of titanium oxide. did. The length (L), diameter (D), and aspect ratio (L / D) of the fibrous fine particles (5) were measured, and the results are shown in the table.
Preparation of metal oxide fine particle dispersion (5) A metal oxide fine particle dispersion (5) was prepared in the same manner as in Example 1 except that 20 g of the fibrous fine particles (5) were used.
Preparation of catalyst (5) A catalyst (5) was prepared in the same manner as in Example 1 except that the metal oxide fine particle dispersion (5) was used.

得られた触媒(5)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(5)についてCOのメタネーション反応を行った。CO濃度
は20ppmと良好な結果を得た。
[実施例6]
金属酸化物微粒子分散液(6)の調製
実施例1において、純水500gの代わりにイソプロピルアルコール500gに金属酸化物微粒子(1)80gを分散させた以外は同様にして金属酸化物微粒子分散液(6)を調製した。
触媒(6)の調製
実施例1において、金属酸化物微粒子分散液(6)を用いた以外は同様にして触媒(6)を調製した。
With respect to the obtained catalyst (5), the results of evaluation of the thickness, adhesion, and uniformity of the fine particle layer and the amount of supported metal are shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (5). The CO concentration was as good as 20 ppm.
[Example 6]
Preparation of metal oxide fine particle dispersion (6) In Example 1, a metal oxide fine particle dispersion (in the same manner as in Example 1) except that 80 g of metal oxide fine particles (1) was dispersed in 500 g of isopropyl alcohol instead of 500 g of pure water. 6) was prepared.
Preparation of catalyst (6) A catalyst (6) was prepared in the same manner as in Example 1 except that the metal oxide fine particle dispersion (6) was used.

得られた触媒(6)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(6)についてCOのメタネーション反応を行った。CO濃度
は25ppmと良好な結果を得た。
[実施例7]
金属酸化物微粒子分散液(7)の調製
実施例1において、コロイド粒子としてチタニアゾル12gを用いた以外は同様にして金属酸化物微粒子分散液(7)を調製した。
触媒(7)の調製
実施例1において、金属酸化物微粒子分散液(7)を用いた以外は同様にして触媒(7)を
調製した。
With respect to the obtained catalyst (6), the results of evaluation of the thickness, adhesion, and uniformity of the fine particle layer and the amount of supported metal are shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (6). The CO concentration was as good as 25 ppm.
[Example 7]
Preparation of metal oxide fine particle dispersion (7) A metal oxide fine particle dispersion (7) was prepared in the same manner as in Example 1 except that 12 g of titania sol was used as colloidal particles.
Preparation of catalyst (7) A catalyst (7) was prepared in the same manner as in Example 1 except that the metal oxide fine particle dispersion (7) was used.

得られた触媒(7)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(7)についてCOのメタネーション反応を行った。CO濃度
は20ppmと良好な結果を得た。
[実施例8]
金属酸化物微粒子分散液(8)の調製
実施例1において、コロイド粒子としてチタニアゾル43gを用いた以外は同様にして金属酸化物微粒子分散液(8)を調製した。
触媒(8)の調製
実施例1において、金属酸化物微粒子分散液(8)を用いた以外は同様にして触媒(7)を調製した。
The obtained catalyst (7) was evaluated in terms of the thickness of the metal oxide fine particle layer, adhesion, and uniformity of the fine particle layer, and the amount of supported metal was shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (7). The CO concentration was as good as 20 ppm.
[Example 8]
Preparation of metal oxide fine particle dispersion (8) A metal oxide fine particle dispersion (8) was prepared in the same manner as in Example 1 except that 43 g of titania sol was used as colloidal particles.
Preparation of catalyst (8) Catalyst (7) was prepared in the same manner as in Example 1, except that the metal oxide fine particle dispersion (8) was used.

得られた触媒(8)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(8)についてCOのメタネーション反応を行った。CO濃度
は30ppmと良好な結果を得た。
[実施例9]
金属酸化物微粒子層付基材(9)の調製
実施例1と同様にして金属酸化物微粒子層付基材(1)を調製した。
With respect to the obtained catalyst (8), the results of evaluation of the thickness, adhesion, and uniformity of the fine particle layer and the amount of supported metal are shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (8). The CO concentration was as good as 30 ppm.
[Example 9]
Preparation of substrate (9) with metal oxide fine particle layer A substrate (1) with metal oxide fine particle layer was prepared in the same manner as in Example 1.

