JP4768251B2 - 半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法 - Google Patents

半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法 Download PDF

Info

Publication number
JP4768251B2
JP4768251B2 JP2004318427A JP2004318427A JP4768251B2 JP 4768251 B2 JP4768251 B2 JP 4768251B2 JP 2004318427 A JP2004318427 A JP 2004318427A JP 2004318427 A JP2004318427 A JP 2004318427A JP 4768251 B2 JP4768251 B2 JP 4768251B2
Authority
JP
Japan
Prior art keywords
pattern
layout
opc
verification
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004318427A
Other languages
English (en)
Other versions
JP2006126745A (ja
Inventor
敦彦 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004318427A priority Critical patent/JP4768251B2/ja
Priority to TW094137590A priority patent/TWI353538B/zh
Priority to US11/263,845 priority patent/US7451429B2/en
Publication of JP2006126745A publication Critical patent/JP2006126745A/ja
Priority to US12/242,832 priority patent/US7958463B2/en
Application granted granted Critical
Publication of JP4768251B2 publication Critical patent/JP4768251B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は半導体集積回路に係り、特に、半導体集積回路の設計方法、半導体集積回路の設計システム及びこれらを用いた半導体集積回路の製造方法に関する。
半導体集積回路の製造工程におけるゴミ等の付着に起因したランダム不良への対策は、近年の微細化により益々重要になってきており、半導体集積回路のレイアウト設計工程においては、様々な対策が実施され始めている。レイアウト設計工程における対策としては、(a)コンタクト及びビアを多重化すること、(b)配線のスペースを緩和すること、(c)配線巾を太くすること、(d)欠陥救済回路の設計をすること、等が有効である。
一方、近年の微細化要求により、レイアウト設計通りの形状のマスクを用いても、ウエハ上に設計パターン通りのパターンを形成することが困難になってきている。設計の忠実度を向上させる手段としては、ウエハ上に設計値通りのパターンを形成するためのマスクパターンを作成する光近接効果補正(Optical Proximity Correction : OPC)、プロセス近接効果補正(Process Proximity Correction : PPC )、と呼ばれる技術が広く利用されている(例えば、特許文献1参照。)。以下、OPC及びPPCを総称して「OPC」と呼ぶ。
設計の忠実度の検証は、各製造工程に起因して発生するシステマティック不良の対策としても重要である。システマティック不良対策としては、リソグラフィー工程で起こるもの、エッチング工程で起こるもの等が挙げられる。
設計パターンのハーフピッチが140nmを下回ると、所定のデザインルールが守られていたとしても、設計パターンによってはOPC処理を十分に行えない領域が発生する。このため、OPC処理による適切な補正が行われず、ウエハ形状に問題が発生し、歩留まりを低下させる問題が増加する(以下、「OPC問題」という。)。OPC問題の修正対策としては、リソグラフィーシミュレーションをベースとしたチェック(以下、「リソグラフィールールチェック」と呼ぶ。)が用いられる。リソグラフィールールチェックでは、OPC後のパターンに対してリソグラフィーシミュレーションを実施する。そして、得られたパターンと設計パターンとのずれを比較し、デバイス的に問題となり得る部分を検出する。エラー内容に関しては、エラー種別(オープン、ショート、ショートニング等)、エラーレベル(問題が明らかな致命的エラー(以下、「フェイタルエラー」という。)、致命的ではないがプロセスの振れに対して十分なマージンがないOPC問題(以下、「グレーゾーンエラ」と呼ぶ。))等に分類することができる。
設計におけるリソグラフィールールチェックは、小規模のセル設計においては、これらを任意に配置して実施する。その結果、OPC問題が発生し得るパターンがあれば、事前にレイアウトを修正することが可能である。
一方、チップ及びマクロブロックレベルの設計においては、自動配置配線ツールなどが広く利用されている。このため、一方向に延びる配線パターンが支配的なレイアウトが実現できており、配線パターンのバリエーションが少ないため、OPC問題の発生確率は高くない。
しかしながら、チップ及びマクロレベルの比較的大規模な半導体集積回路の設計に際し、ランダムディフェクト対策による歩留向上設計やクロストーク対策等が本格的に実施され始めると、以下の問題が生じる。
(a)配線パターンのバリエーションが増え、OPC問題の発生確率が高くなる。
(b)OPC問題の発生確率が高くなることにより、リソグラフィールールチェックが必要となる。配線パターンは大規模な領域を占めるため、多大な計算機リソースと処理時間を要し、実用的な時間で検証することが困難である。
(c)リソグラフィールールチェックにおいては、グレーゾーンエラーが多く検出される。歩留向上させるためには、グレーゾーンエラーについての対策も重要である。グレーゾーンエラーは、フェイタルエラーに比べ検出数が多く、対策方法も難しいため、エラーが多く検出されると実用的時間で全て対応することは益々困難となる。
特開2003−162041号公報
本発明は、リソグラフィールールチェック及びOPC問題箇所のチェックを短時間で行うことができ、ランダム不良対策とシステマティック不良対策とを高速且つ高精度に行うことができ、歩留まりの向上が可能な半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法を提供する。
本発明の第1の特徴は、(イ)マーク手段が、複数のパターンの輪郭上に複数のマークを配置するステップと、(ロ)グループ化手段が、隣接するマークを複数のグループに分類し、グループの情報を検証情報記憶部に記憶させるステップと、(ハ)危険箇所判定手段が、検証情報記憶部からグループの情報を読み出して、グループに含まれるマークの数に基づいてパターンの危険箇所を判定し、危険箇所の判定結果を検証情報記憶部に記憶させるステップと、(ニ)危険箇所修正手段が、検証情報記憶部から判定結果を読み出して、パターンを修正するステップとを含む半導体集積回路の設計方法であることを要旨とする。
第2の特徴は、(イ)複数のパターンの輪郭上に複数のマークを配置するマーク手段と、(ロ)隣接するマークを複数のグループに分類し、グループの情報を検証情報記憶部に記憶させるグループ化手段と、(ハ)検証情報記憶部からグループの情報を読み出して、グループに含まれるマークの数に基づいてパターンの危険箇所を判定し、危険箇所の判定結果を検証情報記憶部に記憶させる危険箇所判定手段と、(ニ)検証情報記憶部から判定結果を読み出して、パターンを修正する危険箇所修正手段とを含む半導体集積回路の設計システムであることを要旨とする。
第3の特徴は、(イ)半導体基板上にセル、配線及びビアを配置するための複数のパターンを含むレイアウト情報を設計するステップと、(ロ)パターンの輪郭上に複数のマークを配置し、隣接するマークを複数のグループに分類し、グループに含まれるマークの数に基づいてパターンの危険箇所を判定し、危険箇所の判定結果に基づいてパターンを修正することによりレイアウト情報を検証するステップと、(ハ)パターンに対してリソグラフィーチェックを実行し、レイアウト情報を修正するステップと、(ニ)修正されたレイアウト情報に基づいてマスクを製造するステップと、(ホ)マスクを用いて、セル、配線及びビアを半導体基板上に形成するステップとを含む半導体集積回路の製造方法であることを要旨とする。
本発明によれば、リソグラフィールールチェック及びOPC問題箇所のチェックを短時間で行うことができ、ランダム不良対策とシステマティック不良対策とを高速且つ高精度に行うことができ、歩留まりの向上が可能な半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法が提供できる。
次に、図面を参照して、本発明の第1〜第3の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、図面は模式的なものであり、厚みと平均寸法の関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。以下に示す第1〜第3の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
(第1の実施の形態)
<設計システム>
第1の実施の形態に係る半導体集積回路の設計システムは、図1に示すように、操作者からのデータや命令などの入力を受け付ける入力装置4と、レイアウト設計等の種々の演算を実行する演算処理装置(CPU)1と、レイアウト結果等を出力する出力装置5と、半導体集積回路のレイアウト設計に必要な所定のデータ等を格納したデータ記憶装置2と、半導体集積回路のレイアウトプログラム等を格納したプログラム記憶装置6とを少なくとも備える。入力装置4、出力装置5は、入出力制御装置3を介して、CPU1に接続されている。
CPU1は、チップ領域上にセル、配線、ビア等を配置するためのレイアウト手段10、レイアウト手段10が配置したレイアウト結果を検証するための検証手段20及びレイアウトの検証結果に基づいてレイアウト修正を行うためのレイアウト修正手段30を備える。レイアウト手段10は、半導体集積回路のフロアプランを作成するためのフロアプラン手段11、チップ領域上にセル及びビアを配置するための配置手段12及びチップ領域上に配線を配置するための配線手段13を有する。
検証手段20は、物理検証手段21、タイミング検証手段22、ノイズ検証手段23、クリティカルエリア検証手段24及びOPC検証手段25を有する。物理検証手段21は、チップ領域上に配置されたセル、配線及びビア等の各パターンに対し、デザイン・ルール・チェック(DRC)、レイアウト対スケマティック(LVS)等のソフトウェアを用いたレイアウト検証を行う。タイミング検証手段22は、チップ領域上のセル、電源配線、クロック配線及び信号配線等のタイミング検証、クロストーク関係の検証等を行う。ノイズ検証手段23は、チップ領域上のセル、配線、ビア等から発生するノイズの検証及び電源関係の検証等を行う。クリティカルエリア検証手段24は、配線及びビアのショート、オープン、ショートニング箇所等の製造工程上問題となる領域等の検証を行う。OPC検証手段25は、チップ領域上に配置された配線、ビア等を含むレイアウト上に発生するOPC問題の検証を行う。
OPC検証手段25は、図2に示すように、OPC問題の発生候補となり得る領域(以下、「OPC危険箇所」という。)を検出するための危険箇所検証手段26、レイアウト中の各パターンに対してOPC処理を行うためのOPC手段27、OPC処理後のレイアウト中の各パターンに対してリソグラフィールールチェックを行うためのリソグラフィーチェック手段28を少なくとも備える。
危険箇所検証手段26は、図3に示すように、マーク手段261、グループ化手段262、危険箇所判定手段263及び危険箇所修正手段264を備える。マーク手段261は、図4に示すように、チップ領域上に配置されるパターン51a,51b,52,53,54,55を構成する閉図形の輪郭上に、複数のマークを配置する。例えば、図5に示すように、マーク手段261は、各パターン51a,51b,52,53,54,55の頂点にマークを配置する。OPC危険箇所の抽出をより高精度にするために、頂点以外に配置する追加マークが必要とする場合は、マーク手段261は、データ記憶装置2に予め記憶された追加マーク情報に基づいて、各パターン51a,51b,52,53,54,55の辺に追加マークを配置する。
