JP4978144B2 - Method and apparatus for removing dissolved oxygen in water - Google Patents

Method and apparatus for removing dissolved oxygen in water Download PDF

Info

Publication number
JP4978144B2
JP4978144B2 JP2006280325A JP2006280325A JP4978144B2 JP 4978144 B2 JP4978144 B2 JP 4978144B2 JP 2006280325 A JP2006280325 A JP 2006280325A JP 2006280325 A JP2006280325 A JP 2006280325A JP 4978144 B2 JP4978144 B2 JP 4978144B2
Authority
JP
Japan
Prior art keywords
water
dissolved oxygen
treated
catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006280325A
Other languages
Japanese (ja)
Other versions
JP2008093606A (en
Inventor
匠 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006280325A priority Critical patent/JP4978144B2/en
Publication of JP2008093606A publication Critical patent/JP2008093606A/en
Application granted granted Critical
Publication of JP4978144B2 publication Critical patent/JP4978144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水中の溶存酸素を迅速且つ確実に除去する方法及び装置に関する。 The present invention relates to a method and equipment for removing water dissolved oxygen quickly and reliably.

本発明は、特に半導体、液晶ディスプレイ等の電子材料を扱う産業において用いられる超純水製造装置における超純水中の溶存酸素の除去に有用であるが、これに限定するものでなく、その他、ボイラ用水、冷却水等他の用途についても適用できる。   The present invention is particularly useful for removing dissolved oxygen in ultrapure water in an ultrapure water production apparatus used in an industry that handles electronic materials such as semiconductors and liquid crystal displays, but is not limited thereto. It can be applied to other uses such as boiler water and cooling water.

従来、水中の溶存酸素の除去技術としては、
(1)真空脱気塔
(2)窒素脱気塔
(3)真空・窒素併用脱気塔
(4)脱気膜装置
で脱気する処理方法や、
(5)白金族触媒担持樹脂
を用いる方法などがある。
Conventionally, as technology for removing dissolved oxygen in water,
(1) Vacuum degassing tower (2) Nitrogen degassing tower (3) Vacuum and nitrogen combined degassing tower (4) Treatment method of degassing with degassing membrane device,
(5) There is a method using a platinum group catalyst-carrying resin.

しかしながら、(1)〜(3)の塔型処理では装置が大きく、しかも処理水の到達可能溶存酸素濃度が10〜50ppbとさほど良好でない問題点がある。(4)の脱気膜装置は比較的小型で通水流量や膜本数により到達可能処理水溶存酸素濃度も5ppb以下を達成できるが、大水量の処理においては、膜の本数が多く、装置の高さは低いが設置面積が大きい問題点がある。   However, in the tower type treatments (1) to (3), there is a problem that the apparatus is large and the reachable dissolved oxygen concentration of the treated water is not so good as 10 to 50 ppb. The degassing membrane device of (4) is relatively small and can be reached by the flow rate of water and the number of membranes. The concentration of dissolved oxygen in water can be 5 ppb or less. However, in the treatment of a large amount of water, the number of membranes is large. There is a problem that the installation area is large although the height is low.

(5)の触媒担持樹脂を用いる方法は、水中に存在する水素等の還元剤と酸素との接触反応を利用して水中の溶存酸素を除去するものであり、特許文献1〜3にパラジウム担持樹脂による溶存酸素除去技術が提案されており、また、特許文献4には、アニオン交換樹脂にパラジウム又は白金を担持させてなる溶存酸素樹脂触媒の製造方法についての提案がなされている。   The method using the catalyst-supporting resin of (5) is to remove dissolved oxygen in water using a catalytic reaction between a reducing agent such as hydrogen present in water and oxygen. A technique for removing dissolved oxygen by using a resin has been proposed, and Patent Document 4 proposes a method for producing a dissolved oxygen resin catalyst in which palladium or platinum is supported on an anion exchange resin.

しかしながら、特許文献4等で提案される従来の担持体では、担体に担持された触媒金属の比表面積が小さいため、反応効率が悪く、目的の処理水質、処理水量を得るための触媒量が多く、また、被処理水と触媒との接触時間も長く必要であり、このため、大きな装置設置面積が必要であった。しかも、被処理水量に対する触媒使用量が多いために、結果的に処理水中に流出する触媒量も多く、特に超純水用途では水質を悪化させてしまう点も問題であり、実用に耐えなかった。   However, in the conventional carrier proposed in Patent Document 4 and the like, the specific surface area of the catalyst metal carried on the carrier is small, so the reaction efficiency is poor, and the amount of catalyst for obtaining the desired treated water quality and treated water amount is large. In addition, a long contact time between the water to be treated and the catalyst is required, and thus a large apparatus installation area is required. In addition, since the amount of catalyst used relative to the amount of water to be treated is large, the amount of catalyst that eventually flows into the treated water is also large, and in particular, it is a problem that the water quality is deteriorated in ultrapure water applications, and it could not stand practical use. .

また、例えば、特許文献2では、触媒樹脂の脱酸素能が低いため、超純水製造においては、触媒樹脂のみによる脱酸素ではなく、脱気膜又は脱気塔等による物理的脱気手段と触媒樹脂を用いた化学的溶存酸素除去手段と、更に後段のイオン交換手段とを必要とし、装置が過大となり、設置面積、装置コスト、保守管理の面で不利であった。また、このように、多段に設けた複数の装置に通水することは、その分、樹脂や装置の構成部材からの有機物や金属等の溶出による汚染の問題もあり、好ましいことではない。   Further, for example, in Patent Document 2, since the deoxidizing ability of the catalyst resin is low, in the ultrapure water production, physical deaeration means such as a deaeration membrane or a deaeration tower is not used for deoxygenation using only the catalyst resin. A chemical dissolved oxygen removing means using a catalyst resin and a subsequent ion exchange means are required, resulting in an excessively large apparatus, which is disadvantageous in terms of installation area, apparatus cost, and maintenance management. In addition, passing water through a plurality of devices provided in multiple stages in this manner is not preferable because there is a problem of contamination due to elution of organic substances, metals, and the like from resin and device components.

なお、本発明に係る金属ナノコロイド粒子を担体に担持してなる触媒については、特許文献5,6に提案がなされているが、光触媒、排ガスの浄化触媒としての用途であり、水中の溶存酸素除去触媒としての提案はなされていない。
特開平5−269306号公報 特開平2−265604号公報 特開平8−168756号公報 特許2561273号公報 特開2005−169334号公報 特開2004−100040号公報
In addition, about the catalyst formed by carrying | supporting the metal nano colloid particle which concerns on this invention on the support | carrier, although the proposal is made | formed in patent documents 5 and 6, it is a use as a photocatalyst and a purification catalyst of exhaust gas, and dissolved oxygen in water There is no proposal as a removal catalyst.
JP-A-5-269306 JP-A-2-265604 JP-A-8-168756 Japanese Patent No. 2561273 JP 2005-169334 A JP 2004-100040 A

本発明は、被処理水中の溶存酸素を少ない触媒量で迅速かつ確実に除去することができる水中の溶存酸素除去方法及び溶存酸素除去装置を提供することを目的とする。 The present invention aims to provide a dissolved oxygen removal method and dissolved oxygen remover in water that can be quickly and reliably removed in dissolved oxygen less catalytic amount of water to be treated.

本発明者は、上記課題を解決すべく鋭意検討した結果、溶存酸素を含む被処理水を、ナノコロイド化した白金族の金属微粒子を担体に担持させた触媒であれば、触媒金属の比表面積が大きいために、反応速度が非常に速くなり、被処理水と触媒とを接触させる際の空間速度(SV)を大きくすることができ、装置の小型化を図ることができること、また、触媒使用量、担持金属量が少なくてすみ、被処理水量に対する触媒使用量が少ないことから、金属の流出の影響が小さくなり、処理コストを低減すると共に、処理水水質を高めることができることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has found that the water to be treated containing dissolved oxygen is a catalyst in which platinum colloidal metal microparticles made into nanocolloids are supported on a carrier, and the specific surface area of the catalytic metal. Is large, the reaction speed becomes very fast, the space velocity (SV) when the water to be treated and the catalyst are brought into contact can be increased, the apparatus can be downsized, and the use of the catalyst It has been found that the amount of catalyst and the amount of supported metal can be reduced, and the amount of catalyst used with respect to the amount of water to be treated is small, so that the influence of metal outflow is reduced, the treatment cost can be reduced, and the quality of treated water can be improved.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

(1) 溶存酸素を含む被処理水に、還元剤を添加した後、白金族の金属粒子を担体に担持してなる溶存酸素除去触媒を充填した触媒充填層に通水して該溶存酸素除去触媒に接触させることによって、該被処理水から溶存酸素を除去する水中の溶存酸素の除去方法において、該金属粒子が金属ナノコロイド粒子であり、該金属ナノコロイド粒子の平均粒子径が1.410nmで、かつ標準偏差が該平均粒子径の20%以下であり、該担体が、交換基がOH型である強塩基性ゲル型アニオン交換樹脂であり、該担体への白金族金属ナノコロイド粒子の担持量が担体重量に対して0.01〜0.2重量%であり、該還元剤が水素であり、該被処理水が超純水製造システムの一次脱塩処理システム内の水及び/又はサブシステム内の水であり、該水素の添加量が該被処理水の溶存酸素濃度に対して1.1〜1.2倍当量であり、該触媒充填層への被処理水の通水空間速度SVが40〜2000hr −1 であることを特徴とする水中の溶存酸素の除去方法。 (1) After adding a reducing agent to the water to be treated containing dissolved oxygen, it is passed through a catalyst packed bed filled with a dissolved oxygen removal catalyst in which platinum group metal particles are supported on a carrier to remove the dissolved oxygen. In the method for removing dissolved oxygen in water, wherein the metal particles are metal nanocolloid particles, and the average particle diameter of the metal nanocolloid particles is 1.4. in ~ 10 nm, and der than 20% of the standard deviation the average particle diameter is, the carrier is a strongly basic gel-type anion exchange resin exchange group is OH-type, the platinum group metal to the carrier The amount of nanocolloid particles supported is 0.01 to 0.2% by weight based on the weight of the carrier, the reducing agent is hydrogen, and the water to be treated is contained in the primary desalination treatment system of the ultrapure water production system. Water and / or water in a subsystem, The addition amount of hydrogen is 1.1 to 1.2 equivalents relative to the dissolved oxygen concentration of該被treated water, water passing space velocity SV of the water to be treated to the catalyst-packed layer in 40~2000Hr -1 method for removing the dissolved oxygen in the water, wherein the Rukoto Oh.

(2) (1)において、該白金族の金属が、白金、パラジウム、及び白金/パラジウム合金よりなる群から選ばれる1種又は2種以上であることを特徴とする水中の溶存酸素の除去方法 (2) In (1), the platinum group metal is one or more selected from the group consisting of platinum, palladium, and platinum / palladium alloys. .

(3) 白金族の金属粒子を担体に担持してなる溶存酸素除去触媒を充填した触媒充填部と、溶存酸素を含む被処理水を該触媒充填部に給水する給水手段と、該触媒充填部に給水される被処理水に還元剤を添加する還元剤添加手段と該触媒充填部を通過した水を排出する排出手段とを有する水中の溶存酸素除去装置において、該金属粒子が金属ナノコロイド粒子であり、該金属ナノコロイド粒子の平均粒子径が1.410nmで、かつ標準偏差が該平均粒子径の20%以下であり、該担体が、交換基がOH型である強塩基性ゲル型アニオン交換樹脂であり、該担体への白金族金属ナノコロイド粒子の担持量が担体重量に対して0.01〜0.2重量%であり、該還元剤が水素であり、該被処理水が超純水製造システムの一次脱塩処理システム内の水及び/又はサブシステム内の水であり、該水素の添加量が該被処理水の溶存酸素濃度に対して1.1〜1.2倍当量であり、該触媒充填層への被処理水の通水空間速度SVが40〜2000hr −1 であることを特徴とする水中の溶存酸素除去装置。 (3 ) A catalyst filling unit filled with a dissolved oxygen removal catalyst formed by supporting platinum group metal particles on a carrier, water supply means for supplying treated water containing dissolved oxygen to the catalyst filling unit, and the catalyst filling unit In the apparatus for removing dissolved oxygen in water having a reducing agent adding means for adding a reducing agent to the water to be treated supplied to the water and a discharging means for discharging the water that has passed through the catalyst filling section, the metal particles are metal nanocolloid particles. , and the an average particle diameter of 1.4 ~ 10 nm of the metal nano-colloid particles, and Ri der standard deviation less than 20% of the average particle diameter, the carrier is a strong base exchange group is OH-type A platinum group metal nanocolloid particle supported on the carrier in an amount of 0.01 to 0.2% by weight based on the weight of the carrier, the reducing agent is hydrogen, Treated water is the primary desalination treatment system for ultrapure water production system Water in the system and / or water in the subsystem, and the amount of hydrogen added is 1.1 to 1.2 times equivalent to the dissolved oxygen concentration of the treated water, water dissolved oxygen removal device water passing space velocity SV of water to be treated, characterized in 40~2000Hr -1 der Rukoto.

) ()において、該白金族の金属が、白金、パラジウム、及び白金/パラジウム合金よりなる群から選ばれる1種又は2種以上であることを特徴とする水中の溶存酸素の除去装置 ( 4 ) In ( 3 ), the platinum group metal is one or more selected from the group consisting of platinum, palladium, and platinum / palladium alloys. .

本発明によれば、平均粒子径のバラツキの小さい金属ナノコロイド粒子を担持した溶存酸素除去触媒を用いることにより、比表面積が大きく、均一な金属ナノコロイド粒子の高い触媒活性により、水中の溶存酸素の反応効率を高め、効率的な溶存酸素除去処理を行うことが可能となる。 According to the present invention, by using a dissolved oxygen removal catalyst carrying metal nanocolloid particles having a small average particle size variation, the dissolved oxygen in water is increased due to the large specific surface area and the high catalytic activity of uniform metal nanocolloid particles. enhance the reaction efficiency of, can be performed efficiently dissolved oxygen removal process and that Do.

このため、超純水の処理系に適用する場合であっても、特許文献2のように、必ずしも前段に物理的脱気手段を用いなくても良く、同様に必ずしも触媒充填部の後段にイオン交換手段を設置しなくても良いため、装置の大幅な小型化、低コスト化を図ることができ、また、樹脂や構成部材からの有機物や金属等の溶出による汚染を防止することができる。   For this reason, even when applied to a treatment system for ultrapure water, as in Patent Document 2, it is not always necessary to use physical deaeration means in the preceding stage, and similarly, ions are not necessarily provided in the subsequent stage of the catalyst filling unit. Since it is not necessary to install an exchange means, the apparatus can be significantly reduced in size and cost, and contamination due to elution of organic substances, metals, etc. from the resin and components can be prevented.

本発明において、触媒金属としての白金族金属としては、白金、パラジウム、白金/パラジウム合金の1種又は2種以上が好ましい(請求項2,4 In the present invention, the platinum group metal as the catalyst metal is preferably one or more of platinum, palladium, and platinum / palladium alloy (claims 2 and 4 ) .

本発明の溶存酸素除去機構は、触媒の存在下に、被処理水中に含まれる還元剤(水素)が溶存酸素と反応することにより、[H+1/2O→HO]の反応によって被処理水中の溶存酸素が確実に除去されるものであるが、被処理水中に含まれる還元剤が少ない場合には、水素を別途添加する。 Dissolved oxygen removing mechanism of the present invention, in the presence of a catalyst, by reducing agent contained in the water to be treated (hydrogen) reacts with dissolved oxygen, [H 2 + 1 / 2O 2 → H 2 O] in the reaction by but in which the dissolved oxygen in the water to be treated can be reliably removed, when the reducing agent contained in the water to be treated is small, it added hydrogen separately.

本発明は、特に純水中の溶存酸素の除去に有用であり、超純水製造システムの一次脱塩処理システム内及び/又はサブシステムに有効に適用することができる。 The present invention is particularly it practical for the removal of pure water dissolved oxygen, Ru can be effectively applied to the primary desalination system and / or subsystem ultrapure water production system.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の水中の溶存酸素除去触媒は、平均粒子径が1.4〜10nmで、標準偏差が平均粒子径の20%以下である白金族の金属ナノコロイド粒子を担体に担持させてなるものである。 The dissolved oxygen removal catalyst in water of the present invention has an average particle size of 1 . A platinum group metal nanocolloid particle having a standard deviation of 4 to 10 nm and a standard deviation of 20 % or less of the average particle diameter is supported on a carrier.

金属ナノコロイドの平均粒子径がこの範囲よりも大きいと、触媒金属の比表面積が小さくなり、十分な反応速度が得られず、本発明の目的を達成し得ない。平均粒子径がこの範囲よりも小さいと担持の操作が困難であるという取扱上の理由から好ましくない。   When the average particle diameter of the metal nanocolloid is larger than this range, the specific surface area of the catalytic metal is reduced, and a sufficient reaction rate cannot be obtained, so that the object of the present invention cannot be achieved. If the average particle diameter is smaller than this range, it is not preferable for handling reasons that the carrying operation is difficult.

また、金属ナノコロイド粒子の偏準偏差が平均粒子径の30%を超えるような粒子径分布が大きく、粒子径にバラツキが多い場合、金属ナノコロイド粒子が担体中に均一に分散しないため、本発明の目的を達成し得ない。   In addition, when the particle size distribution is large such that the deviation deviation of the metal nanocolloid particles exceeds 30% of the average particle size and there are many variations in the particle size, the metal nanocolloid particles are not uniformly dispersed in the carrier. The object of the invention cannot be achieved.

なお、本発明において、金属ナノコロイド粒子は、例えば、電子顕微鏡で観察でき電子顕微鏡で得られた画像中の金属ナノコロイド微粒子の直径を計測し、平均することで、平均粒子径および粒子径分布を求めることができる。   In the present invention, the metal nanocolloid particles can be observed with an electron microscope, for example, by measuring and averaging the diameter of the metal nanocolloid fine particles in the image obtained with the electron microscope, the average particle size and the particle size distribution Can be requested.

また、この金属ナノコロイド粒子の白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。こられの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができ、パラジウムをより好適に用いることができる。   In addition, examples of the platinum group metal of the metal nanocolloid particles include ruthenium, rhodium, palladium, osmium, iridium, and platinum. These platinum group metals can be used singly, in combination of two or more, can be used as two or more alloys, or can be a refinement of a naturally produced mixture. It is also possible to use the product without separating it into a single unit. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more thereof can be used particularly preferably because of its strong catalytic activity, and palladium can be used more suitably.

本発明に用いる白金族金属のナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。   The method for producing the platinum group metal nanocolloid particles used in the present invention is not particularly limited, and examples thereof include a metal salt reduction reaction method and a combustion method. Among these, the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanocolloid particles can be obtained.

金属塩還元反応法では、例えば、白金などの塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1〜0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を4〜20当量倍添加し、1〜3時間煮沸することにより、金属ナノコロイド粒子を製造することができる。例えば、ポリビニルピロリドン水溶液に、ヘキサクロロパラジウム、ヘキサクロロパラジウムカリウムなどを1〜2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2〜3時間加熱還流することにより、パラジウムナノコロイド粒子懸濁液を製造することができる。   In the metal salt reduction reaction method, for example, an alcohol, citric acid or a salt thereof, formic acid, acetone, acetaldehyde is added to a 0.1 to 0.4 mmol / L aqueous solution of a chloride such as platinum, a nitrate, a sulfate, or a metal complex. A metal nanocolloid particle can be manufactured by adding 4-20 equivalent times reducing agents, such as these, and boiling for 1-3 hours. For example, by dissolving 1 to 2 mmol / L of hexachloropalladium, hexachloropalladium potassium, etc. in an aqueous polyvinylpyrrolidone solution, adding a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours, A suspension can be produced.

アニオン交換樹脂にパラジウムナノコロイド粒子を担持させるには、アニオン交換樹脂をカラムに充填し、次いでパラジウムナノコロイド粒子懸濁液を通水すればよく、さらにホルマリンなどを加えて還元してもよい。   In order to support the palladium nanocolloid particles on the anion exchange resin, the column may be filled with the anion exchange resin and then the palladium nanocolloid particle suspension may be passed through, and further reduced by adding formalin or the like.

白金族の金属ナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくく、強い触媒活性を示す。従って、本発明の水中の溶存酸素除去触媒の担体としてはアニオン交換樹脂を用いるSince the platinum group metal nanocolloid particles have an electric double layer and are negatively charged, they are stably supported on the anion exchange resin, are not easily peeled off, and exhibit strong catalytic activity. Therefore, an anion exchange resin is used as a carrier for the dissolved oxygen removal catalyst in water of the present invention.

担体のアニオン交換樹脂としては、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂が適当であり、特にゲル型樹脂で、交換基がOH型であるものを用いるAs the carrier anion exchange resin, a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer is suitable, and in particular, a gel type resin having an OH type exchange group is used .

アニオン交換樹脂の担体への白金族金属ナノコロイド粒子の担持量は、担体重量に対して0.01〜0.2重量%である。この担持量が少な過ぎると十分な触媒活性が得られず、多過ぎると触媒同士が接触し、有効表面積が却って減少し、活性が低下してしまう。 Supported amount of the platinum group metal nano colloidal particles of the anion exchange resins of the carrier is 0.01 to 0.2 wt% with respect to the support weight. If the supported amount is too small, sufficient catalytic activity cannot be obtained. If the supported amount is too large, the catalysts come into contact with each other, the effective surface area decreases, and the activity decreases.

このような本発明の溶存酸素除去触媒を用いる水中の溶存酸素の除去方法、充填塔に溶存酸素除去触媒を充填し、この触媒充填層に、水素の還元剤を添加した被処理水を通水して水中の溶存酸素除去触媒と接触させる。 Method for removing dissolved oxygen in water using a dissolved oxygen removal catalyst of the present invention as described above, filled with Dissolved oxygen removal catalyst packed column, in the catalyst-packed layer, the treatment water with the addition of a reducing agent such as hydrogen passing water to Ru is contacted with dissolved oxygen removal catalyst in water.

この場合の通水空間速度は、被処理水の溶存酸素濃度、許容される溶出有機物・金属濃度、目標とする処理水溶存酸素濃度等にもよるが、触媒量に対してSV40〜2000h ある。 Water passing space velocity in this case, the dissolved oxygen concentration of the water to be treated, eluted organic substances and metals concentrations that are acceptable, depending on the treated water dissolved oxygen concentration such that the targeted, SV40~200 0h r relative catalytic amount - 1.

なお、触媒充填層は、上向流流動床、上向流固定床、下向流固定床等どのような型式でも良く、またそれらの組み合わせでも良いが、処理水溶存酸素濃度5ppb以下を得たい場合は、少なくとも一層は固定床を含む接触方式であることが好ましい。   The catalyst packed bed may be of any type such as an upflow fluidized bed, an upflow fixed bed, a downflow fixed bed, or a combination thereof, but it is desired to obtain a treated aqueous oxygen concentration of 5 ppb or less. In this case, it is preferable that at least one layer is a contact system including a fixed bed.

還元剤としては、超純水製造システムにおいては副生成物が残留しない水素を用いる。また、還元剤の供給方法については特に制限はなく、例えば水素の場合は、系内にインラインやエゼクタで供給することもできるし、水素透過膜を通して供給することもできる The reducing agent, in the ultrapure water production system Ru with hydrogen by-product does not remain. Moreover, there is no restriction | limiting in particular about the supply method of a reducing agent, For example, in the case of hydrogen, it can supply with an in-line or an ejector in a system, and can also supply through a hydrogen permeable film .

還元剤の添加量は、被処理水中の溶存酸素濃度、還元剤の種類、目標とする処理水の溶存酸素濃度等によっても異なるが、還元剤として 添加量、溶存酸素濃度に対して1.1〜1.2倍当量とる。 The addition amount of the reducing agent, the dissolved oxygen concentration in the water to be treated, the kind of the reducing agent may vary depending dissolved oxygen concentration in the treated water as a target or the like, instead of the addition amount of H 2 as Motozai the dissolved oxygen concentration It shall be the 1.1 to 1.2 Baito amount relative.

本発明による溶存酸素除去技術は、超純水製造システムの一次脱塩処理システム及び/又はサブシステム内の水に有効に適用することができる。なお、得られた処理水で半導体ウェハの洗浄を行う場合は、処理水中に還元剤が残留した方が良く、後段に液浸露光装置がある場合は水素が残留しない方が良い。   The dissolved oxygen removal technology according to the present invention can be effectively applied to the water in the primary desalination treatment system and / or subsystem of the ultrapure water production system. When cleaning the semiconductor wafer with the obtained treated water, it is better that the reducing agent remains in the treated water, and when there is an immersion exposure apparatus in the subsequent stage, it is better that no hydrogen remains.

例えば、以下の(1)〜(3)のフローを採用することにより、処理水の溶存酸素濃度と溶存還元剤濃度をコントロールすることができる。   For example, by adopting the following flows (1) to (3), the dissolved oxygen concentration and dissolved reducing agent concentration of the treated water can be controlled.

(1)、(2)については、目標被処理水溶存酸素濃度の程度により必要還元剤濃度も変わるため、水素の還元剤を被処理水中に残留させることも可能であり、一方、(3)については、物理的脱気手段によれば酸素のみならずその被処理水中に残留した水素をも脱気することができる。また、(1)〜(3)は、いずれも、後段に物理的脱気手段や本発明の溶存酸素除去触媒塔を設けてさらに多段処理することもできる。 (1), for (2), since changes necessary concentration of the reducing agent by the degree of the target treated water dissolved oxygen concentration, the hydrogen reducing agent is also possible to remain in the water to be treated, whereas, (3 ), The physical degassing means can degas not only oxygen but also hydrogen remaining in the water to be treated. Further, any of (1) to (3) can be further subjected to multistage treatment by providing a physical deaeration means or the dissolved oxygen removal catalyst tower of the present invention in the subsequent stage.

(1)溶存酸素除去触媒塔を直列に2段に設置して、溶存酸素除去触媒による処理を2段で行う。
(2)脱気膜又は脱気塔等の物理的脱気手段の後段に溶存酸素除去触媒塔を設け、物理的脱気処理後、溶存酸素除去触媒による処理を行う。
(3)溶存酸素除去触媒塔の後段に脱気膜又は脱気塔等の物理的脱気手段を設け、溶存酸素除去触媒による処理後、物理的脱気処理を行う。
(1) a Dissolved oxygen removal catalyst tower installed in two stages in series, performs the processing of Dissolved oxygen removal catalyst in two stages.
(2) to the subsequent physical degassing means such as degassing membrane or degassing tower provided dissolved oxygen removal catalyst tower, after physical deaeration, the treatment with Dissolved oxygen removal catalysts carried out.
(3) subsequent Dissolved oxygen removal catalyst tower provided physical degassing means such as degassing membrane or degassing column, after treatment with Dissolved oxygen removal catalyst performs physical deaeration treatment.

以下に実例及び比較実験例を挙げて、本発明をより具体的に説明する。 By way of experimental examples and comparative experimental examples below illustrate the present invention more specifically.

<実例1>
図1に示す如く、パラジウムナノコロイド粒子(平均粒子径3.5nm。標準偏差は平均粒子径の20%程度。)を、樹脂に対して0.11重量%の担持量で強塩基性ゲル型アニオン交換樹脂に担持した溶存酸素除去触媒1を、アクリルカラム2に35ml充填し、6.9ppmの酸素を含む脱塩水(20μS/cm)に、Nをモル比で溶存酸素の15倍となるよう注入し、触媒樹脂層にSV=343〜1029hr−1で下向流通水し、カラム流出水の溶存酸素濃度を溶存酸素計3で測定し、各通水SVに対する溶存酸素濃度の値を表1に示した。
<Experimental Example 1>
As shown in FIG. 1, palladium nanocolloid particles (average particle size of 3.5 nm, standard deviation is about 20% of the average particle size) are strongly basic gel type with a loading amount of 0.11% by weight with respect to the resin. 35 ml of the dissolved oxygen removal catalyst 1 supported on an anion exchange resin is packed in an acrylic column 2 and deionized water (20 μS / cm) containing 6.9 ppm of oxygen is mixed with N 2 H 2 at a molar ratio of 15 times that of dissolved oxygen. Then, the downward flowing water is supplied to the catalyst resin layer at SV = 343 to 1029 hr −1 , the dissolved oxygen concentration of the column effluent is measured with the dissolved oxygen meter 3, and the value of the dissolved oxygen concentration with respect to each water flow SV Are shown in Table 1.

<比較実験例1>
触媒樹脂として、パラジウムを層状(被膜状)に担持した強塩基性ゲル型アニオン交換樹脂(Lewatit K7333(登録商標);Lanxess社製)を用いたこと以外は実例1と同様に、脱塩水にNを注入した水を通水し、処理水の溶存酸素濃度を調べ、結果を表1に示した。
<Comparative Experimental Example 1>
As a catalyst resin, palladium layered (film-like) in loaded with strongly basic gel-type anion exchange resin (Lewatit K7333 (registered trademark); manufactured by Lanxess Co.) in the same manner except for using the experimental example 1, demineralized water Then, N 2 H 2 -injected water was passed through, the dissolved oxygen concentration of the treated water was examined, and the results are shown in Table 1.

Figure 0004978144
Figure 0004978144

表1より、大気開放水飽和濃度6ppbの低濃度までの溶存酸素除去では、実例1のパラジウムナノコロイド粒子担持樹脂の性能が高いことがわかる。これは、nmオーダーの比較的均一な粒子径のパラジウム微粒子を担持したことによる大きな比表面積に起因する触媒活性の向上効果によるものである。これに対して、比較実験例1の担持金属量は実例1の担持金属量よりも多いにもかかわらず、処理水の溶存酸素濃度は実例1に比べて著しく高い。 From Table 1, the dissolved oxygen is removed to the low concentration of the atmosphere opening water saturation concentration 6 ppb, the performance of the experimental example 1 of palladium nano colloid particles carrying resin is found to be high. This is due to the effect of improving the catalytic activity due to the large specific surface area due to the support of palladium fine particles having a relatively uniform particle size on the order of nm. In contrast, the supported metal of Comparative Example 1 even though more than supported metal of Experiment Example 1, the dissolved oxygen concentration in the treated water is significantly higher than in Experiment Example 1.

例1における処理フローを示す図である。It is a diagram illustrating a processing flow in Experimental Example 1.

1 触媒樹脂
2 カラム
3 溶存酸素計
1 catalyst resin 2 column 3 dissolved oxygen meter

Claims (4)

溶存酸素を含む被処理水に、還元剤を添加した後、白金族の金属粒子を担体に担持してなる溶存酸素除去触媒を充填した触媒充填層に通水して該溶存酸素除去触媒に接触させることによって、該被処理水から溶存酸素を除去する水中の溶存酸素の除去方法において、
該金属粒子が金属ナノコロイド粒子であり、
該金属ナノコロイド粒子の平均粒子径が1.410nmで、かつ標準偏差が該平均粒子径の20%以下であり、
該担体が、交換基がOH型である強塩基性ゲル型アニオン交換樹脂であり、
該担体への白金族金属ナノコロイド粒子の担持量が担体重量に対して0.01〜0.2重量%であり、
該還元剤が水素であり、
該被処理水が超純水製造システムの一次脱塩処理システム内の水及び/又はサブシステム内の水であり、
該水素の添加量が該被処理水の溶存酸素濃度に対して1.1〜1.2倍当量であり、
該触媒充填層への被処理水の通水空間速度SVが40〜2000hr −1 であることを特徴とする水中の溶存酸素の除去方法。
After adding a reducing agent to the water to be treated containing dissolved oxygen, it is passed through a catalyst packed bed filled with a dissolved oxygen removal catalyst in which platinum group metal particles are supported on a carrier and contacted with the dissolved oxygen removal catalyst. In the method for removing dissolved oxygen in water by removing dissolved oxygen from the treated water,
The metal particles are metal nanocolloid particles;
An average particle diameter of 1.4 ~ 10 nm of the metal nano-colloid particles, and Ri der standard deviation less than 20% of the average particle diameter,
The carrier is a strongly basic gel-type anion exchange resin in which the exchange group is OH type;
The amount of platinum group metal nanocolloid particles supported on the carrier is 0.01 to 0.2% by weight based on the weight of the carrier,
The reducing agent is hydrogen;
The water to be treated is water in a primary desalination treatment system and / or water in a subsystem of an ultrapure water production system;
The amount of hydrogen added is 1.1 to 1.2 times equivalent to the dissolved oxygen concentration of the water to be treated,
Method of removing water dissolved oxygen water passing space velocity SV of the water to be treated to the catalyst-packed layer is characterized 40~2000Hr -1 der Rukoto.
請求項1において、該白金族の金属が、白金、パラジウム、及び白金/パラジウム合金よりなる群から選ばれる1種又は2種以上であることを特徴とする水中の溶存酸素の除去方法。   2. The method for removing dissolved oxygen in water according to claim 1, wherein the platinum group metal is one or more selected from the group consisting of platinum, palladium, and platinum / palladium alloys. 白金族の金属粒子を担体に担持してなる溶存酸素除去触媒を充填した触媒充填部と、
溶存酸素を含む被処理水を該触媒充填部に給水する給水手段と、
該触媒充填部に給水される被処理水に還元剤を添加する還元剤添加手段と
該触媒充填部を通過した水を排出する排出手段とを有する水中の溶存酸素除去装置において、
該金属粒子が金属ナノコロイド粒子であり、
該金属ナノコロイド粒子の平均粒子径が1.410nmで、かつ標準偏差が該平均粒子径の20%以下であり、
該担体が、交換基がOH型である強塩基性ゲル型アニオン交換樹脂であり、
該担体への白金族金属ナノコロイド粒子の担持量が担体重量に対して0.01〜0.2重量%であり、
該還元剤が水素であり、
該被処理水が超純水製造システムの一次脱塩処理システム内の水及び/又はサブシステム内の水であり、
該水素の添加量が該被処理水の溶存酸素濃度に対して1.1〜1.2倍当量であり、
該触媒充填層への被処理水の通水空間速度SVが40〜2000hr −1 であることを特徴とする水中の溶存酸素除去装置。
A catalyst packed portion filled with a dissolved oxygen removal catalyst formed by supporting platinum group metal particles on a carrier;
Water supply means for supplying water to be treated containing dissolved oxygen to the catalyst filling unit;
In the apparatus for removing dissolved oxygen in water, comprising a reducing agent adding means for adding a reducing agent to the water to be treated supplied to the catalyst filling section, and a discharging means for discharging water that has passed through the catalyst filling section.
The metal particles are metal nanocolloid particles;
An average particle diameter of 1.4 ~ 10 nm of the metal nano-colloid particles, and Ri der standard deviation less than 20% of the average particle diameter,
The carrier is a strongly basic gel-type anion exchange resin in which the exchange group is OH type;
The amount of platinum group metal nanocolloid particles supported on the carrier is 0.01 to 0.2% by weight based on the weight of the carrier,
The reducing agent is hydrogen;
The water to be treated is water in a primary desalination treatment system and / or water in a subsystem of an ultrapure water production system;
The amount of hydrogen added is 1.1 to 1.2 times equivalent to the dissolved oxygen concentration of the water to be treated,
Water dissolved oxygen removal device water passing space velocity SV of the water to be treated to the catalyst-packed layer is characterized 40~2000Hr -1 der Rukoto.
請求項3において、該白金族の金属が、白金、パラジウム、及び白金/パラジウム合金よりなる群から選ばれる1種又は2種以上であることを特徴とする水中の溶存酸素の除去装置。The apparatus for removing dissolved oxygen in water according to claim 3, wherein the platinum group metal is one or more selected from the group consisting of platinum, palladium, and platinum / palladium alloys.
JP2006280325A 2006-10-13 2006-10-13 Method and apparatus for removing dissolved oxygen in water Active JP4978144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280325A JP4978144B2 (en) 2006-10-13 2006-10-13 Method and apparatus for removing dissolved oxygen in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280325A JP4978144B2 (en) 2006-10-13 2006-10-13 Method and apparatus for removing dissolved oxygen in water

Publications (2)

Publication Number Publication Date
JP2008093606A JP2008093606A (en) 2008-04-24
JP4978144B2 true JP4978144B2 (en) 2012-07-18

Family

ID=39377022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280325A Active JP4978144B2 (en) 2006-10-13 2006-10-13 Method and apparatus for removing dissolved oxygen in water

Country Status (1)

Country Link
JP (1) JP4978144B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105408A (en) * 2008-07-28 2011-06-22 栗田工业株式会社 Process and equipment for the treatment of water containing organic matter
JP5430983B2 (en) * 2009-03-18 2014-03-05 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5231300B2 (en) * 2009-03-18 2013-07-10 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5604143B2 (en) * 2009-03-18 2014-10-08 オルガノ株式会社 Dissolved oxygen-removed water production method, dissolved oxygen-removed water production device, dissolved oxygen treatment tank, ultrapure water production method, hydrogen-dissolved water production method, hydrogen-dissolved water production device, and electronic component cleaning method
JP5231299B2 (en) * 2009-03-18 2013-07-10 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5525754B2 (en) * 2009-05-01 2014-06-18 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5804468B2 (en) * 2010-08-17 2015-11-04 ジョプラックス株式会社 Water purification cartridge, manufacturing method thereof, and water purifier
JP5567958B2 (en) * 2010-09-17 2014-08-06 オルガノ株式会社 Method for producing platinum group metal supported catalyst
JP6159621B2 (en) * 2013-08-28 2017-07-05 石福金属興業株式会社 Method for producing highly dispersed supported palladium catalyst suitable for core material for core-shell catalyst
CN103506086A (en) * 2013-08-30 2014-01-15 蚌埠首创滤清器有限公司 Coupling modified active carbon absorption desulfurizer and preparation method thereof
CN103495382A (en) * 2013-08-30 2014-01-08 蚌埠德美过滤技术有限公司 Modified wheat bran activated carbon and its preparation method
CN103506073A (en) * 2013-08-30 2014-01-15 蚌埠凤凰滤清器有限责任公司 Modified active carbon nitrogen-removing agent and preparation method thereof
CN103495384A (en) * 2013-08-30 2014-01-08 蚌埠德美过滤技术有限公司 Modified activated carbon air purification adsorbent and its preparation method
CN103506090A (en) * 2013-08-30 2014-01-15 蚌埠德美过滤技术有限公司 Modified active carbon water treatment absorbent and preparation method thereof
CN103495381A (en) * 2013-08-30 2014-01-08 蚌埠凤凰滤清器有限责任公司 Modified activated carbon based gasoline desulfurization agent and its preparation method
CN103495433A (en) * 2013-08-30 2014-01-08 蚌埠凤凰滤清器有限责任公司 Modified activated carbon catalyst and its preparation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138167A (en) * 1991-11-19 1993-06-01 Japan Organo Co Ltd Ultra pure water supplying equipment
JP3224037B2 (en) * 1992-03-24 2001-10-29 栗田工業株式会社 Deoxygenation device
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
JP4784727B2 (en) * 2005-03-10 2011-10-05 独立行政法人産業技術総合研究所 Porous composite carrying ultrafine metal particles

Also Published As

Publication number Publication date
JP2008093606A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4978144B2 (en) Method and apparatus for removing dissolved oxygen in water
TWI392654B (en) Hydrogen peroxide removal method and removal device
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
JP6439777B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
WO2009122884A1 (en) Method for producing pure water and pure water production system
JP2011167633A (en) Water treatment method and apparatus
TWI485114B (en) Wastewater treatment system
JP2010069460A (en) Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
WO2019116653A1 (en) Method and apparatus for removing hydrogen peroxide
JP2007007541A (en) Method for treating nitrate nitrogen-containing water
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP5919960B2 (en) Treatment method for organic water
JP6848415B2 (en) Operation method of ultrapure water production equipment and ultrapure water production equipment
JP6627321B2 (en) Pretreatment method and pretreatment device for platinum group metal carrier
JP5552977B2 (en) Method for measuring dissolved substance concentration
JP2018111057A (en) Wet oxidation method and device for water containing organic material
JP2006314888A (en) Nitric acid reduction catalyst composition and nitric acid solution processing method using the same
JP3239502B2 (en) Method for treating water containing volatile organic halogen compounds
JP2004261695A (en) Catalyst for reducing nitric acid and method for treating nitric acid-containing water
JP2004050009A (en) Method of removing bromate ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150