触媒(9)の調製
250mlのガラスビーカーに濃度5重量%硝酸パラジウム(関東化学(株)製)100gを入れ、この中に負極として金属酸化物微粒子層付基材(1)を入れ、直流電圧装置(
菊水電気(株)型式PAD35―10L)と正極および負極を1mmφのSUS線で接続
し、マグネチックスターラーで攪拌しながら、40V(DC)の電圧を2分間印加し、パラジウムを析出させた。
Preparation of catalyst (9) 100 g of 5 wt% palladium nitrate (manufactured by Kanto Chemical Co., Inc.) is placed in a 250 ml glass beaker, and the substrate (1) with a metal oxide fine particle layer is placed therein as a negative electrode. apparatus(
Kikusui Electric Co., Ltd. model PAD35-10L) was connected to the positive and negative electrodes with a 1 mmφ SUS wire, and a voltage of 40 V (DC) was applied for 2 minutes while stirring with a magnetic stirrer to precipitate palladium.

ついで、金属酸化物微粒子層付基材(1)を取り出し、純水100gで充分洗浄し、12
0℃で3時間乾燥した。その後、窒素中で500℃、2時間加熱処理してパラジウムを担持した触媒(9)を調製した。
Subsequently, the base material (1) with the metal oxide fine particle layer is taken out and sufficiently washed with 100 g of pure water.
Dry at 0 ° C. for 3 hours. Thereafter, a catalyst (9) supporting palladium was prepared by heat treatment in nitrogen at 500 ° C. for 2 hours.

得られた触媒(9)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を
評価した結果および担持金属量を表に示した。
性能評価
実施例1と同様にして触媒(9)についてCOのメタネーション反応を行った。CO濃度
は40ppmと良好な結果を得た。
[実施例10]
金属酸化物微粒子分散液(10)の調製
実施例5において、繊維状微粒子(5)を用いなかった以外は同様にして金属酸化物微粒
子分散液(10)を調製した。
With respect to the obtained catalyst (9), the results of evaluation of the thickness of the metal oxide fine particle layer, adhesion, uniformity of the fine particle layer and the amount of supported metal are shown in the table.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (9). The CO concentration was as good as 40 ppm.
[Example 10]
Preparation of metal oxide fine particle dispersion (10) A metal oxide fine particle dispersion (10) was prepared in the same manner as in Example 5 except that the fibrous fine particles (5) were not used.

触媒(10)の調製
実施例1において、金属酸化物微粒子分散液(10)を用いた以外は同様にして触媒(10)を調製した。
Preparation of catalyst (10) A catalyst (10) was prepared in the same manner as in Example 1, except that the metal oxide fine particle dispersion (10) was used.

得られた触媒(10)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を評価した結果および担持金属量を表1に示した。
性能評価
実施例1と同様にして触媒(10)についてCOのメタネーション反応を行った。CO濃度は20ppmと良好な結果を得た。
[比較例1]
金属酸化物微粒子(R1)の調製
塩化ジルコニウム水溶液(第1稀元素化学工業(株)製:ジルコンゾール、ZrO2
度25.1重量%)329.5gと硝酸コバルト(関西化学(株)製:CoO濃度25.7
7重量%)260.6gとを純水3630gに溶解した混合水溶液を調製した。
With respect to the obtained catalyst (10), the results of evaluation of the thickness, adhesion, and uniformity of the fine particle layer and the amount of supported metal are shown in Table 1.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (10). The CO concentration was as good as 20 ppm.
[Comparative Example 1]
Preparation of metal oxide fine particles (R1) Zirconium chloride aqueous solution (manufactured by Daiichi Elemental Chemical Co., Ltd .: zirconazole, ZrO 2 concentration 25.1% by weight) and 329.5 g cobalt nitrate (manufactured by Kansai Chemical Co., Ltd.) CoO concentration 25.7
(7 wt%) A mixed aqueous solution prepared by dissolving 260.6 g in 3630 g of pure water was prepared.

水酸化ナトリウム(関東化学(株)製)129.9gを純水11000gに溶解したアルカリ水溶液を室温で撹拌しながら、これに上記混合水溶液を10分で添加して水酸化ジルコニウム、水酸化コバルトの混合ヒドロゲルを調製した。   While stirring an alkaline aqueous solution in which 129.9 g of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was dissolved in 11000 g of pure water at room temperature, the above mixed aqueous solution was added in 10 minutes to add zirconium hydroxide and cobalt hydroxide. A mixed hydrogel was prepared.

ついで、70℃で2時間熟成した後、濃度63重量%の硝酸を用いてヒドロゲルのpHを7.5〜8になるように調整した。その後、ヒドロゲルを濾過し、洗浄し、120℃で乾燥し、ついで、500℃で2時間焼成してZrO2・CoO複合酸化物を得た。 Next, after aging at 70 ° C. for 2 hours, the pH of the hydrogel was adjusted to 7.5 to 8 using nitric acid having a concentration of 63% by weight. Thereafter, the hydrogel was filtered, washed, dried at 120 ° C., and then calcined at 500 ° C. for 2 hours to obtain a ZrO 2 · CoO composite oxide.

ZrO2・CoO複合酸化物100gを粉砕して平均粒子径1.4μmの粒子とした。
この粉体に、塩化ルテニウム(小島化学(株)製)3.4gを、水12.5gを溶解したRuO2として濃度5重量%の塩化ルテニウム水溶液を吸収させ、ついで、120℃で16時間乾燥した。その後、乾燥粉体100gを濃度5重量%のアンモニア水1666gに分散させ、1時間撹拌した後、濾過し、洗浄して塩素を除去し、再び、120℃で16時間乾燥して金属酸化物微粒子(R1)を調製した。金属酸化物微粒子(R1)の組成を表1に示した。
金属酸化物微粒子分散液(R1)の調製
実施例1において、金属酸化物微粒子(R1)を用いた以外は同様にして金属酸化物微粒子分散液(R1)を調製した。
金属酸化物微粒子層付基材(1)の調製
実施例1において、金属酸化物微粒子分散液(R1)を用いた以外は同様にして金属酸化物微粒子層付基材(R1)を調製した。
100 g of ZrO 2 · CoO composite oxide was pulverized into particles having an average particle size of 1.4 µm.
In this powder, 3.4 g of ruthenium chloride (manufactured by Kojima Chemical Co., Ltd.) was absorbed with 5 wt% ruthenium chloride aqueous solution as RuO 2 in which 12.5 g of water was dissolved, and then dried at 120 ° C. for 16 hours. did. Thereafter, 100 g of the dry powder was dispersed in 1666 g of aqueous ammonia having a concentration of 5% by weight, stirred for 1 hour, filtered, washed to remove chlorine, and dried again at 120 ° C. for 16 hours to form metal oxide fine particles. (R1) was prepared. The composition of the metal oxide fine particles (R1) is shown in Table 1.
Preparation of metal oxide fine particle dispersion (R1) A metal oxide fine particle dispersion (R1) was prepared in the same manner as in Example 1 except that the metal oxide fine particles (R1) were used.
Preparation of substrate with metal oxide fine particle layer (1) A substrate with metal oxide fine particle layer (R1) was prepared in the same manner as in Example 1 except that the metal oxide fine particle dispersion (R1) was used.

触媒(R1)の調製
金属酸化物微粒子層付基材(R1)を水素ガス(窒素80vol%混合)中、450℃で2時間還元処理してルテニウムを担持した触媒(R1)を調製した。
Preparation of catalyst (R1) The substrate (R1) with a metal oxide fine particle layer was reduced in hydrogen gas (mixed with 80 vol% nitrogen) at 450 ° C for 2 hours to prepare a catalyst (R1) carrying ruthenium.

得られた触媒(R1)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を評価した結果および担持金属量を表1に示した。
性能評価
実施例1と同様にして触媒(R1)についてCOのメタネーション反応を行った。CO濃度は70ppmであった。
[比較例2]
触媒(R2)の調製
実施例1と同様にして金属酸化物微粒子層付基材(1)を調製し、これを窒素中で500
℃、2時間加熱処理して触媒(R2)を調製した。
With respect to the obtained catalyst (R1), the results of evaluating the thickness, adhesion, and uniformity of the fine particle layer and the amount of supported metal are shown in Table 1.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (R1). The CO concentration was 70 ppm.
[Comparative Example 2]
Preparation of catalyst (R2) A base material (1) with a metal oxide fine particle layer was prepared in the same manner as in Example 1, and this was added in nitrogen.
Catalyst (R2) was prepared by heat treatment at 2 ° C. for 2 hours.

