JP4765853B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4765853B2
JP4765853B2 JP2006243840A JP2006243840A JP4765853B2 JP 4765853 B2 JP4765853 B2 JP 4765853B2 JP 2006243840 A JP2006243840 A JP 2006243840A JP 2006243840 A JP2006243840 A JP 2006243840A JP 4765853 B2 JP4765853 B2 JP 4765853B2
Authority
JP
Japan
Prior art keywords
lead frame
heat spreader
semiconductor device
gap
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006243840A
Other languages
Japanese (ja)
Other versions
JP2008066561A (en
Inventor
克彦 吉原
友彰 後藤
圭輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006243840A priority Critical patent/JP4765853B2/en
Publication of JP2008066561A publication Critical patent/JP2008066561A/en
Application granted granted Critical
Publication of JP4765853B2 publication Critical patent/JP4765853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40491Connecting portions connected to auxiliary connecting means on the bonding areas being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/8421Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/84214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Description

本発明は、パワー半導体モジュールなどを対象とした半導体装置の製造方法に関し、詳しくは半導体装置の構成部品間に配線したリードフレームのレーザ溶接方法に係わる。   The present invention relates to a method of manufacturing a semiconductor device intended for a power semiconductor module, and more particularly to a laser welding method of a lead frame wired between components of the semiconductor device.

頭記のパワー半導体モジュールは、電流容量の増大,小形化に伴い半導体チップが高電流密度で使用されることから、ハイパワー動作での信頼性を確保するには半導体チップの発生熱を効率よく放熱することが重要課題となっている。この観点から絶縁基板にマウントした半導体チップの配線構造について、在来のボンディングワイヤに代えて通電,伝熱容量の大きなストラップ状のリードフレーム(Cu箔)を半導体チップの主電極面に接合し、該リードフレームを伝熱経路として半導体チップの発生熱を上面側からも放熱させるようにした配線構造、およびこの配線構造においてリードフレームと配線用端子との間の接合にスポット溶接,超音波接合のほか、レーザ溶接法を用いるようにしたことが知られている(例えば、特許文献1参照)。   The power semiconductor modules mentioned above use semiconductor chips with high current density as current capacity increases and downsizing. Therefore, to ensure reliability in high power operation, the heat generated from the semiconductor chips is efficiently used. Dissipating heat is an important issue. From this point of view, regarding the wiring structure of the semiconductor chip mounted on the insulating substrate, a strap-like lead frame (Cu foil) having a large energization and heat transfer capacity is joined to the main electrode surface of the semiconductor chip instead of the conventional bonding wire, A wiring structure that uses the lead frame as a heat transfer path to dissipate the heat generated by the semiconductor chip from the top surface, and in this wiring structure, the joint between the lead frame and the wiring terminal includes spot welding and ultrasonic bonding. It is known that the laser welding method is used (see, for example, Patent Document 1).

また、半導体チップの上面側からの放熱性を高め、併せて温度分布の集中を緩和させる手段として、伝熱性の高い金属板で作られたヒートスプレッダを半導体チップの上面に伝熱的に接合し、このヒートスプレッダを介して半導体チップの中央部分に集中する発生熱を周囲に分散させ、チップ全体での温度分布を平均化させるようにした構成も知られている(例えば、特許文献2参照)。   In addition, as a means of improving the heat dissipation from the upper surface side of the semiconductor chip and also reducing the concentration of temperature distribution, a heat spreader made of a highly heat conductive metal plate is thermally transferred to the upper surface of the semiconductor chip, There is also known a configuration in which generated heat concentrated in the central portion of the semiconductor chip is distributed to the periphery via this heat spreader, and the temperature distribution in the entire chip is averaged (see, for example, Patent Document 2).

一方、前記したストラップ状のリードフレームをヒートスプレッダと組合せてチップ上面側からの放熱性を高めるようにした配線構造の開発も進められており、次にその半導体装置の組立構造を図3に示す。なお、図示はブリッジ回路になる多相インバータ装置の一相分に対応するIGBT (Insulated Gate Bipolar Transistor) モジュールである。
図3において、1は放熱用銅ベース、2A,2Bは左右に並べて銅ベース1に搭載した絶縁基板(セラミックス基板表,裏両面に銅箔を直接接合して導体パターンを形成したDCB(Direct Copper Bonding)基板)、2a〜2eは絶縁基板2A,2Bの上面に形成した導体パターン、3は絶縁基板2A,2Bの導体パターン2a,2dにマウントしたIGBTチップ、4はFWD(Free Wheel Diode)、5はIGBTチップ3およびFWD4の上面電極に重ねて接合した銅,アルミ板,あるいはMo,W等の焼結体に銅を含浸させた複合材で作られたヒートスプレッダ、6はヒートスプレッダ5の上面と絶縁基板2の導体パターン2b,2eとの間に配線したリードフレーム(Cu,Cu合金箔)、7は絶縁基板2Aと2Bの間に跨がって導体パターン2cと2d,および2bと2eとの間に配線したリードフレーム、8(+),8(-),8(o)は入力,出力端子として導体パターン2b,2c,2eの端部から引出したリードフレームである。
On the other hand, development of a wiring structure in which the above-described strap-like lead frame is combined with a heat spreader so as to improve heat dissipation from the upper surface side of the chip is also underway. Next, an assembly structure of the semiconductor device is shown in FIG. The figure shows an IGBT (Insulated Gate Bipolar Transistor) module corresponding to one phase of a multiphase inverter device that becomes a bridge circuit.
In FIG. 3, 1 is a copper base for heat dissipation, 2A and 2B are insulation substrates mounted on the copper base 1 side by side (DCB (Direct Copper Bonding) substrate), 2a to 2e are conductor patterns formed on the top surfaces of the insulating substrates 2A and 2B, 3 is an IGBT chip mounted on the conductor patterns 2a and 2d of the insulating substrates 2A and 2B, and 4 is an FWD (Free Wheel Diode), 5 is a heat spreader made of a composite material obtained by impregnating copper with an aluminum plate or a sintered body of Mo, W or the like, which is overlapped and joined to the upper surface electrodes of the IGBT chip 3 and the FWD 4, and 6 is an upper surface of the heat spreader 5. A lead frame (Cu, Cu alloy foil) wired between the conductive patterns 2b and 2e of the insulating substrate 2 and 7 extends between the insulating substrates 2A and 2B. Lead frames 8 (+), 8 (-), 8 (o) wired between c and 2d, and 2b and 2e are drawn out from the ends of the conductor patterns 2b, 2c and 2e as input and output terminals. Lead frame.

ここで、銅ベース1と絶縁基板2A,2Bの間、絶縁基板2A,2Bの導体パターン2a,2dとここに搭載したIGBTチップ3,FWD4との間、およびIGBTチップ2,FWD3とヒートスプレッダ5との間がそれぞれ半田9で接合されている。
これに対して、リードフレーム6,7,8を接合相手部材であるヒートスプレッダ5の上面,絶縁基板2A,2Bの各導体パターンに接合する方法として、次記のようにレーザ溶接法で重ね溶接するようにしており、その接合部(溶融部)を符号10で示す。
Here, between the copper base 1 and the insulating substrates 2A and 2B, between the conductor patterns 2a and 2d of the insulating substrates 2A and 2B and the IGBT chips 3 and FWD 4 mounted thereon, and between the IGBT chips 2 and FWD 3 and the heat spreader 5 Are joined by solder 9.
On the other hand, as a method of joining the lead frames 6, 7 and 8 to the upper surface of the heat spreader 5 which is a joining partner member and each conductor pattern of the insulating substrates 2A and 2B, lap welding is performed by laser welding as described below. The joint portion (melting portion) is indicated by reference numeral 10.

すなわち、図4はヒートスプレッダ5の上面にリードフレーム6を接合するレーザ溶接法の工程図であり、ヒートスプレッダ5の上面にリードフレーム6の接合部を重ね合わせた状態で、レーザ発振器(例えば半導体レーザ)11から光ファイバーを通じてレーザヘッダ12に導光したレーザ光13を集光し、レーザヘッダ12からリードフレーム6の接合部上面にスポット状に照射する。これにより、レーザ光13の光エネルギーが金属の自由電子に吸収されることで、リードフレーム6が局部的に加熱されて表面から溶融し、熱伝導的に溶融領域の深さがヒートスプレッダ5の表面まで拡大して図示のような溶接部10が形成されることは周知の通りである。なお、レーザ溶接箇所は、ヒートスプレッダ5,リードフレーム6の外形サイズ,通電容量に応じて、1〜6箇所に分散してスポット状に溶接する。
特開2004−96135号公報 特開2000−307058号公報(図1)
That is, FIG. 4 is a process diagram of a laser welding method in which the lead frame 6 is joined to the upper surface of the heat spreader 5, and a laser oscillator (for example, a semiconductor laser) with the joined portion of the lead frame 6 superimposed on the upper surface of the heat spreader 5. The laser beam 13 guided from 11 to the laser header 12 through the optical fiber is condensed and irradiated from the laser header 12 to the upper surface of the joint portion of the lead frame 6 in a spot shape. As a result, the light energy of the laser beam 13 is absorbed by the metal free electrons, so that the lead frame 6 is locally heated and melted from the surface, and the depth of the melted region is thermally conductive to the surface of the heat spreader 5. It is well known that the welded portion 10 as shown in the figure is formed by enlarging to the above. The laser welding locations are dispersed in 1 to 6 locations and welded in a spot shape according to the heat spreader 5, the outer size of the lead frame 6, and the current carrying capacity.
JP 2004-96135 A Japanese Patent Laid-Open No. 2000-307058 (FIG. 1)

ところで、図3に示した配線構造の半導体装置について、発明者等はリードフレーム6(厚さ0.5mmの無酸素銅板)の接合部をヒートスプレッダ6の上に重ね合わせ、リードフレーム6の上面側から半導体レーザ(波長:808nm)により、照射条件(パワー密度:0.1〜0.3MW/cm,照射時間:1〜4sec)を変えて溶接し、その溶接部10を検証したところ、溶接強度に大きなバラツキの生じることが認められた。 Incidentally, in the semiconductor device having the wiring structure shown in FIG. 3, the inventors superimpose the joint portion of the lead frame 6 (oxygen-free copper plate having a thickness of 0.5 mm) on the heat spreader 6, and the upper surface side of the lead frame 6. And welding with a semiconductor laser (wavelength: 808 nm) under different irradiation conditions (power density: 0.1 to 0.3 MW / cm 2 , irradiation time: 1 to 4 sec), and the welded portion 10 was verified. It was recognized that large variations in strength occurred.

すなわち、図5(a),(b)のようにリードフレーム6の接合部と接合相手部材であるヒートスプレッダ5との間を密着状態に重なり合わせて溶接すると、レーザ光照射地点に生じたリードフレーム6の溶融部からヒートスプレッダ5に伝熱して放散する放熱量が多くなってリードフレーム/ヒートスプレッダ間の接合界面に十分な熱エネルギーが蓄積されず、その結果として前記したレーザ照射条件では、(b)図で表すようにレーザ光照射によりリードフレーム6に生じた溶融部10の溶け込み深さが接合相手部材であるヒートスプレッダ5の領域まで成長せずにリードフレーム6/ヒートスプレッダ5間が溶接不良となる。また、前記とは逆にレーザ光のパワー密度を高く設定すると、溶融部の溶け込み深さが接合相手部材であるヒートスプレッダ5,絶縁基板2の導体パターン2aを貫通してしまい、そのためにセラミック基板,半導体チップ3,FWD4を破壊するといったダメージが発生することがある。   That is, as shown in FIGS. 5 (a) and 5 (b), when the welded portion of the lead frame 6 and the heat spreader 5 which is a joining partner member are overlapped and welded, the lead frame generated at the laser light irradiation point As a result, the amount of heat dissipated and dissipated from the melted part 6 to the heat spreader 5 is increased, and sufficient thermal energy is not accumulated at the joint interface between the lead frame and the heat spreader. As shown in the figure, the penetration depth of the melted portion 10 generated in the lead frame 6 by the laser beam irradiation does not grow to the region of the heat spreader 5 which is the joining partner member, and the weld between the lead frame 6 and the heat spreader 5 becomes poor. On the contrary, when the power density of the laser beam is set high, the penetration depth of the melted portion penetrates through the heat spreader 5, which is a bonding partner member, and the conductor pattern 2a of the insulating substrate 2, and therefore, the ceramic substrate, Damage such as destruction of the semiconductor chip 3 and the FWD 4 may occur.

本発明は上記の点に鑑みなされたものであり、前述したレーザ溶接の検証,考察結果を基に、配線部材であるリードフレームの接合部を接合相手部材であるヒートスプレッダ,絶縁基板の導体パターンの上に重ねてレーザ溶接する際に、低パワーのレーザ光照射で、溶接バラツキの少ない溶接が高い再現性で実現できるように改良した半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and based on the above-described verification and consideration results of laser welding, the joint portion of the lead frame, which is a wiring member, is connected to the heat spreader, which is a joint member, and the conductor pattern of the insulating substrate. An object of the present invention is to provide a method for manufacturing a semiconductor device which is improved so that welding with little welding variation can be realized with high reproducibility by laser beam irradiation with low power when superposed on the top.

上記目的を達成するために、本発明によれば、半導体装置の内部配線用リード材としてのリードフレームの接合部を接合相手部材の上に重ね合わせ、この状態で前記接合部の上面にレーザ光を照射して前記リードフレームと前記接合相手部材とを重ね溶接してなる半導体装置の製造方法において、
前記リードフレームの接合部裏面,該接合部裏面に対峙する接合相手部材の上面のいずれか一方,もしくは双方に、レーザ溶接部位と対応する位置に窪みを設けて空隙を形成した上で、リードフレームの上面にレーザ光を照射して溶接する(請求項1)。その空隙は具体的に次記のよう形態で形成する。
(1)請求項1において、リードフレームと接合相手部材との間に形成した空隙の適正な深さを約10μmとする(請求項2)。
(2)リードフレームへのレーザ光の吸収率を高めるために、リードフレームの母材表面にNiもしくはSnのメッキが施す(請求項3)。
In order to achieve the above object, according to the present invention, a joining portion of a lead frame as a lead material for internal wiring of a semiconductor device is overlaid on a joining partner member, and in this state, a laser beam is applied to the upper surface of the joining portion. In the manufacturing method of the semiconductor device formed by lap welding the lead frame and the joining partner member by irradiating
A lead frame is formed by forming a void by forming a recess at a position corresponding to the laser welding site on one or both of the bonding portion rear surface of the lead frame and the upper surface of the bonding partner member facing the bonding portion rear surface. A laser beam is applied to the upper surface of the substrate for welding (claim 1). The void is specifically formed in the following form.
(1) In claim 1, an appropriate depth of the gap formed between the lead frame and the bonding partner member is about 10 μm (claim 2).
(2) Ni or Sn plating is applied to the surface of the base material of the lead frame in order to increase the absorption rate of the laser beam into the lead frame.

上記のように、リードフレームの接合部上面に照射するレーザ光の照射部位に合わせてリードフレームの裏面と接合相手部材との間の接合界面に空隙を形成しておくことにより、この空隙が伝熱抵抗部となってリードフレームの溶融部から接合界面を経て接合相手部材に放散する放熱量が制限される。これにより、空隙部が熱溜まりとして機能し、リードフレームの溶融部から伝熱してきた熱エネルギーが十分に蓄積されるようになる。その結果、低パワーのレーザ照射でもリードフレームに生じた溶融部の深さがリードフレームの裏面まで十分に成長し、さらにリードフレームの溶融金属が前記空隙を埋めつくすように浸透してリードフレーム/接合相手部材間が広い面域で接合されるようになる。   As described above, a gap is formed at the bonding interface between the back surface of the lead frame and the bonding partner member in accordance with the irradiation site of the laser beam irradiated on the upper surface of the bonding portion of the lead frame. The amount of heat dissipated from the melted part of the lead frame to the joining partner member via the joining interface is limited. As a result, the gap functions as a heat reservoir, and the heat energy transferred from the melted portion of the lead frame is sufficiently accumulated. As a result, the depth of the melted portion generated in the lead frame is sufficiently grown to the back surface of the lead frame even with low-power laser irradiation, and the molten metal in the lead frame penetrates to fill the gaps. The joining partner members are joined in a wide area.

なお、この場合にリードフレームの接合部裏面/接合相手部材間の間に形成した空隙深さが極端に小さいと殆ど密着状態となって前記した熱溜まり効果が発揮できず、逆に空隙深さが極端に大きても溶融深さの成長が阻害される。かかる点、空隙深さを10μm程度に設定すれば前記の熱溜まり効果を有効に発揮でき、かつその間隙範囲を照射するレーザ光のスポット径よりも大きく設定することにより、広い接合面積で接合強度の高い溶接部を形成できることが実験結果から確認されている。   In this case, if the depth of the gap formed between the back surface of the joint portion of the lead frame / the mating member is extremely small, the contact state is almost inadequate and the above-described heat accumulation effect cannot be exhibited. Even if is extremely large, the growth of the melt depth is inhibited. In this respect, if the gap depth is set to about 10 μm, the above-mentioned heat accumulation effect can be effectively exhibited, and by setting the gap range larger than the spot diameter of the laser beam to irradiate, the bonding strength can be obtained with a wide bonding area. It has been confirmed from the experimental results that a high weld area can be formed.

したがって、リードフレーム/接合相手部材間の接合面にあらかじめ前記設定の空隙を形成した上で、これに合わせてリードフレームの上面に照射するレーザ光の照射条件(パワー密度,照射時間)を適正管理して溶接を行うことにより、低パワーで、しかも溶接部のバラツキを抑えた接合品質の高いレーザ溶接を再現性よく実現できる。   Therefore, after the above-mentioned gap is formed in the joint surface between the lead frame and the mating member, the irradiation conditions (power density, irradiation time) of the laser beam irradiated to the upper surface of the lead frame are appropriately managed accordingly. By performing welding, laser welding with low power and high joint quality with suppressed variation in the welded portion can be realized with good reproducibility.

以下、本発明の実施の形態を図1に示す参考例および図2に示す実施例に基づいて説明する。なお、図示実施例は図5と同様にリードフレーム6とヒートスプレッダ5との溶接部を対象としている。 Hereinafter, embodiments of the present invention will be described based on a reference example shown in FIG. 1 and an example shown in FIG . The illustrated embodiment is intended for the welded portion between the lead frame 6 and the heat spreader 5 as in FIG.

参考例Reference example

まず、本発明の参考例を図1(a)〜(c)により説明する。この参考例では、図3(a),(b)に示したIGBTチップ3,FWD4の上面電極に重ねて接合したヒートスプレッダ5とリードフレーム6(Cu)の接合部との間にスペーサ14を介挿し、該スペーサ14の板面に空隙穴14aを開口してリードフレーム/ヒートスプレッダ間に空隙gを形成している。 First, a reference example of the present invention will be described with reference to FIGS. In this reference example , a spacer 14 is interposed between the heat spreader 5 joined to the upper surface electrode of the IGBT chip 3 and FWD 4 shown in FIGS. 3A and 3B and the joined portion of the lead frame 6 (Cu). The gap 14a is opened in the plate surface of the spacer 14 to form a gap g between the lead frame and the heat spreader.

ここで、リードフレーム6は銅板(Cu)で作られた帯状の導体片で、半導体装置の電流容量などに応じてその導体幅,厚さを設定しており、本参考例では厚さ1mm,幅5mmの銅板を用いたが、他の実施例でも同様である。なお、リードフレーム6は厚さの薄い銅箔を使用することも可能であるが、後述する実施例1のようにリードフレーム6の接合部に形成する窪み状空隙の寸法精度を確保するために、剛性のある板状の銅板を用いる方が有利である。 Here, the lead frame 6 is a strip-shaped conductor piece made of a copper plate (Cu), and its conductor width and thickness are set according to the current capacity of the semiconductor device. In this reference example , the thickness is 1 mm, Although a copper plate with a width of 5 mm was used, the same applies to other examples. It is possible to use a thin copper foil for the lead frame 6, but in order to ensure the dimensional accuracy of the hollow space formed in the joint portion of the lead frame 6 as in Example 1 described later. It is more advantageous to use a rigid plate-like copper plate.

一方、スペーサ14は、リードフレーム6とヒートスプレッダ5との間に所望の空隙gを形成するための部材であり、リードフレーム6とヒートスプレッダ5との間に高さ10μm程度の空隙gを形成するのであれば、厚さ10μm程度の板材、線径が10μm程度である線材、あるいはリードフレーム5,ヒートスプレッダ6のいずれかの表面に形成した成層,突起なども適用できる。   On the other hand, the spacer 14 is a member for forming a desired gap g between the lead frame 6 and the heat spreader 5, and forms a gap g having a height of about 10 μm between the lead frame 6 and the heat spreader 5. If there are, a plate material having a thickness of about 10 μm, a wire material having a wire diameter of about 10 μm, or stratification and protrusions formed on any surface of the lead frame 5 and the heat spreader 6 can be applied.

また、スペーサ14の材質は、金属,耐熱性樹脂などの適用が可能であるが、リードフレーム/ヒートスプレッダ間の導電性,熱伝導性を勘案して、例えば銅,銅合金,アルミニウム,アルミニウム合金などが安価で好適である。なお、本参考例では厚さが約10μmの銅板(銅箔)を採用した。
なお、本参考例ではリードフレーム/ヒートスプレッダ間のスポット溶接箇所を4点として、前記スペーサ14の板面には4箇所に分散して空隙穴14aを開口し(図1(b)参照)、その空隙穴14aの穴径φはリードフレーム6の上面に照射するレーザビーム径の1/2〜2倍程度の範囲に設定した。これにより、ヒートスプレッダ5の上にスペーサ14を挟んでリードフレーム6を重ね合わせた状態では、リードフレーム/ヒートスプレッダ間に高さ10μm程度の空隙gが形成されることになる。
The material of the spacer 14 can be metal, heat-resistant resin, etc., but considering the conductivity between the lead frame / heat spreader and the thermal conductivity, for example, copper, copper alloy, aluminum, aluminum alloy, etc. Is inexpensive and suitable. In this reference example , a copper plate (copper foil) having a thickness of about 10 μm was employed.
In this reference example, there are four spot welds between the lead frame / heat spreader, and the spacer 14 is dispersed in four places on the plate surface to open the gap holes 14a (see FIG. 1B). The hole diameter φ of the air gap hole 14 a was set in a range of about 1/2 to 2 times the diameter of the laser beam irradiated on the upper surface of the lead frame 6. As a result, in a state where the lead frame 6 is superimposed on the heat spreader 5 with the spacer 14 interposed therebetween, a gap g having a height of about 10 μm is formed between the lead frame and the heat spreader.

この状態で前記の溶接箇所に位置を合わせてリードフレーム6の上面にレーザ光13を照射すると、リードフレーム5が表面から局部的に溶け込んでいく。また、このレーザ光照射の過程では接合相手部材であるヒートスプレッダ5との間に前記したスペーサ14の空隙gが形成されているために、溶融部からヒートスプレッダ5に逃げる放熱量は低く抑えられて深さ方向の溶け込みが進行する。そして、溶融部の溶け込み深さがリードフレーム6の板厚を超えると、溶融金属が前記空隙gに浸透してスペーサ14の空隙穴14aを埋めて、リードフレーム/ヒートスプレッダ間に図1(c)で表すような溶融部10が形成される。これにより、リードフレーム6とヒートスプレッダ5との間が広い面域で確実に接合され、低パワーで溶接バラツキの少ないレーザ溶接が達成される。   In this state, when the laser beam 13 is irradiated on the upper surface of the lead frame 6 with the position being aligned with the above-mentioned welding location, the lead frame 5 melts locally from the surface. Further, in the process of laser light irradiation, since the gap g of the spacer 14 is formed between the heat spreader 5 which is a bonding partner member, the amount of heat released from the melted portion to the heat spreader 5 is suppressed to a low level. Melting in the vertical direction proceeds. When the penetration depth of the melted part exceeds the plate thickness of the lead frame 6, the molten metal penetrates into the gap g and fills the gap hole 14a of the spacer 14, and between the lead frame and the heat spreader, FIG. As shown, a melted portion 10 is formed. Thereby, the lead frame 6 and the heat spreader 5 are reliably joined in a wide surface area, and laser welding with low power and less welding variation is achieved.

なお、レーザ溶接は接合部材と非接触式にレーザ光を照射するので、前記したスペーサ14はリードフレーム6とヒートスプレッダ5との間に重ね合わせるだけで固着する必要なない。
この参考例では、上記のようにスペーサ14に空隙穴14aを穿孔して空隙gをその周囲が閉じた「室」の状態で形成している。このようにすることで、レーザ光照射による熱が空隙部に蓄熱され、この空隙を溶融部10で満たすようになるので大きな接合面積を確保する上で効果的である。
Since laser welding irradiates laser light in a non-contact manner with the joining member, the above-described spacer 14 does not need to be fixed only by being overlapped between the lead frame 6 and the heat spreader 5.
In this reference example , as described above, the gap hole 14a is formed in the spacer 14, and the gap g is formed in a "chamber" state in which the periphery is closed. By doing in this way, the heat | fever by laser beam irradiation is heat-accumulated in a space | gap part, and since this space | gap will be filled with the fusion | melting part 10, it is effective in ensuring a big joining area.

一方、前記空隙gの高さ(例えば、10μm程度)はリードフレーム6の板幅に比べて非常に小さく、また一箇所の接合箇所に照射するレーザ光の照射時間も10msec程度で非常に短い。したがって、空隙gを図示例のスペーサ14のように周囲が閉じた「室」とせずに、空隙に周囲壁がなくてもレーザ照射中にその熱が空隙の側方に拡散してしまうことは殆どない。そこで、板材のスペーサ14に代えて、例えば線材のスペーサを接合箇所から外れた位置に並べてリードフレーム6とヒートスプレッダ5との間に隙間を確保しても、この隙間が前記空隙と同様に熱溜まりとして有効に機能し、再現性よく大きな接合面積を確保できる。なお、スペーサ14は上記のものに限定されるものではなく、リードフレーム/ヒートスプレッダ間に所望高さの空隙gを形成できるものであれば、その形態に関係なく採用できる。   On the other hand, the height of the gap g (for example, about 10 μm) is very small as compared with the plate width of the lead frame 6, and the irradiation time of the laser beam applied to one joining portion is as short as about 10 msec. Therefore, the gap g does not become a “chamber” whose periphery is closed like the spacer 14 in the illustrated example, and even if there is no surrounding wall in the gap, the heat diffuses to the side of the gap during laser irradiation. Almost no. Therefore, instead of the plate spacer 14, for example, even if a wire spacer is arranged at a position deviated from the joining location and a gap is secured between the lead frame 6 and the heat spreader 5, this gap accumulates heat similarly to the gap. As a result, the large bonding area can be secured with good reproducibility. The spacer 14 is not limited to the above, and any spacer can be used as long as it can form a gap g having a desired height between the lead frame and the heat spreader.

次に、本発明の請求項1に対応する実施例を図2に示す。この実施例では、先記参考例のスペーサ14を使用する代わりに、レーザ溶接の箇所に対応してリードフレーム6の裏面側にプレス,あるいはエッチング加工を施して窪み状の凹部6aを形成しておき、リードフレーム6をヒートスプレッダ5の上面に重ね合わせた状態で両者の間に空隙gを確保するようにしている。なお、凹部6aは、図1のスペーサ14に形成した空隙穴14aと同様にその深さを10μm程度,凹部径φをレーザビーム径の1/2〜2倍程度に設定する。 Next, an embodiment corresponding to claim 1 of the present invention is shown in FIG. In this embodiment, instead of using the spacer 14 of the above-mentioned reference example , a depression or recess 6a is formed by pressing or etching on the back side of the lead frame 6 corresponding to the location of laser welding. In addition, in the state where the lead frame 6 is superposed on the upper surface of the heat spreader 5, a gap g is secured between them. The recess 6a is set to have a depth of about 10 μm and a recess diameter φ of about 1/2 to 2 times the laser beam diameter in the same manner as the gap hole 14a formed in the spacer 14 of FIG.

これにより、レーザ溶接時には前記凹部6aが参考例の空隙穴14aと同じように熱溜まりとして機能し、リードフレーム/ヒートスプレッダ間を低パワーでバラツキなしにレーザ溶接することができる。
なお、図2ではリードフレーム6の裏面に凹部6aを形成しているが、これに代わる応用実施例としてヒートスプレッダ5の上面に同様な窪み状の凹部を形成するか、あるいはリードフレーム6の裏面とヒートスプレッダ5の上面の双方に浅い凹部を形成しても同様な効果を奏することができる。
Thereby, at the time of laser welding, the concave portion 6a functions as a heat reservoir in the same manner as the gap hole 14a of the reference example , and laser welding can be performed between the lead frame and the heat spreader with low power and no variation.
In FIG. 2, the recess 6 a is formed on the back surface of the lead frame 6. However, as an alternative application example, a similar recess is formed on the upper surface of the heat spreader 5, or the back surface of the lead frame 6 is Even if shallow recesses are formed on both upper surfaces of the heat spreader 5, the same effect can be obtained.

なお、前記の各実施例において、レーザ光13を照射するリードフレーム(Cu,Cu合金)6の表面にNiメッキを施してNiもしくはSnメッキを施しておくことにより、レーザ光13の吸収率が大幅に向上するようになる。すなわち、リードフレーム6の母材であるCuに照射したレーザ光13(半導体レーザ(波長0.808μm))の吸収率は高々約15%であるのに対して、Ni,Snのメッキを施すと、レーザ光の吸収率は約30%まで改善され、これにより低パワーでのレーザ溶接が可能となる。   In each of the above-described embodiments, the surface of the lead frame (Cu, Cu alloy) 6 that irradiates the laser beam 13 is Ni-plated and Ni or Sn-plated so that the absorption rate of the laser beam 13 is increased. It will be greatly improved. That is, the absorption rate of the laser beam 13 (semiconductor laser (wavelength: 0.808 μm)) irradiated to Cu which is the base material of the lead frame 6 is about 15% at most, but when Ni and Sn are plated. The absorption rate of the laser beam is improved to about 30%, which enables laser welding with low power.

また、前記の各実施例ではリードフレーム6/ヒートスプレッダ5間の溶接について述べたが、リードフレーム6の接合相手部材が図7に示した絶縁基板2A,2Bの導体パターンであっても同様な効果を奏することは勿論である。
また、このレーザ溶接方法に適用するレーザ光は、各実施例で述べた半導体レーザ(波長:0.808μm)に限定されるものではなく、YAGレーザ,COレーザなどでも同様な効果が得られることが確認されている。
In each of the above-described embodiments, the welding between the lead frame 6 and the heat spreader 5 has been described. However, the same effect can be obtained even when the mating member of the lead frame 6 is the conductor pattern of the insulating substrates 2A and 2B shown in FIG. Of course.
The laser beam applied to this laser welding method is not limited to the semiconductor laser (wavelength: 0.808 μm) described in each example, and a similar effect can be obtained with a YAG laser, a CO 2 laser, or the like. It has been confirmed.

本発明の参考例に対応するリードフレーム/ヒートスプレッダ間のレーザ溶接法の説明図で、(a)はレーザ光の照射状態を模式的に表す側面図、(b)は空隙用スペーサの平面図、(c)はレーザ溶接後の接合状態を表す断面図It is explanatory drawing of the laser welding method between the lead frame / heat spreader corresponding to the reference example of this invention, (a) is a side view which represents typically the irradiation state of a laser beam, (b) is a top view of the spacer for space | gap, (C) is sectional drawing showing the joining state after laser welding 本発明の実施例1に対応するリードフレーム/ヒートスプレッダ間のレーザ溶接法の説明図でレーザ光の照射状態を模式的に表す側面図、The side view which represents typically the irradiation state of a laser beam with explanatory drawing of the laser welding method between the lead frame / heat spreader corresponding to Example 1 of this invention, 本発明の実施対象となる半導体装置の組立構造図で、(a)は平面図、(b),(c)はそれぞれ(a)の矢視A−A,B−Bに対応する断面側視図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an assembly structure diagram of a semiconductor device to be implemented by the present invention, where (a) is a plan view, and (b) and (c) are cross-sectional side views corresponding to arrows AA and BB of (a), respectively. Figure レーザ光照射によるリードフレーム/ヒートスプレッダ間の溶接工程図Laser welding process between lead frame and heat spreader 従来のレーザ溶接法の説明図で、(a),(b)はそれぞれレーザ光の照射状態、溶接接合部を表す模式図It is explanatory drawing of the conventional laser welding method, (a), (b) is a schematic diagram showing the irradiation state of a laser beam, and a welding joint part, respectively.

2A,2B 絶縁基板
2a〜2e 導体パターン
3 IGBTチップ(半導体チップ)
4 FWD(半導体チップ)
5 ヒートスプレッダ
5a 粗面(上面)
6〜8 リードフレーム
6a 凹部
10 溶融部
13 レーザ光
14 空隙形成用スペーサ
14a 空隙穴
2A, 2B Insulating substrate 2a-2e Conductor pattern 3 IGBT chip (semiconductor chip)
4 FWD (semiconductor chip)
5 Heat spreader 5a Rough surface (upper surface)
6 to 8 Lead frame 6a Concave portion 10 Melting portion 13 Laser beam 14 Spacer 14a for air gap formation Air gap hole

Claims (3)

半導体装置の内部配線用リード材としてのリードフレームの接合部を接合相手部材の上に重ね合わせ、この状態で前記接合部の上面にレーザ光を照射して前記リードフレームと前記接合相手部材とを重ね溶接してなる半導体装置の製造方法において、
前記リードフレームの接合部裏面,該接合部裏面に対峙する接合相手部材の上面のいずれか一方,もしくは双方に、レーザ溶接部位と対応する位置に窪みを設けて空隙を形成した上で、リードフレームの上面にレーザ光を照射して溶接することを特徴とする半導体装置の製造方法。
A joint portion of a lead frame as a lead material for internal wiring of a semiconductor device is overlaid on a joint partner member, and in this state, the upper surface of the joint portion is irradiated with laser light to bond the lead frame and the joint partner member. In the manufacturing method of the semiconductor device formed by lap welding,
Joint back side of the lead frame, either one of the upper surface of the joint mating member facing the the joint portion rear surface, or both, after forming a space by providing a recess in a position corresponding to the laser welding site, the lead frame A method for manufacturing a semiconductor device, wherein the upper surface of the semiconductor device is welded by irradiating a laser beam.
請求項1に記載の製造方法において、リードフレームと接合相手部材との間に形成した空隙は、その深さが約10μmであることを特徴とする半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1 , wherein the gap formed between the lead frame and the bonding partner member has a depth of about 10 [mu] m. 請求項1または2に記載の製造方法において、リードフレームの母材表面がNiもしくはSnのメッキが施されていることを特徴とする半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein the base material surface of the lead frame is plated with Ni or Sn.
JP2006243840A 2006-09-08 2006-09-08 Manufacturing method of semiconductor device Active JP4765853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243840A JP4765853B2 (en) 2006-09-08 2006-09-08 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243840A JP4765853B2 (en) 2006-09-08 2006-09-08 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008066561A JP2008066561A (en) 2008-03-21
JP4765853B2 true JP4765853B2 (en) 2011-09-07

Family

ID=39288988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243840A Active JP4765853B2 (en) 2006-09-08 2006-09-08 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4765853B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946412B1 (en) 2008-04-02 2010-03-08 주식회사 엘티에스 A strap bonding apparatus for rfid tag using a dual-head laser
US9136209B2 (en) * 2011-01-07 2015-09-15 Fuji Electric Co., Ltd. Semiconductor device with specific lead frame for a power semiconductor module
US9468993B2 (en) * 2011-09-15 2016-10-18 Fuji Electric Co., Ltd. Method for producing semiconductor device
JP6475918B2 (en) * 2014-02-05 2019-02-27 ローム株式会社 Power module
EP3480846A1 (en) * 2017-11-03 2019-05-08 Infineon Technologies AG Semiconductor arrangement with reliably switching controllable semiconductor elements
JP7005449B2 (en) * 2018-07-23 2022-01-21 三菱電機株式会社 Semiconductor device, power conversion device, manufacturing method of semiconductor device, and manufacturing method of power conversion device
WO2020105476A1 (en) * 2018-11-22 2020-05-28 ローム株式会社 Semiconductor device
JP7396118B2 (en) 2020-02-28 2023-12-12 富士電機株式会社 semiconductor module
US20230299036A1 (en) * 2020-08-05 2023-09-21 Rohm Co., Ltd. Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160889B2 (en) * 2003-09-30 2008-10-08 富士通株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2008066561A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4765853B2 (en) Manufacturing method of semiconductor device
JP6578900B2 (en) Semiconductor device and manufacturing method thereof
JP6686691B2 (en) Electronic device
JP4764983B2 (en) Manufacturing method of semiconductor device
US8779584B2 (en) Semiconductor apparatus
JP2015119072A (en) Laser welding method, laser welding jig, and semiconductor device
JP4858238B2 (en) Laser welding member and semiconductor device using the same
JP4775327B2 (en) Manufacturing method of semiconductor device
CN108604579B (en) Electronic device and method for manufacturing the same
WO2017154289A1 (en) Semiconductor device and semiconductor device manufacturing method
JP6269458B2 (en) Semiconductor device and manufacturing method thereof
CN109075149A (en) The manufacturing method of semiconductor device and semiconductor device
WO2013039099A1 (en) Method for producing semiconductor device, and semiconductor device produced using production method
JP4023032B2 (en) Mounting structure and mounting method of semiconductor device
JP5119139B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR101956983B1 (en) Power module and manufacturing method therefor
JP7319295B2 (en) semiconductor equipment
JP2019133965A (en) Semiconductor device and manufacturing method thereof
JP2007305620A (en) Manufacturing method of semiconductor device
JP2020198388A (en) Semiconductor device and method for manufacturing the same
JP7390826B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2007287991A (en) Manufacturing method of semiconductor device
JP2012094643A (en) Semiconductor device and manufacturing method thereof
JP2022185936A (en) Semiconductor device
WO2017208941A1 (en) Semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250