KR100969060B1 - Method for manufacturing metal filter using electrophoretic deposition - Google Patents

Method for manufacturing metal filter using electrophoretic deposition Download PDF

Info

Publication number
KR100969060B1
KR100969060B1 KR1020070128412A KR20070128412A KR100969060B1 KR 100969060 B1 KR100969060 B1 KR 100969060B1 KR 1020070128412 A KR1020070128412 A KR 1020070128412A KR 20070128412 A KR20070128412 A KR 20070128412A KR 100969060 B1 KR100969060 B1 KR 100969060B1
Authority
KR
South Korea
Prior art keywords
aluminum
metal
catalyst
metal filter
alumina
Prior art date
Application number
KR1020070128412A
Other languages
Korean (ko)
Other versions
KR20090061406A (en
Inventor
정진우
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070128412A priority Critical patent/KR100969060B1/en
Publication of KR20090061406A publication Critical patent/KR20090061406A/en
Application granted granted Critical
Publication of KR100969060B1 publication Critical patent/KR100969060B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes

Abstract

본 발명은 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법에 관한 것으로서, 더욱 상세하게는 금속표면에 알루미나 입자를 EPD(electrophoretic deposition, 전기영동법) 법으로 접합시킨 후, 산화 알루미나를 형성시키는 과정 등을 통하여, 산화촉매를 안정적으로 담지시킨 촉매 일체형 금속필터 제조를 가능하게 한 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법에 관한 것이다.

이를 위해, 본 발명은 전기영동법으로 금속판(필터)에 알루미늄을 전착시키는 제1단계와; 알루미늄이 전착된 알루미늄-금속필터를 공기분위기의 건조 조건으로 500~900℃에서 산화시켜 알루미늄을 산화알루미늄으로 전환시키는 제2단계와; 상기 알루미나-금속필터를 귀금속 용액에 딥핑시켜, 귀금속을 상기 알루미나의 다공성 층에 담지되게 하는 제3단계와; 귀금속이 담지된 알루미나-금속필터를 공기분위기의 120℃에서 12시간 이내로 건조 소성시키는 제4단계; 를 포함하는 것을 특징으로 하는 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법을 제공한다.

Figure R1020070128412

전기영동법, 촉매, 금속필터, 알루미늄, 알루미나, 귀금속

The present invention relates to a method for producing a catalyst-integrated metal filter using electrophoresis, and more particularly, by bonding alumina particles to a metal surface by EPD (electrophoretic deposition) and then forming alumina oxide. The present invention relates to a method for producing a catalyst-integrated metal filter using an electrophoresis method that enables the production of a catalyst-integrated metal filter stably supporting an oxidation catalyst.

To this end, the present invention comprises the first step of electrodepositing aluminum on a metal plate (filter) by electrophoresis; A second step of converting aluminum to aluminum oxide by oxidizing the aluminum-metal filter on which aluminum is electrodeposited at 500 to 900 ° C. under dry conditions of an air atmosphere; A third step of dipping the alumina-metal filter into the noble metal solution so that the noble metal is supported on the porous layer of the alumina; A fourth step of dry firing the alumina-metal filter loaded with the precious metal within 12 hours at 120 ° C. in an air atmosphere; It provides a catalyst-integrated metal filter manufacturing method using an electrophoresis method comprising a.

Figure R1020070128412

Electrophoresis, Catalysts, Metal Filters, Aluminum, Alumina, Precious Metals

Description

전기영동법을 이용한 촉매 일체형 금속필터 제조 방법{Method for manufacturing metal filter using electrophoretic deposition}Catalytic integrated metal filter manufacturing method using electrophoresis {Method for manufacturing metal filter using electrophoretic deposition}

본 발명은 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법에 관한 것으로서, 더욱 상세하게는 금속표면에 알루미나 입자를 EPD(electrophoretic deposition, 전기영동법) 법으로 접합시킨 후, 산화 알루미나를 형성시키는 과정 등을 통하여, 산화촉매를 안정적으로 담지시킨 촉매 일체형 금속필터 제조를 가능하게 한 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법에 관한 것이다.The present invention relates to a method for producing a catalyst-integrated metal filter using electrophoresis, and more particularly, by bonding alumina particles to a metal surface by EPD (electrophoretic deposition) and then forming alumina oxide. The present invention relates to a method for producing a catalyst-integrated metal filter using an electrophoresis method that enables the production of a catalyst-integrated metal filter stably supporting an oxidation catalyst.

금속과 산화촉매의 이중층으로 된 입자를 금속 표면에 접합하는 기술 확보는 금속의 기계적 장점과 금속산화물, 즉 촉매의 작용을 극대화할 수 있는 장점을 가지고 있다.Securing the technology of bonding the double layered particles of metal and oxidation catalyst to the metal surface has the advantage of maximizing the mechanical advantages of the metal and the action of the metal oxide, that is, the catalyst.

또한, 금속에 산화 촉매 접합시, 코팅층의 안정성과 두께 조절 기술이 확보되어야 한다.In addition, when the oxidation catalyst is bonded to the metal, the stability and thickness control technology of the coating layer should be secured.

금속에 산화 촉매를 코팅하는 기술로는 워시 코팅(Wash-coating)법이 있으 나, 코팅강도가 낮고 코팅면이 고르지 않은 단점이 있고, 그 밖에 플라즈마 스프레이(plasma spray)법, 플라즈마 전기분해 산화(plasma electrolytic oxidation)법, 증기 증착(vapor deposition)법 등이 시도되고 있으나, 이 또한 스케일 업(Scale-up)을 초래하고 경제성이 떨어지는 단점이 있다.As a technique of coating an oxidation catalyst on a metal, there is a wash-coating method, but there are disadvantages of low coating strength and uneven coating surface, and plasma spray method and plasma electrolytic oxidation ( Plasma electrolytic oxidation, vapor deposition, and the like have been attempted, but this also causes disadvantages such as scale-up and poor economical efficiency.

따라서, 이러한 문제를 해결하고자 전기영동법(electrophoretic deposition, EPD)을 적용하여 금속필터 내 Foil과 Screen 모두에 균일한 산화물 층 즉 산화촉매 층을 형성하였다.Therefore, in order to solve this problem, electrophoretic deposition (EPD) was applied to form a uniform oxide layer, that is, an oxidation catalyst layer, on both the foil and the screen in the metal filter.

일반적으로 상용화된 촉매코팅 기술은 함침법으로 촉매를 제조하고, 이를 촉매슬러리로 제조하여, 이를 디핑(dipping)법에 의하여 산화촉매를 담체에 코팅하는 기술이 적용되고 있으며, 도 1 및 도 2는 종래 적용되는 금속필터의 도식도로서, 촉매코팅시, 스크린(Screen) 일부를 막아 배기가스 흐름을 방해하므로, 충분한 촉매 코팅이 어렵다.In general, the catalyst coating technology commercialized to prepare a catalyst by the impregnation method, to produce a catalyst slurry, and a technique for coating the oxidation catalyst on the carrier by a dipping method is applied, Figures 1 and 2 As a schematic diagram of a metal filter conventionally applied, sufficient catalyst coating is difficult when the catalyst coating blocks a portion of the screen to disturb the exhaust gas flow.

대개, 산화촉매가 코팅되지 않은 금속필터의 경우, PM(입자상물질)의 자연재생을 기대할 수 없는 반면, 금속필터에 산화촉매가 코팅된 경우에는 자연재생 효과를 추가할 수 있어 에미션(Emission) 성능 향상이 가능한 것으로 알려져 있다.In general, in case of metal filter without oxidation catalyst, natural regeneration of PM (particulate matter) cannot be expected, whereas in case of metal catalyst coated with oxidation catalyst, natural regeneration effect can be added. It is known that performance can be improved.

그러나, 종래 코팅 기술중 산화촉매 워시코트 제조 방법은 도 3의 공정도에서 보듯이, 귀금속이 담지된 알루미나 즉, 촉매 (5~50wt.%)를 알루미나 졸(1~10wt.%)과 물에 혼합하여 슬러리로 제조한 후, 이를 금속담체에 코팅하므로 촉매코팅시 스크린(Screen) 일부를 첨부한 도 4의 광학 현미경 사진에서 보는 바와 같이 막아 배기가스 흐름을 방해하거나, 적은 량의 와시코트 담지 만이 가능한 문 제점이 있다.However, in the conventional coating technology, the method for preparing an oxidation catalyst washcoat, as shown in the process diagram of FIG. 3, mixes alumina loaded with a precious metal, that is, a catalyst (5-50 wt.%), With alumina sol (1-10 wt.%) And water. After the slurry is prepared, it is coated on a metal carrier, thus blocking the exhaust gas flow as shown in the optical micrograph of FIG. 4 to which a part of the screen is attached during catalyst coating, or allowing only a small amount of washcoat to be supported. There is a problem.

또한, 금속담체와 와시코트가 물리적으로 부착된 형태로 와시코트의 부착력이 세라믹 담체에 비하여 현저히 떨어지는 단점이 있다.In addition, there is a drawback that the adhesion of the wash coat is significantly lower than that of the ceramic carrier in the form of the metal carrier and the wash coat physically attached.

부착력 평가 결과, 기존 금속필터 촉매 코팅의 경우, 촉매 1.5 wt. % 손실(loss)이 발생하였고, 세라믹 담체 촉매 코팅의 경우에는 촉매 0.4 wt. % 손실(loss)이 발생하였다.As a result of the adhesion evaluation, for the conventional metal filter catalyst coating, the catalyst 1.5 wt. % Loss occurred, 0.4 wt.% Catalyst for ceramic carrier catalyst coating. % Loss occurred.

따라서, 기존 코팅 방법으로 촉매 일체형 금속필터를 제조시, 배압의 상승은 물론 내구성의 문제가 야기되고 있다.Therefore, when the catalyst-integrated metal filter is manufactured by the existing coating method, the back pressure is increased as well as the durability problem.

본 발명은 종래의 코팅법으로 산화촉매를 코팅한 경우 불균일한 코팅층과 낮은 코팅강도, 배압의 증가를 초래하는 점을 감안하여, 이를 최소화하며 안정적으로 촉매를 금속필터에 코팅할 수 있도록 한 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법을 제공하는데 그 목적이 있다.In the present invention, when the oxidation catalyst is coated by the conventional coating method, an electrophoretic method which minimizes this and stably coats the catalyst to the metal filter in consideration of causing an uneven coating layer, low coating strength and an increase in back pressure. It is an object of the present invention to provide a method for preparing a catalyst-integrated metal filter.

상기한 목적을 달성하기 위한 본 발명은 전기영동법으로 금속판(필터)에 알루미늄을 전착시키는 제1단계와; 알루미늄이 전착된 알루미늄-금속필터를 공기분위기의 건조 조건으로 500~900℃에서 산화시켜 알루미늄을 산화알루미늄으로 전환시키는 제2단계와; 상기 알루미나-금속필터를 귀금속 용액에 딥핑시켜, 귀금속을 상기 알루미나의 다공성 층에 담지되게 하는 제3단계와; 귀금속이 담지된 알루미나-금속필터를 공기분위기의 120℃에서 12시간 이내로 건조 소성시키는 제4단계; 를 포함하는 것을 특징으로 하는 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법을 제공한다.The present invention for achieving the above object is a first step of electrodepositing aluminum on a metal plate (filter) by electrophoresis; A second step of converting aluminum to aluminum oxide by oxidizing the aluminum-metal filter on which aluminum is electrodeposited at 500 to 900 ° C. under dry conditions of an air atmosphere; A third step of dipping the alumina-metal filter into the noble metal solution so that the noble metal is supported on the porous layer of the alumina; A fourth step of dry firing the alumina-metal filter loaded with the precious metal within 12 hours at 120 ° C. in an air atmosphere; It provides a catalyst-integrated metal filter manufacturing method using an electrophoresis method comprising a.

상기 제1단계에서, 소정 케이스 내에 금속판을 배치하고, 그 상하에 알루미늄 슬러리 용액을 충진한 후, 상기 알루미늄이 0.1~5wt.% 들어 있는 알루미늄 슬러리 용액과 금속판 간에 DC 전원을 걸어주어, 금속판에 알루미늄이 전착되는 것을 특징으로 한다.In the first step, the metal plate is placed in a predetermined case, and the aluminum slurry solution is filled up and down, and DC power is applied between the aluminum slurry solution containing 0.1 to 5 wt. It is characterized by the electrodeposition.

상기 알루미늄 슬러리 용액(0.1~5wt.%)은 알루미늄 파우더(1% NH4OH로 처리후 산화막을 제거한 것)와, 에탄올과, 0.0005~0.05M의 첨가제가 혼합된 것으로서, 상기 첨가제는 입자들을 분산시키는 분산제로서 폴리아크릴릭산(Polyacrylic Acid)과, 수용액 내 전류를 통하게 해주는 전해질로서 알루미늄 이소프로프옥사이드(Aaluminum isopropoxide)로 구성된 것을 특징으로 한다.The aluminum slurry solution (0.1 ~ 5wt.%) Is a mixture of aluminum powder (removed oxide film after treatment with 1% NH4OH), ethanol, and 0.0005 ~ 0.05M additive, the additive is a dispersant for dispersing particles As a polyacrylic acid (Polyacrylic Acid), and an electrolyte that allows the current in the aqueous solution is characterized in that consisting of aluminum isopropoxide (Aaluminum isopropoxide).

상기 귀금속 용액은 0.005~0.1M의 농도를 갖는 클로라이드 또는 나이트레이트 형태의 귀금속 전구체 수용액인 것을 특징으로 한다.The noble metal solution is characterized in that the aqueous solution of a noble metal precursor in the form of chloride or nitrate having a concentration of 0.005 ~ 0.1M.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공할 수 있다.Through the above problem solving means, the present invention can provide the following effects.

1) 금속필터내에 산화촉매를 안정적으로 담지시켜 촉매 일체형 금속필터 제 조가 가능다.1) A catalyst-integrated metal filter can be manufactured by stably supporting an oxidation catalyst in the metal filter.

2) 금속필터를 촉매화하여 일산화질소를 이산화질소로 전환시키고, 금속필터 내 촉매 담지로 발생되는 이산화질소를 사용하여 PM을 낮은 온도에서 제거할 수 있다.2) Catalytic metal filter can be used to convert nitrogen monoxide to nitrogen dioxide, and PM can be removed at low temperatures using nitrogen dioxide generated as a catalyst support in the metal filter.

3) EPD 법에 의하여 촉매 담지에 따른 배압증가를 최소화시킬 수 있다.3) The increase in back pressure due to the catalyst loading can be minimized by the EPD method.

4) 금속담체 또는 믹서 등의 경우 본 발명의 확대 적용이 가능하며, PMC(당사 제품명, Particulate matter Catalyst, 또는 POC)에서 DOC 삭제가 가능하고, DOC 삭제에 따른 레이아웃 및 컴팩트를 실현하면서 원가절감을 달성할 수 있다.4) In the case of metal carriers or mixers, the present invention can be expanded and applied, and it is possible to delete DOC from PMC (our product name, Particulate matter Catalyst, or POC), and reduce cost while realizing the layout and compact according to DOC deletion. Can be achieved.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 5는 본 발명에 따른 전기영동법에 의한 알루미나-금속필터를 제조하는 방법을 설명하는 모식도, 도 6은 본 발명에 따른 촉매일체형 금속필터를 제조하는 공정을 설명하는 공정도이다.5 is a schematic diagram illustrating a method of manufacturing an alumina-metal filter by electrophoresis according to the present invention, and FIG. 6 is a process diagram illustrating a process of manufacturing a catalyst-integrated metal filter according to the present invention.

본 발명은 금속표면에 알루미나 입자를 EPD(electrophoretic deposition, 전기영동법)법으로 접합시킨 후, 이를 산화시켜 산화알루미나를 형성시키고, 이때 코팅 두께를 조절하는 변수로는 첨가제, 용액의 조성, 전압 및 시간 등을 이용한 점에 주안점이 있다.According to the present invention, alumina particles are bonded to a metal surface by electrophoretic deposition (EPD), and then oxidized to form alumina oxide, wherein the coating thickness is controlled by additives, composition, voltage and time. The point is to use the back.

먼저, 도 5에서 보는 바와 같이 소정 케이스내에 배치된 금속판의 상부쪽에 알루미늄 파우더(1% NH4OH로 처리후 산화막을 제거한 것)와, 에탄올과, 첨가제가 혼합된 알루미늄 슬러리 용액을 충진하고, 이 슬러리 용액을 펌프를 이용하여 금속필터의 저부쪽으로 순환시킨다.First, as shown in FIG. 5, an aluminum powder (with an oxide film removed after treatment with 1% NH4OH), ethanol, and an additive-added aluminum slurry solution are filled on the upper side of the metal plate disposed in a predetermined case. Is circulated to the bottom of the metal filter using a pump.

이때, 상기 첨가제는 입자들을 분산시키는 분산제로서 폴리아크릴릭산(Polyacrylic Acid)과, 수용액 내 전류를 통하게 해주는 전해질로서 알루미늄 이소프로프옥사이드(Aaluminum isopropoxide)로 구성되며, 첨가제의 바람직한 농도는 0.0005~0.05M이고, 더욱 바람직하기로는 0.0005~0.01M이며, 이 농도범위 한정 이유는 위의 범위를 벗어나면 알루미늄 부착성이 떨어지기 때문이다.At this time, the additive is composed of polyacrylic acid (Polyacrylic Acid) as a dispersing agent to disperse the particles and aluminum isopropoxide as an electrolyte that allows the current in the aqueous solution, the concentration of the additive is 0.0005 ~ 0.05M More preferably, the concentration is 0.0005 to 0.01 M, and the reason for limiting the concentration range is that the aluminum adhesion is deteriorated outside the above range.

이러한 첨가제 농도에 따른 알루미늄 부착량을 측정하였는 바, 그 결과는 첨부한 도 7의 그래프에서 보는 바와 같다.Aluminum adhesion amount according to the additive concentration was measured, the results are as shown in the attached graph of FIG.

도 7의 그래프는 폴리아크릴릭산(Polyacrylic Acid)과 알루미늄 이소프로프옥사이드(Aaluminum isopropoxide)로 구성된 첨가제 농도가 0.002M에서의 결과로서, 전원(전압: 110V,220V,330V) 공급과 함께 15분 이상이 지나면 알루미늄 부착량이 수렴하는 알루미나-금속필터로 제조될 수 있음을 알 수 있었다.The graph of FIG. 7 shows that the additive concentration of polyacrylic acid and aluminum isopropoxide is 0.002M, resulting in more than 15 minutes with power supply (voltage: 110V, 220V, 330V). After that it can be seen that the aluminum adhesion can be made of alumina-metal filter that converges.

따라서, 상기 알루미늄이 0.1~5wt.% 들어 있는 알루미늄 슬러리 용액과 금속판 간에 DC 전원을 걸어주어, 즉 용매를 통해 전압을 걸어주어 금속판에 알루미늄이 전착된다.Accordingly, a DC power is applied between the aluminum slurry solution containing 0.1 to 5 wt.% Of aluminum and the metal plate, that is, a voltage is applied through the solvent to deposit the aluminum on the metal plate.

이와 같이 하여, 알루미늄이 전기적으로 금속판내에 부착된 금속필터로 제조된다.In this way, aluminum is made of a metal filter that is electrically attached to the metal plate.

다음으로, 상기 알루미늄-금속필터 즉, 알루미늄이 전기적으로 금속판내에 부착된 것을 소성하여 알루미늄을 산화알루미늄으로 전환시키는 바, 공기분위기의 건조 조건으로 500~900℃에서 산화시킨다.
이때, 상기 금속판내에 부착된 알루미늄은 표면만 산화알루미늄으로 전환된다.
Next, the aluminum-metal filter, that is, the aluminum is electrically attached to the metal plate is fired to convert aluminum to aluminum oxide, which is oxidized at 500 to 900 ° C. under dry conditions of an air atmosphere.
At this time, the aluminum attached to the metal plate is converted only to the aluminum oxide surface.

이러한 소성 열처리 후, 접합단면을 확인하면 접합면에 FeAl 합금 구조를 형성하여, 기존 워시코트(Wash coating)에 의한 물리적인 접합에 비하여 화학적으로 강하게 접합함을 확인할 수 있고, 금속판이 스텐레스 스틸 재질인 경우 알루미나의 열팽창계수가 비슷하여 제조 과정 중 열처리 공정에서 접합면의 균열은 발생하지 않는다.After the plastic heat treatment, if the bonding cross section is confirmed, the FeAl alloy structure is formed on the bonding surface, and it can be confirmed that the bonding is chemically stronger than the physical bonding by the conventional wash coating, and the metal plate is made of stainless steel. In this case, the coefficient of thermal expansion of alumina is similar, so that cracking of the joint surface does not occur in the heat treatment process during the manufacturing process.

다음으로, 상기와 같이 제조된 알루미나가 접합된 금속필터에 귀금속을 올리는 방법은 알루미나/금속필터를 귀금속 용액(0.005~0.1M의 농도를 갖는 클로라이드 또는 나이트레이트 형태의 귀금속 전구체 수용액)에 딥핑(dipping)하여 귀금속을 다공성 알루미나 층에 담지시키는 방법으로 실시하며, 이 방법은 기존 워시코트(Wash-coating) 법에 비하여 알루미나/금속필터의 다공성 알루미나 층이 촉매 워시코트를 강하게 잡아줘 기계적 강도를 향상시킬 수 있다.Next, the method of raising the noble metal on the alumina-bonded metal filter prepared as described above is dipping the alumina / metal filter into the noble metal solution (aqueous solution of chloride or nitrate type noble metal precursor having a concentration of 0.005 to 0.1M). This method is used to support the precious metal on the porous alumina layer.This method is more effective than the conventional wash-coating method in that the porous alumina layer of the alumina / metal filter holds the catalyst washcoat to improve mechanical strength. Can be.

이와 같이 제조된 귀금속이 담지된 알루미나-금속필터를 공기분위기의 120℃에서 12시간 이내로 건조 소성하여 본 발명의 촉매일체형 금속필터로 제조 완료된다.The alumina-metal filter loaded with the precious metal thus prepared is dried and calcined within 12 hours at 120 ° C. in an air atmosphere, thereby completing the production of the catalyst-integrated metal filter of the present invention.

이러한 과정을 통해 제조되는 본 발명의 촉매일체형 금속필터에 대한 성능 확인을 위해 아래와 같은 시험을 실시하였다.In order to confirm the performance of the catalyst-integrated metal filter of the present invention manufactured through this process, the following test was carried out.

시험예1Test Example 1

기존 워시코트법에서 촉매 담지에 따른 배압과, 본 발명의 EPD법에서 촉매 담지에 따른 배압을 측정하였는 바, 그 결과는 아래의 표 1에 나타낸 바와 같다.The back pressure according to the catalyst support in the conventional washcoat method and the back pressure according to the catalyst support in the EPD method of the present invention were measured, and the results are shown in Table 1 below.

Figure 112007089052814-pat00001
Figure 112007089052814-pat00001

위의 표 1에서 보듯이, 본 발명의 촉매일체형 금속필터는 기존 워시코트법에 의한 금속필터에 비하여 배압이 최소화됨을 알 수 있었다.As shown in Table 1, the catalyst-integrated metal filter of the present invention was found to minimize the back pressure as compared to the metal filter by the conventional washcoat method.

시험예2Test Example 2

촉매 부착력 시험을 실시하였는 바, 초음파 세척기를 이용하여 기존 워시코트법 및 본 발명에 의한 촉매 부착력 시험을 실시하였다.When the catalyst adhesion test was carried out, the catalyst washability test according to the conventional washcoat method and the present invention was performed using an ultrasonic cleaner.

그 결과, 기존 워시코트법에 의한 촉매 코팅 손실율은 1.5wt.%이었고, 본 발명에 의한 촉매 코팅 손실율은 0.2wt.% 로서, 본 발명의 금속필터가 그 촉매 부착력에서 더 우수함을 알 수 있었다.As a result, the catalyst coating loss ratio of the conventional washcoat method was 1.5wt.%, And the catalyst coating loss ratio of the present invention was 0.2wt.%, Indicating that the metal filter of the present invention was superior in its catalyst adhesion.

시험예3Test Example 3

기존 워시코트법에 의한 금속필터와 본 발명의 금속필터간의 산화능을 시험하였다.The oxidation ability between the metal filter by the conventional washcoat method and the metal filter of the present invention was tested.

* 시험 방법* Test Methods

- 촉매크기 : Φ24×53mm (Pt Loading 량 : 30 g/ft3)-Size of catalyst: Φ24 × 53mm (Pt Loading: 30 g / ft 3 )

- 가스 유량 : 40 L/minGas flow rate: 40 L / min

- 가스조성 : CO(0.02%), CO2(5%), C3H6(160ppm), C3H8(40ppm), NO(500ppm), H2O(5%), O2(9.5%), N2(나머지).Gas composition: CO (0.02%), CO 2 (5%), C 3 H 6 (160ppm), C 3 H 8 (40ppm), NO (500ppm), H 2 O (5%), O 2 (9.5 %), N 2 (rest).

- 승온 속도 : 10℃/min-Temperature increase rate: 10 ℃ / min

그 결과는 첨부한 도 8의 그래프에 나타낸 바와 같다.The result is as shown in the attached graph of FIG.

즉, 촉매 코팅 전 금속필터는 CO, HC, NO의 산화능을 관찰할 수 없는 반면, 촉매 일체형 금속필터의 경우 상용 DOC에 비하여 산화 성능이 뛰어남을 확인할 수 있었다.That is, the metal filter before the catalyst coating can not observe the oxidation ability of CO, HC, NO, the catalyst integrated metal filter was confirmed that the oxidation performance is superior to the commercial DOC.

이러한 성능 향상은 금속필터 내 망사 구조의 스크린(Screen)에서 배기가스와 촉매의 접촉이 효과적으로 이루어짐에 기인한다.This improvement is due to the effective contact of the exhaust gas with the catalyst in the mesh screen of the metal filter.

시험예4Test Example 4

PM 제거 성능을 시험하였다.PM elimination performance was tested.

즉, 본 발명의 금속필터(D165 x 150 mm x 2EA, 200cell, 6.4 L, Pt 30 g/ft3)의 촉매 코팅전후의 PM 제거 성능을 통상의 방법으로 실시하였으며, 그 결과는 아래의 표 2에 나타낸 바와 같다.That is, PM removal performance before and after catalyst coating of the metal filter (D165 x 150 mm x 2EA, 200cell, 6.4 L, Pt 30 g / ft 3 ) of the present invention was performed by a conventional method, and the results are shown in Table 2 below. As shown in.

Figure 112007089052814-pat00002
Figure 112007089052814-pat00002

산화반응에 생성된 NO2(이산화질소)는 PM과 반응하여 280℃의 온도에서 PM을 CO2로 제거하며, 촉매가 코팅되지 않은 금속 필터에서는 온도를 550℃ 이상으로 승온 시 PM의 제거가 이루어지며, 위의 표 2에서 보는 바와 같이 PM 제거 성능이 제대로 발휘되고 있음을 알 수 있었다.NO 2 (nitrogen dioxide) generated in the oxidation reaction reacts with PM to remove PM as CO 2 at a temperature of 280 ° C. In a metal filter without a catalyst, PM is removed when the temperature is raised above 550 ° C. As shown in Table 2 above, it was found that the PM removal performance was properly exhibited.

도 1 및 도 2는 종래 적용되는 금속필터의 도식도,1 and 2 is a schematic diagram of a metal filter conventionally applied,

도 3은 기존 워시코트법으로 촉매금속필터를 제조하는 것을 설명하는 공정도,3 is a process chart illustrating manufacturing a catalytic metal filter using a conventional wash coat method;

도 4는 기존 워시코트법에 의한 촉매 일체형 금속필터을 보여주는 사진,Figure 4 is a photograph showing a catalyst-integrated metal filter by the conventional washcoat method,

도 5는 본 발명에 따른 전기영동법에 의한 알루미나-금속필터를 제조하는 방법을 설명하는 모식도,5 is a schematic diagram illustrating a method of manufacturing an alumina-metal filter by electrophoresis according to the present invention;

도 6은 본 발명에 따른 촉매일체형 금속필터를 제조하는 공정을 설명하는 공정도,6 is a process chart for explaining a process for producing a catalyst-integrated metal filter according to the present invention;

도 7은 본 발명에 따른 촉매일체형 금속필터를 제조하는 공정에서 알루미늄 부착량을 수렴하는 것을 측정한 그래프,7 is a graph measuring convergence of aluminum deposition in the process of producing a catalyst-integrated metal filter according to the present invention;

도 8은 기존 워시코트법에 의한 금속필터와, 본 발명의 금속필터간의 산화능을 시험 결과를 보여주는 그래프.8 is a graph showing the test results of the oxidation performance between the metal filter and the metal filter of the present invention by the conventional washcoat method.

Claims (4)

삭제delete 전기영동법으로 금속판(필터)에 알루미늄을 전착시키는 제1단계와;A first step of electrodepositing aluminum on a metal plate (filter) by electrophoresis; 알루미늄이 전착된 알루미늄-금속필터를 공기분위기의 건조 조건으로 500~900℃에서 산화시켜 알루미늄의 표면을 산화알루미늄으로 전환시키는 제2단계와;A second step of converting the surface of aluminum to aluminum oxide by oxidizing the aluminum-metal filter on which aluminum is electrodeposited at 500 to 900 ° C. under dry conditions of an air atmosphere; 상기 제2단계에서 알루미늄-금속필터를 산화시켜 얻은 알루미나-금속필터를 귀금속 용액에 딥핑시켜, 귀금속을 상기 알루미나의 다공성 층에 담지되게 하는 제3단계와;A third step of dipping the alumina-metal filter obtained by oxidizing the aluminum-metal filter in the second step into a noble metal solution, so that the noble metal is supported on the porous layer of the alumina; 귀금속이 담지된 알루미나-금속필터를 공기분위기의 120℃에서 12시간 이내로 건조 소성시키는 제4단계;A fourth step of dry firing the alumina-metal filter loaded with the precious metal within 12 hours at 120 ° C. in an air atmosphere; 를 포함하는 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법에 있어서, In the catalyst-integrated metal filter manufacturing method using an electrophoresis method comprising: 제1단계에서,In the first step, 소정 케이스 내에 금속판을 배치하고, 그 상하에 알루미늄 슬러리 용액을 충진한 후, 상기 알루미늄이 0.1~5wt.% 들어 있는 알루미늄 슬러리 용액 금속판 간에 DC 전원을 걸어주어, 금속판에 알루미늄이 전착되는 것을 특징으로 하는 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법.After placing a metal plate in a predetermined case and filling the aluminum slurry solution above and below, DC power is applied between the aluminum slurry solution metal plates containing 0.1-5 wt.% Of aluminum, and aluminum is electrodeposited on the metal plate. Method for producing a catalyst-integrated metal filter using electrophoresis. 청구항 2에 있어서, 상기 알루미늄이 0.1~5wt.% 들어 있는 알루미늄 슬러리 용액은 알루미늄 파우더(1% NH4OH로 처리후 산화막을 제거한 것)와, 에탄올과, 0.0005~0.05M의 첨가제가 혼합된 것으로서, 상기 첨가제는 입자들을 분산시키는 분산제로서 폴리아크릴릭산(Polyacrylic Acid)과, 수용액 내 전류를 통하게 해주는 전해질로서 알루미늄 이소프로프옥사이드(Aaluminum isopropoxide)로 구성된 것을 특징으로 하는 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법.The method of claim 2, wherein the aluminum slurry solution containing 0.1 to 5 wt.% Of aluminum is an aluminum powder (without removing an oxide film after treatment with 1% NH4OH), ethanol, and 0.0005 to 0.05M of additives. The additive is a method for producing a catalyst-integrated metal filter using an electrophoresis method comprising polyacrylic acid as a dispersing agent for dispersing particles and aluminum isopropoxide as an electrolyte that allows current to flow in an aqueous solution. 청구항 2에 있어서, 상기 귀금속 용액은 0.005~0.1M의 농도를 갖는 클로라이드 또는 나이트레이트 형태의 귀금속 전구체 수용액인 것을 특징으로 하는 전기영동법을 이용한 촉매 일체형 금속필터 제조 방법.The method of claim 2, wherein the noble metal solution is an aqueous solution of a noble metal precursor in the form of chloride or nitrate having a concentration of 0.005 to 0.1 M. 4.
KR1020070128412A 2007-12-11 2007-12-11 Method for manufacturing metal filter using electrophoretic deposition KR100969060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070128412A KR100969060B1 (en) 2007-12-11 2007-12-11 Method for manufacturing metal filter using electrophoretic deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070128412A KR100969060B1 (en) 2007-12-11 2007-12-11 Method for manufacturing metal filter using electrophoretic deposition

Publications (2)

Publication Number Publication Date
KR20090061406A KR20090061406A (en) 2009-06-16
KR100969060B1 true KR100969060B1 (en) 2010-07-09

Family

ID=40990879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070128412A KR100969060B1 (en) 2007-12-11 2007-12-11 Method for manufacturing metal filter using electrophoretic deposition

Country Status (1)

Country Link
KR (1) KR100969060B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147465A1 (en) * 2012-03-28 2013-10-03 현대중공업 주식회사 Metal filter for purifying exhaust gas from ship, and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165699B2 (en) 2015-01-28 2018-12-25 Hewlett-Packard Development Company, L.P. Oxidied and coated articles and methods of making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278443A (en) * 1988-09-13 1990-03-19 Matsushita Electric Ind Co Ltd Production of catalyst carrier for purification of exhaust gas
KR910001896A (en) * 1989-06-30 1991-01-31 이만용 PSG reflow process method after metal contact etching
JP2005193117A (en) 2004-01-06 2005-07-21 National Institute For Materials Science Magnetic filter
KR100625219B1 (en) * 2004-11-22 2006-09-20 (주) 세라컴 Method for preparing of catalyst filter for purifying exhaust gas of diesel automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278443A (en) * 1988-09-13 1990-03-19 Matsushita Electric Ind Co Ltd Production of catalyst carrier for purification of exhaust gas
KR910001896A (en) * 1989-06-30 1991-01-31 이만용 PSG reflow process method after metal contact etching
JP2005193117A (en) 2004-01-06 2005-07-21 National Institute For Materials Science Magnetic filter
KR100625219B1 (en) * 2004-11-22 2006-09-20 (주) 세라컴 Method for preparing of catalyst filter for purifying exhaust gas of diesel automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147465A1 (en) * 2012-03-28 2013-10-03 현대중공업 주식회사 Metal filter for purifying exhaust gas from ship, and preparation method thereof
US9371765B2 (en) 2012-03-28 2016-06-21 Hyundai Heavy Industries Co., Ltd. Metal filter for purifying exhaust gas from ship, and preparation method thereof

Also Published As

Publication number Publication date
KR20090061406A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
EP1859864B1 (en) Filter catalyst for exhaust gas purification of a diesel engine
AU657121B2 (en) Catalyst or membrane precursor systems, catalyst or membrane systems, and method of preparing such systems
JP6329245B2 (en) Nano-catalyst filter for nitrogen oxide removal
EP2133148A1 (en) Exhaust gas purification filter and method of producing the same
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
EP2505571A9 (en) Honeycomb structure, Si-SiC based composite material, method for manufacturing honeycomb structure, and method for manufacturing Si-SiC based composite material
EP1742733B1 (en) Production process for an exhaust gas purifying catalyst
WO2001036097A1 (en) Catalyst and method for preparation thereof
JP4437785B2 (en) Method for producing silicon carbide based catalyst body
JP4030320B2 (en) Ceramic body and ceramic catalyst body
EP3689455A1 (en) Honeycomb catalyst
JP2003230838A (en) Ceramic catalyst body
KR100969060B1 (en) Method for manufacturing metal filter using electrophoretic deposition
JP4584555B2 (en) Ceramic catalyst body
JP2006314894A (en) Production method of catalyst for cleaning emission gas
JP2004249264A (en) Membrane reactor
JP2001314764A (en) Catalyst and its manufacturing method
KR100576737B1 (en) Method for coating anti-corrosive film and porous support layer for depositing catalyst component on metal structures, Method for depositing catalyst component on the metal structures and Monolith Catalyst Module comprising the same
JPH0568890A (en) Exhaust gas purifying catalyst and its production
JP2020062627A (en) Ammonia cleaning catalyst
JP2007021409A (en) Method for manufacturing diesel particulate filter
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP2003326175A (en) Carrier and manufacturing method therefor, and catalyst body
JP2009233580A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP2003112058A (en) Ceramic catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130627

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150630

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 9