追加マークの配置例を図6及び図7に示す。例えば、図6に示すように、パターン51aとパターン51bとの交点に形成される内角(インナーコーナー)部付近は、OPC問題が発生しやすい。このため、マーク手段261は、インナーコーナーを通るパターン51bの端部の延長線上に位置するパターン51aの端部に追加マーク候補1を仮配置し、インナーコーナーを通るパターン51aの端部の延長線上に位置するパターン51bの端部に追加マーク候補2を仮配置する。
次に、マーク手段261は、データ記憶装置2に記憶された追加マーク制約情報を読み出して、追加マーク候補1及び追加マーク候補2の中から、パターン51a,51b上に最終的に配置する追加マークの位置を決定する。例えば、追加マーク制約情報として、「パターンの頂点からインナーコーナーまでの長さが300nm以上ある場合には、インナーコーナーを通るパターンの延長線上の他のパターンの端部に追加マークを配置する」という条件が設定されていたとする。マーク手段261は、追加マーク制約情報に基づいて、パターン51aの頂点からインナーコーナーまでの長さが400nmである追加マーク候補2を、最終的に配置する追加マークをして採用し、図7に示すように、インナーコーナーを通るパターン51aの端部の延長線上に位置するパターン51b上の端部に追加マークを配置する。
グループ化手段262は、データ記憶装置2に記憶された補正パターン配置情報を読み出して、マーク手段261により配置されたマーク及び追加マークをほぼ中心としてOPCの影響が強く及ぶ図形(補正パターン)を各マーク及び追加マーク上に作成し、重なり合う補正パターンをマージして、図8に示すように、複数のグループ(グループ1〜8)にグループ化する。
危険箇所判定手段263は、データ記憶装置2に記憶された危険箇所判定情報を読み出して、各グループに含まれるマークの数に基づいて、レイアウトに含まれるパターン上のOPC危険箇所を判定する。例えば、「1つのグループに含まれるマークの総数が7以上の場合はOPC危険箇所として抽出する」という危険箇所判定情報が、危険箇所判定情報として予め設定されていた場合は、危険箇所判定手段263は、図9に示すように、パターン51a,51b,52上の「グループ4」を、OPC危険箇所として抽出する。
危険箇所修正手段264は、データ記憶装置2に記憶された危険箇所修正情報に基づいて、OPC危険箇所のグループ内のマーク数を減少させるように、パターン51a,51b,52のレイアウトを変更する。なお、「OPC危険箇所のグループ内のマーク数を減少させるようにレイアウトを変更」とは、例えば、図10に示すように、危険箇所修正手段264が、パターン51aとパターン52との間隔を拡大させることにより、パターン52のマークがグループ4の中に含まれないように補正することを指す。
図2のOPC手段27は、図11に示すように、レイアウト上の各パターン51a,51b,52,53,54,55に対してOPC処理を実行する。図2のリソグラフィーチェック手段28は、図12に示すように、データ記憶装置2に記憶されたリソグラフィールールチェック情報を読み出して、パターン51a,51b,52,53,54,55上に存在するフェイタルエラー、グレーゾーンエラー等のエラーマークを抽出するためのリソグラフィーシミュレーションを実行する。そして、図13に示すように、各パターン51a,51b,52,53,54,55のシミュレーションイメージ像を取得する。
図1のレイアウト修正手段30は、マスクデータプレパレーション(MDP)等のソフトウェアを用いて、OPC検証手段25により修正されなかったOPC危険箇所等を抽出し、レイアウトの修正を行う。
図1のデータ記憶装置2は、レイアウト記憶部14、検証情報記憶部15、レイアウト修正記憶部16及び設計情報記憶部17を少なくとも備える。レイアウト記憶部14には、レイアウト手段10が作成するフロアプランの情報、チップ領域上のセル、配線、ビアの配置情報等が記憶される。検証情報記憶部15には、検証手段20がレイアウト検証を実行するための各種情報が記憶される。レイアウト修正記憶部16には、レイアウトの修正を行うためのレイアウト修正情報が記憶される。設計情報記憶部17には、半導体集積回路の設計を行うために必要な情報が記憶される。
図1において入力装置4は、キーボード、マウス、ライトペン又はフレキシブルディスク装置等を含む。操作者は、入力装置4より入出力データを指定したり自動設計に必要な数値等の設定が可能である。また、入力装置4より、出力データの形態等のレイアウトパラメータの設定、或いは演算の実行及び中止等の指示の入力も可能である。出力装置5は、それぞれディスプレイ及びプリンタ装置等を含む。プログラム記憶装置6は、入出力データやレイアウトパラメータ及びその履歴や、演算途中のデータ等を記憶する。
<設計方法>
次に、図1に示す設計装置を用いた半導体集積回路のレイアウト設計方法の一例について、図14及び図15に示すフローチャートを用いて説明する。
(イ)図14のステップS1において、半導体集積回路のレイアウト、検証及び修正に必要な各種情報が、図1の入力装置4を介して設計情報記憶部17に記憶される。
(ロ)ステップS10においては、半導体集積回路のレイアウトが行われる。即ち、ステップS11において、フロアプラン手段11は、設計情報記憶部17に記憶された設計情報を読み出して、半導体集積回路のフロアプランを作成し、フロアプランの情報をレイアウト記憶部14に記憶させる。ステップS12において、配置手段12は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、チップ領域上に論理セル、マクロセル等を配置する。ステップS13において、配線手段13は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、チップ領域上に配線を配置する。ステップS14において、配置手段12は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、配線間を接続するビアやコンタクト等を配置する。ステップS12〜S14に示す工程で得られたセル、配線及びビア等の配置結果は、レイアウト記憶部14に記憶される。
(ハ)ステップS20では、ステップS10で設計されたレイアウトに対する様々な検証が行われる。即ち、ステップS21において、物理検証手段21は、検証情報記憶部15に記憶されたDRC、LVS等のソフトウェアを読み出して、得られたレイアウトの各パターンに対する物理検証を行う。ステップS22において、タイミング検証手段22は、検証情報記憶部15に予め記憶されたタイミング検証情報、クロストーク検証情報を読み出して、レイアウトされた回路のタイミング検証、クロストーク検証等を行う。ステップS23において、ノイズ検証手段23は、検証情報記憶部15に予め記憶されたノイズ検証情報、電源関係検証情報を読み出して、チップ領域上にレイアウトされたセル、配線、ビア等から発生するノイズの検証及び電源関係の検証を行う。ステップS24において、クリティカルエリア検証手段24は、検証情報記憶部15に予め記憶されたクリティカルエリア情報を読み出して、セル、配線、ビア等が配置されたレイアウトにおいて製造工程上問題となる部分(クリティカルエリア)の検証を行う。ステップS21〜24に示す工程で検証された検証結果は、検証情報記憶部15に記憶される。
(ニ)ステップS25において、OPC検証手段25は、検証情報記憶部15に記憶されたOPC危険箇所検証情報、OPC処理情報、リソグラフィールールチェック情報等に基づいて、レイアウト上に発生するOPC問題の検証を行う。なお、ステップS25の詳細は後述する。OPC検証後の検証情報は、検証情報記憶部15に記憶される。
(ホ)ステップS30において、レイアウト修正手段30は、レイアウト修正記憶部16に予め記憶されたレイアウト修正情報を読み出して、レイアウトの転写イメージ像による判定を行う。レイアウト修正手段30は、レイアウト修正情報を読み出して、得られた転写イメージ像の中に設計上問題となるパターンが存在する場合にレイアウト中のパターンを修正し、修正後の情報をレイアウト修正記憶部16に記憶させる。
<OPC検証方法の詳細>
ステップS25に示すOPC検証方法の詳細について、図15に示すフローチャートを用いて説明する。
(イ)ステップS251において、OPC危険箇所の判定及び修正に必要な各種情報が、図1の入力装置4を介して入力され、検証情報記憶部15に記憶される。情報としては、例えば、
(a)図5に示すように、パターン51a,51b,52,53,54,55の輪郭上にマークを配置するためのマーク情報、
(b)図6及び図7に示すように、パターン51a,51b,52,53,54,55の輪郭上に追加マークを配置するための追加マーク情報及び追加マーク制約情報、
(c)図8に示すように、マーク及び追加マーク上に光近接効果の影響を考慮した補正パターンを配置するための補正パターン情報(16(a)〜図16(d)参照。)及び隣接する補正パターンをマージし、複数のグループにグループ化するためのグループ化情報、
(d)図9に示すように、各グループに含まれるマーク及び追加マークの総数に応じてOPC危険箇所を判定するための危険箇所判定情報(図17及び図18参照。)、
(e)図10に示すように、発生したOPC危険箇所を修正するための危険箇所修正情報(図19(a)〜図21(b)参照。)、
等が、検証情報記憶部15に記憶される。なお、図16(a)〜図21(b)に示す情報例の詳細については後述する。
(ロ)図15のステップS252において、図3に示すマーク手段261は、検証情報記憶部15に記憶されたマーク情報を読み出して、図5に示すように、各パターン51a,51b,52,53,54,55の頂点にマークを配置する。ステップS253において、追加マークが必要な場合は、マーク手段261は、検証情報記憶部15に記憶された追加マーク情報を読み出して、各パターン51a,51b,52,53,54,55の辺に追加マークを配置する。さらに、マーク手段261は、検証情報記憶部15に記憶された追加マーク制約情報を読み出して、パターン51a,51b上に配置するための追加マークの位置を決定する。
(ハ)ステップS254において、図3のグループ化手段262は、検証情報記憶部15に記憶された補正パターン情報を読み出して、マーク手段261により配置されたマーク又は追加マークをほぼ中心としてOPCの影響が強く及ぶ領域を補正パターンとし、各マーク又は追加マーク上に作成する。グループ化手段262は、補正パターンが重なりある領域をマージして、図8に示すように、複数のグループ(グループ1〜8)にグループ化する。
(ニ)ステップS255において、危険箇所判定手段263は、検証情報記憶部15に記憶された危険箇所判定情報を読み出して、図9に示すように、OPC危険箇所となるグループを抽出する。ステップS256において、危険箇所判定手段263は、検証情報記憶部15に記憶された危険箇所修正情報を読み出して、抽出されたOPC危険箇所が検証情報記憶部15に記憶された危険箇所修正情報に基づいて修正可能であるか否かを判定する。修正不可能の場合は、ステップS259に進む。修正可能な場合は、ステップS257に進み、危険箇所判定手段263が、検証情報記憶部15に記憶された危険箇所修正情報を読み出して、図10に示すように、OPC危険箇所のグループ内のマーク数を減少させるようにパターン51a,51b,52の間隔を拡大し、レイアウトを修正する。
(ホ)ステップS258において、図2のOPC手段27は、検証情報記憶部15に記憶されたOPC処理情報を読み出して、図11に示すように、レイアウト上の各パターン51a,51b,52,53,54,55に対してOPC処理を実行する。ステップS259において、リソグラフィーチェック手段28は、検証情報記憶部15に記憶されたリソグラフィールールチェック情報を読み出して、OPC危険箇所の修正が行われなかった領域に対して、パターン51a,51b,52,53,54,55上に存在するフェイタルエラー、グレーゾーンエラー等のエラーを抽出するリソグラフィーシミュレーションを実行し、各パターン51a,51b,52,53,54,55のシミュレーションイメージ像を取得する。
第1の実施の形態に係る半導体集積回路のレイアウト設計方法によれば、図14のステップS25に示すOPC検証工程において、各パターン51a,51b,52,53,54,55の輪郭上に配置されたマークの数が規定値以上存在するグループが「OPC危険領域」として抽出される。OPC危険領域として抽出された領域の修正は、図1の検証情報記憶部15に記憶された危険箇所修正情報に基づいて、対象となるグループが保有するマーク数を減少させることによりなされる。例えば、図9に示すレイアウト例においては、パターン51aとパターン52とのスペースを大きくすることにより、図22に示すように、OPC危険箇所は存在しなくなる。OPC危険箇所が存在しない部分については、リソグラフィールールチェックが不要となるため、チップ領域上の比較的大規模なパターンに対しても、多大な計算機リソースと処理時間を要することなく、実用的な時間で検証可能となる。
図14のステップS25に示すOPC検証工程において、OPC危険領域を修正しない場合のレイアウト例を図24〜29に示す。図24は、図3に示すマーク手段261により、パターン59a,59b,60の頂点にマーク及び追加マークが配置されたレイアウト例を示している。図25は、図3に示すグループ化手段262によりパターン59a,59b,60上で隣接するマークのグループ化がされ、図26は、図3の危険箇所判定手段263によりOPC危険箇所が抽出されたレイアウト例を示している。図27は、OPC危険箇所について修正を行わずにOPC処理を行った例を示している。
OPC危険箇所について修正を行わなかった場合にリソグラフィールールチェックを行うと、図28に示すように、パターン59bの長手方向の延長線上のパターン60上にオープン危険箇所が発生する。図28に示すレイアウト例に基づいて、シミュレーションイメージ像を出力させると図29に示すような形状になり、オープン危険箇所のパターンが細くなっていることがわかる。また、図30に示すように、所望のパターンの形状と実際に得られる転写イメージ像からも、パターン60に不良が発生することがわかる。
一方、第1の実施の形態に示す半導体集積回路の設計方法によれば、OPC危険箇所修正情報に基づいて修正可能なOPC危険箇所がある場合は、予めOPC危険箇所のパターンを修正できる。このため、図30に示すようなパターン不良の発生を防止でき、歩留まりの向上を図ることができる。
なお、図15に示すOPC検証において抽出されたOPC危険箇所には、図1の検証情報記憶部15に記憶されたOPC危険箇所修正情報では修正が困難な領域が存在する。OPC危険箇所修正情報による修正が困難な領域に対しては、図15のステップS259に示すように、リソグラフィーチェック手段28によりOPC危険箇所及びその周囲の領域を選択的に抽出し、抽出した部分に対してステップS259に示すようなリソグラフィールールチェックを部分的に行う。ステップS259におけるリソグラフィールールチェックは、OPC危険箇所の存在する比較的小さい領域に対して行えば十分であるので、データの処理数が少なくて済み、リソグラフィールールチェック時においてもグレーゾーンエラーの検出が少なくて済み、検証を実用時間で行うことが可能となる。
図31(a)〜(c)に、OPC検証後のリソグラフィールールチェック結果の一例を示す。第1の実施の形態に係る設計方法を用いない一般的な設計方法を用いた場合は、図31(a)に示すように、チップ領域上にOPC危険箇所が多数発生する。図31(a)に示すような例においても短時間で処理できるが、第1の実施の形態に係る設計方法を用いた場合は、図31(b)に示すように、図15のステップS251〜S258に示す各工程により予めOPC危険箇所の修正がなされるため、修正後のOPC危険箇所の数は、図31(a)に比べて少なくなる。この結果、図31(c)に示すように、ステップS259に示すように、リソグラフィールールチェックを行う場合には、残存するOPC危険箇所とその周囲の領域を部分的に切り出して検証するだけで済むので、リソグラフィールールチェック及びOPC問題箇所のチェックをより短時間で行うことができ、ランダム不良対策とシステマティック不良対策とを高速且つ高精度に行うことができる半導体集積回路の設計方法が提供できる。
−補正パターン情報の例−
図16(a)〜図16(d)に、レイアウト上に配置されたマークの周囲に光近接効果を考慮した補正パターンを付加するための補正パターン情報の一例を示す。各補正パターン61〜64の寸法a〜kは、図15のステップS258に示すOPC処理の動作に応じてそれぞれ異なる。このため、各パターン55,56上の形状やマークの位置に応じて、寸法a〜kのパラメータを適宜設定しておくことにより、補正パターン情報が決定可能である。例えば、図16(a)に示すように、マークがパターン55のライン端にある場合には、補正パターン61としては、パターン55の長手方向に平行な補正パターン61の寸法dを、寸法aより長くなるようにし、ライン端をパターン55の寸法wより広くするように形成する。図16(b)に示すように、パターン56のアウトコーナーにマークがある場合は、補正パターン62の寸法dが寸法fより長くなるように形成する。図16(c)に示すように、パターン56のインコーナーにマークがある場合は、補正パターン63としては、寸法hを寸法gより長くなるように形成する。図16(d)に示すように、パターン56の辺上に追加マークがある場合は、寸法jを寸法iより長くし、寸法2kを有する補正パターン64を追加マークの周囲に形成する。
−OPC危険箇所判定情報例−
図15のステップS255において、図3に示す危険箇所判定手段263が、レイアウト上のOPC危険箇所を抽出、判定するための危険箇所判定情報の例を図17及び図18に示す。危険箇所判定情報例としては、例えば、図17に示すように、グループを構成するパターンの閉図形の数に対し、マーク数及び追加マーク数がいくつあればOPC危険箇所として抽出すべきかについての数値リストが、図1の検証情報記憶部15に格納される。図18は、図17に示す数値リストに基づいて、OPC危険箇所として抽出されるパターン及びOPC危険箇所として抽出されないパターンの例をそれぞれ示している。図18(a)に示すように、閉図形1つから構成されるパターン71a上にマークを8個有するグループ81aは、図17に示す「閉図形1個に対し全マーク数が7個以上」の条件に適合する。このため、グループ81aは、「OPC危険箇所」として抽出される。図18(b)に示すように、パターン73a,74aの2つの閉図形上にグループ83aが配置され、グループ83a内にマークが6個、追加マークが1個存在する場合は、図17のリストに示す「閉図形2個に対し全マーク数5個以上」の条件に適合する。このため、グループ83aは、「OPC危険箇所」として抽出される。図18(c)に示すように、パターン75a,76aの2つの閉図形上にグループ84aが配置され、グループ84a内にマークが2個、追加マークが4個存在する場合は、図17のリストに示す「閉図形2個に対し全マーク数5個以上」の条件に適合する。このため、グループ84aは、「OPC危険箇所」として抽出される。
一方、図18(d)に示すように、閉図形1個のパターン72a上にグループ82aが配置され、グループ82a内にマークが4個、追加マークが2個存在する場合は、図17のリストに示す「閉図形1個に対し全マーク数が7個以上」に該当しない。このため、グループ82aは、「OPC危険箇所」としては抽出されない。また、図18(e)に示すように、パターン77a,78aの2つの閉図形上にグループ85aが配置され、グループ85a内にマークが4個存在する場合は、図17のリストに示す「閉図形2個に対し、全マーク数が4個、追加マークが2個」には該当しない。このため、グループ85aは、「OPC危険箇所」としては抽出されない。
−OPC危険箇所修正情報例−
図15のステップS257において、図3に示す危険箇所修正手段264が、レイアウト上のOPC危険箇所を修正するための危険情報修正情報例を図19(a)〜図21(b)に示す。図19(a)、図20(a)及び図21(a)がそれぞれ修正前のパターン、図19(b)、図20(b)及び図21(b)がそれぞれ修正後のパターンを示している。
図19(a)に示すように、グループ81aの中にマークが8個含まれる場合は、図19(b)に示すように、グループ81bの中のマーク数が少なくなるようにパターン711b及びパターン711bを延長させたパターン71bを形成しておく。図20(a)に示すように、グループ83aの中にマークが6個、追加マークが1個含まれる場合は、図20(b)に示すように、グループ83aの中のマーク数が少なくなるようにパターン73bとパターン74bを離間させ、グループ83bとグループ83cに分割させておく。図21(a)に示すように、グループ84aの中にマークが2個、追加マークが4個含まれる場合は、図21(b)に示すように、グループ84aの中のマーク数が少なくなるようにパターン75bとパターン76bとを離間させ、グループ84bの中にパターン76b上の追加パターンを含ませないようにする。
<半導体集積回路の製造方法>
次に、図32を参照しながら、第1の実施の形態に係る半導体集積回路の製造方法を説明する。第1の実施の形態に係る半導体集積回路の製造方法は,図32に示すように,ステップS300の設計工程,ステップS400のマスク製造工程、ステップS500の半導体製造工程及びステップS600の検査工程を含み,その後ステップS700の出荷工程へ流される。
(イ)プロセスシミュレーション等の種々のシミュレーション結果をもとに、ステップS300においては、マスクデータが作成される。即ちステップS10のレイアウト設計工程において、フロアプランに基づいて、チップ領域上にセル、配線及びビア等を配置するための複数のパターンを含むレイアウト情報を作成する。
(ロ)ステップS20に示すレイアウト検証工程において、物理検証、タイミング検証、クロストーク検証、ノイズ検証、電源関係の検証、及びOPC検証を行う。OPC検証においては、レイアウト情報に含まれるパターンの輪郭上に、複数のマークを配置し、隣接するマークを複数のグループに分類する。そして、グループに含まれるマークの数に基づいてパターンの危険箇所を抽出する。パターンの危険箇所が、検証情報記憶部15に記憶された危険箇所情報に基づいて修正可能な場合は、グループに含まれるマークの数を減少させるようにレイアウトを修正する。ステップS30において、レイアウト情報に含まれるパターンの転写イメージを形成し、設計工程上問題となる部分が存在する場合は、レイアウト情報を修正する。
(ハ)ステップS400において,得られたレイアウトに基づいて、電子ビーム露光装置等のパターンジェネレータにより必要な枚数のマスク(レチクル)のセットを互いに所定の合わせ余裕で製造する。ステップS510において、各工程(製造プロセス)に必要なそれぞれのレチクルを用いた逐次縮小露光装置(ステッパ)によるフォトリソグラフィー工程を繰り返し、半導体ウエハ上に複数のチップパターンを周期的に配列させ、微細加工を行う(基板工程)。
(ニ)即ち、ステップS511において、シリコン基板上にシリコン酸化膜を堆積する。ステップS512において、シリコン酸化膜上にフォトレジスト膜を塗布する。ステップS513において、ステップS400で製造したレチクルを用いてフォトリソグラフィー工程を行い、フォトレジスト膜をパターニングし、ステップS514において、パターニングされたフォトレジスト膜をマスクとして、p型もしくはn型の不純物イオンをシリコン基板の表面に選択的に注入する。その後、イオン注入マスクとして用いたフォトレジストを除去する。ステップS515において、注入されたイオンを活性化し、所望の深さまでドライブイン(拡散)し、シリコン基板の内部に不純物拡散領域を形成する。
(ホ)ステップS520の表面配線工程においては、同様に各工程に必要なレチクルを用いてステッパで所望のパターンを描画することにより基板表面に対して配線処理が施される。即ち、ステップS521において、ステップS510の各工程を経たシリコン基板上に、CVD法、PVD法等により形成し、化学機械研磨(CMP)法により表面を平坦化する。ステップS522において、層間絶縁膜の上にフォトレジストを塗布し、ステップS523において、フォトリソグラフィー工程によるフォトレジスト膜をパターニングし、エッチングマスクを形成する。ステップS524において、エッチマスクを使用して、反応性イオンエッチング(RIE)等を行い、層間絶縁膜にコンタクトホールを形成する。フォトレジストを除去し、表面を洗浄化した後、ステップS525において、コンタクトホール内に金属を堆積する。再びフォトリソグラフィー工程による新たなエッチングマスクを形成し、この金属膜をパターニングする。
(ヘ)ステップS510〜S520に示す工程が完了すれば、ステップS530において、ダイヤモンドブレード等のダイシング装置により、所定のチップサイズのチップに分割する(ダイシング工程)。そして、パッケージング材料にチップをマウントし(マウント工程)、チップ上の電極パッドとリードフレームのリードを金線やバンプで接続する(ボンディング工程)。次に、樹脂封止等の所要のパッケージ組み立ての工程を実施する(封止工程)。
(ト)ステップS600において、半導体装置の性能・機能に関する特性検査、リード形状・寸法状態、信頼性試験等の所定の検査を経て(検査工程)、半導体.装置が完成する。ステップS700において、以上の工程を全てクリアした半導体装置は、水分、静電気等から保護するための包装を施され、製品として出荷される。
第1の実施の形態に係る半導体集積回路の製造方法によれば、ステップS20のレイアウト検証工程において、得られたレイアウトに対してOPC検証を行う際に、各パターンにマークを付加し、隣接したマークをグループ化して各パターンの密集度を測定することにより、「OPC危険箇所」となる領域を予め抽出し、修正しておく。このため、レイアウト設計及び検証が全て済んだ後に転写パターンのOPC危険箇所を判定する場合に比べて、OPC危険箇所の発生が少なくなるため、検証の処理時間を短縮化でき、歩留まりの向上が図れる。
第1の実施の形態に係る半導体集積回路の製造方法を用いて製造可能なマスクの例を図33に示す。図33は、図11に示すレイアウトを用いて製造されたマスク90の一例である。マスク90上には、端部等に矩形の補正部分を有するラインパターン91,92,93,94,95が配置されている。一方、図33に示すマスク90を用いて層間絶縁膜100上に配線101,102,103,104,105を形成した場合の一例を図34に示す。図34に示すように、層間絶縁膜100上には、所望の配線101,102,103,104,105が、エラーを生じさせることなく形成されている。OPC危険箇所では、リソグラフィールールチェックでエラーとならない箇所も抽出される。抽出された箇所は、プロセス条件が変わった時にエラーとなり得るが、第1の実施の形態に係る半導体集積回路の製造方法によれば、プロセス変更にもロバストな設計を行うことができるので、層間絶縁膜100上に所望のパターンを高い歩留まりで製造することができる。
(第1の実施の形態の変形例)
図3に示すマーク手段261が図15のステップS251及びステップS252において実行するレイアウト上にマークを配置する方法は、上述した方法に限られず、他にも様々な方法が利用可能である。
例えば、図35に示すレイアウトを、図36に示すように、それぞれ直交する2方向に延伸する複数のグリッドで、複数の矩形領域に分割する。そして、グリッドにより分割したパターンを、図37及び図38に示すように、1つのレイアウトに対してグリッドの配置位置を少しずつずらしながら複数個作成する。さらに、図39(a)の拡大図に示すように、パターン54の各頂点が存在する領域に対して、図39(b)に示すようにマークを付ける。マークの付加は、図36〜図38に示すパターンのそれぞれについて行う。この結果、図40〜図42に示すようなレイアウトが得られる。その後、図43に示すように、図40〜図42に示すレイアウトを重ね合わせ、マークが重なり合った領域を、図3に示すグループ化手段262がマージしてグループ化し、マークが広い範囲で重なり合った領域をOPC危険領域として抽出するものである。
もう一つの方法としては、図44に示すように、パターン51a,51b,52,53,54,55の辺をいくつかの領域に分割するためのマークをパターン51a,51b,52,53,54,55の端部に配置し、図45に示すように、各マークの周囲に補正パターンを配置する。その後、図46に示すように、図3に示すグループ化手段262により隣接する補正パターンを1つのグループとして分類すれば、上述した方法と同様にOPC危険領域を抽出することができる。
(第2の実施の形態)
<設計システム>
第2の実施の形態に係る設計システムは、図47に示すように、高歩留セル配置手段121,ビア多重化手段122及び配置修正手段123を更に有する配置手段12aと、高歩留セルライブラリ1421及び多重ビアセルライブラリ1422を更に含むレイアウト記憶部14aを備える。他は、図1に示す設計システムと同様である。
高歩留セル配置手段121は、図48に示すように、チップ領域40の周辺部に配置されたI/Oセル41a〜41n,42a〜42n,43a〜43n,44a〜44nで囲まれた領域上に、セル、配線、及びビア等の配置と検証が完了した状態の高歩留まりセル(SRAMモジュール45,ROMモジュール46,CPU47,バスインターフェース48及びDRAMモジュール49等)を配置する。ビア多重化手段122は、図1に示す配置手段12が配置した配線間を繋ぐための1つのビア(単一ビア)を複数のビア(多重化ビア)に置換する。配置修正手段123は、ビア多重化手段122が単一ビアを多重化ビアに置換した場合に設計違反を起こす領域を修正する。高歩留セルライブラリ1421には、様々な形状を持つ高歩留まりセルの情報が記憶される。多重ビアセルライブラリ1422には、図49に示すように、様々な形状を持つ多重ビアセル96,97,98,99の情報が記憶される。
<設計方法>
次に、第2の実施の形態に係る半導体集積回路の設計方法について、図50及び図51のフローチャートを用いて説明する。
(イ)図50のステップS1において、半導体集積回路のレイアウト設計、検証及び修正に必要な各種情報が、入力装置4を介して図1の設計情報記憶部17及びプログラム記憶装置6に入力される。ステップS2において、チップ領域上に配置する高歩留セル情報及び配線間を多重化ビアで接続するための多重ビアセル情報が、図1の入力装置4を介して、図47の高歩留セルライブラリ1421及び多重ビアセルライブラリ1422にそれぞれ入力される。
(ロ)ステップS10において、レイアウト手段10は、設計情報記憶部17に記憶された設計情報及びレイアウト記憶部14に記憶されたレイアウト情報等を読み出して、チップ領域上にセル、配線、ビア等を配置する。ステップS11においては、フロアプラン手段11は、設計情報記憶部17に記憶された設計情報を読み出して、半導体集積回路のフロアプランを作成し、フロアプランの情報をレイアウト記憶部14に記憶させる。
(ハ)ステップS121において、配置手段12は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、チップ領域上に論理セルを配置する。ステップS122において、図47の高歩留セル配置手段121は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、チップ領域上に高歩留まりセルを配置する。ステップS13において、配線手段13は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、チップ領域上に配線を配置する。
(ニ)ステップS141において、配置手段12は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、配線間を接続するビアやコンタクト等を配置する。続いて、ステップS142において、ビア多重化手段122は、多重ビアセルライブラリ1422に記憶された多重ビアセルライブラリの情報を読み出して、レイアウトパターン上に配置された単一ビアのうち設計上問題を起こす可能性のある単一ビアを多重化ビアに置換する。ステップS142の詳細は後述する。
(ホ)ステップS20では、ステップS10で設計されたレイアウトのレイアウト検証が行われる。ステップS30では、レイアウト修正手段30が、レイアウト修正記憶部16に記憶されたレイアウト修正情報を読み出して、レイアウトの転写イメージによる判定と修正を行う。
<多重化ビアの配置方法の詳細>
次に、ステップS142に示す多重化ビアの配置方法について、図51に示すフローチャートを用いて説明する。
(イ)ステップS142aにおいて、ビア多重化手段122は、図52に示すように、DRC等により抽出された設計違反を起こす単一ビア87を抽出する。ステップS142bにおいて、ビア多重化手段122は、多重ビアセルライブラリ1422に記憶された多重ビアセルライブラリの情報を読み出して、単一ビア87を図49に示す多重ビアセル96〜99に置き換えるか否か判断する。置き換えない場合は、多重化ビアの配置を終了する。置き換える場合は、ステップS142cに進む。ステップS142cにおいて、ビア多重化手段122は、図47の多重ビアセルライブラリに記憶された多重ビアセル96〜99の情報を読み出して、図52に示す単一ビア87を図53に示す多重ビアセル97に置き換える。
(ロ)ステップS142dにおいては、図53に示すレイアウトのOPC検証が行われる。図3に示すマーク手段261は、検証情報記憶部15に記憶されたマーク情報を読み出して、図54に示すように、多重ビアセル97が配置されたパターンの周辺領域にある各パターン51a,51b,52,53の頂点にマークを配置する。追加マークが必要な場合は、マーク手段261は、検証情報記憶部15に記憶された追加マーク情報を読み出して、各パターン51a,51b,52,53の辺に追加マークを配置する。図3のグループ化手段262は、検証情報記憶部15に記憶された補正パターン配置情報を読み出して、隣接するマークを複数のグループにグループ化する。その後、危険箇所判定手段263は、検証情報記憶部15に記憶された危険箇所判定情報を読み出して、図54に示すように、OPC危険箇所となるグループを抽出する。
(ハ)ステップS142eにおいて、図47の配置修正手段123は、多重ビアセルライブラリ1422の情報を読み出して、多重ビアセル97を、他の多重ビアセル96,98,99に置き換えるか否かを判定する。他の多重ビアセル96,98,99に置き換えない場合は作業を終了する。他の多重ビアセル96,98,99に置き換える場合は、ステップS142cに進み、図55に示すように、ビア多重化手段122が、多重ビアセル97を他の多重ビアセル96に置き換えて、図56に示すように、図3のマーク手段261が、各パターン51a,51b,52,53の頂点にマークを配置する。
第2の実施の形態に係る半導体集積回路の設計方法によれば、配線間を接続するビアとして多重ビアセル97を配置した場合に、多重ビアセル97の周囲のパターン51a,51b,52,53の周囲のOPC危険箇所を抽出し、OPC危険箇所が抽出された場合は、他の多重ビアセル97に置き換える。これにより、図58に示すように、リソグラフィールールチェックを行った際においても、図57に示すような、多重ビアセル96とパターン52とが隣接することによるショート危険箇所等が発生しない。この結果、歩留まりが高い半導体集積回路が設計できる。
(第3の実施の形態)
<設計システム>
第3の実施の形態に係る設計システムは、図59に示すように、配線スペース緩和手段131,配線巾太化手段132及び配線修正手段133を更に有する配線手段13aと、配線スペース記憶部1431及び配線巾太化情報記憶部1432を更に有するレイアウト記憶部14bを備える。
配線スペース記憶部1431には、配線間隔を緩和するための情報が記憶される。例えば、ランダム不良のクリティカルエリア(ショート不良となる面積)等を指標とし、クリティカルエリアを減らすためのルール、具体的には、図63に示すような、配線スペースの比較的小さいパターン31,32,33がある程度の長さ以上対向する場合に、図64に示すように、パターン31,32,33の端に近い方を折り曲げて、配線間スペースを大きくするための情報が、配線スペース記憶部1431に記憶される。図59の配線巾太化情報記憶部1432には、例えば、図60(a)及び図60(b)に示すように、隣接する配線間の距離に応じた配線スペース拡大のためのパラメータの情報が記憶される。配線巾太化情報としては、例えば、図60(b)に示すように、パターン65とパターン66との間の距離d1が0.3μm以上0.4μm未満であった場合は、パターン65側の補正値lとして、0.045μm配線巾を拡張するという情報、パターン65とパターン67との間の距離d2が0.6μm以上の場合は、補正値lとして、0.060μm配線巾を拡張するという情報等を記憶する。なお、配線のパターンの巾太化処理はリソグラフィーマージン確保のためにも実施され得るが、第3の実施の形態では、ランダムディフェクト対策として、配線パターン巾を更に巾太化する処理が実行可能なシステムを提供するものである。
図59の配線スペース緩和手段131は、配線スペース記憶部1431の配線スペース情報を読み出して、レイアウト手段10により配置されたレイアウト中に設計上問題となり得る隣接配線が存在した場合に、隣接配線の配線間隔を拡張する。配線巾太化手段132は、配線巾太化情報記憶部1432の配線巾太化情報を読み出して、レイアウト手段10により配置されたレイアウト中の配線巾を拡張する。他は、第1及び第2の実施の形態に係る半導体集積回路の設計システムと実質的に同様である。
<設計方法>
次に、第3の実施の形態に係る半導体集積回路の設計方法について、図61及び図62のフローチャートを用いて説明する。
(イ)図61のステップS1において、半導体集積回路のレイアウト設計、検証及び修正に必要な各種情報が、図1の入力装置4を介して図1の設計情報記憶部17及びプログラム記憶装置6に入力される。ステップS3において、チップ領域上に配置される配線の配線スペース情報、配線巾太化情報が、入力装置4を介して、図59の配線スペース記憶部1431及び配線巾太化情報記憶部1432に入力される。
(ロ)ステップS10において、レイアウト手段10は、設計情報記憶部17に記憶された設計情報及びレイアウト記憶部14に記憶されたレイアウト情報等を読み出して、チップ領域上にセル、配線、ビア等を配置する。ステップS11においては、フロアプラン手段11は、設計情報記憶部17に記憶された設計情報を読み出して、半導体集積回路のフロアプランを作成し、フロアプランの情報をレイアウト記憶部14に記憶させる。ステップS12において、配置手段12は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、チップ領域上に論理セル及びマクロセル、或いは高歩留まりセルを配置する。
(ハ)ステップS13において、配線手段13は、レイアウト記憶部14に記憶されたフロアプランを読み出して、チップ領域上に配線を配置する。ステップS14において、配置手段12は、レイアウト記憶部14に記憶されたフロアプランの情報を読み出して、配線間を接続するビアやコンタクト等を配置する。
(ニ)ステップS15において、配線手段13は、図59のレイアウト記憶部14bに記憶された配線スペース情報を読み出して、レイアウト中の配線スペースの拡大を行う。ステップS15の詳細は後述する。ステップS20では、ステップS10で設計されたレイアウトの検証が行われる。ステップS30では、レイアウト修正手段30が、レイアウト修正記憶部16に記憶されたレイアウト修正情報を読み出して、レイアウトの転写イメージによる判定と修正を行う。
<配線スペースの緩和及び巾太化方法の詳細>
次に、ステップS15に示す配線スペースの緩和及び巾太化方法について、図62に示すフローチャートを用いて説明する。
(イ)図62のステップS151において、図59の配線スペース緩和手段131が、図63に示すようなパターン31,32,33及びビア34,35,36の配置情報、及び配線スペース記憶部1431の配線スペース情報を読み出して、図64に示すように、パターン31,32,33の配線スペースを広くする。ステップS152において、図1の物理検証手段21は、検証情報記憶部15に記憶された検証情報に基づいて、図64に示すレイアウトのDRC検証を行い、設計上致命的な問題を起こし得るパターンを修正する。
(ロ)ステップS153において、レイアウトのOPC検証が行われる。図3に示すマーク手段261は、検証情報記憶部15に記憶されたマーク情報を読み出して、図65に示すように、配線スペースが拡張された領域周辺の各パターン31,32及び33の頂点にマークを配置する。追加マークが必要な場合は、マーク手段261は、検証情報記憶部15に記憶された追加マーク情報を読み出して、各パターン51aの辺に追加マークを配置する。グループ化手段262は、検証情報記憶部15に記憶された補正パターン配置情報を読み出して、隣接するマークを複数のグループにグループ化する。その後、危険箇所判定手段263は、検証情報記憶部15に記憶された危険箇所判定情報を読み出して、図67に示すように、OPC危険箇所となるグループを抽出する。
(ハ)ステップS154において、危険箇所判定手段263は、抽出されたOPC危険箇所が検証情報記憶部15に記憶された危険箇所修正情報に基づいて修正可能であるか否かを判定する。修正不可能の場合は作業を終了する。修正可能な場合は、ステップS155において、危険箇所判定手段263が、検証情報記憶部15に記憶された危険箇所修正情報を読み出して、図68に示すように、OPC危険箇所のグループ内のマーク数を減少させるように、パターン31,32,33の間隔を拡大し、レイアウトを変更する。
第3の実施の形態に係る半導体集積回路の設計方法によれば、ランダム不良の発生する箇所となりやすい配線間隔の比較的狭い領域に対し、配線スペースを広げる処理を行うことにより、ランダム不良及びシステマティック不良の発生による歩留まりの低下を防止できる。なお、第3の実施の形態に係る半導体集積回路の設計方法では、図64に示すように、パターン31,32,33を折り曲げて配線巾を拡大することにより、OPC危険箇所の発生する確率が高くなる(図69参照)。このため、配線スペースの拡張処理後には、ステップS153及び図65〜図68に示すようなOPC危険箇所の検証と修正を適宜行うことにより、図70に示すように、OPC危険箇所の発生を防止することができる。この結果、チップ領域上の広範囲な領域上の配線パターン等に対してランダム不良及びシステマティック不良への対策を行った状態においてもリソグラフィールールチェック及びOPC問題箇所のチェックを高速且つ高精度に行うことができ、歩留まりの向上が可能な半導体集積回路の設計方法が提供できる。
上記のように、本発明は第1〜第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1の実施の形態に係る自動設計システムを示すブロック図である。 本発明の第1の実施の形態に係る自動設計システムのOPC検証手段の構成を示すブロック図である。 図2の危険箇所検証手段の構成を示すブロック図である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の抽出方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所の修正方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法における比較例としてのリソグラフィールールチェック結果を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC検証方法における比較例としてのリソグラフィールールチェック結果を示すレイアウト例である。 本発明の第1の実施の形態に係る半導体集積回路の設計方法を示すフローチャートである。 本発明の第1の実施の形態に係る半導体集積回路の設計方法におけるOPC検証方法を示すフローチャートである。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC検証情報の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所判定情報の一例を示すリストである。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所判定情報の一例を示す形状例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所修正情報の一例を示す説明図であり、図19(a)は修正前のパターン、図19(b)は、修正後のパターン例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所修正情報の一例を示す説明図であり、図20(a)は修正前のパターン、図20(b)は、修正後のパターン例である。 本発明の第1の実施の形態に係るOPC検証方法におけるOPC危険箇所修正情報の一例を示す説明図であり、図21(a)は修正前のパターン、図19(b)は、修正後のパターン例である。 本発明の第1の実施の形態に係るOPC検証結果の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証結果の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係るOPC検証方法の他の一例を示す説明図である。 本発明の第1の実施の形態に係る半導体集積回路の設計方法を実行した場合のOPC危険箇所の発生状況を示す説明図である。 本発明の第1の実施の形態に係る半導体集積回路の製造方法を示すフローチャートである。 本発明の第1の実施の形態に係る半導体集積回路の製造方法により製造可能なマスクの一例を示す平面図である。 図33に示すマスクを用いて製造可能な半導体集積回路の一例を示す平面図である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第1の実施の形態に係るOPC危険箇所判定方法における他のマーク配置方法を示すレイアウト例である。 本発明の第2の実施の形態に係る半導体集積回路の設計システムの一例を示すブロック図である。 本発明の第2の実施の形態に係る半導体集積回路の設計システムにより設計可能なチップ領域上のレイアウト例を示す平面図である。 本発明の第2の実施の形態に係る半導体集積回路の設計システムにおける多重ビアセルライブラリの形状の一例を示すパターンである。 本発明の第2の実施の形態に係る半導体集積回路の設計方法の一例を示すフローチャートである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法を示すフローチャートである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第2の実施の形態に係る半導体集積回路の多重化ビアの配置方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計システムを示すブロック図である。 本発明の第3の実施の形態に係る半導体集積回路の設計システムにおける配線巾太化情報の一例を示し、図60(a)は配線間隔の距離と補正値の関係の一例を示すグラフ、図60(b)は、配線間隔の測定方法の一例を示す説明図である。 本発明の第3の実施の形態に係る半導体集積回路の設計方法を示すフローチャートである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線スペースの緩和方法を示すフローチャートである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の比較例を示すレイアウトである。 本発明の第3の実施の形態に係る半導体集積回路の設計方法における配線の多重化方法の一例を示すレイアウトである。
符号の説明
1…CPU
2…データ記憶装置
3…入出力制御装置
4…入力装置
5…出力装置
6…プログラム記憶装置
10…レイアウト手段
11…フロアプラン手段
12,12a…配置手段
13,13a…配線手段
14,14a,14b…レイアウト記憶部
15…検証情報記憶部
16…レイアウト修正記憶部
17…設計情報記憶部
20…検証手段
21…物理検証手段
22…タイミング検証手段
23…ノイズ検証手段
24…クリティカルエリア検証手段
25…OPC検証手段
26…危険箇所検証手段
27…OPC手段
28…リソグラフィーチェック手段
30…レイアウト修正手段
40…チップ領域
51a,51b,52,53,54,55,59a,59b,60,65,66,67,71a,71b,72a,73a,73b,74a,74b,75a,75b,76a,76b,77a,78a…パターン
81a,81b,82a,82b,83a,83b,83c,84a,84b,85a…グループ
261…マーク手段
262…グループ化手段
263…危険箇所判定手段
264…危険箇所修正手段

Claims (5)

  1. マーク手段が、複数のパターンの輪郭の頂点に複数のマークを配置するステップと、
    グループ化手段が、光近接効果補正の影響が及ぶ領域が重なり合う前記マークを複数のグループに分類し、前記グループの情報を検証情報記憶部に記憶させるステップと、
    危険箇所判定手段が、前記検証情報記憶部から前記グループの情報を読み出して、前記グループに含まれる前記マークの数に基づいて前記パターンの危険箇所を判定し、前記危険箇所の判定結果を前記検証情報記憶部に記憶させるステップと、
    危険箇所修正手段が、前記検証情報記憶部から前記判定結果を読み出して、前記パターンを修正するステップ
    とを含むことを特徴とする半導体集積回路の設計方法。
  2. リソグラフィーチェック手段が、修正後の前記パターンの危険箇所を判定するステップを更に含み、
    前記危険箇所修正手段が前記パターンを修正するステップは、前記検証情報記憶部に記憶された修正情報に基づいて、前記グループに含まれる前記マークの数を減少させるように修正することを特徴とする請求項1に記載の半導体集積回路の設計方法。
  3. 複数のパターンの輪郭の頂点に複数のマークを配置するマーク手段と、
    光近接効果補正の影響が及ぶ領域が重なり合う前記マークを複数のグループに分類し、前記グループの情報を検証情報記憶部に記憶させるグループ化手段と、
    前記検証情報記憶部から前記グループの情報を読み出して、前記グループに含まれる前記マークの数に基づいて前記パターンの危険箇所を判定し、前記危険箇所の判定結果を前記検証情報記憶部に記憶させる危険箇所判定手段と、
    前記検証情報記憶部から前記判定結果を読み出して、前記パターンを修正する危険箇所修正手段
    とを含むことを特徴とする半導体集積回路の設計システム。
  4. 修正後の前記パターンの危険箇所を判定するリソグラフィーチェック手段を更に含み、
    前記危険箇所修正手段は、検証情報記憶部に記憶された危険箇所修正情報に基づいて、前記グループに含まれる前記マークの数を減少させるように前記パターンを修正することを特徴とする請求項3に記載の半導体集積回路の設計システム。
  5. 半導体基板上にセル、配線及びビアを配置するための複数のパターンを含むレイアウト情報を設計するステップと、
    前記パターンの輪郭の頂点に複数のマークを配置し、光近接効果補正の影響が及ぶ領域が重なり合う前記マークを複数のグループに分類し、前記グループに含まれる前記マークの数に基づいて前記パターンの危険箇所を判定し、前記危険箇所の判定結果に基づいて前記パターンを修正することにより前記レイアウト情報を検証するステップと、
    前記パターンに対してリソグラフィーチェックを実行し、前記レイアウト情報を修正するステップと、
    修正された前記レイアウト情報に基づいてマスクを製造するステップと、
    前記マスクを用いて、前記セル、前記配線及び前記ビアを前記半導体基板上に形成するステップ
    とを含むことを特徴とする半導体集積回路の製造方法。
JP2004318427A 2004-11-01 2004-11-01 半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法 Expired - Fee Related JP4768251B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004318427A JP4768251B2 (ja) 2004-11-01 2004-11-01 半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法
TW094137590A TWI353538B (en) 2004-11-01 2005-10-27 Mask design method, dangerous area verification mo
US11/263,845 US7451429B2 (en) 2004-11-01 2005-10-31 Computer automated method for optimizing an integrated circuit pattern in a layout verification process
US12/242,832 US7958463B2 (en) 2004-11-01 2008-09-30 Computer automated method for manufacturing an integrated circuit pattern layout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318427A JP4768251B2 (ja) 2004-11-01 2004-11-01 半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法

Publications (2)

Publication Number Publication Date
JP2006126745A JP2006126745A (ja) 2006-05-18
JP4768251B2 true JP4768251B2 (ja) 2011-09-07

Family

ID=36575846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318427A Expired - Fee Related JP4768251B2 (ja) 2004-11-01 2004-11-01 半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法

Country Status (3)

Country Link
US (2) US7451429B2 (ja)
JP (1) JP4768251B2 (ja)
TW (1) TWI353538B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847172B1 (ko) * 2012-12-31 2018-05-28 삼성전기주식회사 회로 폭 가늠 불량 방지 장치 및 회로 폭 가늠 불량 방지 방법

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853920B2 (en) * 2005-06-03 2010-12-14 Asml Netherlands B.V. Method for detecting, sampling, analyzing, and correcting marginal patterns in integrated circuit manufacturing
JP4828870B2 (ja) * 2005-06-09 2011-11-30 株式会社東芝 評価パタンの作成方法およびプログラム
US7784015B2 (en) * 2005-07-05 2010-08-24 Texas Instruments Incorporated Method for generating a mask layout and constructing an integrated circuit
JP4568228B2 (ja) * 2005-12-28 2010-10-27 株式会社東芝 半導体集積回路の自動設計方法、半導体集積回路の自動設計システム及び半導体集積回路
US8015510B2 (en) * 2006-02-17 2011-09-06 Mentor Graphics Corporation Interconnection modeling for semiconductor fabrication process effects
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US7446352B2 (en) 2006-03-09 2008-11-04 Tela Innovations, Inc. Dynamic array architecture
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US7763534B2 (en) 2007-10-26 2010-07-27 Tela Innovations, Inc. Methods, structures and designs for self-aligning local interconnects used in integrated circuits
US7956421B2 (en) 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
JP4768489B2 (ja) * 2006-03-29 2011-09-07 株式会社東芝 パターン検査方法及びマスクの製造方法
US7703067B2 (en) * 2006-03-31 2010-04-20 Synopsys, Inc. Range pattern definition of susceptibility of layout regions to fabrication issues
US7503029B2 (en) * 2006-03-31 2009-03-10 Synopsys, Inc. Identifying layout regions susceptible to fabrication issues by using range patterns
US7725861B2 (en) * 2006-05-15 2010-05-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method, apparatus, and system for LPC hot spot fix
US7954072B2 (en) * 2006-05-15 2011-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US7685558B2 (en) * 2006-05-15 2010-03-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method for detection and scoring of hot spots in a design layout
US20070266360A1 (en) * 2006-05-15 2007-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Metal Thickness Simulation for Improving RC Extraction Accuracy
US7805692B2 (en) * 2006-05-15 2010-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method for local hot spot fixing
US8136067B2 (en) * 2006-05-15 2012-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of design for manufacturing
US8136168B2 (en) * 2006-05-15 2012-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for design-for-manufacturability data encryption
US8336002B2 (en) * 2006-05-15 2012-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. IC design flow enhancement with CMP simulation
US7827016B1 (en) * 2006-05-31 2010-11-02 William Wai Yan Ho Simulating circuits by distributed computing
EP1873663A1 (en) * 2006-06-27 2008-01-02 Takumi Technology Corporation Method for optimizing an integrated circuit physical layout
US8347239B2 (en) * 2006-06-30 2013-01-01 Synopsys, Inc. Fast lithography compliance check for place and route optimization
US20080028359A1 (en) * 2006-07-31 2008-01-31 Stefan Blawid Termination structure, a mask for manufacturing a termination structure, a lithographic process and a semiconductor device with a termination structure
JP2008098588A (ja) * 2006-10-16 2008-04-24 Elpida Memory Inc 半導体装置のレイアウト設計・検証におけるホットスポット抽出方法
JP4856512B2 (ja) * 2006-10-17 2012-01-18 シャープ株式会社 半導体集積回路の製造方法及び製造プログラム
US7512927B2 (en) * 2006-11-02 2009-03-31 International Business Machines Corporation Printability verification by progressive modeling accuracy
JP4851924B2 (ja) * 2006-12-08 2012-01-11 株式会社東芝 危険箇所集計方法、パターン修正方法およびプログラム
US7571418B2 (en) * 2007-02-20 2009-08-04 International Business Machines Corporation Simulation site placement for lithographic process models
US7707528B1 (en) * 2007-02-24 2010-04-27 Cadence Design Systems, Inc. System and method for performing verification based upon both rules and models
US7725845B1 (en) 2007-02-24 2010-05-25 Cadence Design Systems, Inc. System and method for layout optimization using model-based verification
US7689948B1 (en) 2007-02-24 2010-03-30 Cadence Design Systems, Inc. System and method for model-based scoring and yield prediction
JP4871168B2 (ja) * 2007-02-26 2012-02-08 富士通セミコンダクター株式会社 集積回路の配線経路探索方法、集積回路の自動配線装置およびプログラム
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
TWI623845B (zh) * 2007-03-05 2018-05-11 泰拉創新股份有限公司 半導體晶片
US8112724B2 (en) 2007-03-20 2012-02-07 Sony Corporation Method of designing semiconductor integrated circuit, apparatus for designing semiconductor integrated circuit, recording medium, and mask manufacturing method
US7788612B2 (en) * 2007-03-30 2010-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. System, method, and computer program product for matching cell layout of an integrated circuit design
US7904844B2 (en) * 2007-03-30 2011-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. System, method, and computer program product for matching cell layout of an integrated circuit design
US8452075B2 (en) * 2007-04-11 2013-05-28 Synopsys, Inc. Range pattern matching for hotspots containing vias and incompletely specified range patterns
JP4958616B2 (ja) * 2007-04-20 2012-06-20 株式会社日立ハイテクノロジーズ ホットスポット絞り込み装置、ホットスポット絞り込み方法、ホットスポット絞り込みプログラム、ホットスポット検査装置、および、ホットスポット検査方法
US8145337B2 (en) * 2007-05-04 2012-03-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methodology to enable wafer result prediction of semiconductor wafer batch processing equipment
US8682466B2 (en) * 2007-05-04 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. Automatic virtual metrology for semiconductor wafer result prediction
US7783999B2 (en) * 2008-01-18 2010-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical parameter extraction for integrated circuit design
JP4938696B2 (ja) 2008-01-24 2012-05-23 ソニー株式会社 半導体装置の設計プログラムおよび半導体装置の設計システム
US8037575B2 (en) * 2008-02-28 2011-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method for shape and timing equivalent dimension extraction
US8578313B2 (en) * 2008-04-24 2013-11-05 Synopsys, Inc. Pattern-clip-based hotspot database system for layout verification
US8381152B2 (en) 2008-06-05 2013-02-19 Cadence Design Systems, Inc. Method and system for model-based design and layout of an integrated circuit
US8001494B2 (en) 2008-10-13 2011-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Table-based DFM for accurate post-layout analysis
JP2010127970A (ja) * 2008-11-25 2010-06-10 Renesas Electronics Corp 半導体装置の製造不良箇所の予測方法、予測装置及び予測プログラム
JP5572973B2 (ja) * 2009-03-16 2014-08-20 富士通セミコンダクター株式会社 パターン検証方法、検証装置及びプログラム
US8732629B2 (en) 2009-10-30 2014-05-20 Synopsys, Inc. Method and system for lithography hotspot correction of a post-route layout
US8806386B2 (en) * 2009-11-25 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Customized patterning modulation and optimization
US8745554B2 (en) * 2009-12-28 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Practical approach to layout migration
TWI456422B (zh) * 2009-12-30 2014-10-11 Synopsys Inc 後繞線佈局之微影熱點之更正方法及系統
US8468482B1 (en) * 2010-03-12 2013-06-18 Worldwide Pro Ltd. Modeling and simulating the impact of imperfectly patterned via arrays on integrated circuits
JP2011242541A (ja) * 2010-05-17 2011-12-01 Panasonic Corp 半導体集積回路装置、および標準セルの端子構造
JP5035434B2 (ja) * 2011-01-26 2012-09-26 ソニー株式会社 半導体装置の設計支援プログラムおよび半導体装置の設計システム
KR101829308B1 (ko) * 2011-04-22 2018-02-20 동우 화인켐 주식회사 필름의 패턴의 사행 제어 장치
US8726208B2 (en) * 2011-07-19 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. DFM improvement utility with unified interface
US8458625B2 (en) * 2011-07-29 2013-06-04 International Business Machines Corporation Yield enhancement by multiplicate-layer-handling optical correction
US8495525B1 (en) 2012-03-20 2013-07-23 International Business Machines Corporation Lithographic error reduction by pattern matching
US9342649B2 (en) 2012-03-23 2016-05-17 Nec Corporation Rule check system, method, and non-transitory computer readable medium storing presentation program
US8719737B1 (en) * 2012-06-29 2014-05-06 Cadence Design Systems, Inc. Method and apparatus for identifying double patterning loop violations
KR102004852B1 (ko) 2012-11-15 2019-07-29 삼성전자 주식회사 컴퓨팅 시스템을 이용한 반도체 패키지 디자인 시스템 및 방법, 상기 시스템을 포함하는 반도체 패키지 제조 장치, 상기 방법으로 디자인된 반도체 패키지
US8930856B2 (en) * 2013-01-30 2015-01-06 Mentor Graphics Corporation Mask rule checking based on curvature
JP6123398B2 (ja) * 2013-03-18 2017-05-10 富士通株式会社 欠陥箇所予測装置、識別モデル生成装置、欠陥箇所予測プログラムおよび欠陥箇所予測方法
JP2014182219A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 欠陥箇所予測装置、識別モデル生成装置、欠陥箇所予測プログラムおよび欠陥箇所予測方法
US9411924B2 (en) 2013-10-11 2016-08-09 Taiwan Semiconductor Manufacturing Co., Ltd. Methodology for pattern density optimization
US9026955B1 (en) 2013-10-11 2015-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Methodology for pattern correction
US20150112649A1 (en) * 2013-10-18 2015-04-23 International Business Machines Corporation Clustering Lithographic Hotspots Based on Frequency Domain Encoding
JP6338368B2 (ja) * 2013-12-25 2018-06-06 キヤノン株式会社 パターンの光学像の評価方法
US9767243B2 (en) 2014-05-27 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. System and method of layout design for integrated circuits
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US20160217240A1 (en) * 2015-01-28 2016-07-28 Dmo Systems Limited Methodology Of Incorporating Wafer Physical Measurement With Digital Simulation For Improving Semiconductor Device Fabrication
KR102230503B1 (ko) * 2015-04-14 2021-03-22 삼성전자주식회사 레이아웃 디자인 시스템, 이를 이용한 마스크 패턴 제조 시스템 및 방법
US9547745B1 (en) * 2015-07-27 2017-01-17 Dmo Systems Limited System and method for discovering unknown problematic patterns in chip design layout for semiconductor manufacturing
KR102545141B1 (ko) * 2017-12-01 2023-06-20 삼성전자주식회사 반도체 소자 및 그의 제조 방법
US10818001B2 (en) * 2018-09-07 2020-10-27 Kla-Tencor Corporation Using stochastic failure metrics in semiconductor manufacturing
US11392748B2 (en) * 2018-09-28 2022-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit design using fuzzy machine learning
DE102019124928A1 (de) * 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integriertes schaltungsdesign unter verwendung von fuzzy-maschinenlernen
US10762618B1 (en) * 2019-02-14 2020-09-01 United Microelectronics Corp. Mask weak pattern recognition apparatus and mask weak pattern recognition method
CN111596528B (zh) * 2020-05-25 2023-02-03 上海华力集成电路制造有限公司 一种多晶硅切割图形添加方法
CN112230509B (zh) * 2020-10-30 2024-05-17 上海华力微电子有限公司 光刻工艺热点的光学邻近修正的方法
US11475202B1 (en) * 2021-05-18 2022-10-18 United Microelectronics Corp. Method of designing a semiconductor device
CN115934980B (zh) * 2022-12-02 2023-09-08 珠海芯聚科技有限公司 一种版图图形搜索处理方法及装置、设备、存储介质
CN117891143A (zh) * 2024-02-21 2024-04-16 广东工业大学 基于2d重叠判断的光刻热点检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137087A (ja) * 1994-11-14 1996-05-31 Fujitsu Ltd 露光データ処理方法
US6631307B1 (en) * 1998-03-19 2003-10-07 Taiwan Semiconductor Manufacturing Company Use of logical operations in place of OPC software
JP3535399B2 (ja) * 1998-12-22 2004-06-07 株式会社東芝 マスク描画データ作成方法
US6553558B2 (en) * 2000-01-13 2003-04-22 Texas Instruments Incorporated Integrated circuit layout and verification method
US6539519B1 (en) * 2000-05-31 2003-03-25 Mark D. Meeker Spatial characteristic and logical hierarchy based manner for compactly storing IC design data and related operations
JP3615182B2 (ja) * 2001-11-26 2005-01-26 株式会社東芝 光近接効果補正方法及び光近接効果補正システム
US6668367B2 (en) * 2002-01-24 2003-12-23 Nicolas B. Cobb Selective promotion for resolution enhancement techniques
JP4152647B2 (ja) * 2002-03-06 2008-09-17 富士通株式会社 近接効果補正方法及びプログラム
JP4335563B2 (ja) * 2003-03-31 2009-09-30 Necエレクトロニクス株式会社 マスクパターン検証方法、マスクパターン検証用プログラム、及びマスク製造方法
JP4488727B2 (ja) * 2003-12-17 2010-06-23 株式会社東芝 設計レイアウト作成方法、設計レイアウト作成システム、マスクの製造方法、半導体装置の製造方法、及び設計レイアウト作成プログラム
US7194707B2 (en) * 2004-09-17 2007-03-20 International Business Machines Corporation Method and apparatus for depopulating peripheral input/output cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847172B1 (ko) * 2012-12-31 2018-05-28 삼성전기주식회사 회로 폭 가늠 불량 방지 장치 및 회로 폭 가늠 불량 방지 방법

Also Published As

Publication number Publication date
US7958463B2 (en) 2011-06-07
TWI353538B (en) 2011-12-01
JP2006126745A (ja) 2006-05-18
US20060123380A1 (en) 2006-06-08
TW200620017A (en) 2006-06-16
US7451429B2 (en) 2008-11-11
US20090064083A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4768251B2 (ja) 半導体集積回路の設計方法、半導体集積回路の設計システム及び半導体集積回路の製造方法
JP4718914B2 (ja) 半導体集積回路の設計支援システム、半導体集積回路の設計方法、半導体集積回路の設計支援プログラム、半導体集積回路の製造方法
JP4266189B2 (ja) 半導体集積回路パターンの検証方法、フォトマスクの作成方法、半導体集積回路装置の製造方法、及び半導体集積回路パターンの検証方法を実現するためのプログラム
JP4643401B2 (ja) テストパターン作成方法、テストパターン作成プログラム、マスク作製方法、及び半導体装置製造方法
US20050204327A1 (en) Layout data verification method, mask pattern verification method and circuit operation verification method
CN105652589A (zh) 使用设计者意图数据检查晶片和掩模版的方法和***
JP2009282319A (ja) パターン検証方法、パターン検証システム、パターン検証プログラム、マスク製造方法、および半導体装置の製造方法
US7673258B2 (en) Design data creating method, design data creating program product, and manufacturing method of semiconductor device
JP2013003162A (ja) マスクデータ検証装置、設計レイアウト検証装置、それらの方法およびそれらのコンピュータ・プログラム
JP3708058B2 (ja) フォトマスクの製造方法およびそのフォトマスクを用いた半導体装置の製造方法
US20070220477A1 (en) Circuit-pattern-data correction method and semiconductor-device manufacturing method
JP2008028092A (ja) 不良確率の算出方法、パターン作成方法及び半導体装置の製造方法
US7559044B2 (en) Automatic design method of semiconductor integrated circuit, automatic design system of semiconductor integrated circuit, and semiconductor integrated circuit
US20060289750A1 (en) Macro-placement designing apparatus, program product, and method considering density
JP2006053248A (ja) 設計パターンデータ作成方法、マスクパターンデータ作成方法、マスク製造方法、半導体装置の方法およびプログラム
JP4481731B2 (ja) 自動設計方法及び半導体集積回路
US8443309B2 (en) Multifeature test pattern for optical proximity correction model verification
JP4851924B2 (ja) 危険箇所集計方法、パターン修正方法およびプログラム
JP4476684B2 (ja) パターン補正方法、パターン補正システム、パターン補正プログラム、マスクの作成方法、および半導体装置の製造方法
US8365105B2 (en) Method of performing optical proximity effect corrections to photomask pattern
CN107783369B (zh) 光学邻近校正的修复方法
JP2010122438A (ja) リソグラフィシミュレーションモデルの検証方法、検証プログラム及び検証装置
JP2008210983A (ja) 信頼性設計支援方法
JP2005250360A (ja) マスクパターンの検証装置および検証方法
JP4774917B2 (ja) マスクパターンの検査装置及び検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees