JP6521317B2 - Metal complexed carbon nitride for deodorization and manufacturing method thereof - Google Patents

Metal complexed carbon nitride for deodorization and manufacturing method thereof Download PDF

Info

Publication number
JP6521317B2
JP6521317B2 JP2015236857A JP2015236857A JP6521317B2 JP 6521317 B2 JP6521317 B2 JP 6521317B2 JP 2015236857 A JP2015236857 A JP 2015236857A JP 2015236857 A JP2015236857 A JP 2015236857A JP 6521317 B2 JP6521317 B2 JP 6521317B2
Authority
JP
Japan
Prior art keywords
metal
carbon nitride
graphitic carbon
complexed
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015236857A
Other languages
Japanese (ja)
Other versions
JP2017100923A (en
Inventor
佐野 泰三
泰三 佐野
昭弘 脇坂
昭弘 脇坂
智子 堀
智子 堀
和英 小池
和英 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015236857A priority Critical patent/JP6521317B2/en
Publication of JP2017100923A publication Critical patent/JP2017100923A/en
Application granted granted Critical
Publication of JP6521317B2 publication Critical patent/JP6521317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属を担持した金属複合化グラファイト状窒化炭素の新規な製造方法、悪臭物質の吸着性能や光触媒機能に優れた新規な金属複合化グラファイト状窒化炭素、及び、該新規な金属複合化グラファイト状窒化炭素を用いた脱臭剤や脱臭装置に関する。   The present invention relates to a novel method for producing metal-complexed graphitic carbon nitride supporting a metal, a novel metal-complexed graphitic carbon nitride excellent in adsorption performance of odorous substances and photocatalytic function, and the novel metal complexation The present invention relates to a deodorizing agent and a deodorizing apparatus using graphitic carbon nitride.

生活環境に存在する悪臭物質を酸化・劣化させる脱臭技術の一つとして、酸化チタンを光触媒として用いる手法があるが、酸化チタンは紫外光を当てたときにしか働かず、また、太陽光や室内光に多く含まれる可視光を使うことができなかった。
近年、可視光に応答する酸化タングステンを光触媒として用いる方法も開発されているが、タングステンは酸化チタンに比べて高価であり(約10倍)、戦略物質であるために供給が不安定であるという問題がある。
As one of the deodorizing techniques for oxidizing and degrading offensive odor substances present in the living environment, there is a method using titanium oxide as a photocatalyst, but titanium oxide works only when it is exposed to ultraviolet light, and sunlight and indoors I could not use visible light, which is often contained in light.
In recent years, a method using tungsten oxide that responds to visible light as a photocatalyst has also been developed, but tungsten is more expensive (about 10 times) than titanium oxide, and supplies are unstable because it is a strategic substance. There's a problem.

グラファイト状窒化炭素(g-C34)は、メラミンまたはシアナミドを熱分解することで容易に合成でき、可視光に応答する光触媒として作用することが近年知られるようになった(非特許文献1,2)。グラファイト状窒化炭素は、酸化タングステンなどに比べ安価であり、供給が安定している点もメリットである。 Graphitic carbon nitride (g-C 3 N 4) is a melamine or cyanamide can be easily synthesized by thermal decomposition, it has become known in recent years that acts as a photocatalyst responsive to visible light (non-patent literature 1, 2). Graphite-like carbon nitride is less expensive than tungsten oxide and the like, and it is a merit that supply is stable.

しかし、メラミンやシアナミドの熱分解で合成されたグラファイト状窒化炭素をそのまま使っても、光触媒性能は低く、空気浄化や脱臭の用途での実用にはほど遠かった。そこで、性能を向上させる各種の方法が検討され、水熱処理によって比表面積を増大し、空気浄化性能を向上させる方法(特許文献1等)や、金属をグラファイト状窒化炭素の層間に内包させる方法(特許文献2,3、非特許文献3)、が見出され、空気浄化用の光触媒としての性能は徐々に向上してきた。しかし、悪臭物質として重要なメチルメルカプタンなどの硫黄化合物に対する吸着力及び分解性能は依然として低く、改良が必要だった。   However, even if graphite-like carbon nitride synthesized by thermal decomposition of melamine or cyanamide is used as it is, its photocatalytic performance is low and it is far from practical use in air purification and deodorizing applications. Therefore, various methods for improving the performance have been studied, and methods of increasing the specific surface area by hydrothermal treatment to improve the air purification performance (Patent Document 1 etc.) and methods of including metal in the interlayer of graphitic carbon nitride ( Patent Documents 2, 3 and Non-patent Document 3) have been found, and the performance as a photocatalyst for air purification has been gradually improved. However, the adsorptive power and decomposition performance to sulfur compounds such as methyl mercaptan which are important as an offensive odor substance are still low, and improvements have been necessary.

硫黄化合物に対する触媒や吸着剤の吸着性能を向上させる方法として、含浸法や光電着法により銀などの金属を担持する方法がある。銀を担持させた場合、グラファイト状窒化炭素においても銀の担持で吸着性能が向上することが知られている。含浸法では多くの金属を担持できないのに対し、光電着法では比較的多くの金属を担持できるものの、銀の量を増やすと、銀の単位重量当たりの吸着量はむしろ減少し、銀を有効に利用することができなかった。   As a method of improving the adsorption performance of a catalyst or an adsorbent to a sulfur compound, there is a method of supporting a metal such as silver by an impregnation method or a photo electrodeposition method. When silver is supported, it is known that the adsorption performance of graphite-like carbon nitride is improved by supporting silver. Although many metals can not be supported by the impregnation method, while relatively large metals can be supported by the photo-electrodeposition method, the amount of adsorption per unit weight of silver decreases rather as the amount of silver is increased, and silver is effective. It was not possible to use it.

特開2011−195412号公報JP, 2011-195412, A 国際公開第2011/049085号International Publication No. 2011/049085 特開平2−308815号公報JP-A-2-308815

WANG Xinchen, et al.“Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light” J Am Chem Soc Vol.131, No.5, Page.1680-1681 (2009.02.11)WANG Xinchen, et al. “Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light” J Am Chem Soc Vol. 131, No. 5, Page. 1680-1681 (2009.02.11) WANG Xinchen, et al.“A metal-free polymeric photocatalyst for hydrogen production from water under visible light” Nat Mater Vol.8, No.1, Page.76-80 (2009.01)WANG Xinchen, et al. “A metal-free polymeric photocatalyst for hydrogen production from water under visible light” Nat Mater Vol. 8, No. 1, Page. 76-80 (2009.01) 前田和彦 外5名“カーボンナイトライド(C3N4)の可視光照射下における光触媒活性” 触媒討論会討論会A予稿集Vol.102nd, Page.126 (2008.09.23)Kazuhiko Maeda "5 Photocatalytic activities of carbon nitride (C3N4) under visible light irradiation" Catalysts Discussion Group A Proceedings Vol. 102nd, Page. 126 (2008.09.23)

本発明は、上述のような従来技術を背景としてなされたものであって、担持する金属に応じた多様な機能や性質が期待できる金属複合化グラファイト状窒化炭素を比較的低コスト且つ簡易なプロセスで製造可能な新規な製造方法を提供することを課題とする。
また、本発明は、硫黄化合物等の悪臭物質の脱臭性能及び/または光触媒機能を有する金属複合化グラファイト状窒化炭素を比較的低コスト且つ簡易なプロセスで製造可能な新規な製造方法を提供することを追加的な課題とする。
また、本発明は、硫黄化合物等の悪臭物質の吸着性能に優れ、また、可視光や紫外線の照射で悪臭物質を酸化・劣化させる特性を有する金属複合化グラファイト状窒化炭素を比較的低コスト且つ簡易なプロセスで製造可能な新規な製造方法を提供することを追加的な課題とする。
また、本発明は、硫黄化合物等の悪臭物質の脱臭性能及び/または光触媒機能を有する新規な金属複合化グラファイト状窒化炭素を提供することを課題とする。
また、本発明は、硫黄化合物等の悪臭物質の吸着性能に優れ、可視光や紫外線の照射で悪臭物質を酸化・劣化させる特性を有する新規な金属複合化グラファイト状窒化炭素を提供することを課題とする。
The present invention has been made against the background art as described above, and is capable of expecting various functions and properties depending on the metal to be supported, and it is a relatively low-cost and simple process for metal-complexed graphitic carbon nitride. It is an object of the present invention to provide a novel manufacturing method that can be manufactured by
The present invention also provides a novel production method capable of producing metal complexed graphitic carbon nitride having deodorizing performance and / or photocatalytic function of malodorous substances such as sulfur compounds by a relatively low cost and simple process. As an additional task.
In addition, the present invention is relatively low in cost and excellent in the ability to adsorb malodorous substances such as sulfur compounds, and also has the property of oxidizing and degrading malodorous substances by irradiation with visible light and ultraviolet light at relatively low cost. It is an additional task to provide a novel manufacturing method that can be manufactured by a simple process.
Another object of the present invention is to provide a novel metal-complexed graphitic carbon nitride having deodorizing performance and / or photocatalytic function of malodorous substances such as sulfur compounds.
Another object of the present invention is to provide a novel metal-complexed graphitic carbon nitride that is excellent in the adsorption performance of malodorous substances such as sulfur compounds and has the property of oxidizing and degrading malodorous substances by irradiation with visible light or ultraviolet light. I assume.

前記課題の下、各種の試験研究を進める過程で、次のような知見を得た。
(1)金属イオンを含む溶液中でグラファイト状窒化炭素を所定の撹拌周速以上の高せん断処理するという、比較的低コストの簡易なプロセスで、金属を担持した金属複合化窒化炭素を製造することができる。
(2)上記製造において、金属の種類や担持量を調整することにより、硫黄化合物等の悪臭物質に対する吸着能力や光触媒除去率の高い金属複合化窒化炭素を得ることができる。
(3)メラミンやシアナミドなどの含窒素有機化合物を熱分解して調製されたグラファイト状窒化炭素(以下、「g-C34」とする。)を予め水酸化ナトリウム等のアルカリ水溶液中や酸性水溶液中で水熱処理を行いg-C34の比表面積を増大させると、上記吸着能力や光触媒除去率を向上することができる。
(4)金属イオンの原料として、金、銀、銅の硝酸塩や酢酸塩、アセチルアセトナート錯体等を利用できるが、酢酸銀を用いると有意に最も高い吸着性能が得られる。重量比約24%の銀を加えても、銀1原子あたりの吸着性能は、従来法で重量比1%の場合よりも高い。
(5)従来の光電着法により製造されたものでは、担持金属粒子は、硫黄化合物等の悪臭物質の吸着前後においてグラファイト状窒化炭素表面上を移動しないと考えられるのに対し、本発明の高せん断処理により製造されたものでは、担持金属粒子は、凝集力が比較的弱く、グラファイト状窒化炭素に対する結合力も比較的弱く、硫黄化合物等の悪臭物質の吸着に伴って結合力や凝集力がさらに低下して平板状に変化し、表面の割合が多くなると考えられる。その結果、本発明の高せん断処理により製造されたものでは、担持する金属の種類や量の設定により、光電着法によるものよりも、硫黄化合物等の悪臭物質の吸着容量や光触媒除去率を大きく向上することが可能であり、悪臭物質の優れた吸着剤とすることができる。
The following findings were acquired in the process of advancing various test researches under the above-mentioned subject.
(1) A metal complex supported carbon nitride carrying metal is manufactured by a relatively low cost and simple process of performing high shear treatment of graphitic carbon nitride in a solution containing metal ions at a predetermined stirring peripheral speed or higher. be able to.
(2) In the above-mentioned production, by adjusting the kind and the loading amount of the metal, it is possible to obtain metal composite carbon nitride having a high adsorbing ability to an odorous substance such as a sulfur compound and a high photocatalyst removal rate.
(3) graphitic carbon nitride and nitrogen-containing organic compounds have been prepared by thermal decomposition, such as melamine and cyanamide (hereinafter referred to as "g-C 3 N 4".) Ya advance in alkaline aqueous solution such as sodium hydroxide If the specific surface area of g-C 3 N 4 is increased by performing hydrothermal treatment in an acidic aqueous solution, the adsorption capacity and the photocatalyst removal rate can be improved.
(4) Gold, silver, copper nitrates, acetates, acetylacetonate complexes and the like can be used as the raw material of metal ions, but silver acetate provides significantly higher adsorption performance. Even with the addition of about 24% by weight silver, the adsorption performance per silver atom is higher than in the case of 1% by weight in the conventional method.
(5) It is considered that the supported metal particles do not move on the surface of the graphitic carbon nitride before and after adsorption of an offensive substance such as a sulfur compound when manufactured by the conventional photo electrodeposition method. In the case of those manufactured by shear processing, the supported metal particles have relatively weak cohesion and relatively weak bonding to graphitic carbon nitride, and further bonding and cohesion along with adsorption of odorous substances such as sulfur compounds. It is thought that it decreases and changes to a plate-like shape, and the proportion of the surface increases. As a result, in the products manufactured by the high shear treatment of the present invention, the adsorption capacity and the photocatalytic removal rate of malodorous substances such as sulfur compounds are larger than those by the photo electrodeposition method by setting the kind and amount of metal to be supported. It can be improved and can be an excellent adsorbent for malodorous substances.

本発明は上述のような知見に基づいて完成に至ったものであり、本件によれば、以下の発明が提供される。
<1>金属イオンを含む溶液中で、グラファイト状窒化炭素の粉末を撹拌周速が2m/s以上の高せん断処理することを特徴とする、金属複合化グラファイト状窒化炭素の製造方法。
<2>前記グラファイト状窒化炭素の粉末は、予めアルカリ水溶液中又は酸性水溶液中で水熱処理されたものである<1>に記載の金属複合化グラファイト状窒化炭素の製造方法。
<3>前記金属イオンの金属が、銀、金、銅から選択される一種または複数種である<1>または<2>に記載の金属複合化グラファイト状窒化炭素の製造方法。
<4>前記金属は、金属複合化グラファイト状窒化炭素に対して重量比で10%以上である<1>〜<3>のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。
<5>金属イオンを含む溶液が、金属無機塩、金属有機塩、または、金属有機錯体を含む溶液である<1>〜<4>のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。
<6>銀、金、銅から選択される一種または複数種の金属がグラファイト状窒化炭素に複合化された金属複合化グラファイト状窒化炭素であって、該金属の担持量が10重量%以上であり、かつ、該金属は、メチルメルカプタンの吸着の際に移動可能に複合化されたものであることを特徴とする、金属複合化グラファイト状窒化炭素。
<7>銀がグラファイト状窒化炭素に複合化された金属複合化グラファイト状窒化炭素であって、該銀の担持量が10重量%以上であり、かつ、該銀の比表面積が500m2/g以上であることを特徴とする、金属複合化グラファイト状窒化炭素。
<8>吸着性能と光触媒性能を併せ持ち、<6>又は<7>に記載の金属複合化グラファイト状窒化炭素を有効成分とする脱臭剤。
<9><8>に記載の脱臭剤を具備する脱臭装置。
The present invention has been completed based on the above-described findings, and the present invention provides the following inventions.
<1> A method for producing metal-complexed graphitic carbon nitride, characterized in that the powder of graphitic carbon nitride is subjected to high shear treatment at a stirring peripheral speed of 2 m / s or more in a solution containing metal ions.
<2> The method for producing metal-complexed graphitic carbon nitride according to <1>, wherein the powder of graphitic carbon nitride is previously subjected to a hydrothermal treatment in an alkaline aqueous solution or an acidic aqueous solution.
The manufacturing method of metal complex-ized graphitic carbon nitride as described in <1> or <2> whose metal of <3> above-mentioned metal ion is 1 type or multiple types selected from silver, gold | metal | money, and copper.
<4> The method for producing metal-complexed graphitic carbon nitride according to any one of <1> to <3>, wherein the metal has a weight ratio of 10% or more to metal-complexed graphitic carbon nitride .
The metal-complexed graphitic carbon according to any one of <1> to <4>, wherein the solution containing a <5> metal ion is a solution containing a metal inorganic salt, a metal organic salt, or a metal organic complex Manufacturing method.
<6> A metal-complexed graphitic carbon nitride in which one or more metals selected from silver, gold and copper are complexed to graphitic carbon nitride, and the supported amount of the metal is 10% by weight or more A metal-complexed graphitic carbon nitride, characterized in that the metal is movably complexed upon adsorption of methyl mercaptan.
<7> A metal complexed graphitic carbon nitride in which silver is complexed to graphitic carbon nitride, and the supported amount of the silver is 10% by weight or more, and the specific surface area of the silver is 500 m 2 / g A metal complexed graphitic carbon nitride characterized by the above.
The deodorizer which has <8> adsorption performance and photocatalytic performance, and uses metal complex-ized graphitic carbon nitride as described in <6> or <7> as an active ingredient.
The deodorizing apparatus which comprises the deodorizing agent as described in <9><8>.

本発明は、次のような態様を含むことができる。
<10>撹拌周速が2.5〜12m/sである<1>〜<5>のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。
<11>前記金属が金属複合化グラファイト状窒化炭素に対して重量比で10〜35%である<1>〜<5>、<10>のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。
<12>混合されるグラファイト状窒化炭素粉末がメラミンまたはシアナミドの熱分解で合成されたものである<1>〜<5>、<10>、<11>のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。
<13>金属担持量が11〜33重量%である<6>または<7>に記載の金属複合化グラファイト状窒化炭素。
<14>メチルメルカプタンの吸着容量が、300μmol/g以上である<6>、<7>または<13>に記載の金属複合化グラファイト状窒化炭素。
<15>吸着性能と光触媒性能を併せ持ち、<13>または<14>に記載の金属複合化グラファイト状窒化炭素を有効成分とする脱臭剤。
<16><15>に記載の脱臭剤を具備する脱臭装置。
The present invention can include the following aspects.
The manufacturing method of metal complex-ized graphitic carbon nitride as described in any one of <1>-<5> whose <10> stirring peripheral speed is 2.5-12 m / s.
<11> The metal-complexed graphite-like nitride according to any one of <1> to <5>, <10>, wherein the metal is 10 to 35% by weight ratio to the metal-complexed graphite-like carbon nitride How to make carbon.
<12> The metal composite according to any one of <1> to <5>, <10>, <11>, wherein the graphitic carbon nitride powder to be mixed is synthesized by thermal decomposition of melamine or cyanamide Method of carbonized graphite-like carbon nitride.
Metal-complexed graphitic carbon nitride according to <6> or <7>, wherein the amount of supported <13> metal is 11 to 33% by weight.
The metal complexing graphitic carbon nitride as described in <6>, <7> or <13> whose adsorption capacity of <14> methyl mercaptan is 300 micromol / g or more.
The deodorizer which has <15> adsorption performance and photocatalytic performance, and uses metal complex-ized graphitic carbon nitride as described in <13> or <14> as an active ingredient.
The deodorizing apparatus which comprises the deodorizing agent as described in <16><15>.

本発明の製造方法によれば、担持する金属に応じた多様な機能や性質が期待できる金属複合化グラファイト状窒化炭素を比較的低コスト且つ簡易なプロセスで製造することができる。
また、本発明の製造方法によれば、金属の種類や担持量を適切に設定することにより、硫黄化合物等の悪臭物質の脱臭性能や光触媒機能を有する金属複合化グラファイト状窒化炭素を比較的低コスト且つ簡易なプロセスで製造することができる。
本発明の脱臭用窒化炭素は、悪臭物質の吸着性能に優れた吸着剤であり、また、可視光や紫外線の照射で悪臭物質を酸化・劣化させる特性を有する。
According to the manufacturing method of the present invention, metal-complexed graphitic carbon nitride which can be expected to have various functions and properties depending on the metal to be supported can be manufactured by a relatively low cost and simple process.
In addition, according to the production method of the present invention, metal complexing graphitic carbon nitride having a deodorizing performance and a photocatalytic function of an offensive odor substance such as a sulfur compound is relatively low by appropriately setting the kind and the loading amount of metal. It can be manufactured in a cost and simple process.
The deodorizing carbon nitride of the present invention is an adsorbent excellent in the adsorption performance of an offensive odor substance, and has the property of oxidizing and degrading the offensive odor substance by irradiation with visible light or ultraviolet light.

メラミンからAg担持グラファイト状窒化炭素(Ag/g-C34またはAg/HT-g-C34)を合成していく過程のX線回折図の変化を示す図。It shows the change in X-ray diffraction diagram of the course of synthesizing the Ag carrying graphitic carbon nitride (Ag / g-C 3 N 4 or Ag / HT-g-C 3 N 4) melamine. Agを高せん断処理で担持したグラファイト状窒化炭素の電子顕微鏡写真。(a)はメチルメルカプタン(MM)吸着前を、(b)はMM吸着後を、それぞれ示す。Electron micrograph of graphitic carbon nitride carrying Ag by high shear treatment. (a) shows methyl mercaptan (MM) adsorption before, and (b) shows MM adsorption after. Ag担持グラファイト状窒化炭素のメチルメルカプタン(MM)吸着や可視光照射によるX線光電子分光法の銀(Ag3d)のピークの変化を示す図。(a)はMM吸着前を、(b)はMM吸着後を、(c)はMM吸着に続く可視光照射後を、それぞれ示す。The figure which shows the change of the peak of silver (Ag3d) of the X-ray-photoelectron spectroscopy by methyl mercaptan (MM) adsorption and visible light irradiation of Ag carrying | support graphitic carbon nitride. (a) shows before MM adsorption, (b) shows after MM adsorption, and (c) shows after MM irradiation followed by irradiation with visible light. 本発明の実施例で用いた脱臭性能を解析する装置を示す模式図。The schematic diagram which shows the apparatus which analyzes the deodorizing performance used in the Example of this invention. 高せん断処理で銀を担持したグラファイト状窒化炭素によるメチルメルカプタンの吸着と、可視光の照射による光触媒分解のプロファイルを示す図。The figure which shows the adsorption of methyl mercaptan by graphitic carbon nitride which carry | supported silver by high shear processing, and the profile of the photocatalytic decomposition by irradiation of visible light. Ag担持グラファイト状窒化炭素の吸着容量と光触媒除去率の銀担持量依存性を示した図。□は本発明の実施例の高せん断処理法によるものを、○は比較例の光電着法によるものを、それぞれ示す。The figure which showed the silver supporting amount dependence of the adsorption capacity and photocatalyst removal rate of Ag carrying | support graphitic carbon nitride. □ indicates the high shear treatment method of the example of the present invention, and ○ indicates the light electrodeposition method of the comparative example.

本発明の金属複合化グラファイト状窒化炭素の製造方法は、金属イオンを含む溶液中で、グラファイト状窒化炭素の粉末を撹拌周速が2m/s以上の高せん断処理することを特徴とするものである。本発明の製造方法によれば、従来の含浸法に比べ金属担持量が比較的多い金属複合化グラファイト状窒化炭素を、従来の光電着法に比べ比較的低コストの簡易なプロセスで製造することができる。
金属イオンを含む溶液中でグラファイト状窒化炭素を高せん断処理することで、還元の容易な金属イオンの場合には、金属イオンの少なくとも一部が還元されて析出しグラファイト状窒化炭素上に分散担持される。また、還元の困難な金属イオンの場合には、金属イオンのまま一部が析出しグラファイト状窒化炭素上に分散担持される。製造される金属複合化グラファイト状窒化炭素は、担持する金属に応じて、グラファイト状窒化炭素だけでは得られない多様な機能や性質を発揮することが想定される。
The method for producing metal-complexed graphitic carbon nitride according to the present invention is characterized in that the powder of graphitic carbon nitride is subjected to high shear treatment with a stirring peripheral speed of 2 m / s or more in a solution containing metal ions. is there. According to the manufacturing method of the present invention, it is possible to manufacture metal complexed graphitic carbon nitride having a relatively large metal loading amount as compared with the conventional impregnation method by a relatively low cost and simple process as compared with the conventional photo electrodeposition method. Can.
By subjecting graphitic carbon nitride to high shear treatment in a solution containing metal ions, in the case of easily reducing metal ions, at least a portion of the metal ions are reduced and precipitated and dispersed and supported on the graphitic carbon nitride Be done. In addition, in the case of a metal ion which is difficult to reduce, a part of the metal ion is deposited and dispersed and supported on the graphitic carbon nitride. It is assumed that the metal-complexed graphitic carbon nitride to be produced exhibits various functions and properties which can not be obtained by graphitic carbon nitride alone, depending on the metal to be supported.

製造に用いるグラファイト状窒化炭素の粉末としては、限定されず、メラミン、シアナミド、ジシアンジアミド、尿素、トリアジン、塩化トリアジン、シアヌル酸等、又はそれらの混合物を熱分解することにより合成されたものが挙げられる。使用する粉末は、限定するものではないが、通常、平均粒径が1〜30μm程度である。   The powder of graphitic carbon nitride used for the preparation is not limited and includes those synthesized by thermal decomposition of melamine, cyanamide, dicyandiamide, urea, triazine, triazine chloride, cyanuric acid etc., or a mixture thereof . The powder to be used is not limited, but usually, the average particle diameter is about 1 to 30 μm.

グラファイト状窒化炭素の粉末は、比表面積が増大するように予め、アルカリ水溶液又は酸性水溶液中で水熱処理されたものであることが望ましい。該アルカリ水熱処理は、濃度0.05〜0.2mol/lの水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム等を含む水溶液中にグラファイト状窒化炭素を入れて撹拌しながら70〜150℃に加熱することにより行うことができる。該酸水熱処理は、濃度0.05〜0.2mol/lの塩酸、硝酸、硫酸等を含む水溶液中にグラファイト状窒化炭素を入れて撹拌しながら130〜170℃に加熱することにより行うことができる。   The graphitic carbon nitride powder is desirably pre-hydrothermally treated in an aqueous alkali solution or an acidic aqueous solution so as to increase the specific surface area. The alkaline hydrothermal treatment is carried out by adding graphitic carbon nitride in an aqueous solution containing sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and the like at a concentration of 0.05 to 0.2 mol / l and stirring at 70 to 150 ° C. This can be done by heating to The acid hydrothermal treatment may be carried out by heating graphitized carbon nitride in an aqueous solution containing hydrochloric acid, nitric acid, sulfuric acid, etc. having a concentration of 0.05 to 0.2 mol / l and stirring to 130 to 170 ° C. while stirring. it can.

グラファイト状窒化炭素に担持される金属としては、限定するものではないが、銀、金、銅、白金、パラジウム、ニッケル、イリジウム、ロジウム、オスミウム、ルテニウム、鉄、コバルト、マンガン、モリブデン、亜鉛などが挙げられる。
金属複合化グラファイト状窒化炭素に光触媒機能を期待する場合には、限定するものではないが、銀、金、銅、白金、パラジウム、ニッケル、イリジウム、ロジウム、オスミウム、ルテニウム、鉄、コバルトなどが挙げられる。
金属複合化グラファイト状窒化炭素に光触媒機能と硫黄化合物等に対する吸着性能の両方を期待する場合には、銀、金、銅、ニッケル等が挙げられ、好ましくは、銀、金であり、特に銀が好ましい。
The metal supported on the graphitic carbon nitride includes, but is not limited to, silver, gold, copper, platinum, palladium, nickel, iridium, rhodium, osmium, ruthenium, iron, cobalt, manganese, molybdenum, zinc, etc. It can be mentioned.
When a metal complexed graphitic carbon nitride is expected to have a photocatalytic function, it is not limited to silver, gold, copper, platinum, palladium, palladium, nickel, iridium, rhodium, osmium, ruthenium, iron, cobalt and the like. Be
When metal complexed graphitic carbon nitride is expected to have both photocatalytic function and adsorption performance to sulfur compounds etc., silver, gold, copper, nickel etc. may be mentioned, preferably silver, gold, especially silver preferable.

金属複合化グラファイト窒化炭素に対する金属の担持量は、限定するものではないが、得られる機能や性質の程度に応じて決定される。通常は、従来の含浸法より多い量の5重量%以上、好ましくは10重量%以上、より好ましくは12重量%以上である。上限は限定するものではないが、通常、35重量%以下、好ましくは33重量%以下、より好ましくは30重量%以下である。   The amount of the metal supported on the metal-complexed graphite carbon nitride is not limited, but is determined according to the degree of the function or property to be obtained. Usually, it is 5% by weight or more, preferably 10% by weight or more, more preferably 12% by weight or more, which is larger than the conventional impregnation method. The upper limit is not limited, but is usually 35% by weight or less, preferably 33% by weight or less, and more preferably 30% by weight or less.

本発明において、高せん断処理とは、撹拌周速が2m/s以上、好ましくは3m/s以上、より好ましくは5m/s以上の撹拌による混合を意味する。撹拌周速の上限は撹拌装置の上限性能であり、通常は、50m/s以下、好ましくは20m/s以下、より好ましくは10m/s以下である。
高せん断処理に用いる撹拌装置は、限定されず、市販のホモジナイザー、ミキサー、ブレンダー等を使用することができる。
なお、一般的なマグネチックスターラーは通常100〜500回転/分程度で使用するので、撹拌子の長さが25mm、500回転/分の場合、その撹拌周速は0.65m/s(=0.25m×π×500/60秒)となり、本発明の撹拌周速範囲の下限の1/3以下である。
In the present invention, high shear treatment means mixing by stirring with a stirring peripheral speed of 2 m / s or more, preferably 3 m / s or more, more preferably 5 m / s or more. The upper limit of the stirring peripheral speed is the upper limit performance of the stirring device, and is usually 50 m / s or less, preferably 20 m / s or less, more preferably 10 m / s or less.
The stirring apparatus used for high shear processing is not limited, and commercially available homogenizers, mixers, blenders and the like can be used.
In addition, since a general magnetic stirrer is usually used at about 100 to 500 rotations / minute, when the length of the stirrer is 25 mm and 500 rotations / minute, the stirring peripheral speed is 0.65 m / s (= 0.25) m × π × 500/60 seconds), which is 1/3 or less of the lower limit of the stirring peripheral speed range of the present invention.

金属イオンを含む溶液としては、金属無機塩、金属有機塩、金属錯体を含む溶液が挙げられる。金属無機酸塩としては、限定するものではないが、硝酸塩、硫酸塩、塩酸塩炭酸塩、りん酸塩等が挙げられ、好ましくは、硝酸塩、塩酸塩であり、より好ましくは、硝酸塩である。また、金属有機酸塩としては、酢酸塩、クエン酸塩、ギ酸塩、シュウ酸塩等が、金属錯体としては、アセチルアセトナート錯体、EDTA錯体、アンミン錯体、ヒドロ錯体等が、それぞれ挙げられる。   Examples of the solution containing metal ions include solutions containing metal inorganic salts, metal organic salts, and metal complexes. The metal inorganic acid salts include, but are not limited to, nitrates, sulfates, hydrochloride carbonates, phosphates and the like, preferably nitrates and hydrochlorides, and more preferably nitrates. Further, examples of the metal organic acid salt include acetate, citrate, formate and oxalate, and examples of the metal complex include acetylacetonate complex, EDTA complex, ammine complex, hydro complex and the like.

高せん断処理に使用する溶液の温度は、限定するものではないが、常温とすることができる。高せん断処理中に溶液の温度は、例えば70℃程度まで上昇するが、冷却してもそのままでも金属を担持することができる。   The temperature of the solution used for the high shear treatment can be, but is not limited to, normal temperature. The temperature of the solution rises to, for example, about 70 ° C. during the high shear treatment, but the metal can be supported either by cooling or as it is.

上記のような高せん断処理により製造された本発明の金属複合化グラファイト状窒化炭素は、従来のマグネッチックスターラーでの撹拌処理により製造された金属複合化グラファイト状窒化炭素に比べ金属の含有割合を多くすることができる。
本発明の金属複合化グラファイト状窒化炭素と、従来の光電着法により製造された金属複合化グラファイト状窒化炭素とを比較すると、金属の担持量の点ではあまり差異が存在しないが、グラファイト状窒化炭素における金属の担持状態が大きく異なっていると考えられる。従来の光電着法により製造されたものでは、担持金属粒子は、凝集力が比較的強く、グラファイト状窒化炭素にも比較的強く結合しており、硫黄化合物等の悪臭物質の吸着前後においてグラファイト状窒化炭素表面上を移動しないと考えられる。これに対し、本発明の高せん断処理により製造されたものでは、担持金属粒子は、凝集力が比較的弱く、グラファイト状窒化炭素に対する結合力も比較的弱く、硫黄化合物等の悪臭物質の吸着に伴って結合力や凝集力がさらに低下して平板状に変化し(一次粒子が平板状に移動し)、表面の割合が多くなると考えられる。その結果、本発明の高せん断処理により製造されたものでは、担持する金属の種類や量の設定により、光電着法によるものよりも、硫黄化合物等の悪臭物質の吸着容量や光触媒除去率を大きく向上することが可能であり、悪臭物質の優れた吸着剤とすることができる。
The metal-complexed graphitic carbon nitride of the present invention manufactured by the high shear processing as described above has a metal content ratio compared to the metal-complexed graphitic carbon nitride manufactured by stirring treatment with a conventional magnetic stirrer. You can do more.
When comparing the metal-complexed graphitic carbon nitride of the present invention with the metal-complexed graphitic carbon nitride produced by the conventional photo-electrodeposition method, there is not much difference in terms of the amount of metal supported, It is considered that the state of metal support on carbon is largely different. In the conventional photo-electrodeposition method, the supported metal particles have relatively strong cohesion and are also relatively strongly bonded to graphitic carbon nitride, and are graphitic before and after adsorption of odorous substances such as sulfur compounds. It is believed not to move on the carbon nitride surface. On the other hand, in the one produced by the high shear treatment of the present invention, the supporting metal particles have relatively weak cohesive power and relatively weak binding power to the graphitic carbon nitride, accompanied by the adsorption of offensive odor substances such as sulfur compounds. It is considered that the cohesion and cohesion further decrease and change to a plate-like shape (primary particles move like a plate-like), and the ratio of the surface increases. As a result, in the products manufactured by the high shear treatment of the present invention, the adsorption capacity and the photocatalytic removal rate of malodorous substances such as sulfur compounds are larger than those by the photo electrodeposition method by setting the kind and amount of metal to be supported. It can be improved and can be an excellent adsorbent for malodorous substances.

以下、本発明を実施例等に基づいて説明するが、本発明はこの実施例等に限定されるものではない。   Hereinafter, the present invention will be described based on examples and the like, but the present invention is not limited to the examples and the like.

(参考例1:グラファイト状窒化炭素粉末の製造)
グラファイト状窒化炭素(以下、g-C34と表記)は次のようにして合成した。
メラミン(和光純薬製)30gを、アルミナ製るつぼに入れて蓋をし、550℃の電気炉で1時間焼成し、生成物を乳鉢で磨り潰した後、再びるつぼに入れてさらに1時間550℃で焼成した。得られる黄色の粉末を乳鉢で磨り潰し、g-C34粉末を得た。元素分析の結果、C/N比は0.67であり、グラファイト状窒化炭素(g-C34)と総称される物質の中の、ポリヘプタジン(C693)であった。X線回折の結果もポリヘプタジンであることを示した。なお、窒化炭素の原材料としてシアナミドを用いた場合にも、ほぼ同様の結果が得られたことから、メラミン以外の窒化炭素の原材料を用いても良い。液体窒素温度における窒素分子の吸着により求めたg-C34の細孔径分布の中央値は30〜50nm付近に存在した。
Reference Example 1 Production of Graphitic Carbon Nitride Powder
Graphitic carbon nitride (hereinafter referred to as g-C 3 N 4 ) was synthesized as follows.
30 g of melamine (manufactured by Wako Pure Chemical Industries, Ltd.) is put in a crucible made of alumina, covered, fired in an electric furnace at 550 ° C. for 1 hour, ground in a mortar, and put again in the crucible for another 1 hour 550 It baked at ° C. The resulting yellow powder was ground in a mortar to obtain g-C 3 N 4 powder. As a result of elemental analysis, the C / N ratio was 0.67, which is polyheptadine (C 6 N 9 H 3 ) among substances collectively referred to as graphitic carbon nitride (g-C 3 N 4 ). The result of X-ray diffraction also showed that it is polyheptadine. Incidentally, even when cyanamide is used as a raw material of carbon nitride, since substantially the same result is obtained, a raw material of carbon nitride other than melamine may be used. The median of the pore size distribution of g-C 3 N 4 determined by the adsorption of nitrogen molecules at liquid nitrogen temperature was around 30 to 50 nm.

(参考例2:g-C34のアルカリ水熱処理)
前記のg-C34粉末1.0gと、水酸化ナトリウム0.40gと、水90mlをテフロン(登録商標)製るつぼに入れ、撹拌する。この時の水酸化ナトリウム濃度は0.11mol/lである。テフロン(登録商標)製るつぼをステンレス製ジャケットに入れ、マグネッチックスターラーで攪拌しながら110℃で加熱した。温度はステンレスジャケットの底部で熱電対を用いて測定した。18時間加熱した後、放冷して室温とした。テフロン(登録商標)製るつぼ内の懸濁液を遠心分離し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、超遠心分離機(クボタ製マイクロ冷却遠心機モデル3700)で遠心分離(14500Gで20分)することにより沈殿物を水洗する過程を数回くりかえし、水熱処理されたグラファイト状窒化炭素(HT-g-C34)を得た。アルカリ水熱処理前の比表面積は約8m2/gだったが、処理後は50m2/gへと増大した。液体窒素温度における窒素分子の吸着により求めたHT-g-C34の細孔径分布の中央値は3〜8nm付近に存在した。
(Reference example 2: Alkaline hydrothermal treatment of g-C 3 N 4 )
1.0 g of the above-mentioned g-C 3 N 4 powder, 0.40 g of sodium hydroxide and 90 ml of water are put into a Teflon crucible and stirred. The sodium hydroxide concentration at this time is 0.11 mol / l. The Teflon (registered trademark) crucible was placed in a stainless steel jacket, and heated at 110 ° C. while stirring with a magnetic stirrer. The temperature was measured using a thermocouple at the bottom of the stainless steel jacket. After heating for 18 hours, it was allowed to cool to room temperature. The suspension in the Teflon crucible was centrifuged to obtain a precipitate. Add 30 ml of water to the precipitate, stir, and repeat the process of washing the precipitate with water several times by centrifuging (20 minutes at 14500 G) with an ultracentrifuge (Kubota micro cooling centrifuge model 3700). to obtain a heat-treated graphitic carbon nitride (HT-g-C 3 N 4). The specific surface area before the alkaline hydrothermal treatment was about 8 m 2 / g, but increased to 50 m 2 / g after the treatment. The median pore size distribution of the HT-g-C 3 N 4 obtained by adsorption of nitrogen molecules in the liquid nitrogen temperature were present in the vicinity of 3 to 8 nm.

<金属複合化グラファイト状窒化炭素の製造>
(比較例1:g-C34またはHT-g-C34への含浸法による金属担持)
前記のg-C34またはHT-g-C34粉末0.40gと、0.040gの銀を含む硝酸銀水溶液0.80mlを混合した後、100℃で水分を除去する。メノウ乳鉢を用いてさらに混合した後、アルミナ製るつぼに入れて蓋をし、電気炉を用いて空気中450℃で1時間加熱した。放冷後、再びメノウ乳鉢ですりつぶし、銀を担持したg-C34またはHT-g-C34を得た。
<Production of metal complexed graphitic carbon nitride>
(Comparative Example 1: metal supported by impregnation to the g-C 3 N 4 or HT-g-C 3 N 4 )
After mixing with g-C 3 N 4 or HT-g-C 3 N 4 powder 0.40g of the silver nitrate aqueous solution 0.80ml containing silver 0.040 g, removing water at 100 ° C.. The mixture was further mixed using an agate mortar, placed in an alumina crucible, covered, and heated in air at 450 ° C. for 1 hour using an electric furnace. After allowing to cool, it was ground again in an agate mortar to obtain silver-supported g-C 3 N 4 or HT-g-C 3 N 4 .

(比較例2:g-C34またはHT-g-C34への光電着法による金属担持)
前記のg-C34またはHT-g-C34粉末0.20gを石英製の蓋を有するガラス容器に入れ、0.00274g〜0.0648gの銀を含む硝酸銀水溶液30mLを加えて懸濁させる。窒素ガスを50mL/minの流速で通じ、マグネチックスターラーで撹拌しつつ(撹拌周速約0.5m/s)、石英製の蓋を通して超高圧水銀ランプ(Ushio製、USH−500D、500W)の光を30分間照射して銀を窒化炭素上に析出させた。30mLの水で3回水洗し、遠心分離器(14500Gで20分)を用いて試料を回収し、最後に80℃で一晩乾燥した。
(Comparative Example 2: Metal-supported by the optical electrodeposition method to g-C 3 N 4 or HT-g-C 3 N 4 )
0.20 g of the above gC 3 N 4 or HT-g C 3 N 4 powder is placed in a glass container with a quartz lid, and 30 mL of an aqueous silver nitrate solution containing 0.00274 g to 0.0648 g of silver is added Suspend. While passing nitrogen gas at a flow rate of 50 mL / min and stirring with a magnetic stirrer (agitating peripheral speed about 0.5 m / s), passing through a quartz lid of an ultra-high pressure mercury lamp (Ushio, USH-500 D, 500 W) The light was irradiated for 30 minutes to precipitate silver on carbon nitride. Water was washed three times with 30 mL of water, samples were collected using a centrifuge (20 min at 14500 G) and finally dried overnight at 80 ° C.

(実施例1:g-C34またはHT-g-C34への高せん断処理による金属担持)
前記のg-C34粉末またはHT-g-C34粉末0.20gと、酢酸銀0.10gと、水10mlを直径20mmのガラス製試験管に入れ、超音波発生器を利用して酢酸銀を溶解させた。この時の銀イオン濃度は0.06mol/lである。直径18mmの固定外歯を有するヘッド内に外径13mmの回転羽根を有する回転式ホモジナイザー(アズワン製ADG−160D)を試験管の底から5mm上方に設置し、10000回転/分または5000回転/分で回転させる高せん断処理〔撹拌周速=0.013(m)×π×10000/60(秒)=6.8m/s または 0.013(m)×π×5000/60(秒)=3.4m/s〕を70分間おこなった。また、15000回転/分(撹拌周速10.2m/s)、10分間とする以外の条件は前記と同様にして高せん断処理をおこなった。試験管内の懸濁液を超遠心分離機(クボタ製マイクロ冷却遠心機モデル3700)で遠心分離(14500Gで20分)し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、再度遠心分離することで、沈殿物から不純物を除去し、銀の担持されたg-C34をまたはHT-g-C34を得た。それぞれをAg/g-C34またはAg/HT-g-C34と表記する。銀の前駆体として酢酸銀ではなく硝酸銀を用いる場合には、硝酸銀0.11gを用いた。得られる粉末中の銀の重量比は約24.4%となる。
銀以外の金属を担持する場合には、g-C34粉末0.20gと、担持したい金属イオンを含む金属硝酸塩もしくは金属酢酸塩と、水10mlをガラス製試験管に入れ、超音波発生器を利用して金属塩を溶解させた。直径18mmのヘッドを有する回転式ホモジナイザー(アズワン製ADG−160D)を用い、10000回転/分で回転させる高せん断処理〔撹拌周速=6.8m/s〕を40分間おこなった。試験管内の懸濁液を超遠心分離機(クボタ製マイクロ冷却遠心機モデル3700)で遠心分離(14500Gで20分)し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、再度遠心分離することで沈殿物から不純物を除去し、目的とする金属が担持されたg-C34をまたはHT-g-C34を得た。
加える金属塩の量は、金属複合化グラファイト状窒化炭素に対して担持金属が重量比で1〜32.4%となるように適宜調整した。
(Example 1: g-C 3 N 4 or a metal supported by high shear processing of the HT-g-C 3 N 4 )
0.20 g of the above gC 3 N 4 powder or HT-g C 3 N 4 powder, 0.10 g of silver acetate and 10 ml of water are put in a glass test tube of 20 mm in diameter, and an ultrasonic generator is used Then, silver acetate was dissolved. The silver ion concentration at this time is 0.06 mol / l. A rotary homogenizer (ADU manufactured by As One ADG-160D) having a rotary blade with an outer diameter of 13 mm in a head having a fixed external tooth with a diameter of 18 mm is installed 5 mm above the bottom of the test tube, 10000 rpm or 5000 rpm. High shear treatment [Stirring peripheral velocity = 0.013 (m) × π × 10000/60 (seconds) = 6.8 m / s or 0.013 (m) × π × 5000/60 (seconds) = 3.4 m / s] I did it for 70 minutes. Further, the high shear treatment was performed in the same manner as described above except that the rotational speed was changed to 15000 rpm (agitating circumferential speed 10.2 m / s) for 10 minutes. The suspension in the test tube was centrifuged (20 minutes at 14500 G) in an ultracentrifuge (manufactured by Kubota Micro Cooled Centrifuge Model 3700) to obtain a precipitate. The precipitate was added with 30ml of water and stirred to obtain by centrifugal separation again, to remove impurities from the precipitate, the g-C 3 N 4 which is supported silver or HT-g-C 3 N 4 The Respectively referred to as Ag / g-C 3 N 4 or Ag / HT-g-C 3 N 4. When not silver acetate but silver nitrate was used as a silver precursor, 0.11 g of silver nitrate was used. The weight ratio of silver in the resulting powder is about 24.4%.
When supporting metals other than silver, 0.20 g of gC 3 N 4 powder, metal nitrate or metal acetate containing metal ions to be supported, and 10 ml of water are placed in a glass test tube, and ultrasonic wave is generated. The metal salt was dissolved using a vessel. High shear treatment (agitation circumferential speed = 6.8 m / s) was performed for 40 minutes using a rotary homogenizer (ADG-160D manufactured by As One Corporation) having a head with a diameter of 18 mm and rotating at 10000 rpm. The suspension in the test tube was centrifuged (20 minutes at 14500 G) in an ultracentrifuge (manufactured by Kubota Micro Cooled Centrifuge Model 3700) to obtain a precipitate. Add 30 ml of water to the precipitate, stir, remove impurities from the precipitate by centrifuging again and use g-C 3 N 4 or HT-g-C 3 N 4 with the target metal supported. I got
The amount of the metal salt to be added was appropriately adjusted such that the weight of the supported metal was 1 to 32.4% with respect to the metal complexed graphitic carbon nitride.

図1は、[0024]に記載の参考例1の方法で合成したg-C34、[0025]に記載の参考例2の方法で合成したHT-g-C34、[0028]に記載の実施例1の方法で銀を担持したAg/g-C34およびAg/HT-g-C34のX線回折パターンを示した図である。27.4°付近のメインピークと12〜25°にかけての不明瞭な回折が確認できる。メインピークの位置からg-C34の層間隔の平均は約3.3Åと算出され、従来から知られているg-C34であることが確認できた。アルカリ水熱処理を加えたHT-g-C34のパターンは、水熱処理前と大きな違いが無かった。
酢酸銀の水溶液中で高せん断処理を行うと、27.4°のメインピークの強度が減少し、12〜25°の回折は確認できなくなった。ここで見られたピークの減少は、銀イオンとグラファイト状窒化炭素の相互作用により、層間隔が3.3Å一定ではなくなり、周期構造が乱れることで回折が弱まったためである。銀のピークは見られず、銀が高分散していることを示唆している。
FIG. 1 shows g-C 3 N 4 synthesized by the method of Reference Example 1 described in [0024], HT-g-C 3 N 4 synthesized by the method of Reference Example 2 described in [0025], [0028] is a diagram showing the X-ray diffraction pattern of example 1 Ag / g-C 3 carrying silver method N 4 and Ag / HT-g-C 3 N 4 according to. The main peak around 27.4 ° and unclear diffraction from 12 to 25 ° can be confirmed. The average of the layer spacing of g-C 3 N 4 was calculated to be about 3.3 Å from the position of the main peak, and it was confirmed that it was g-C 3 N 4 conventionally known. The pattern of HT-g-C 3 N 4 treated with alkaline hydrothermal treatment was not significantly different from that before hydrothermal treatment.
When high shear treatment was performed in an aqueous solution of silver acetate, the intensity of the main peak at 27.4 ° decreased, and no diffraction at 12 to 25 ° could be confirmed. The decrease of the peak observed here is due to the interaction between the silver ion and the graphitic carbon nitride that the layer spacing is not constant at 3.3 Å and the diffraction is weakened due to the disorder of the periodic structure. No peak of silver was observed, suggesting that silver is highly dispersed.

図2に高せん断処理で得られたAg/HT-g-C34の電子顕微鏡写真を示した。大量の銀を添加したにもかかわらず、粒径〔=(長径+短径)/2〕が5nm〜30nm程度の銀ナノ粒子として、グラファイト状窒化炭素に担持されていることが確認された。 It shows a scanning electron micrograph of the resulting Ag / HT-g-C 3 N 4 in a high shear process in FIG. It was confirmed that, even though a large amount of silver was added, it was supported on graphitic carbon nitride as silver nanoparticles having a particle size [= (long diameter + short diameter) / 2] of about 5 nm to 30 nm.

高せん断処理で得られたAg/HT-g-C34について、元素の分布をエネルギー分散型X線分析で解析した結果(図示せず)、グラファイト状窒化炭素の全体に還元された銀が担持されていることが確認された。また、X線光電子分光法で銀と酸素の含有量を分析した結果、還元された銀が担持していることが確認された。 As a result of analyzing the distribution of elements by energy dispersive X-ray analysis (not shown) for Ag / HT-g-C 3 N 4 obtained by high shear treatment, silver reduced to the whole of graphitic carbon nitride Was confirmed to be carried. In addition, as a result of analyzing the contents of silver and oxygen by X-ray photoelectron spectroscopy, it was confirmed that the reduced silver was supported.

<実施例2,比較例3:金属複合化窒化炭素の脱臭性能の測定>
図4は、脱臭性能を解析する装置を示す図であり、光触媒による悪臭物質の分解性能の測定に用いられるJIS R1751−1に記載された測定装置に準拠している。この装置を用い、JIS R1751−5に準拠し、次のようにして脱臭性能を測定した。
<Example 2, Comparative Example 3: Measurement of deodorizing performance of metal complexed carbon nitride>
FIG. 4 is a view showing an apparatus for analyzing the deodorizing performance, which is based on the measuring apparatus described in JIS R1751-1 used for measuring the decomposing performance of an offensive odor substance by the photocatalyst. Deodorizing performance was measured as follows according to JIS R1751-5 using this device.

前記の金属を担持したグラファイト状窒化炭素試料0.10gを約1mlの水に懸濁させ、幅50mm、長さ100mmのガラス板に全量を塗布し、50℃で乾燥させて光触媒(Photocatalyst)試験片を調製した。試験片を図4に示された光触媒反応容器内に設置し、ホウケイ酸ガラス(borosilicate glass)製の蓋(Cover window)をし、光触媒に光が当たらないように覆いを掛けておく。
メチルメルカプタンを5ppm含み、相対湿度50%(25℃)の模擬汚染空気をマスフローコントローラーで調製し、0.50L/minの流量でバイパスに流通させておく。模擬汚染空気中のメチルメルカプタン(MM)の濃度を、水素炎イオン化検出器(FID)を備えたガスクロマトグラフ(島津社製GC−14B)で測定する。メチルメルカプタン濃度、湿度、流量が安定した後、バルブを切り替えて光触媒反応容器に模擬汚染空気を流通させる。反応容器から出てくるMMおよびジメチルジスルフィド(DMDS)をガスクロマトグラフで測定する。試料片がMMを吸着するとMM濃度が下がり、その後、銀の表面をMMが覆うにつれて吸着速度が低下し、徐々に濃度が増大する。4.5ppmを超えるまでに吸着した量を計算により求め、MM吸着量とする。また、試料粉末1gあたりの吸着量を吸着容量とする。
MM濃度の上昇量が少なくなった後に光を試料に照射し、光触媒反応を開始する。光源として白色蛍光灯(東芝製FL10W)を用い、照度は6000Lxとし、蛍光灯の光に含まれる紫外線は紫外光除去フィルター(日東樹脂工業製N−169)を用いて除去した。[バイパス時のMM濃度]−[光を照射したときの反応容器出口のMM濃度]}/{[バイパス時のMM濃度]}×100をMM除去率とした。
0.10 g of the metal-supported graphitic carbon nitride sample is suspended in about 1 ml of water, the whole is applied to a glass plate of 50 mm in width and 100 mm in length, dried at 50 ° C., and subjected to a photocatalyst (Photocatalyst) test A piece was prepared. The test piece is placed in the photocatalytic reaction vessel shown in FIG. 4, covered with a borosilicate glass cover window, and covered with a cover so that light does not reach the photocatalyst.
Simulated contaminated air containing 5 ppm of methyl mercaptan and having a relative humidity of 50% (25 ° C.) is prepared by a mass flow controller, and is allowed to flow through the bypass at a flow rate of 0.50 L / min. The concentration of methyl mercaptan (MM) in the simulated polluted air is measured with a gas chromatograph (GC-14B manufactured by Shimadzu Corporation) equipped with a hydrogen flame ionization detector (FID). After the methyl mercaptan concentration, humidity, and flow rate are stabilized, the valve is switched to flow simulated contaminated air in the photocatalytic reaction vessel. The MM and dimethyl disulfide (DMDS) coming out of the reaction vessel are measured by gas chromatography. When the specimen adsorbs MM, the MM concentration decreases, and then the adsorption rate decreases as MM covers the silver surface, and the concentration gradually increases. The amount of adsorption up to more than 4.5 ppm is determined by calculation, and is defined as MM adsorption amount. Moreover, let the adsorption amount per 1 g of sample powder be an adsorption capacity.
After the amount of increase in the MM concentration decreases, the sample is irradiated with light to initiate photocatalytic reaction. The illuminance was set to 6000 Lx using a white fluorescent lamp (FL10W manufactured by Toshiba) as a light source, and the ultraviolet light contained in the light of the fluorescent lamp was removed using an ultraviolet light removal filter (N-169 manufactured by Nitto Resin Kogyo Co., Ltd.). [MM concentration at the time of bypass]-[MM concentration at the outlet of the reaction vessel when irradiated with light]} / {[MM concentration at the time of bypass]} × 100 was taken as the MM removal rate.

図5にAg/HT-g-C34を用いた脱臭性能評価試験の結果を示す。模擬汚染空気を試料に接触させるとMM濃度は急激に低下し、0.2ppmとなった。数時間後にMM濃度は増大し始め、48時間かけて4.5ppmとなった。光を照射するとMM濃度は0.3ppmまで低下し、可視光によってMMを除去できることが確認された。光を照射して100時間経過後も、50%以上のMMを除去した。 Figure 5 shows the results of a deodorizing performance evaluation test using the Ag / HT-g-C 3 N 4. When the simulated contaminated air was brought into contact with the sample, the MM concentration dropped sharply to 0.2 ppm. After several hours, the MM concentration started to increase and reached 4.5 ppm over 48 hours. When irradiated with light, the MM concentration decreased to 0.3 ppm, and it was confirmed that the visible light could remove the MM. Even after 100 hours of light irradiation, 50% or more of the MM was removed.

表1に、金属を担持した金属複合化グラファイト状窒化炭素および未担持のグラファイト状窒化炭素による脱臭試験結果として、調製法(金属析出法)、担持量〔金属複合化グラファイト状窒化炭素に対する金属の担持量(重量%)〕、比表面積〔金属複合化窒化炭素の比表面積(m2/g)〕、吸着容量(μmol/g)、金属比表面積(m2/g)、光触媒除去率〔光照射後3時間までの平均MM除去率(%)〕を示した。
なお、グラファイト状窒化炭素又は金属複合化グラファイト状窒化炭素の比表面積の測定には窒素を吸着質として用いる多点BET法を利用した。測定には日本ベル製Belsorp-Maxを用いた。約0.1gの試料を試料ホルダーに入れ、120℃で3時間脱気処理をした後、比表面積を測定した。
また、金属比表面積は、(1)グラファイト状窒化炭素に担持された金属粒子は全て同じ直径の球である、(2)担持された金属粒子の全表面に測定された吸着容量のMMが吸着されている、(3)MM1分子の吸着面積は22.4Å(0.224nm2)である〔三好保 外2名 産業医学19巻2-7頁(1977年)table4.参照〕、との仮定に基づいて算出した。
In Table 1, as a deodorization test result by metal complexed graphitic carbon nitride supporting metal and unsupported graphitic carbon nitride, preparation method (metal deposition method), supported amount [metal to metal complexed graphitic carbon nitride] Supported amount (% by weight)], specific surface area [specific surface area of metal complexed carbon nitride (m 2 / g)], adsorption capacity (μmol / g), metal specific surface area (m 2 / g), photocatalyst removal rate [light The average MM removal rate (%) up to 3 hours after irradiation was shown.
In addition, the multipoint BET method which used nitrogen as an adsorbate was utilized for the measurement of the specific surface area of graphite-like carbon nitride or metal complexed graphite-like carbon nitride. Japan Bel-made Belsorp-Max was used for the measurement. About 0.1 g of a sample was placed in a sample holder, and after degassing at 120 ° C. for 3 hours, the specific surface area was measured.
In addition, the specific surface area of the metal is as follows: (1) All the metal particles supported on the graphitic carbon nitride are spheres of the same diameter, (2) MM of adsorption capacity measured on the entire surface of the supported metal particles (3) The adsorption area of 1 MM molecule is 22.4 Å (0.224 nm 2 ) (refer to Miyoshi Yasushi 2 people, Industrial Medicine 19: 2-7 (1977) table 4.) Calculated based on

Figure 0006521317
Figure 0006521317

表1から明らかなように、金属を担持しないグラファイト状窒化炭素はほとんどMMを吸着せず、低い吸着容量を示し、また光触媒除去率も低く、脱臭性能が低いことが分かった。硝酸銀を前駆体として従来の含浸法や光電着法で銀を担持すると、吸着容量と光触媒除去率が増大した。光電着法でHT-g-C34に重量比1%の銀を担持した場合には、21μmol/gの吸着容量と、49%の光触媒除去率が得られた。
銀の担持量を24.4%に増やすと吸着容量は340μmol/gまで増大したが、銀の単位重量あたりの吸着量は減少した。また、吸着で重要な金属比表面積も低下した。
高せん断処理法により24.4%の重量比で銀を担持したところ、光電着法の場合の3倍以上の吸着容量が得られた。また、同じ高せん断処理法でも、酢酸銀を前駆体として用いると、硝酸銀の場合の1.5倍の吸着容量と、1割以上高い光触媒除去率が得られた。銀原子1個あたりに吸着できるMM分子の平均個数は、高せん断処理法では0.59個、光電着法では0.14個だった。高せん断処理法を用いると、MMの吸着に有利な銀粒子を形成できることが分かった。
また、アルカリ水熱処理をしていないg-C34を用いた場合でも、高せん断処理法で24.4%の銀を担持すると、691μmol/gの高い吸着容量を示した。また、高せん断処理により、比表面積が増大することが確認された。アルカリ水熱処理をあらかじめグラファイト状窒化炭素に加えなくても、従来の銀担持方法よりも良い結果が得られた。ただし、最良の結果は、アルカリ水熱処理で比表面積を増大させたグラファイト状窒化炭素(HT-g-C34)に、高せん断処理で銀を担持した場合に得られた。
高せん断処理法により金や銅も担持することができ、金属を加えない場合や光電着法により銅を担持させた場合よりも有意に高い吸着容量と光触媒除去率が得られた。鉄の担持には効果が無かった。
光触媒として従来から知られている酸化チタンに24.4%の銀を担持して同様の試験をしたところ、79μmol/gの吸着容量と55%の光触媒除去率が得られた。いずれも銀を高せん断処理法で担持したグラファイト状窒化炭素よりも有意に低い値だった。
As apparent from Table 1, it was found that graphitic carbon nitride not supporting metal hardly adsorbs MM, exhibits a low adsorption capacity, has a low photocatalyst removal rate, and has a low deodorizing performance. When silver nitrate is used as a precursor by conventional impregnation method or photo electrodeposition method, adsorption capacity and photocatalyst removal rate are increased. When 1% by weight silver was supported on HT-g-C 3 N 4 by the photo electrodeposition method, an adsorption capacity of 21 μmol / g and a photocatalyst removal rate of 49% were obtained.
When the silver loading amount was increased to 24.4%, the adsorption capacity increased to 340 μmol / g, but the silver adsorption amount per unit weight decreased. In addition, the metal specific surface area important for adsorption also decreased.
When silver was supported at a weight ratio of 24.4% by the high shear processing method, an adsorption capacity of three or more times as high as in the case of the optical electrodeposition method was obtained. Further, even with the same high shear treatment method, when silver acetate was used as a precursor, an adsorption capacity of 1.5 times and a photocatalyst removal rate higher by 10% or more than in the case of silver nitrate were obtained. The average number of MM molecules that can be adsorbed per silver atom was 0.59 in the high shear processing method and 0.14 in the photo electrodeposition method. It has been found that high shear processing can form silver particles that favor the adsorption of MM.
Further, even when g-C 3 N 4 which was not subjected to alkaline hydrothermal treatment was used, when 24.4% of silver was supported by the high shear treatment method, a high adsorption capacity of 691 μmol / g was exhibited. Moreover, it was confirmed that the specific surface area is increased by the high shear treatment. Better results than conventional silver loading methods were obtained without adding alkaline hydrothermal treatment to graphitic carbon nitride beforehand. However, the best results were obtained when silver was supported by high shear treatment on graphitic carbon nitride (HT-g-C 3 N 4 ) whose specific surface area was increased by alkaline hydrothermal treatment.
Gold and copper can also be supported by the high shear processing method, and a significantly higher adsorption capacity and photocatalyst removal rate are obtained than when metal is not added or copper is supported by the photo electrodeposition method. There was no effect on iron loading.
A similar test was conducted by loading 24.4% of silver on titanium oxide conventionally known as a photocatalyst, and an adsorption capacity of 79 μmol / g and a photocatalyst removal rate of 55% were obtained. All the values were significantly lower than that of graphitic carbon nitride supported by silver by the high shear treatment method.

図2(b)に実施例の銀担持HT-g-C34のMM吸着後の電子顕微鏡写真を示す。MM吸着前の球状もしくは半球状、またはそれらに近い形状から、帯状となっているものが観察される。
図3に銀担持HT-g-C34のMM吸着や可視光照射によるX線光電子分光法の銀(Ag3d)のピークの変化を示す。銀(Ag3d)のピークは、MM吸着後に大きくなっており、MM吸着前の表面の割合が少ない凝集体から、表面の割合の多い平板状の形状に変化していることが想定される。
比較例の光電着法による銀担持HT-g-C34の場合、MM吸着前後で銀粒子の形状の大きな変化が見られないことから(図示せず)、銀粒子は、比較的強く凝集したものと考えられる。これに対し、実施例の高せん断処理法による銀担持HT-g-C34の場合、銀粒子は、グラファイト状窒化炭素に対する結合力や凝集力が比較的弱く、MM吸着に伴って結合力や凝集力がさらに低下して平板状に変化し(一次粒子が平板状に移動し)、表面の割合が多くなって吸着容量の増大や光触媒除去率の向上がもたらされたと推量される。
FIG. 2 (b) shows an electron micrograph of the silver-supported HT-g-C 3 N 4 of the example after MM adsorption. A band-like shape is observed from the shape of a sphere or a hemisphere before MM adsorption, or a shape close to them.
FIG. 3 shows the change of the peak of silver (Ag 3 d) in X-ray photoelectron spectroscopy by MM adsorption of silver-supporting HT-g-C 3 N 4 and irradiation with visible light. The peak of silver (Ag 3 d) is enlarged after MM adsorption, and it is assumed that the aggregate having a small proportion of the surface before MM adsorption is changed to a flat plate shape having a large proportion of the surface.
For silver bearing HT-g-C 3 N 4 by the optical electrodeposition method of the comparative example, (not shown) resulted in no significant change in the shape of silver particles before and after MM adsorption, silver particles, relatively strong It is considered to be aggregated. In contrast, if the supported silver HT-g-C 3 N 4 by the high shear treatment method of the embodiment, silver particles, the bonding force and cohesive force to the graphite-like carbon nitride is relatively weak, with the MM adsorptive binding It is inferred that the force and the cohesion decrease further and it changes to flat form (primary particles move like flat form) and the proportion of the surface increases, resulting in increase of adsorption capacity and improvement of photocatalyst removal rate. .

図6に銀担持量と、吸着容量、光触媒除去率との関係を示す。比較例の光電着法によるものでは、銀単自立が5重量%程度以上の範囲で光触媒除去率は70%程度の値を示すものの、吸着容量は低い値に止まっている。これに対し本発明の実施例の高せん断処理法によるものでは、銀担持量が10〜30重量%の範囲で、80%程度以上の高い光触媒除去率を示すとともに、光電着法によるものに比べ2〜4倍程度の吸着容量を示している。
なお、銀は、MM以外の硫黄化合物(例:硫化水素)についても吸着や光触媒の効果があることが知られており、MMに効果があれば、他の硫黄化合物(例:硫化水素)についても効果があることが当然に予測される。
FIG. 6 shows the relationship between the silver loading amount, the adsorption capacity, and the photocatalyst removal rate. In the photo electrodeposition method of the comparative example, although the rate of removal of the photocatalyst shows a value of about 70% in the range of about 5% by weight or more of single silver support, the adsorption capacity remains at a low value. On the other hand, the high shear processing method according to the embodiment of the present invention shows a high photocatalyst removal rate of about 80% or more when the silver loading amount is in the range of 10 to 30% by weight and It shows an adsorption capacity of about 2 to 4 times.
Silver is also known to have adsorption and photocatalytic effects on sulfur compounds other than MM (eg hydrogen sulfide), and if MM is effective, other sulfur compounds (eg hydrogen sulfide) It is naturally expected that there will be an effect.

本発明の金属担持したグラファイト状窒化炭素を何らかの基材に塗布することで、悪臭物質に対して高い吸着性能を有し、さらに可視光が当たれば酸化して臭いを抑制する光触媒作用を有する建築材料、屋内・屋外建材(壁紙、ブラインド、カーテン、ガラス、塗料など)として利用することができる。また、脱臭装置や空気浄化装置で用いれば、安価な可視光LED光源を用いて脱臭機能を発現することができ、また、連続的に光を照射しなくても、高い吸着容量により悪臭物質を吸着しておくことができる。   By applying the metal-supported graphitic carbon nitride of the present invention to any substrate, it has a high adsorption performance to an offensive odor substance, and further has a photocatalytic action that suppresses oxidation when it is irradiated with visible light. It can be used as materials, indoor and outdoor building materials (wallpaper, blinds, curtains, glass, paint, etc.). In addition, if it is used in a deodorizing device or an air purification device, the deodorizing function can be expressed using an inexpensive visible light LED light source, and a high adsorption capacity causes an offensive odor substance without continuously irradiating light. It can be adsorbed.

Claims (9)

金属イオンを含む溶液中で、グラファイト状窒化炭素の粉末を撹拌周速が2m/s以上の高せん断処理することを特徴とする、金属複合化グラファイト状窒化炭素の製造方法。   A method for producing metal-complexed graphitic carbon nitride, characterized in that the powder of graphitic carbon nitride is subjected to high shear processing at a stirring peripheral speed of 2 m / s or more in a solution containing metal ions. 前記グラファイト状窒化炭素の粉末は、予めアルカリ水溶液中又は酸水溶液中で水熱処理されたものである請求項1に記載の金属複合化グラファイト状窒化炭素の製造方法。   The method for producing metal-complexed graphitic carbon nitride according to claim 1, wherein the powder of graphitic carbon nitride has been previously hydrothermally treated in an aqueous alkali solution or an aqueous acid solution. 前記金属イオンの金属が、銀、金、銅から選択される一種または複数種である請求項1または2に記載の金属複合化グラファイト状窒化炭素の製造方法。   The method according to claim 1 or 2, wherein the metal of the metal ion is one or more selected from silver, gold and copper. 前記金属は、金属複合化グラファイト状窒化炭素に対して重量比で10%以上である請求項1〜3のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。   The method for producing metal-complexed graphitic carbon nitride according to any one of claims 1 to 3, wherein the metal is 10% or more by weight ratio to metal-complexed graphitic carbon nitride. 金属イオンを含む溶液が、金属無機塩、金属有機塩、または、金属有機錯体を含む溶液である請求項1〜4のいずれか1項に記載の金属複合化グラファイト状窒化炭素の製造方法。   The method for producing metal-complexed graphitic carbon nitride according to any one of claims 1 to 4, wherein the solution containing a metal ion is a solution containing a metal inorganic salt, a metal organic salt or a metal organic complex. 銀、金、銅から選択される一種または複数種の金属がグラファイト状窒化炭素に複合化された金属複合化グラファイト状窒化炭素であって、該金属の担持量が10重量%以上であり、かつ、該金属は、メチルメルカプタンの吸着の際に移動可能に複合化されたものであることを特徴とする、金属複合化グラファイト状窒化炭素。   A metal complexed graphitic carbon nitride in which one or more metals selected from silver, gold and copper are complexed to graphitic carbon nitride, and the amount of the metal supported is 10% by weight or more, and A metal-complexed graphitic carbon nitride, characterized in that the metal is movably complexed upon adsorption of methyl mercaptan. 銀がグラファイト状窒化炭素に複合化された金属複合化グラファイト状窒化炭素であって、該銀の担持量が10重量%以上であり、かつ、該銀の比表面積が500m2/g以上であることを特徴とする、金属複合化グラファイト状窒化炭素。 A metal complexed graphitic carbon nitride in which silver is complexed to graphitic carbon nitride, the supported amount of the silver is 10% by weight or more, and the specific surface area of the silver is 500 m 2 / g or more A metal complexed graphitic carbon nitride characterized in that 吸着性能と光触媒性能を併せ持ち、請求項6または7に記載の金属複合化グラファイト状窒化炭素を有効成分とする脱臭剤。   A deodorant comprising metal composited graphitic carbon nitride according to claim 6 or 7, which has both adsorption performance and photocatalytic performance. 請求項8に記載の脱臭剤を具備する脱臭装置。



A deodorizing apparatus comprising the deodorizing agent according to claim 8.



JP2015236857A 2015-12-03 2015-12-03 Metal complexed carbon nitride for deodorization and manufacturing method thereof Active JP6521317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236857A JP6521317B2 (en) 2015-12-03 2015-12-03 Metal complexed carbon nitride for deodorization and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236857A JP6521317B2 (en) 2015-12-03 2015-12-03 Metal complexed carbon nitride for deodorization and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017100923A JP2017100923A (en) 2017-06-08
JP6521317B2 true JP6521317B2 (en) 2019-05-29

Family

ID=59016175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236857A Active JP6521317B2 (en) 2015-12-03 2015-12-03 Metal complexed carbon nitride for deodorization and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6521317B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790168B (en) * 2017-10-31 2020-04-10 北京化工大学 Hydrogenation catalyst with fluorescence and preparation method of fluorescence saturated rubber
CN107876080A (en) * 2017-11-17 2018-04-06 阜阳师范学院 A kind of novel photochemical catalyst Ag/g C3N4B and its preparation and application
CN108404960B (en) * 2018-03-26 2021-01-08 湖北工业大学 Preparation method of sulfur-indium-zinc-gold carbon nitride two-dimensional layered composite photocatalyst
CN108404962B (en) * 2018-03-29 2019-10-15 南通职业大学 A kind of preparation method of p-doped graphite phase carbon nitride/zinc titanate composite photo-catalyst
CN110404569A (en) * 2018-04-28 2019-11-05 奥为(天津)环保科技有限公司 A kind of Metal Supported g-C3N4The preparation method of photochemical catalyst
CN110947404A (en) * 2018-09-26 2020-04-03 长沙学院 BiOI quantum dot/graphite phase carbon nitride photocatalyst and preparation method thereof
CN110773234B (en) * 2019-10-14 2023-04-07 万华化学集团股份有限公司 Nano-gold carbon nitride catalyst, preparation method thereof and method for preparing isooctanoic acid from isooctaldehyde
CN110697794B (en) * 2019-11-01 2022-04-01 宁波大学 Cobalt sulfide/g-C with two-dimensional hollow nanosheet structure3N4Composite electrode material and preparation method thereof
CN112221531B (en) * 2020-11-13 2022-06-17 长沙学院 Heterogeneous core shell g-C3N5@MnO2Composite and preparation method thereof
CN112536069A (en) * 2020-12-16 2021-03-23 广东工业大学 LED excitation supported photocatalyst and preparation method and application thereof
CN113289653A (en) * 2021-03-03 2021-08-24 大连理工大学 g-C of load metal monoatomic3N4Method for preparing photocatalyst
CN113600221B (en) * 2021-07-21 2022-09-16 江苏大学 Au/g-C 3 N 4 Monoatomic photocatalyst, and preparation method and application thereof
CN113664213B (en) * 2021-08-04 2023-11-21 湖南伟方生命科技有限公司 Preparation method and application of nano silver antibacterial liquid
CN114345390B (en) * 2022-01-17 2023-05-30 山东大学 Photocatalyst, preparation method and application thereof, and photocatalytic plastic reforming method
CN115318291A (en) * 2022-09-07 2022-11-11 东北师范大学 Preparation method and application of copper nanoparticle-carbon nitride photocatalytic sterilization composite material
CN115735918A (en) * 2022-10-31 2023-03-07 南京邮电大学 Quaternary ammonium salt functionalized graphite phase carbon nitride antibacterial material and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254206A1 (en) * 2006-01-17 2007-11-01 Gillan Edward G Methods for production of metals on carbon nitride powders and composites and their use as catalysts in fuel cell electrochemistry
JP5582545B2 (en) * 2009-10-20 2014-09-03 独立行政法人産業技術総合研究所 Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
JP5582527B2 (en) * 2010-03-23 2014-09-03 独立行政法人産業技術総合研究所 Method for producing graphitic carbon nitride
JP5711582B2 (en) * 2011-03-28 2015-05-07 株式会社ダイセル Photocatalyst and organic compound oxidation method using the same

Also Published As

Publication number Publication date
JP2017100923A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
Huang et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x
Wang et al. Trifunctional C@ MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone
Hu et al. Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: A synergistic effect of lattice Pt4+ and surface PtO
JP5582527B2 (en) Method for producing graphitic carbon nitride
Mamaghani et al. Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Li et al. Low-temperature preparation and characterization of nanocrystalline anatase TiO2
JP2011036770A (en) Method for producing noble metal-supported photocatalyst particle
Min et al. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange
JPWO2008132824A1 (en) Titanium oxide photocatalyst and method for producing the same
Jansson et al. Visible light responsive Zeolite/WO3–Pt hybrid photocatalysts for degradation of pollutants in air
Wang et al. Removal of acid dye by ZnFe2O4/TiO2-immobilized granular activated carbon under visible light irradiation in a recycle liquid–solid fluidized bed
JP2011005475A (en) Photocatalyst dispersion liquid and photocatalyst functional product using the same
CN104549368A (en) Preparation method of load bimetal type Cu-Pt/TiO2-NBs catalyst and application
Liu et al. Preparation and application of efficient TiO2/ACFs photocatalyst
KR20090127084A (en) Photocatalyst dispersion liquid and process for producing the same
Kaushik et al. Transformation of 2-D TiO2 to mesoporous hollow 3-D TiO2 spheres-comparative studies on morphology-dependent photocatalytic and anti-bacterial activity
Channei et al. Adsorption and photocatalytic processes of mesoporous SiO2-coated monoclinic BiVO4
Ntobeng et al. Facile fabrication of vanadium sensitized silver titanium oxides (V–Ag/TiO2) photocatalyst nanocomposite for pollutants removal in river water
JP5071928B2 (en) Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones
JP5627006B2 (en) Photocatalyst and method for producing the same
Habibi et al. Photocatalytic oxidation of four model mercaptans from aquatic environment using Ag-ZnO nanocomposite thin film for odor control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6521317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250