得られた触媒(R2)について、金属酸化物微粒子層の厚さ、密着性、微粒子層の均一性を評価し、結果を表1に示した。
性能評価
実施例1と同様にして触媒(R2)についてCOのメタネーション反応を行った。CO濃度は約10,000ppmであった。
The obtained catalyst (R2) was evaluated for the thickness, adhesion and uniformity of the metal oxide fine particle layer, and the results are shown in Table 1.
Performance Evaluation In the same manner as in Example 1, the methanation reaction of CO was performed on the catalyst (R2). The CO concentration was about 10,000 ppm.

Figure 0004786498
Figure 0004786498

Claims (7)

担体用金属酸化物微粒子、長(L)が50nm〜10μm、径(D)が10nm〜2μm、アスペクト比(L)/(D)が5〜1,000の範囲にある繊維状微粒子、および平均粒子径2〜300nmの範囲にあるコロイド粒子を含む金属酸化物微粒子分散液に導電性基材を浸漬し、
導電性基材と分散液に直流電圧を印加して導電性基材上へ金属酸化物微粒子層を形成した後、
活性成分用金属塩水溶液を添加し、担体用金属酸化物微粒子表面に活性成分用金属を析出させることを特徴とする触媒の製造方法。
Metal oxide fine particles for carrier, fibrous fine particles having a length (L) of 50 nm to 10 μm, a diameter (D) of 10 nm to 2 μm, an aspect ratio (L) / (D) of 5 to 1,000, and an average Immerse the conductive substrate in a metal oxide fine particle dispersion containing colloidal particles having a particle diameter of 2 to 300 nm ,
After forming a metal oxide fine particle layer on the conductive substrate by applying a DC voltage to the conductive substrate and the dispersion,
A method for producing a catalyst, comprising adding an aqueous metal salt solution for an active ingredient and precipitating the active ingredient metal on the surface of the carrier metal oxide fine particles.
前記担体用金属酸化物がMg、Ca、Ba(IIA族)、ランタノイド(IIIA族)、Ti、Zr(IVA族)、V(VA族)、Cr、Mo、W(YIA族)、Mn(VIIA族)、Zn(IIB族)、Al(IIIB族)、Si(IVB族)、P、Sb(VB族)から選ばれる1種以上の金属酸化物からなる微粒子であり、金属酸化物微粒子の平均粒子径が10nm〜5μmの範囲にあることを特徴とする請求項1に記載の触媒の製造方法。   The support metal oxide is Mg, Ca, Ba (IIA group), lanthanoid (IIIA group), Ti, Zr (IVA group), V (VA group), Cr, Mo, W (YIA group), Mn (VIIA Group), Zn (Group IIB), Al (Group IIIB), Si (Group IVB), P, Sb (Group VB) fine particles composed of one or more metal oxides. The method for producing a catalyst according to claim 1, wherein the particle diameter is in the range of 10 nm to 5 µm. 前記繊維状微粒子の含有量が固形分として全担体用金属酸化物微粒子の0.1〜20重量%の範囲にあることを特徴とする請求項1に記載の触媒の製造方法。   2. The method for producing a catalyst according to claim 1, wherein the content of the fibrous fine particles is in the range of 0.1 to 20 wt% of the metal oxide fine particles for all the carriers as a solid content. 前記コロイド粒子の含有量が固形分として全担体用金属酸化物微粒子の0.1〜20重量%の範囲にあることを特徴とする請求項1に記載の触媒の製造方法。   2. The method for producing a catalyst according to claim 1, wherein the content of the colloidal particles is in the range of 0.1 to 20% by weight of the metal oxide fine particles for all carriers as a solid content. 前記活性成分用金属塩がRu、Pt、Pd、Rh、Ir、Ni、Fe、Co(VIII族)およびAu、Ag、Cu(IB族)から選ばれる1種以上の金属の塩であることを特徴とする請求項1〜4のいずれかに記載の触媒の製造方法。   The metal salt for active ingredient is a salt of one or more metals selected from Ru, Pt, Pd, Rh, Ir, Ni, Fe, Co (Group VIII) and Au, Ag, Cu (Group IB) The method for producing a catalyst according to any one of claims 1 to 4. 前記活性成分金属の析出量が、最終的に得られる触媒中の0.1〜20重量%の範囲にあることを特徴とする請求項5に記載の触媒の製造方法。   The method for producing a catalyst according to claim 5, wherein the amount of the active component metal deposited is in the range of 0.1 to 20% by weight in the finally obtained catalyst. 形成される金属酸化物微粒子層の厚さを10nm〜1mmの範囲とすることを特徴とする請求項1〜6のいずれかに記載の触媒の製造方法。   The method for producing a catalyst according to any one of claims 1 to 6, wherein the thickness of the metal oxide fine particle layer to be formed is in the range of 10 nm to 1 mm.
JP2006287759A 2006-10-23 2006-10-23 Catalyst production method Expired - Fee Related JP4786498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287759A JP4786498B2 (en) 2006-10-23 2006-10-23 Catalyst production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287759A JP4786498B2 (en) 2006-10-23 2006-10-23 Catalyst production method

Publications (2)

Publication Number Publication Date
JP2008104905A JP2008104905A (en) 2008-05-08
JP4786498B2 true JP4786498B2 (en) 2011-10-05

Family

ID=39438721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287759A Expired - Fee Related JP4786498B2 (en) 2006-10-23 2006-10-23 Catalyst production method

Country Status (1)

Country Link
JP (1) JP4786498B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467050A (en) * 1982-07-08 1984-08-21 Energy Research Corporation Fuel cell catalyst member and method of making same
JPH0278443A (en) * 1988-09-13 1990-03-19 Matsushita Electric Ind Co Ltd Production of catalyst carrier for purification of exhaust gas
JP3381429B2 (en) * 1994-12-19 2003-02-24 日本板硝子株式会社 Method for producing substrate with metal oxide film
DE19912896A1 (en) * 1999-03-23 2000-09-28 Daimler Chrysler Ag Process for producing a catalyst
JP2005007298A (en) * 2003-06-19 2005-01-13 Mitsubishi Materials Corp Porous metal catalyst
JP2005199267A (en) * 2003-12-15 2005-07-28 Nippon Sheet Glass Co Ltd Metal carrier and method for manufacturing the same
WO2006051825A1 (en) * 2004-11-09 2006-05-18 Nippon Sheet Glass Company, Limited Method for producing noble metal-loaded body
JP2006255619A (en) * 2005-03-18 2006-09-28 Mitsubishi Heavy Ind Ltd Catalyst structural body

Also Published As

Publication number Publication date
JP2008104905A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
EP2335812B1 (en) Exhaust gas treatment apparatus
JP3791901B2 (en) Photocatalyst holder and method for producing the same
US6071850A (en) Multi-layer non-identical catalyst on metal substrate by electrophoretic deposition
JP3757373B2 (en) Coated product
JP2008296212A (en) Porous catalyst structure and method for producing the same
JP4715556B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH082928A (en) Inorganic compound containing composite material
CN102872865A (en) Method for preparing honeycomb ceramic catalyst
JP2008188542A (en) Catalyst for treating exhaust gas, manufacturing method thereof and exhaust gas treatment method
US20120245017A1 (en) Method and Electrochemical Cell for Synthesis and Treatment of Metal Monolayer Electrocatalysts Metal, Carbon, and Oxide Nanoparticles Ion Batch, or in Continuous Fashion
JP4842025B2 (en) Method for forming metal oxide fine particle layer on conductive substrate
TW200846076A (en) Porous catalyst structure and its preparation method
JP5241277B2 (en) Exhaust gas treatment equipment
JPH11100695A (en) Production of titanium material having photocatalytic activity
JP4786498B2 (en) Catalyst production method
JP7211709B2 (en) Exhaust gas purifying three-way catalyst, manufacturing method thereof, and integral structure type exhaust gas purifying catalyst
US20030171217A1 (en) Support, its production method and catalyst body
JP5310885B2 (en) Method for producing base metal catalyst for exhaust gas purification
JP5948178B2 (en) Fluid purification filter and manufacturing method thereof
JP4818691B2 (en) Honeycomb compact and manufacturing method thereof
US20030022788A1 (en) Ceramic catalyst body
JPH02144154A (en) Heat conductive catalytic body and production thereof
JP2011200771A (en) Hydrogen peroxide decomposition catalyst and hydrogen peroxide decomposition method
KR100969060B1 (en) Method for manufacturing metal filter using electrophoretic deposition
JP2003522623A (en) Manufacturing method of catalytic converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4786498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees