JP4784727B2 - Porous composite carrying ultrafine metal particles - Google Patents

Porous composite carrying ultrafine metal particles Download PDF

Info

Publication number
JP4784727B2
JP4784727B2 JP2005067615A JP2005067615A JP4784727B2 JP 4784727 B2 JP4784727 B2 JP 4784727B2 JP 2005067615 A JP2005067615 A JP 2005067615A JP 2005067615 A JP2005067615 A JP 2005067615A JP 4784727 B2 JP4784727 B2 JP 4784727B2
Authority
JP
Japan
Prior art keywords
metal
ultrafine
particles
porous composite
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005067615A
Other languages
Japanese (ja)
Other versions
JP2006247524A (en
Inventor
耕治 田尻
豊 多井
志保 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005067615A priority Critical patent/JP4784727B2/en
Publication of JP2006247524A publication Critical patent/JP2006247524A/en
Application granted granted Critical
Publication of JP4784727B2 publication Critical patent/JP4784727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

本発明は、常温付近あるいは常温以下の低温で、有害物質の酸化分解などに用いられる金属超微粒子担持触媒に関するものであり、更に詳しくは、粒子径がナノスケールに制御された金属超微粒子を金属酸化物を含有する担体に安定に担持させた多孔質複合体、その活性多孔質複合体からなる高い酸化活性を有する触媒、その製造方法及びその用途に関するものである。本発明では、金属超微粒子の粒子径を標準偏差が2nm以下という狭い粒径分布範囲に制御したナノスケールの金属超微粒子を安定に担持した複合体を製造することができるため、本発明は、従来材と比べて、触媒効率を著しく向上させた触媒材を提供することを可能とし、また、クラスター科学の進展に伴って、画期的、特異的な性質を導き出すことを可能とするものである。   The present invention relates to an ultrafine metal particle-supported catalyst used for oxidative decomposition of toxic substances at a temperature near or below room temperature. More specifically, the present invention relates to ultrafine metal particles whose particle diameter is controlled to nanoscale. The present invention relates to a porous composite stably supported on a support containing an oxide, a catalyst having a high oxidation activity comprising the active porous composite, a method for producing the same, and a use thereof. In the present invention, a composite that stably supports nanoscale metal ultrafine particles in which the particle diameter of the metal ultrafine particles is controlled in a narrow particle size distribution range with a standard deviation of 2 nm or less can be produced. Compared to conventional materials, it is possible to provide catalyst materials with significantly improved catalyst efficiency, and it is possible to derive innovative and specific properties with the progress of cluster science. is there.

粒径約100nm以下の金超微粒子は、通常の粗大粒子とは異なった特異な物理的、化学的性質を示すことが知られている(非特許文献1)。しかしながら、超微粒子は、表面エネルギーが大きく、非常に凝固しやすいために、取扱いが困難である。特に、金は、Pt、Pd等の他の貴金属に比べて、融点が低く(金:1063℃、白金:1769℃、パラジウム:1550℃)、かつ金属同志の結合が強いために、超微粒子が凝集しやすく、超微粒子としての特徴を充分に引き出すことが困難であった。   It is known that ultrafine gold particles having a particle size of about 100 nm or less exhibit unique physical and chemical properties different from ordinary coarse particles (Non-patent Document 1). However, ultrafine particles are difficult to handle because they have a large surface energy and are very easy to solidify. In particular, gold has a lower melting point than other noble metals such as Pt and Pd (gold: 1063 ° C., platinum: 1769 ° C., palladium: 1550 ° C.) and strong bonding between metals, so that ultrafine particles It was easy to agglomerate and it was difficult to fully extract the characteristics as ultrafine particles.

従来、金超微粒子を金属酸化物担体上に担持、固定化する方法としては、1)共沈法(特許文献1)、2)均一析出沈澱法(特許文献2)、3)滴下中和沈澱法(特許文献3)、4)還元剤添加法(特許文献3)、5)pH制御中和沈澱法(特許文献3)、6)カルボン酸金属塩添加法(特許文献4)、7)析出沈澱法(特許文献5)、8)コロイド混合法(非特許文献2)、9)気相グラフティング法(特許文献6)、及び10)液相グラフティング法(非特許文献3)等が知られている。これらの方法において、出発物質が金化合物では、塩化金酸等の金の水溶性化合物が使用され、金属酸化物原料としては、各種金属の硝酸塩、硫酸塩、酢酸塩、塩化物などが使用される。また、上記した共沈法等により、沈澱等を析出させた後、乾燥、焼成する必要がある。(特許文献7)   Conventionally, methods for supporting and immobilizing gold ultrafine particles on a metal oxide support include 1) coprecipitation method (Patent Document 1), 2) uniform precipitation method (Patent Document 2), and 3) dropping neutralization precipitation. (Patent Document 3), 4) Reducing agent addition method (Patent Document 3), 5) pH controlled neutralization precipitation method (Patent Document 3), 6) Carboxylic acid metal salt addition method (Patent Document 4), 7) Precipitation Known are precipitation methods (Patent Document 5), 8) colloid mixing method (Non-Patent Document 2), 9) gas phase grafting method (Patent Document 6), and 10) liquid-phase grafting method (Non-Patent Document 3). It has been. In these methods, when the starting material is a gold compound, a gold water-soluble compound such as chloroauric acid is used, and various metal nitrates, sulfates, acetates, chlorides, etc. are used as metal oxide raw materials. The In addition, it is necessary to dry and fire after depositing the precipitate by the coprecipitation method described above. (Patent Document 7)

更に、チタンを主成分とする酸化物からなる担体上に、金超微粒子を均一かつ強固に固定化した複合材料の開発がされてきたが、水溶液のpH値と金水溶性塩やその他の添加物の添加方法などの厳密な作製条件が必要である(特許文献8)。触媒複合体として、平均粒子径が25nm以下の金粒子が金属酸化物に担持された金ナノ粒子触媒とアルカリ性多孔質体とを含有する一酸化炭素除去用触媒複合体があるが、金属酸化物に金ナノ粒子を担持する方法に上述した公知の方法を採用していることから、得られる金の析出物が不均一で粗大な塊となりやすい問題点を抱えている(特許文献9)。   Furthermore, composite materials have been developed in which gold ultrafine particles are fixed uniformly and firmly on a carrier composed of an oxide containing titanium as a main component. However, the pH value of an aqueous solution, a water-soluble gold salt, and other additions have been developed. Strict production conditions such as a method for adding a product are required (Patent Document 8). As a catalyst composite, there is a catalyst composite for removing carbon monoxide containing a gold nanoparticle catalyst in which gold particles having an average particle diameter of 25 nm or less are supported on a metal oxide and an alkaline porous body. Since the known method described above is adopted as the method for supporting the gold nanoparticles, the obtained gold precipitate has a problem that it tends to be a non-uniform and coarse lump (Patent Document 9).

上述した公知の方法では、金の析出の条件を精密に制御することが不可欠であり、また、金を担持させるために長時間を要するという欠点がある。更に、金の水溶液から金成分を部分的に沈殿析出させるため、金の利用率が低く、製造コストが高くなるという欠点もある。また、得られる金の析出物が不均一で粗大なかたまりとなり易く、金析出物の粒径の制御が困難な問題点を抱えている。   In the known method described above, it is indispensable to precisely control the conditions for gold deposition, and there is a drawback that it takes a long time to support gold. Furthermore, since the gold component is partially precipitated from an aqueous solution of gold, there are also disadvantages that the utilization rate of gold is low and the manufacturing cost is high. In addition, the obtained gold precipitates are likely to be non-uniform and coarse masses, and it is difficult to control the particle size of the gold precipitates.

そこで、表面保護した金属超微粒子をテトラヒドロフランなど弱極性の有機溶媒に溶かした後、この溶液にウェットゲルを浸漬し、金属超微粒子をゲル内に吸収させ、得られた金属超微粒子・ウェットゲル複合体をトルエン等の無極性の有機溶媒に浸漬することにより、ゲル骨格に固着、乾燥、加熱を行うことで、サイズ制御して作製した金属超微粒子の粒子サイズを変化させることなくウェットゲル中に分散させる方法が開発された(特許文献10、11)。   Therefore, after dissolving the surface-protected metal ultrafine particles in a weakly polar organic solvent such as tetrahydrofuran, the wet gel is immersed in this solution to absorb the metal ultrafine particles into the gel, and the resulting metal ultrafine particles / wet gel composite is obtained. By immersing the body in a non-polar organic solvent such as toluene, it is fixed to the gel skeleton, dried, and heated, so that the particle size of the ultrafine metal particles produced by controlling the size is not changed in the wet gel. A method of dispersing was developed (Patent Documents 10 and 11).

しかし、この作製法では、化合物の種類や濃度により、金属超微粒子がゲル内部への浸透に長時間を要し、内部まで十分浸透しないため、金属超微粒子が全量担持されず、不均一に分散されたものが多々見られた。また、金属超微粒子・ウェットゲル複合体の粒度を揃える工程で、金属超微粒子の損失が生じる問題を抱えている。更に、この金属超微粒子・ウェットゲル複合体の触媒機能に関しての報告はされていなかった。   However, in this production method, depending on the type and concentration of the compound, the ultrafine metal particles take a long time to penetrate into the gel and do not penetrate sufficiently into the inside of the gel. Many things were seen. In addition, there is a problem that loss of ultrafine metal particles occurs in the process of aligning the particle sizes of the ultrafine metal particle / wet gel composite. Furthermore, there has been no report on the catalytic function of the ultrafine metal particle / wet gel composite.

ホルムアルデヒドの除去法としては、吸着法と酸化法が知られている。吸着法はホルムアルデヒドを活性炭などの高比表面積を有する吸着剤に吸着させて除去する方法であるが、吸着剤の交換や再生を必要とする欠点がある。これに対し、酸化分解法はホルムアルデヒドを二酸化炭素と水に分解し、無害化する方法であり、ホルムアルデヒドを完全に除去できるという利点がある。しかし、従来のホルムアルデヒドを酸化分解して除去できる酸化触媒は、金属酸化物上に貴金属粒子を公知の方法で固定化したものであり、沈殿物の分離と攪拌の操作を4回繰り返す手間がかかる。更に、触媒の粒度を揃える工程で損失が生じるという問題点を抱えている。(特許文献12)。   As a method for removing formaldehyde, an adsorption method and an oxidation method are known. The adsorption method is a method in which formaldehyde is adsorbed and removed by an adsorbent having a high specific surface area such as activated carbon, but has a drawback that the adsorbent needs to be replaced or regenerated. On the other hand, the oxidative decomposition method is a method in which formaldehyde is decomposed into carbon dioxide and water and rendered harmless, and has an advantage that formaldehyde can be completely removed. However, a conventional oxidation catalyst capable of removing formaldehyde by oxidative decomposition is obtained by immobilizing noble metal particles on a metal oxide by a known method, and it takes time and effort to separate the precipitate and agitation four times. . Furthermore, there is a problem that a loss occurs in the process of making the particle size of the catalyst uniform. (Patent Document 12).

特公平3−12934号公報Japanese Patent Publication No. 3-12934 特開昭62−155937号公報Japanese Patent Laid-Open No. Sho 62-155937 特開昭63−252908号公報JP 63-252908 A 特開平2−252610号公報JP-A-2-252610 特開平3−97623号公報Japanese Patent Laid-Open No. 3-97623 特開平9−122478公報JP-A-9-122478 特開平5−154383号公報JP-A-5-154383 特開平6−16422号公報JP-A-6-16422 特開2004−188243号公報JP 2004-188243 A 特開2003−176108号公報JP 2003-176108 A 特開2004−189563号公報JP 2004-189563 A 特開2004−74069号公報JP 2004-74069 A 「超微粒子」アグネ出版センター刊、131頁(1986)“Ultrafine Particles”, Agne Publishing Center, 131 (1986) Tsubota S. et al., Catal. Lett.,56 (1998) 131Tsubota S. et al., Catal. Lett., 56 (1998) 131 Okumura M. et al., Chem.Lett., (2000) 396Okumura M. et al., Chem. Lett., (2000) 396

このような状況下にあって、本発明者らは、上記従来技術に鑑みて、シリカ、アルミナ、チタニア、ジルコニアなどの金属酸化物を含有する担体に、金属超微粒子を分散させた状態で固定されてなる多孔質複合体の簡便な製造方法と、常温で高い酸化活性を有する触媒を開発することを目標として鋭意研究を積み重ねた結果、本発明を成すに至った。本発明は、担体が溶媒に溶解した表面保護物質で保護された金属超微粒子を自発的に凝集することなく吸着し、金属超微粒子を損失することなく固定したことを特徴とする多孔質複合体、その製造方法、常温付近あるいは常温以下の低温で高い酸化活性を有する金属超微粒子担持触媒、及びその用途を提供することを目的とするものである。   Under such circumstances, in view of the above prior art, the present inventors fixed the metal ultrafine particles dispersed in a carrier containing a metal oxide such as silica, alumina, titania and zirconia. As a result of intensive research aimed at developing a simple method for producing a porous composite and a catalyst having high oxidation activity at room temperature, the present invention has been achieved. The present invention relates to a porous composite characterized in that a carrier is adsorbed without spontaneously agglomerating metal ultrafine particles protected with a surface protective substance dissolved in a solvent, and the metal ultrafine particles are fixed without loss. It is an object of the present invention to provide a production method thereof, a metal ultrafine particle-supported catalyst having high oxidation activity at a temperature near or below room temperature, and a use thereof.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)金属酸化物を含有する担体に、表面保護物質で保護したナノスケールの金属超微粒子を分散させた状態で固定してなる多孔質複合体であって、
上記担体が、シリカ、アルミナ、チタニア、又はジルコニアの多孔質体の表面に金属酸化物が被覆された構造を有する金属酸化物被覆多孔体からなる表面積200m /g以上の乾燥担体から構成され、上記金属超微粒子が、貴金属、及び遷移金属から選択される1種又は複数種であり、上記金属超微粒子が予め作製した金属超微粒子の粒子サイズそのままに上記ナノスケールの金属超微粒子の粒子径の標準偏差が2nm又はそれ以下の値に制御されて担持されていることを特徴とする多孔質複合体。
(2)担体が、比表面積が200m/g以上の乾燥エアロゲル又はキセロゲルである前記(1)に記載の多孔質複合体。
(3)ナノスケールの金属超微粒子が、粒子径が大きくても20nmの超微粒子である前記(1)に記載の多孔質複合体。
(4)前記(1)から(3)のいずれかに記載の多孔質複合体を構成する金属超微粒子の表面保護物質を除去した活性多孔質複合体からなることを特徴とする酸化活性を有する触媒。
(5)表面保護物質で保護したナノスケールの金属超微粒子を溶液中で熱処理して粒子径を制御し、これを溶媒中に分散させ、担体と接触させることにより、該担体に、上記金属超微粒子を分散させた状態で固定して多孔質複合体を製造する方法であって、
上記担体が、シリカ、アルミナ、チタニア、又はジルコニアの多孔質体の表面に金属酸化物が被覆された構造を有する金属酸化物被覆多孔体からなる表面積200m /g以上の乾燥担体から構成され、上記金属超微粒子が、貴金属、及び遷移金属から選択される1種又は複数種であり、予め所定の形状に揃えた乾燥担体を用いて担持操作を行うことで該乾燥担体に金属超微粒子をその担持量を制御して担持させることにより上記ナノスケールの金属超微粒子の粒子径の標準偏差2nm又はそれ以下の値に制御ることを特徴とする多孔質複合体の製造方法。
(6)担体が、比表面積が200m/g以上の乾燥エアロゲル又はキセロゲルである前記(5)に記載の多孔質複合体の製造方法。
(7)前記(5)に記載の方法で得られる多孔質複合体を熱処理して金属超微粒子の表面保護物質を除去することを特徴とする活性多孔質複合体からなる酸化活性を有する触媒の製造方法。
(8)金属超微粒子として、金属イオンを表面保護物質の存在下で還元し、表面保護物質で保護した金属超微粒子を用いる前記(5)に記載の多孔質複合体の製造方法。
(9)表面保護物質で保護した金属超微粒子を溶液中で熱処理することにより、金属超微粒子の粒子径を制御する前記(5)に記載の多孔質複合体の製造方法。
(10)有機溶媒中に分散させた金属超微粒子を担体と接触させ、吸着させることで、担体に金属超微粒子を凝集することなく固定する前記(5)に記載の多孔質複合体の製造方法。
(11)前記(4)に記載の触媒の粉末を含むことを特徴とする酸化作用を有する部材。
(12)前記(4)に記載の触媒の成形体を含むことを特徴とする酸化作用を有する部材。
(13)部材が、VOC浄化手段である前記(11)又は(12)に記載の部材。
(14)部材が、一酸化炭素除去フィルターである前記(11)又は(12)に記載の部材。
(15)部材が、空気洗浄機又は空気洗浄フィルターである前記(11)又は(12)に記載の部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A porous composite formed by fixing nanoscale metal ultrafine particles protected with a surface protective substance on a carrier containing a metal oxide in a dispersed state,
The carrier is composed of a dry carrier having a surface area of 200 m 2 / g or more comprising a metal oxide-coated porous body having a structure in which a metal oxide is coated on the surface of a porous body of silica, alumina, titania, or zirconia, The ultrafine metal particles are one or more selected from precious metals and transition metals, and the ultrafine metal particles have the same particle size as the ultrafine metal particles prepared in advance . porous composite standard deviation is characterized that you have been carried is controlled to 2nm or less value.
(2) The porous composite according to (1), wherein the carrier is a dry airgel or xerogel having a specific surface area of 200 m 2 / g or more.
(3) The porous composite according to (1), wherein the nanoscale ultrafine metal particles are ultrafine particles of 20 nm even if the particle diameter is large.
(4) It has an oxidation activity characterized by comprising an active porous composite from which the surface protective material of the metal ultrafine particles constituting the porous composite according to any one of (1) to (3) is removed. catalyst.
(5) Nanoscale metal ultrafine particles protected with a surface protective substance are heat-treated in a solution to control the particle size, and this is dispersed in a solvent and brought into contact with the carrier, whereby the above-mentioned metal ultrafine particles are brought into contact with the carrier. A method for producing a porous composite by fixing fine particles in a dispersed state,
The carrier is composed of a dry carrier having a surface area of 200 m 2 / g or more comprising a metal oxide-coated porous body having a structure in which a metal oxide is coated on the surface of a porous body of silica, alumina, titania, or zirconia, The metal ultrafine particles are one or more selected from precious metals and transition metals, and the carrying operation is performed using a dry carrier having a predetermined shape in advance so that the ultrafine metal particles are added to the dry carrier. method for producing a porous composite which is characterized that you control the 2nm or less value the standard deviation of the particle diameter of the nano-scale ultra-fine metal particles by supporting by controlling the carrying amount.
(6) The method for producing a porous composite according to (5), wherein the carrier is a dry airgel or xerogel having a specific surface area of 200 m 2 / g or more.
(7) A catalyst having an oxidation activity comprising an active porous composite, wherein the porous composite obtained by the method described in (5) above is heat-treated to remove the surface protective material of the metal ultrafine particles. Production method.
(8) The method for producing a porous composite according to (5), wherein metal ultrafine particles obtained by reducing metal ions in the presence of a surface protective substance and protecting the metal ions with the surface protective substance are used as the metal ultrafine particles.
(9) The method for producing a porous composite according to (5), wherein the particle diameter of the metal ultrafine particles is controlled by heat-treating the metal ultrafine particles protected with the surface protective substance in a solution.
(10) The method for producing a porous composite according to the above (5), wherein the metal ultrafine particles dispersed in the organic solvent are brought into contact with the carrier and adsorbed to fix the metal ultrafine particles on the carrier without aggregation. .
(11) A member having an oxidizing action, comprising the catalyst powder according to (4).
(12) A member having an oxidizing action, comprising a molded product of the catalyst according to (4).
(13) The member according to (11) or (12), wherein the member is a VOC purification unit.
(14) The member according to (11) or (12), wherein the member is a carbon monoxide removal filter.
(15) The member according to (11) or (12), wherein the member is an air cleaning machine or an air cleaning filter.

次に、本発明について更に詳細に説明する。
本発明は、シリカ、アルミナ、チタニア、ジルコニアなどの金属酸化物を含有する担体に、金属超微粒子を分散させた状態で固定して多孔質複合体としたこと、また、必要により、金属超微粒子の表面保護物質を除去して活性多孔質複合体としたことを特徴とするものである。本発明は、チオールに代表される表面保護物質を表面に吸着させることにより安定化させた金属超微粒子を含む溶媒溶液中に、多孔質材料、好ましくはエアロゲルあるいはキセロゲルを上記溶媒に置換したものに浸すことを一つの構成要素としており、これにより、安定化された金属超微粒子が凝集等の構造変化を起こすことなく、自発的にエアロゲル及びキセロゲルの内部表面に吸着される。その後、溶媒を除去し、乾燥することで多孔質複合体が得られる。また、導入する金属超微粒子の濃度は、浸す溶液中の金属超微粒子の濃度を変化させることにより制御することができる。また、本発明は、金属超微粒子が凝集することなく溶媒溶液として最初に導入されたものと同じ大きさのまま、多孔質材料中に均一に担持された多孔質複合体が得られる。また、必要に応じ、予め粒度制御を行った担体を用いることで、粒度制御された複合体を作製することができる。
Next, the present invention will be described in more detail.
In the present invention, a porous composite is obtained by fixing a metal oxide such as silica, alumina, titania, zirconia or the like in a state where the metal ultrafine particles are dispersed, and if necessary, the metal ultrafine particles. The surface protective substance is removed to obtain an active porous composite. In the present invention, a porous material, preferably an airgel or xerogel is substituted with the above solvent in a solvent solution containing ultrafine metal particles stabilized by adsorbing a surface protective substance typified by thiol on the surface. The soaking is one component, whereby the stabilized ultrafine metal particles are spontaneously adsorbed on the inner surfaces of the airgel and xerogel without causing structural changes such as aggregation. Thereafter, the solvent is removed and the porous composite is obtained by drying. Further, the concentration of the ultrafine metal particles to be introduced can be controlled by changing the concentration of the ultrafine metal particles in the solution to be immersed. The present invention also provides a porous composite that is uniformly supported in a porous material while maintaining the same size as that initially introduced as a solvent solution without aggregation of ultrafine metal particles. Moreover, the composite body by which the particle size control was carried out can be produced by using the support | carrier which performed particle size control beforehand as needed.

本発明において、上記金属超微粒子としては、好ましくは、例えば、金、銀、パラジウムなどの貴金属、鉄、コバルトなどの遷移金属が使用される。また、上記チオールに代表される表面保護物質としては、例えば、ドデカンチオール、ベンゼンチオール等のチオール類、トリフェニルホスフィン等のリン化合物などの金属超微粒子を溶媒溶液中で安定化させる適宜の試薬が用いられる。これらは、溶媒溶液中で金属が凝集せずに安定に存在できる組み合わせであればよく、金属超微粒子及びそれを安定化させる試薬ともに上述のものに限定されるものではない。本発明において、上記チオールに代表される表面保護物質とは、このように、金属超微粒子を溶媒溶液中で安定化させる適宜の試薬を意味するものとして定義される。また、上述の作製方法による金属超微粒子の粒径は、1〜20nm程度のものが一般的ではあるが、特に、この粒径域に限定するものではない。金超微粒子の大きさは特に限定されるものではないが、粒子径が10nm以下である、いわゆる超微粒子がより好適である。   In the present invention, as the ultrafine metal particles, for example, noble metals such as gold, silver and palladium, and transition metals such as iron and cobalt are preferably used. Examples of the surface protective substance typified by the thiol include an appropriate reagent for stabilizing metal ultrafine particles such as thiols such as dodecanethiol and benzenethiol and phosphorus compounds such as triphenylphosphine in a solvent solution. Used. These may be any combination that allows metal to stably exist without aggregating in the solvent solution, and both the metal ultrafine particles and the reagent that stabilizes them are not limited to those described above. In the present invention, the surface protective substance typified by the thiol is defined as meaning an appropriate reagent for stabilizing the metal ultrafine particles in the solvent solution. Moreover, although the particle diameter of the metal ultrafine particles by the above-mentioned production method is generally about 1 to 20 nm, it is not particularly limited to this particle size range. The size of the gold ultrafine particles is not particularly limited, but so-called ultrafine particles having a particle diameter of 10 nm or less are more preferable.

本発明で用いられる多孔質材料としては、好ましくは比表面積が200m/g以上あるエアロゲルあるいはキセロゲルが例示される。これらには、シリカ、チタニア、ジルコニア、アルミナ等の金属酸化物の単体あるいは複合体を用いることができるが、担持される金属超微粒子の触媒性能を十分に引き出すために、ある特定の化学種の担体表面上に金属超微粒子を担持することが必要である。その特定の化学種単体などの多孔質体を用いて、本発明の方法で、金属超微粒子を担持した場合、多孔質体の構造変化などの問題が起こるときには、シリカなどの骨格の表面に必要とする金属酸化物を被覆したエアロゲル、キセロゲルなどを用いることができる。 The porous material used in the present invention is preferably an airgel or xerogel having a specific surface area of 200 m 2 / g or more. For these, a simple substance or a composite of metal oxides such as silica, titania, zirconia, and alumina can be used. However, in order to sufficiently bring out the catalytic performance of the supported ultrafine metal particles, a specific chemical species is used. It is necessary to carry metal ultrafine particles on the surface of the carrier. When a porous material such as a specific chemical species is used and metal ultrafine particles are supported by the method of the present invention, it is necessary on the surface of the skeleton such as silica when problems such as structural changes of the porous material occur. An airgel or xerogel coated with a metal oxide can be used.

具体的には、例えば、金超微粒子を常温酸化触媒として用いる場合、担体表面としては、チタニアなどが望ましいが、チタニア担体のエアロゲル等を用いると、後に述べる、保護分子除去のための熱処理時にチタニアの相変化が起こり、多孔質体の構造が大きく変化するとともに、それに伴い金の凝集が起こってしまう。シリカ表面にチタニアを被覆したエアロゲル等を用いることにより、熱処理での相変化が抑えられ、金の凝集が起こらずに、高い性能を示す材料が得られる。これらのエアロゲルやキセロゲルは、ウェットゲルの作製と、その超臨界乾燥あるいは自然乾燥により作製される。   Specifically, for example, when gold ultrafine particles are used as a room temperature oxidation catalyst, titania or the like is desirable as the support surface. However, when a titania support aerogel or the like is used, titania is used during heat treatment for protecting molecule removal described later. As a result of this phase change, the structure of the porous body changes greatly, and gold agglomerates accordingly. By using an airgel or the like whose surface is coated with titania on the silica surface, a phase change due to heat treatment can be suppressed, and a material exhibiting high performance can be obtained without causing aggregation of gold. These aerogels and xerogels are produced by production of wet gel and its supercritical drying or natural drying.

ウェットゲルの作製は、通常、例えば、シリカウエットゲルであれば、ケイ酸メチルやケイ酸エチル等の金属アルコキシドの加水分解とゲル化により作製されるが、以下の溶媒置換などに耐える程度のウェットゲルが得られるならば、それらの物質及び作製法ともにこれらに限定されるものではない。また、エアロゲル及びキセロゲルを作製する場合、例えば、金属アルコキシドをエタノールなどのアルコールで希釈して、かつ、加水分解を行わせることにより、各種の酸化物濃度のウェットゲルを得ることができ、当該ウェットゲル及びその乾燥法により各種濃度の多孔質材料を得ることができる。   Preparation of wet gel is usually made by hydrolysis and gelation of metal alkoxides such as methyl silicate and ethyl silicate, for example, if it is silica wet gel, but wet enough to withstand the following solvent substitution. As long as a gel can be obtained, the materials and the production method are not limited to these. Further, when producing airgel and xerogel, for example, by diluting a metal alkoxide with an alcohol such as ethanol and performing hydrolysis, wet gels having various oxide concentrations can be obtained. Various concentrations of porous material can be obtained by gel and its drying method.

ウェットゲルを、例えば、チタンテトライソプロポキシドのトルエン溶液等に浸漬して、1日程度静置し、未反応のアルコキシドを液相を純トルエンに置換することで除去してから、乾燥することで、チタニア被覆シリカウエットゲルが得られる。ウェットゲルは、自然乾燥によりキセロゲル、超臨界乾燥によりエアロゲルとされる。自然乾燥は、通常は、室温、大気中で数日放置という方法で行われるが、溶媒の種類、乾燥時の収縮防止の観点から、若干の加熱、あるいは減圧下の乾燥等、各種の条件設定を行うことが可能であり、乾燥して多孔質体が得られるならば、上述の方法に限られるものではない。   The wet gel is immersed in, for example, a toluene solution of titanium tetraisopropoxide and left to stand for about 1 day, and the unreacted alkoxide is removed by replacing the liquid phase with pure toluene, followed by drying. Thus, a titania-coated silica wet gel is obtained. The wet gel is made into a xerogel by natural drying and an airgel by supercritical drying. Natural drying is usually performed by leaving it to stand at room temperature in the atmosphere for several days, but various conditions such as slight heating or drying under reduced pressure are used from the viewpoint of the type of solvent and prevention of shrinkage during drying. As long as the porous body can be obtained by drying, the method is not limited to the above.

また、超臨界乾燥を用いる場合は、乾燥に必要な温度が低くてよいように、好適には、専ら二酸化炭素媒体の超臨界乾燥が用いられる。ウェットゲルをオートクレーブ中に入れて、ウェットゲルの液相溶媒でオートクレーブを満たし、加圧下で液相を液化二酸化炭素に置換した後、オートクレーブ内を二酸化炭素の臨界条件以上、例えば、50℃、10MPaとして二酸化炭素を超臨界流体とした後、温度を維持しつつ二酸化炭素を除去して多孔質材料を得る。この方法により、極めて低密度な多孔質体が得られる。なお、超臨界媒体は、二酸化炭素に限られるものではない。このようにして作製した、エアロゲル、キセロゲルは、そのまま金属超微粒子吸着操作が進んでもよく、また、表面残留有機基などの除去のため1000℃以下で1〜5時間熱処理を行ってもよい。最も好ましくは、表面残留有機基の脱離する温度以上で、2〜4時間熱処理を行う。   When supercritical drying is used, preferably, supercritical drying of a carbon dioxide medium is preferably used so that the temperature required for drying may be low. The wet gel is put in an autoclave, the autoclave is filled with the liquid solvent of the wet gel, and the liquid phase is replaced with liquefied carbon dioxide under pressure. As a supercritical fluid, carbon dioxide is removed while maintaining the temperature to obtain a porous material. By this method, an extremely low density porous body can be obtained. Note that the supercritical medium is not limited to carbon dioxide. The aerogel and xerogel produced in this manner may be subjected to the ultrafine metal particle adsorption operation as they are, and may be heat-treated at 1000 ° C. or lower for 1 to 5 hours for removing surface residual organic groups. Most preferably, the heat treatment is performed at a temperature equal to or higher than the temperature at which the surface residual organic groups are eliminated.

本発明で用いられる多孔質複合体は、有機溶媒を媒体として金属超微粒子が凝集することなく担体へ固定された状態を特徴とするものである。具体的には、例えば、金属超微粒子が金の場合、担体には粒径制御されたチタニア被覆シリカエアロゲル又はチタニア被覆シリカキセロゲルを用い、溶媒にトルエン又はテトラヒドロフランを用いて、金を溶解し、そこへ担体を投入し、溶媒中で金が全て担体へ固定された状態とすることで多孔質複合体となる。   The porous composite used in the present invention is characterized by a state in which ultrafine metal particles are fixed to a carrier without aggregation using an organic solvent as a medium. Specifically, for example, when the ultrafine metal particles are gold, a titania-coated silica aerogel or titania-coated silica xerogel having a controlled particle size is used as a support, and toluene or tetrahydrofuran is used as a solvent to dissolve gold. The support is put into the substrate, and all the gold is fixed to the support in a solvent to form a porous composite.

更に、上記多孔質複合体の製造方法において、使用する有機溶媒は、金属超微粒子を溶解できるものであれば特に限定されるものではない。具体的には、例えば、アルコール類、ケトン類、エーテル類、エステル類、及び炭化水素類が挙げられる。アルコール類としては、具体的には、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、オクチルアルコール、エチレングリコール等が挙げられる。ケトン類としては、具体的には、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。エーテル類としては、具体的には、例えば、テトラヒドロフラン、ジイソブチルエーテル等が挙げられる。エステル類としては、具体的には、例えば、酢酸エチル、酢酸ブチル、プロピオン酸メチル等が挙げられる。炭化水素類としては、具体的には、例えば、ヘキサン、トルエン、キシレン等が挙げられる。   Furthermore, in the method for producing a porous composite, the organic solvent to be used is not particularly limited as long as it can dissolve the metal ultrafine particles. Specific examples include alcohols, ketones, ethers, esters, and hydrocarbons. Specific examples of alcohols include methyl alcohol, ethyl alcohol, isopropyl alcohol, isopropyl alcohol, n-butyl alcohol, octyl alcohol, and ethylene glycol. Specific examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Specific examples of ethers include tetrahydrofuran and diisobutyl ether. Specific examples of the esters include ethyl acetate, butyl acetate, and methyl propionate. Specific examples of the hydrocarbons include hexane, toluene, xylene and the like.

上述した多孔質複合体を粉砕及び分級により粒度をそろえ、金属超微粒子を担持する条件は、安定化された金属超微粒子を含むトルエンに代表される有機溶媒溶液中に粒度をそろえたエアロゲル及びキセロゲルを浸し、室温にて0.5〜24時間攪拌する。この程度で溶液中の金属超微粒子は、エアロゲル及びキセロゲルの内部表面に吸着される。通常、金属超微粒子を含む溶液は着色しており、エアロゲル及びキセロゲルは無色で半透明かほぼ透明であるので、エアロゲル及びキセロゲル側が着色していき、溶液側が無色透明等溶媒本来の色になっていくことから反応の進行がわかる。溶液中の金属超微粒子の濃度、及び溶液量とエアロゲル及びキセロゲル量の比率を変えることにより、最終的に得られる多孔質体中の金属超微粒子の濃度を変化させることができる。   The above-mentioned porous composite has the same particle size by pulverization and classification, and the conditions for supporting the metal ultrafine particles are aerogels and xerogels with uniform particle sizes in an organic solvent solution typified by toluene containing stabilized metal ultrafine particles. And stir at room temperature for 0.5-24 hours. At this level, the ultrafine metal particles in the solution are adsorbed on the inner surfaces of the airgel and xerogel. Usually, the solution containing ultrafine metal particles is colored, and the airgel and xerogel are colorless and translucent or almost transparent, so the aerogel and xerogel side is colored, and the solution side becomes the original color of the solvent such as colorless and transparent. You can see the progress of the reaction. By changing the concentration of the ultrafine metal particles in the solution and the ratio of the solution amount and the amount of the airgel and xerogel, the concentration of the ultrafine metal particles in the porous body finally obtained can be changed.

従来の方法では、金属微粒子の担持量を3wt%担持するのに3日間以上必要だが、本発明の製造方法を用いると、30分以内に金属超微粒子を全量担持することができる。更に、金属微粒子の濃度を5倍(15wt%)にすると、3日間で金属超微粒子を全量担持することができる。本発明では、金属超微粒子を担持した多孔質複合体を熱処理することにより表面保護物質を除去するが、保護物質の脱離する温度は、示差熱分析や熱重量分析等により見積もることができる。多孔質材料中の金属超微粒子からの保護物質の脱離は、例えば、電気炉中で、その脱離温度より10℃程度高い温度で1時間程度、熱処理することにより達成される。なお、加熱装置、温度、加熱時間は、保護物質の脱離に十分であればよく、上記のものに限るものではない。   In the conventional method, it takes 3 days or more to support 3 wt% of the fine metal particles. However, when the production method of the present invention is used, all the ultrafine metal particles can be supported within 30 minutes. Furthermore, when the concentration of the metal fine particles is increased to 5 times (15 wt%), the entire amount of metal ultrafine particles can be supported in 3 days. In the present invention, the surface protective substance is removed by heat-treating the porous composite carrying the metal ultrafine particles, but the temperature at which the protective substance is desorbed can be estimated by differential thermal analysis or thermogravimetric analysis. The desorption of the protective substance from the ultrafine metal particles in the porous material is achieved, for example, by heat treatment in an electric furnace at a temperature about 10 ° C. higher than the desorption temperature for about 1 hour. Note that the heating device, temperature, and heating time are not limited to those described above as long as they are sufficient for desorption of the protective substance.

本発明では、上記表面保護物質を除去して、活性多孔質複合体とすることにより、高い酸化活性を有する触媒を作製することができる。本発明の上記活性多孔質複合体からなる触媒では、例えば、金属超微粒子の粒子径を標準偏差が2nm以下という狭い粒径分布範囲に制御した金属超微粒子を安定に担持させることが可能であり、金属超微粒子の粒子径を制御し、担持量を増加させることで触媒効果を著しく向上させることが可能であり、それにより、本発明は、従来材と比べて、高い酸化活性等を有する高機能の触媒を提供することが実現できる。本発明の触媒は、例えば、常温付近あるいは常温以下の低温で、有害物質の酸化分解に好適に使用することができるものであり、例えば、空気清浄機又は空気浄化フィルター、VOC浄化フィルター、一酸化炭素除去フィルター、医療又は食品用の消毒、又は殺菌材料等の部材を構成する活性触媒として有用である。   In the present invention, a catalyst having high oxidation activity can be produced by removing the surface protective substance to obtain an active porous composite. In the catalyst comprising the above active porous composite of the present invention, for example, it is possible to stably support ultrafine metal particles in which the particle size of ultrafine metal particles is controlled to a narrow particle size distribution range with a standard deviation of 2 nm or less. It is possible to remarkably improve the catalytic effect by controlling the particle diameter of the ultrafine metal particles and increasing the supported amount, whereby the present invention has a high oxidation activity and the like compared to conventional materials. Providing a functional catalyst can be realized. The catalyst of the present invention can be suitably used for oxidative decomposition of harmful substances at, for example, near room temperature or at a low temperature of room temperature or less. For example, an air cleaner or an air purification filter, a VOC purification filter, a monoxide It is useful as an active catalyst constituting members such as carbon removal filters, medical or food disinfection, or sterilizing materials.

以上詳述したように、本発明は、多孔質材料に金属超微粒子を担持した多孔質複合体及びその作製方法に係るものであり、本発明によれば、1)予め作製した直径1〜20nmの金属超微粒子の粒子サイズそのままに、金属超微粒子を担持した多孔質複合体を、その担持量を制御して作製することができる、2)また、多孔質材料に分散して担持されている金属超微粒子を、凝集することなく表面保護物質を除去することができる、3)触媒等への応用において、金属超微粒子を担持した多孔質複合体の金属超微粒子の担持量の増加及び金属超微粒子の粒子径を制御することで、触媒効率を向上させることができる、4)また、数nmサイズの金属超微粒子では量子サイズ効果も期待され、非線形光学材料など量子サイズ効果を用いた材料等への応用が期待される、という格別の効果が奏される。   As described above in detail, the present invention relates to a porous composite in which ultrafine metal particles are supported on a porous material and a method for producing the same. According to the present invention, 1) a diameter of 1 to 20 nm prepared in advance. It is possible to produce a porous composite carrying metal ultrafine particles with the particle size of the metal ultrafine particles as they are, by controlling the carrying amount. 2) In addition, they are dispersed and carried in a porous material. The surface protective substance can be removed without agglomerating the ultrafine metal particles. 3) In application to a catalyst, etc., the amount of ultrafine metal particles supported on the porous composite carrying ultrafine metal particles and the ultrafine metal particles are reduced. By controlling the particle size of the fine particles, the catalyst efficiency can be improved. 4) In addition, a few nanometer-sized metal ultrafine particles are also expected to have a quantum size effect, and materials using the quantum size effect such as nonlinear optical materials, etc. Application is expected, special effect can be attained.

次に、実施例により本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples.

(1)金超微粒子の作製
塩化金酸4水和物0.500g(1.214mmol)に蒸留水10mlを加えて塩化金酸水溶液とした。これと、トルエン80mlに臭化テトラオクチルアンモニウム0.724g(1.457mmol)を加えたトルエン溶液を混合し、5〜10分撹拌することにより、塩化金酸イオンをトルエン相に抽出した。トルエン相を分離・抽出し、これにドデカンチオール0.871ml(3.642mmol)を加え、30分撹拌した。この溶液にホウ酸水素ナトリウム0.510g(13.49mmol)に蒸留水5mlを加えたホウ酸水素ナトリウム水溶液を滴下し、1時間撹拌することにより金イオンを還元した。トルエン相を分離・抽出した後、溶液を約10mlまで濃縮し、エタノール100mlと混合した。この混合液を−30℃で保存することにより、金超微粒子を析出させた。生成した金超微粒子は、トルエン−エタノール混合液から再結晶させることにより2回精製した。生成した粒子の金コアの直径は平均2.6nmであった。粒径分布の半値巾は約2nmであった。
(1) Production of ultrafine gold particles 10 ml of distilled water was added to 0.500 g (1.214 mmol) of chloroauric acid tetrahydrate to obtain an aqueous chloroauric acid solution. This and a toluene solution obtained by adding 0.724 g (1.457 mmol) of tetraoctylammonium bromide to 80 ml of toluene were mixed and stirred for 5 to 10 minutes to extract chloroauric acid ions to the toluene phase. The toluene phase was separated and extracted, and 0.871 ml (3.642 mmol) of dodecanethiol was added thereto and stirred for 30 minutes. To this solution, a sodium hydrogen borate aqueous solution in which 5 ml of distilled water was added to 0.510 g (13.49 mmol) of sodium hydrogen borate was dropped, and the mixture was stirred for 1 hour to reduce gold ions. After separating and extracting the toluene phase, the solution was concentrated to about 10 ml and mixed with 100 ml of ethanol. By storing this mixed solution at −30 ° C., ultrafine gold particles were precipitated. The produced gold ultrafine particles were purified twice by recrystallization from a toluene-ethanol mixed solution. The average diameter of the gold core of the produced particles was 2.6 nm. The half width of the particle size distribution was about 2 nm.

(2)シリカウエットゲルの作製
テトラメチルシリケイト121.6gにメタノール256gを混合し、撹拌した。その後、撹拌しながら溶液中にアンモニア水(0.005N)86.4gを加えた。この時、テトラメチルシリケイトとメタノール、水の比はモル比で1:10:6であった。1分ほど撹拌した後、混合液を円柱形の型(直径80mm、深さ10mm)に流し込み、蓋をした。これを約1時間放置し、反応液がゼリー状に固まっていることを確認してから、乾燥するのを防ぐため、ポリ塩化ビニリデンフィルムで密封した。その後、1日放置し、ゲル化を進行させた。その後、型から取り出し、エタノールに浸して1日以上放置した。ゲル中に残存する水やアンモニアを完全に除去するため、その後、エタノールの取替えを2回行った。
(2) Production of silica wet gel 256 g of methanol was mixed with 121.6 g of tetramethyl silicate and stirred. Thereafter, 86.4 g of aqueous ammonia (0.005N) was added to the solution while stirring. At this time, the ratio of tetramethyl silicate to methanol and water was 1: 10: 6 in molar ratio. After stirring for about 1 minute, the mixed solution was poured into a cylindrical mold (diameter 80 mm, depth 10 mm) and covered. This was allowed to stand for about 1 hour, and after confirming that the reaction solution had hardened in a jelly form, it was sealed with a polyvinylidene chloride film to prevent drying. Thereafter, the gelation was allowed to proceed for 1 day. Thereafter, it was removed from the mold, immersed in ethanol, and left for one day or longer. In order to completely remove water and ammonia remaining in the gel, ethanol was replaced twice thereafter.

(3)チタニア被覆シリカウエットゲルの作製
作製したシリカウエットゲルにチタニア被覆を行うため、シリカウエットゲルをトルエンに浸して1日以上放置した。ゲル中に残存するエタノールを完全に除去するため、その後、トルエンの取替えを3回行った。トルエンに対してチタンテトライソプロポキシド(TTIP)を10wt%加えた溶液に、トルエン置換を行ったシリカウエットゲルを浸して24時間放置した。余分なTTIPを除去するため、その後、トルエンの取替えを3〜4回行った。
(3) Preparation of titania-coated silica wet gel In order to perform titania coating on the prepared silica wet gel, the silica wet gel was immersed in toluene and allowed to stand for 1 day or longer. In order to completely remove ethanol remaining in the gel, toluene was replaced three times thereafter. A silica wet gel subjected to toluene substitution was immersed in a solution obtained by adding 10 wt% of titanium tetraisopropoxide (TTIP) to toluene, and left for 24 hours. To remove excess TTIP, the toluene was then replaced 3-4 times.

(4)チタニア被覆シリカエアロゲルの作製
上記のようにして得られたチタニア被覆シリカウエットゲル担持体を、トルエンを満たしたオートクレーブ中に入れ、トルエンを満たした。ゲルの液相部を液化炭酸ガス(臨界温度31.1℃、臨界圧力72.9気圧)に置換するため、加圧ポンプで加圧しながら、液化炭酸ガスをオートクレーブ内に注入した。90気圧になったとき、気圧を保つようにバルブを調節し、20℃で2時間保持した。完全に置換するために、置換操作は3回行った。3回目の置換が終わった後にバルブを閉め、オートクレーブの中の気圧を保持した。オートクレーブの温度を上昇させ、圧力を100気圧に上昇させた。その後、バルブを調節し、圧力を保持した。試料の温度が40℃を超えたところで、気圧を1気圧/分の速度で減少するように、オートクレーブ内の炭酸ガスを抜き去った。上記手順により作製したチタニア被覆シリカエアロゲル担持体の写真を図1に示す。また、粉砕及び分級により粒度を揃えたチタニア被覆シリカエアロゲル担持体の写真を図2に示す。
(4) Production of titania-coated silica aerogel The titania-coated silica wet gel carrier obtained as described above was placed in an autoclave filled with toluene and filled with toluene. In order to replace the liquid phase part of the gel with liquefied carbon dioxide gas (critical temperature 31.1 ° C., critical pressure 72.9 atm), liquefied carbon dioxide gas was injected into the autoclave while being pressurized with a pressure pump. When the pressure reached 90 atm, the valve was adjusted so as to maintain the atmospheric pressure and maintained at 20 ° C. for 2 hours. In order to completely substitute, the substitution operation was performed three times. After the third replacement, the valve was closed to maintain the pressure in the autoclave. The temperature of the autoclave was raised and the pressure was raised to 100 atmospheres. Thereafter, the valve was adjusted to maintain the pressure. When the temperature of the sample exceeded 40 ° C., the carbon dioxide gas in the autoclave was removed so that the pressure was decreased at a rate of 1 atm / min. A photograph of the titania-coated silica airgel carrier produced by the above procedure is shown in FIG. Moreover, the photograph of the titania-coated silica airgel carrier having a uniform particle size by pulverization and classification is shown in FIG.

(5)金超微粒子のチタニア被覆シリカエアロゲルへの吸着
作製したチタニア被覆シリカエアロゲルを熱処理し、ゲル表面のチオール分子の脱離を行った。その後、作製した金超微粒子にトルエンを加えたトルエン溶液(濃度:Au10mg/10ml)に粒度を揃えたチタニア被覆シリカエアロゲルを100mg浸した。30分間攪拌すると、溶液中の金超微粒子が完全にチタニア被覆シリカエアロゲルに吸着された。得られた多孔質複合体の写真を図3に示す。
(5) Adsorption of gold ultrafine particles onto titania-coated silica airgel The produced titania-coated silica airgel was heat-treated to desorb thiol molecules on the gel surface. Thereafter, 100 mg of titania-coated silica aerogel having a uniform particle size was immersed in a toluene solution (concentration: Au 10 mg / 10 ml) obtained by adding toluene to the prepared ultrafine gold particles. After stirring for 30 minutes, the ultrafine gold particles in the solution were completely adsorbed on the titania-coated silica airgel. A photograph of the obtained porous composite is shown in FIG.

(6)多孔質触媒の作製
作製したチタニア被覆シリカエアロゲル担持体を熱分析したところ、約290℃においてチオール分子の脱離に対応する重量減少が観測された。このデータを基に、空気雰囲気中(流量:20ml/min)、400℃で4時間、多孔質複合体を熱処理した。熱処理後のゲルは目視において、熱処理前のものと色の変化はなく、熱処理による粒子径の変化はほとんどないものと考えられる。得られた多孔質触媒の写真を図4、TEM観察画像を図5に示す。
(6) Production of porous catalyst When the produced titania-coated silica airgel carrier was subjected to thermal analysis, a weight loss corresponding to desorption of thiol molecules was observed at about 290 ° C. Based on this data, the porous composite was heat-treated at 400 ° C. for 4 hours in an air atmosphere (flow rate: 20 ml / min). It is considered that the gel after the heat treatment is not visually changed from the color before the heat treatment, and the particle diameter is hardly changed by the heat treatment. The photograph of the obtained porous catalyst is shown in FIG. 4, and the TEM observation image is shown in FIG.

(1)チタニア被覆シリカキセロゲルの作製
本実施例では、実施例1の方法により作製したチタニア被覆シリカウエットゲル担持体を、自然乾燥することにより、キセロゲル担持体を得た。実施例1の方法により作製したチタニア被覆シリカウエットゲル担持体を、網ごとガラスシャーレに入れ、室温にて1日以上放置した。その後、60℃乾燥機にて1日以上放置した。以上の手順により作製したチタニア被覆シリカキセロゲル担持体の写真を図6に示す。また、粉砕及び分級により粒度を揃えたチタニア被覆シリカキセロゲル担持体の写真を図7に示す。
(1) Production of titania-coated silica xerogel In this example, the titania-coated silica wet gel carrier produced by the method of Example 1 was naturally dried to obtain a xerogel carrier. The titania-coated silica wet gel carrier produced by the method of Example 1 was placed in a glass petri dish together with a net and allowed to stand at room temperature for 1 day or longer. After that, it was left in a 60 ° C. dryer for 1 day or longer. A photograph of the titania-coated silica xerogel carrier produced by the above procedure is shown in FIG. Further, a photograph of a titania-coated silica xerogel carrier having a uniform particle size by pulverization and classification is shown in FIG.

(2)金超微粒子のチタニア被覆シリカキセロゲルへの吸着
作製したチタニア被覆シリカキセロゲルを熱処理し、ゲル表面のチオール分子の脱離を行った。その後、実施例1の方法より作製した金超微粒子にトルエンを加えたトルエン溶液(濃度:Au10mg/10ml)に粒度を揃えたチタニア被覆シリカキセロゲルを100mg浸した。30分間攪拌すると、溶液中の金超微粒子が完全にチタニア被覆シリカエアロゲルに吸着された。得られた多孔質複合体の写真を図8に示す。
(2) Adsorption of gold ultrafine particles onto titania-coated silica xerogel The prepared titania-coated silica xerogel was heat-treated to desorb thiol molecules on the gel surface. Thereafter, 100 mg of titania-coated silica xerogel having a uniform particle size was immersed in a toluene solution (concentration: Au 10 mg / 10 ml) in which toluene was added to the ultrafine gold particles produced by the method of Example 1. After stirring for 30 minutes, the ultrafine gold particles in the solution were completely adsorbed on the titania-coated silica airgel. A photograph of the obtained porous composite is shown in FIG.

(3)多孔質触媒の作製
作製したチタニア被覆キセロゲル担持体を熱分析したところ、約290℃においてチオール分子の脱離に対応する重量減少が観測された。このデータを基に、空気雰囲気中(流量:20ml/min)、400℃で4時間、多孔質複合体を熱処理した。熱処理後のゲルは目視において、熱処理のものと色の変化はなく、熱処理による粒子径の変化はほとんどないものと考えられる。得られた多孔質触媒の写真を図9、TEM観察画像を図10に示す。
(3) Production of porous catalyst When the produced titania-coated xerogel support was subjected to thermal analysis, a weight loss corresponding to desorption of thiol molecules was observed at about 290 ° C. Based on this data, the porous composite was heat-treated at 400 ° C. for 4 hours in an air atmosphere (flow rate: 20 ml / min). It is considered that the gel after the heat treatment does not change in color from that of the heat-treated gel and there is almost no change in the particle diameter due to the heat treatment. A photograph of the obtained porous catalyst is shown in FIG. 9, and a TEM observation image is shown in FIG.

実施例1の多孔質触媒作製法と同様に、金超微粒子10mgにトルエン10mlを加えた濃度のトルエン溶液に、熱処理したチタニア被覆エアロゲル担持体200mgを投入し、30分間攪拌後、溶媒の除去及び乾燥を行い、多孔質複合体を作製した。これを400℃で4時間熱処理し、多孔質触媒を作製した。上記多孔質触媒100mgに、一酸化炭素を1容量%含む空気混合ガスを10ml/minで流通させて、一酸化炭素に対する酸化活性を調べた。その結果、−60℃で31.5%、−55℃で42%、−50℃で66%、−40℃で100%、−40℃以上で100%の酸化反応率を示し、本発明の多孔質触媒は、低温から常温で高い一酸化炭素酸化活性を示すことが明らかとなった。この結果をグラフに示したものを図11に示す。   As in the porous catalyst preparation method of Example 1, 200 mg of a heat-treated titania-coated airgel carrier was added to a toluene solution having a concentration of 10 mg of ultrafine gold particles and 10 ml of toluene. After stirring for 30 minutes, removal of the solvent and Drying was performed to prepare a porous composite. This was heat-treated at 400 ° C. for 4 hours to produce a porous catalyst. An air mixed gas containing 1% by volume of carbon monoxide was passed through 100 mg of the porous catalyst at 10 ml / min, and the oxidation activity for carbon monoxide was examined. As a result, the oxidation reaction rate was 31.5% at -60 ° C, 42% at -55 ° C, 66% at -50 ° C, 100% at -40 ° C, and 100% at -40 ° C or higher. It was revealed that the porous catalyst exhibits high carbon monoxide oxidation activity from low temperature to normal temperature. The result is shown in a graph in FIG.

実施例2の多孔質触媒作製法と同様に、金超微粒子10mgにトルエン10mlを加えた濃度のトルエン溶液に、熱処理したチタニア被覆キセロゲル担持体200mgを投入し、30分間攪拌後、溶媒の除去及び乾燥を行い、多孔質複合体を作製した。これを400℃で4時間熱処理し、多孔質触媒を作製した。上記多孔質触媒100mgに、一酸化炭素を1容量%含む空気混合ガスを10ml/minで流通させて、一酸化炭素に対する酸化活性を調べた。その結果、−55℃で35%、−50℃で50%、−45℃で75%、−40℃で100%、−40℃以上100%の酸化反応率を示し、本発明の多孔質触媒は、低温から常温で高い一酸化炭素酸化活性を示すことが明らかとなった。この結果をグラフに示したものを図12に示す。   As in the porous catalyst preparation method of Example 2, 200 mg of a heat-treated titania-coated xerogel support was added to a toluene solution having a concentration of 10 mg of ultrafine gold particles and 10 ml of toluene. After stirring for 30 minutes, the solvent was removed and Drying was performed to prepare a porous composite. This was heat-treated at 400 ° C. for 4 hours to produce a porous catalyst. An air mixed gas containing 1% by volume of carbon monoxide was passed through 100 mg of the porous catalyst at 10 ml / min, and the oxidation activity for carbon monoxide was examined. As a result, the porous catalyst of the present invention showed an oxidation reaction rate of 35% at -55 ° C, 50% at -50 ° C, 75% at -45 ° C, 100% at -40 ° C, and 100% at -40 ° C or higher. Was found to exhibit high carbon monoxide oxidation activity from low temperature to normal temperature. The result is shown in a graph in FIG.

実施例1の多孔質触媒作製法と同様で、金超微粒子の粒子径を1〜5nmに制御し、それぞれトルエンに溶解した。そこへ、熱処理したチタニア被覆エアロゲル担持体を投入し、30分間攪拌後、溶媒の除去及び乾燥を行い、多孔質複合体を作製した。これを400℃で4時間熱処理し、多孔質触媒を作製した。   In the same manner as in the porous catalyst preparation method of Example 1, the particle diameter of the ultrafine gold particles was controlled to 1 to 5 nm, and each was dissolved in toluene. The heat-treated titania-coated airgel carrier was added thereto, and after stirring for 30 minutes, the solvent was removed and dried to prepare a porous composite. This was heat-treated at 400 ° C. for 4 hours to produce a porous catalyst.

上記多孔質触媒100mgに、一酸化炭素を1容量%含む空気混合ガスを10ml/minで流通させて、一酸化炭素に対する酸化活性を調べた。その結果、金超微粒子の平均粒径によって一酸化炭素に対する酸化活性に違いを示すことが明らかとなった。金超微粒子の平均粒径とTOF(=単位時間に酸化する一酸化炭素分子の数/金超微粒子表面の金原子の数)の関係をグラフに示したものを図13に示す。   An air mixed gas containing 1% by volume of carbon monoxide was passed through 100 mg of the porous catalyst at 10 ml / min, and the oxidation activity for carbon monoxide was examined. As a result, it became clear that the oxidation activity for carbon monoxide shows a difference depending on the average particle size of the ultrafine gold particles. FIG. 13 is a graph showing the relationship between the average particle size of gold ultrafine particles and TOF (= number of carbon monoxide molecules oxidized per unit time / number of gold atoms on the surface of gold ultrafine particles).

実施例3で作製した多孔質触媒100mgを3Lのテドラーバックに設置し、ホルムアルデヒド20ppmを含む空気ガスを充填し、30℃恒温槽内に設置し、ホルムアルデヒドの濃度変化及びホルムアルデヒド分解生成物の測定を行った。その結果、分解生成物であるギ酸が検出されなかったことから、部分酸化反応ではなく、分解反応が生じていると考えられる。この結果を表1(多孔質触媒、チタニア被覆シリカエアロゲル・金超微粒子5wt%多孔質複合体、のホルムアルデヒド分解反応)に示す。   100 mg of the porous catalyst prepared in Example 3 was placed in a 3 L Tedlar bag, filled with air gas containing 20 ppm of formaldehyde, placed in a thermostatic bath at 30 ° C., and the concentration change of formaldehyde and formaldehyde decomposition products were measured. It was. As a result, formic acid, which is a decomposition product, was not detected, and it is considered that a decomposition reaction occurred instead of a partial oxidation reaction. The results are shown in Table 1 (formaldehyde decomposition reaction of porous catalyst, titania-coated silica aerogel / gold ultrafine particle 5 wt% porous composite).

実施例4で作製した多孔質触媒100mgを3Lのテドラーバックに設置し、ホルムアルデヒド20ppmを含む空気ガスを充填し、30℃恒温槽内に設置し、ホルムアルデヒドの濃度変化及びホルムアルデヒド分解生成物の測定を行った。その結果、分解生成物であるギ酸が検出されなかったことから、部分酸化反応ではなく、分解反応が生じていると考えられる。この結果を表2(多孔質触媒、チタニア被覆シリカキセロゲル・金超微粒子5wt%多孔質複合体、のホルムアルデヒド分解反応)に示す。   100 mg of the porous catalyst prepared in Example 4 was placed in a 3 L Tedlar bag, filled with air gas containing 20 ppm of formaldehyde, placed in a thermostatic bath at 30 ° C., and changes in formaldehyde concentration and formaldehyde decomposition products were measured. It was. As a result, formic acid, which is a decomposition product, was not detected, and it is considered that a decomposition reaction occurred instead of a partial oxidation reaction. The results are shown in Table 2 (formaldehyde decomposition reaction of porous catalyst, titania-coated silica xerogel / gold ultrafine particle 5 wt% porous composite).

実施例3で作製した多孔質触媒100mgを3Lのテドラーバックに設置し、アセトアルデヒド20ppmを含む空気ガスを充填し、30℃恒温槽内に設置し、アセトアルデヒドの濃度変化及びアセトアルデヒド分解生成物の測定を行った。その結果、分解生成物である酢酸が検出されなかったことから、部分酸化反応ではなく、分解反応が生じていると考えられる。この結果を表3(多孔質触媒、チタニア被覆シリカエアロゲル・金超微粒子5wt%多孔質複合体、のアセトアルデヒド分解反応)に示す。   100 mg of the porous catalyst prepared in Example 3 was placed in a 3 L Tedlar bag, filled with air gas containing 20 ppm of acetaldehyde, placed in a thermostatic bath at 30 ° C., and the concentration change of acetaldehyde and acetaldehyde decomposition product were measured. It was. As a result, since acetic acid as a decomposition product was not detected, it is considered that a decomposition reaction occurred instead of a partial oxidation reaction. The results are shown in Table 3 (Acetaldehyde decomposition reaction of a porous catalyst, titania-coated silica airgel / gold ultrafine particle 5 wt% porous composite).

実施例4で作製した多孔質触媒100mgを3Lのテドラーバックに設置し、アセトアルデヒド20ppmを含む空気ガスを充填し、30℃恒温槽内に設置し、アセトアルデヒドの濃度変化及びアセトアルデヒド分解生成物の測定を行った。その結果、分解生成物である酢酸が検出されなかったことから、部分酸化反応ではなく、分解反応が生じていると考えられる。この結果を表4(多孔質触媒、チタニア被覆シリカキセロゲル・金超微粒子5wt%多孔質複合体、のアセトアルデヒド分解反応)に示す。   100 mg of the porous catalyst produced in Example 4 was placed in a 3 L Tedlar bag, filled with air gas containing 20 ppm of acetaldehyde, placed in a thermostat at 30 ° C., and the concentration change of acetaldehyde and the acetaldehyde decomposition product were measured. It was. As a result, since acetic acid as a decomposition product was not detected, it is considered that a decomposition reaction occurred instead of a partial oxidation reaction. The results are shown in Table 4 (acetaldehyde decomposition reaction of porous catalyst, titania-coated silica xerogel / gold ultrafine particle 5 wt% porous composite).

実施例3で作製した多孔質触媒100mgを3Lのテドラーバックに設置し、トルエン20ppmを含む空気ガスを充填し、30℃恒温槽内に設置し、トルエンの濃度変化を測定した。その結果を表5(多孔質触媒、チタニア被覆シリカエアロゲル・金超微粒子5wt%多孔質複合体、のトルエン除去反応)に示す。テドラーバック内のガスを全て脱気し、空気のみを充填し、40℃恒温槽内に設置し、トルエンの脱離を確認したが、全く検出されなかったことから、分解していると考えられる。   100 mg of the porous catalyst produced in Example 3 was placed in a 3 L Tedlar bag, filled with air gas containing 20 ppm of toluene, placed in a 30 ° C. constant temperature bath, and the change in the concentration of toluene was measured. The results are shown in Table 5 (Toluene removal reaction of a porous catalyst, titania-coated silica airgel / gold ultrafine particle 5 wt% porous composite). All the gas in the Tedlar bag was degassed, filled with air only, and placed in a constant temperature bath at 40 ° C., and desorption of toluene was confirmed, but it was considered that it was decomposed because it was not detected at all.

実施例4で作製した多孔質触媒100mgを3Lのテドラーバックに設置し、トルエン20ppmを含む空気ガスを充填し、30℃恒温槽内に設置し、トルエンの濃度変化を測定した。その結果を表6(多孔質触媒、チタニア被覆シリカキセロゲル・金超微粒子5wt%多孔質複合体、のトルエン除去反応)に示す。テドラーバック内のガスを全て脱気し、空気のみを充填し、40℃恒温槽内に設置し、トルエンの脱離を確認したが、全く検出されなかったことから、分解していると考えられる。   100 mg of the porous catalyst produced in Example 4 was placed in a 3 L Tedlar bag, filled with air gas containing 20 ppm of toluene, placed in a 30 ° C. constant temperature bath, and the change in the concentration of toluene was measured. The results are shown in Table 6 (Toluene removal reaction of porous catalyst, titania-coated silica xerogel / gold ultrafine particle 5 wt% porous composite). All the gas in the Tedlar bag was degassed, filled with air only, and placed in a constant temperature bath at 40 ° C., and desorption of toluene was confirmed, but it was considered that it was decomposed because it was not detected at all.

以上詳述したように、本発明は、金属超微粒子を担持した多孔質複合体、その活性多孔質複合体からなる触媒、それらの製造方法及びその用途に係るものであり、本発明により、例えば、金属超微粒子の粒子径を標準偏差が2nm以下という狭い粒径分布範囲に制御した金属超微粒子を安定に担持した複合体を製造することが可能であり、それにより、従来材と比べて、触媒効率を著しく向上させた高い酸化活性等を有する触媒材を提供することができる。本発明は、例えば、酸化触媒、還元触媒、一酸化炭素の除去、医療や食品分野における消毒・殺菌、電子工業におけるフォトニクス材料、などの種々の応用が期待される。本発明の触媒は、具体的には、例えば、室内や自動車社内における空調装置(空気清浄機、エアコン、分煙機など)の空気浄化フィルター、火災防毒マスクのフィルター、化学工場などで用いられる原料ガスからの一酸化炭素除去フィルター、自動車、バイクなどの排ガスからの一酸化炭素除去フィルター、燃料電池の燃料改質による水素製造プロセスにおける一酸化炭素除去フィルターなどの触媒材として有用である。   As described above in detail, the present invention relates to a porous composite carrying ultrafine metal particles, a catalyst comprising the active porous composite, a method for producing them, and an application thereof. In addition, it is possible to produce a composite that stably supports ultrafine metal particles in which the particle size of ultrafine metal particles is controlled within a narrow particle size distribution range with a standard deviation of 2 nm or less. It is possible to provide a catalyst material having high oxidation activity and the like in which the catalyst efficiency is remarkably improved. The present invention is expected to have various applications such as an oxidation catalyst, a reduction catalyst, removal of carbon monoxide, disinfection / sterilization in the medical and food fields, and a photonics material in the electronics industry. Specifically, the catalyst of the present invention is, for example, an air purification filter for an air conditioner (such as an air cleaner, an air conditioner, or a smoke separator) in a room or an automobile, a fire gas mask filter, a raw material used in a chemical factory, etc. It is useful as a catalyst material for carbon monoxide removal filters from gases, carbon monoxide removal filters from exhaust gas from automobiles, motorcycles, etc., and carbon monoxide removal filters in hydrogen production processes by fuel reforming of fuel cells.

チタニア被覆シリカエアロゲル担持体上面及び側面からの写真を示す。The photograph from the upper surface and side surface of a titania-coated silica airgel carrier is shown. 粒度を揃えたチタニア被覆シリカエアロゲル担持体の写真を示す。A photograph of a titania-coated silica airgel carrier having a uniform particle size is shown. 粒度を揃えたチタニア被覆シリカエアロゲル担持体に金超微粒子を担持した多孔質複合体を示す。1 shows a porous composite in which ultrafine gold particles are supported on a titania-coated silica airgel support having a uniform particle size. チタニア被覆シリカエアロゲル担持体に金超微粒子を担持した多孔質触媒を示す。1 shows a porous catalyst in which ultrafine gold particles are supported on a titania-coated silica airgel support. チタニア被覆シリカエアロゲル担持体に金超微粒子を担持した多孔質触媒のTEM観察画像を示す。The TEM observation image of the porous catalyst which carry | supported the gold | metal | money ultrafine particle on the titania coating silica airgel carrier is shown. チタニア被覆シリカキセロゲル担持体上面及び側面からの写真を示す。The photograph from the upper surface and side surface of a titania-coated silica xerogel carrier is shown. 粒度を揃えたチタニア被覆シリカキセロゲル担持体の写真を示す。A photograph of a titania-coated silica xerogel carrier having a uniform particle size is shown. 粒度を揃えたチタニア被覆シリカキセロゲル担持体に金超微粒子を担持した多孔質複合体を示す。1 shows a porous composite in which ultrafine gold particles are supported on a titania-coated silica xerogel support having a uniform particle size. チタニア被覆シリカキセロゲル担持体に金超微粒子を担持した多孔質触媒を示す。1 shows a porous catalyst in which ultrafine gold particles are supported on a titania-coated silica xerogel support. チタニア被覆シリカキセロゲル担持体に金超微粒子を担持した多孔質触媒のTEM観察画像を示す。The TEM observation image of the porous catalyst which carry | supported the gold | metal | money ultrafine particle on the titania coating silica xerogel carrier is shown. チタニア被覆シリカエアロゲル担持体に金超微粒子(5wt%)を担持した多孔質触媒の一酸化炭素酸化触媒反応試験結果のグラフを示す。The graph of the carbon monoxide oxidation catalyst reaction test result of the porous catalyst which carry | supported the gold | metal | money ultrafine particle (5 wt%) on the titania-coated silica airgel carrier is shown. チタニア被覆シリカキセロゲル担持体に金超微粒子(5wt%)を担持した多孔質触媒の一酸化炭素酸化触媒反応試験結果のグラフを示す。The graph of the carbon monoxide oxidation catalyst reaction test result of the porous catalyst which carry | supported the gold ultrafine particle (5 wt%) on the titania-coated silica xerogel carrier is shown. チタニア被覆シリカエアロゲル担持体に、粒径制御を行った金超微粒子を担持した多孔質触媒の金属超微粒子の平均粒径に対する一酸化炭素酸化触媒反応機能評価のグラフを示す。The graph of the carbon monoxide oxidation catalyst reaction function evaluation with respect to the average particle diameter of the metal ultrafine particle of the porous catalyst which carry | supported the gold ultrafine particle which controlled the particle size on the titania coating silica airgel support body is shown.

Claims (15)

金属酸化物を含有する担体に、表面保護物質で保護したナノスケールの金属超微粒子を分散させた状態で固定してなる多孔質複合体であって、
上記担体が、シリカ、アルミナ、チタニア、又はジルコニアの多孔質体の表面に金属酸化物が被覆された構造を有する金属酸化物被覆多孔体からなる表面積200m /g以上の乾燥担体から構成され、上記金属超微粒子が、貴金属、及び遷移金属から選択される1種又は複数種であり、上記金属超微粒子が予め作製した金属超微粒子の粒子サイズそのままに上記ナノスケールの金属超微粒子の粒子径の標準偏差が2nm又はそれ以下の値に制御されて担持されていることを特徴とする多孔質複合体。
A porous composite formed by fixing nanoscale metal ultrafine particles protected with a surface protective substance on a carrier containing a metal oxide in a dispersed state,
The carrier is composed of a dry carrier having a surface area of 200 m 2 / g or more comprising a metal oxide-coated porous body having a structure in which a metal oxide is coated on the surface of a porous body of silica, alumina, titania, or zirconia, The ultrafine metal particles are one or more selected from precious metals and transition metals, and the ultrafine metal particles have the same particle size as the ultrafine metal particles prepared in advance . porous composite standard deviation is characterized that you have been carried is controlled to 2nm or less value.
担体が、比表面積が200m/g以上の乾燥エアロゲル又はキセロゲルである請求項1に記載の多孔質複合体。 The porous composite according to claim 1, wherein the carrier is a dry airgel or xerogel having a specific surface area of 200 m 2 / g or more. ナノスケールの金属超微粒子が、粒子径が大きくても20nmの超微粒子である請求項1に記載の多孔質複合体。   The porous composite according to claim 1, wherein the nanoscale ultrafine metal particles are ultrafine particles having a particle diameter of 20 nm at the largest. 請求項1から3のいずれかに記載の多孔質複合体を構成する金属超微粒子の表面保護物質を除去した活性多孔質複合体からなることを特徴とする酸化活性を有する触媒。   A catalyst having oxidation activity, comprising an active porous composite from which the surface protective substance of the metal ultrafine particles constituting the porous composite according to any one of claims 1 to 3 is removed. 表面保護物質で保護したナノスケールの金属超微粒子を溶液中で熱処理して粒子径を制御し、これを溶媒中に分散させ、担体と接触させることにより、該担体に、上記金属超微粒子を分散させた状態で固定して多孔質複合体を製造する方法であって、
上記担体が、シリカ、アルミナ、チタニア、又はジルコニアの多孔質体の表面に金属酸化物が被覆された構造を有する金属酸化物被覆多孔体からなる表面積200m /g以上の乾燥担体から構成され、上記金属超微粒子が、貴金属、及び遷移金属から選択される1種又は複数種であり、予め所定の形状に揃えた乾燥担体を用いて担持操作を行うことで該乾燥担体に金属超微粒子をその担持量を制御して担持させることにより上記ナノスケールの金属超微粒子の粒子径の標準偏差2nm又はそれ以下の値に制御ることを特徴とする多孔質複合体の製造方法。
Nanoscale metal ultrafine particles protected with a surface protective substance are heat-treated in a solution to control the particle size, and this is dispersed in a solvent and brought into contact with the carrier to disperse the metal ultrafine particles in the carrier. A method for producing a porous composite by fixing in a state in which
The carrier is composed of a dry carrier having a surface area of 200 m 2 / g or more comprising a metal oxide-coated porous body having a structure in which a metal oxide is coated on the surface of a porous body of silica, alumina, titania, or zirconia, The metal ultrafine particles are one or more selected from precious metals and transition metals, and the carrying operation is performed using a dry carrier having a predetermined shape in advance so that the ultrafine metal particles are added to the dry carrier. method for producing a porous composite which is characterized that you control the 2nm or less value the standard deviation of the particle diameter of the nano-scale ultra-fine metal particles by supporting by controlling the carrying amount.
担体が、比表面積が200m/g以上の乾燥エアロゲル又はキセロゲルである請求項5に記載の多孔質複合体の製造方法。 The method for producing a porous composite according to claim 5, wherein the carrier is a dry airgel or xerogel having a specific surface area of 200 m 2 / g or more. 請求項5に記載の方法で得られる多孔質複合体を熱処理して金属超微粒子の表面保護物質を除去することを特徴とする活性多孔質複合体からなる酸化活性を有する触媒の製造方法。   A method for producing a catalyst having an oxidation activity comprising an active porous composite, wherein the porous composite obtained by the method according to claim 5 is heat-treated to remove the surface protective material of the ultrafine metal particles. 金属超微粒子として、金属イオンを表面保護物質の存在下で還元し、表面保護物質で保護した金属超微粒子を用いる請求項5に記載の多孔質複合体の製造方法。   The method for producing a porous composite according to claim 5, wherein the metal ultrafine particles are metal ultrafine particles obtained by reducing metal ions in the presence of a surface protective substance and protecting the metal ions with the surface protective substance. 表面保護物質で保護した金属超微粒子を溶液中で熱処理することにより、金属超微粒子の粒子径を制御する請求項5に記載の多孔質複合体の製造方法。   The method for producing a porous composite according to claim 5, wherein the particle diameter of the metal ultrafine particles is controlled by heat-treating the metal ultrafine particles protected with the surface protective substance in a solution. 有機溶媒中に分散させた金属超微粒子を担体と接触させ、吸着させることで、担体に金属超微粒子を凝集することなく固定する請求項5に記載の多孔質複合体の製造方法。   The method for producing a porous composite according to claim 5, wherein the metal ultrafine particles dispersed in the organic solvent are brought into contact with and adsorbed on the carrier, thereby fixing the metal ultrafine particles on the carrier without agglomeration. 請求項4に記載の触媒の粉末を含むことを特徴とする酸化作用を有する部材。   A member having an oxidizing action, comprising the catalyst powder according to claim 4. 請求項4に記載の触媒の成形体を含むことを特徴とする酸化作用を有する部材。   A member having an oxidizing action, comprising the molded article of the catalyst according to claim 4. 部材が、VOC浄化手段である請求項11又は12に記載の部材。   The member according to claim 11 or 12, wherein the member is a VOC purification means. 部材が、一酸化炭素除去フィルターである請求項11又は12に記載の部材。   The member according to claim 11 or 12, wherein the member is a carbon monoxide removal filter. 部材が、空気洗浄機又は空気洗浄フィルターである請求項11又は12に記載の部材。   The member according to claim 11 or 12, wherein the member is an air cleaner or an air cleaning filter.
JP2005067615A 2005-03-10 2005-03-10 Porous composite carrying ultrafine metal particles Expired - Fee Related JP4784727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067615A JP4784727B2 (en) 2005-03-10 2005-03-10 Porous composite carrying ultrafine metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067615A JP4784727B2 (en) 2005-03-10 2005-03-10 Porous composite carrying ultrafine metal particles

Publications (2)

Publication Number Publication Date
JP2006247524A JP2006247524A (en) 2006-09-21
JP4784727B2 true JP4784727B2 (en) 2011-10-05

Family

ID=37088558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067615A Expired - Fee Related JP4784727B2 (en) 2005-03-10 2005-03-10 Porous composite carrying ultrafine metal particles

Country Status (1)

Country Link
JP (1) JP4784727B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978144B2 (en) * 2006-10-13 2012-07-18 栗田工業株式会社 Method and apparatus for removing dissolved oxygen in water
JP5692957B2 (en) * 2008-03-31 2015-04-01 西松建設株式会社 Exhaust gas treatment system and exhaust gas treatment method
JP5567958B2 (en) * 2010-09-17 2014-08-06 オルガノ株式会社 Method for producing platinum group metal supported catalyst
JP6208316B1 (en) * 2016-11-24 2017-10-04 アドバンス理工株式会社 Method and apparatus for supporting metal nanoparticles
JP7000753B2 (en) 2017-09-08 2022-01-19 富士フイルムビジネスイノベーション株式会社 Titanium oxide airgel particles, method for producing titanium oxide airgel particles, composition for forming a photocatalyst, photocatalyst, and structure.
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
US10807070B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst
JP7020008B2 (en) 2017-09-12 2022-02-16 富士フイルムビジネスイノベーション株式会社 Silica titania composite airgel particles, method for producing silica titania composite airgel particles, photocatalyst forming composition, photocatalyst, and structure.
CN111481727A (en) * 2019-01-26 2020-08-04 苏州淳雨净化科技有限公司 Sterilizing and deodorizing box
WO2020197026A1 (en) * 2019-03-22 2020-10-01 주식회사 퀀텀캣 Metal nanoparticle catalysts embedded in mesoporous silica, which show high catalytic activity at low temperatures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717452B2 (en) * 1990-04-27 1995-03-01 株式会社コロイドリサーチ Method for producing oxynitride ceramics
JP3911557B2 (en) * 2001-12-07 2007-05-09 独立行政法人産業技術総合研究所 Method for producing porous material carrying ultrafine metal particles
JP2006504508A (en) * 2001-12-27 2006-02-09 エアロジェル・コンポジット・リミテッド・ライアビリティ・カンパニー Aerogel and metal composition
JP2004074069A (en) * 2002-08-21 2004-03-11 National Institute Of Advanced Industrial & Technology Formaldehyde oxidation removal method
JP4119974B2 (en) * 2002-12-06 2008-07-16 独立行政法人産業技術総合研究所 Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same

Also Published As

Publication number Publication date
JP2006247524A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4784727B2 (en) Porous composite carrying ultrafine metal particles
JP6865681B2 (en) Synthesis of colloidal noble metal nanoparticles with controlled size and morphology
Liu et al. Designable yolk–shell nanoparticle@ MOF petalous heterostructures
Chairam et al. Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction
Zhang et al. Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study
Müller et al. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@ MOF-5 as catalyst for methanol synthesis
JP4564263B2 (en) Ultrafine metal particle-containing photocatalyst and method for producing the same
US9694346B2 (en) Functional gas-assisted impregnation method for producing noble metal alloy catalysts with defined morphology
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
Shang et al. Regenerated WO2. 72 nanowires with superb fast and selective adsorption for cationic dye: Kinetics, isotherm, thermodynamics, mechanism
JP3932478B2 (en) Noble metal pore body and method for producing the same
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
JP6367184B2 (en) Carbon capture
JP2009172601A (en) Method for producing catalyst encapsulated in hollow porous capsule
JP4646077B2 (en) Nanoparticle catalyst embedded in porous carbon support and method for producing the same
JP2003176108A (en) Method of producing porous material carrying metallic hyperfine particle
JP5612050B2 (en) Method for producing metal particle supported catalyst
Krajczewski et al. Formation and selected catalytic properties of ruthenium, rhodium, osmium and iridium nanoparticles
Li et al. Preparation of floating Au/PVP film on water for a green and rapid extraction of gold ion
Tehrani et al. Seed-mediated synthesis of a modified micro-mesoporous MIL-101 (Cr) for improved benzene and toluene adsorption at room conditions
JP7273337B2 (en) METHOD FOR MANUFACTURING NET-LIKE STRUCTURE HAVING ALLOY NANOPARTICLES
Wang et al. Controllable synthesis of nearly monodisperse spherical aggregates of CeO2 nanocrystals and their catalytic activity for HCHO oxidation
JP4591920B2 (en) Photocatalyst and method for producing the same
CN114749175A (en) High-dispersity active carbon-supported metal catalyst and preparation method thereof
JP2013034937A (en) Method for producing platinum particle, method for producing platinum particle carrying catalyst, and purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees