JP4023032B2 - Mounting structure and mounting method of semiconductor device - Google Patents

Mounting structure and mounting method of semiconductor device Download PDF

Info

Publication number
JP4023032B2
JP4023032B2 JP15574599A JP15574599A JP4023032B2 JP 4023032 B2 JP4023032 B2 JP 4023032B2 JP 15574599 A JP15574599 A JP 15574599A JP 15574599 A JP15574599 A JP 15574599A JP 4023032 B2 JP4023032 B2 JP 4023032B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor chip
chip
semiconductor device
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15574599A
Other languages
Japanese (ja)
Other versions
JP2000349207A (en
Inventor
健史 渡辺
和仁 野村
平井  康義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP15574599A priority Critical patent/JP4023032B2/en
Publication of JP2000349207A publication Critical patent/JP2000349207A/en
Application granted granted Critical
Publication of JP4023032B2 publication Critical patent/JP4023032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

【0001】
【発明の属する技術分野】
本発明は、大電力用半導体デバイスの電極との接合に用いられる半導体装置の実装構造及び実装方法に関する。
【0002】
【従来の技術】
従来、半導体デバイスの電極と電気配線等との電気的接続は、図4に示すように、Siチップ51に設けられた複数の電極52のそれぞれにAlワイヤ53を図中矢印で示すように、1つ1つAlワイヤ53をワイヤボンディングすることによって行なっている。例えば、Siチップ51に備えられた電極52にφ200μm以上のAlワイヤ53を用いたワイヤボンディングが広く使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記したように、大電力用半導体デバイスにAlワイヤ53による接続方法を用いると、Alワイヤ53に大電流を流してSi素子が発熱したときに、Alワイヤ53とSiチップ51との熱膨張係数差によりボンディング部分に熱応力が生じ、ボンディング部周囲から中心部に向かって亀裂が進展し、接続不良となるという問題が発生しうる。
【0004】
近年では、パワーデバイスとして、さらに大電流化が要求されるようになっているため、Siチップ51に接続するAlワイヤ53の多本数化、大径化が必要とされるのであるが、このような場合に特に上記問題が発生しやすくなる。
【0005】
また、Siチップ51の小型化に応じて、単位面積当たりの電流密度が大きくなるため、より発熱し、ワイヤボンディングの冷熱耐久寿命はさらに短くなる傾向にある。
【0006】
本発明は上記問題に鑑みて成され、大電力用半導体デバイスの電極との電気的な接合部位における冷熱耐久性を向上させることを目的とする。
【0007】
【課題を解決するための手段】
上記問題を解決すべく、請求項1に記載の発明においては、一面側に電極(2)が形成されてなるSiにて構成された半導体チップ(1)と、電極上に配置されたバンプ部(6)と、半導体チップのうち電極が形成されている面と対向する面を有してなり、バンプ部と接合されて、該バンプ部を介して電極と電気的に接合された接合部材(4)と、接合部材に接続されたリード(3)と、半導体チップのうち、電極が設けられた面の反対側に配置された第1の放熱板(8)とを有して構成され、接合部材と第1の放熱板とは、半導体チップの材料と熱膨張係数が近似するように、接合部材の材料はMo、第1の放熱板はAlNで構成され、接合部材と第1の放熱板とは同等の厚みで構成されていると共に、接合部材のうち、バンプ部と接する部位は、突起部(4a)となっていることを特徴とする。
このように、接合部材のうち、バンプ部と接する部位は、突起部(4a)にすると好ましい。
【0008】
さらに、半導体チップを接合部材と第1の放熱板とで挟み込んだ構成にすると共に、これら接合部材と放熱板とを半導体チップと熱膨張係数が近似した材質となるように接合部材の材料をMoとすると共に第1の放熱板をAlNで構成することにより、熱膨張係数差に基づく熱応力の発生を抑制することができる。このため、半導体チップとの電気的な接合部における冷熱耐久性を向上させることができる。
この場合、接合部材と第1の放熱板とを同等の厚みにすると、熱膨張係数差に基づく熱応力の発生を抑制することができる。
【0009】
請求項に記載の発明においては、接合部材を挟んで、半導体チップの反対側には、第2の放熱板(7)が配置されていることを特徴としている。
【0010】
このように、第1、第2の熱板で半導体チップを挟むようにすれば、第1、第2の放熱板のそれぞれで熱を放射させることができるため、半導体チップの高温化を抑制することができる。
【0011】
例えば、請求項に示すように、第1、第2の放熱板の外周を、枠部材(18)で囲い、第1、第2の放熱板及び枠部材を、これらの間の液密性が保持されるように組付ければ、半導体装置を水等の冷却液中に入れ、冷却することも可能である。
【0012】
なお、請求項1ないしに記載の半導体装置の実装構造は、請求項に示すように、半導体チップに100A/cm2以上の電流を流すような大電流用デバイスに用いると好適である。
【0013】
また、請求項1ないしに示す構造は、請求項に示すように、半導体チップ(1)と接合部材(4)を備えたリード(3)とを用意し、電極と接合部材の間にバンプ部を配置したのち、該バンプ部を介して電極と接合部材とを接合し、接合部材のうちバンプ部と接する部位を突起部(4a)とすることにより製造される。
この場合、半導体チップのうち電極が形成された面の反対側に、接合部材と同等の厚みを有して構成されてなる放熱板(8)を配置すると好ましい。このような放熱板(8)をAlNにて構成することができる。
【0014】
この場合、請求項に示すように、半導体チップ上に接合部材を備えたリードを搭載し、接合部材を超音波振動させることによって行なうことによって、接合部材と電極とを接合してもよい。
【0015】
参考実施形態)
上記実施形態では、Zn−Snはんだ6を介してリード3の先端位置に備えられた接合部材4とSiチップ1上の各エミッタ電極2との電気的接合を行なったが、この他の方法を用いて行なってもよい。
【0016】
なお、上記括弧内の符号は、後述する実施形態における図中に表わされる符号との対応関係を示している。
【0017】
【発明の実施の形態】
図1に、本発明の一実施形態を適用した大電力用デバイスの実装構造の断面構成を示す。以下、図1に基づき上記実装構造について説明する。
【0018】
図1に示すSiチップ1には、電流がSiチップ1の表裏面方向に向かって流れるいわゆる縦型構造のIGBTが大電力用デバイスとして形成されている。このIGBTは複数のユニットセルで構成されている。そして、Siチップ1の表面には、複数のユニットセルからなるIGBTのそれぞれに電気的に接続された複数の電極2が形成されている。これら複数の電極2はAlで構成されており、IGBTのエミッタ電極を構成している。以下、電極2をエミッタ電極という。
【0019】
そして、エミッタ電極2に接続される引き出し用のリード3の先端、つまりエミッタ電極2との接続部位には、Siチップ1の表面と対向する面を有する接合部材4が配置されている。この接合部材4は、AlよりもSiと熱膨張係数が近似しているMoで構成されている。
【0020】
接合部材4のうちSiチップ1と対向する面には、複数のエミッタ電極2のそれぞれと対応する位置にそれぞれ突起部4aが備えられている。これら突起部4aの先端位置にはNi/Auメッキ5が施されており、このNi/Auメッキ5の表面にはZn−Snはんだ6が配置されている。
【0021】
そして、このZn−Snはんだ6を介して、複数のエミッタ電極2と接合部材4が電気的に接合された状態となっている。このZn−Snはんだ6に含まれているZnはAlに対して拡散定数が大きく、電気伝導性が良好な金属である。ただし、Znの融点が420℃と高温であるため、Snとの合金とすることによってZn−Snの共晶温度198℃まで融点温度が低下するようにしている。
【0022】
このように、エミッタ電極2からの引き出し用のリード3は、接合部材4を介してSiチップ1上のエミッタ電極2と電気的に接合されるように構成されている。
【0023】
さらに、リード3のうち接合部材4が配置された側の反対側には、AlNで構成された放熱板7が備えられている。このように、Siチップ1の表面側においては、放熱板7を介して、Siチップ1が発した熱が放射できるようになっている。
【0024】
一方、Siチップ1の裏面側には、AlNで構成された放熱板8が配置されている。この放熱板8は、接合部材4と略同等の厚みで構成されている。この放熱板8の表面には、金属箔配線9がパターニングされており、Siチップ1の裏面ははんだ10を介して金属箔配線9に電気的に接続された状態となっている。そして、金属箔配線9には取り出し用のリード11が接続されている。このように、Siチップ1の裏面側においては、放熱板8を介して、Siチップ1が発した熱が放射できるようになっている。
【0025】
さらに、Siチップ1の表面側にはまた、IGBTのゲート電極12が形成されている。このゲート電極12は、Zn−Snはんだ13を介して配線部14に接続されている。この配線部14はSiチップ1の裏面側に接続された放熱板8方向に取り回され、はんだ15を介して放熱板8上にパターニングされた金属箔配線16に電気的に接続されている。そして、金属箔配線16には取り出し用のリード17が接続されている。
【0026】
そして、Siチップ1の表面側に配置された放熱板7と、Siチップ1の裏面側に配置された放熱板8は同様の形状(例えば、4角形)で構成されており、これら放熱板7、8の外周を樹脂ケース18で囲んで、Siチップ1の防水がなされるようになっている。
【0027】
なお、樹脂ケース18には、部分的に開口部が形成されており、この開口部を通じて各リード3、11、17が樹脂ケース18の外部に引き出せるようになっている。
【0028】
このように構成された大電力用デバイスの実装構造は、例えば、放熱板7、8を冷却液に浸すことで、放熱板7、8から冷却液へ放熱が行われるように構成される。このとき、Siチップ1の表裏面の両面において、放熱板7、8を配置し、両面から放熱が行われるようにしているため、片面のみから行われる場合に比して放熱効率を良好にすることができる。これにより、Siチップ1に例えば100A/cm2以上の大電流を流した時に、Siチップ1が発熱しても、Siチップ1が高温にならないようにすることができる。
【0029】
このように、Siチップ1の高温化を抑制することによって、Siチップ1が高温となることによって発生するSiチップ1との電気的接合が行われる部分の熱膨張係数の相違による熱応力の発生をより低減することができる。
【0030】
さらに、本実施形態の実装構造においては、Siチップ1と接合される基板として、接合部材4と放熱板8を用いている。これら、接合部材4と放熱板8は、それぞれMoとAlNという、Siと熱膨張係数が近似する物質で構成しているため、Siチップ1との熱膨張係数の相違による熱応力が発生しにくくできる。このため、熱応力による接続部位の剥離が発生し難くすることができる。
【0031】
ただし、MoやAlNの熱膨張係数がSiの熱膨張係数と近似しているとしても熱応力を完全に抑制することはできない。このため、本実施形態では、接合部材4と放熱板8によってSiチップ1を挟み込んだサンドイッチ構造とすることによって、Siチップ1の表裏に同等の熱応力が発生するようにでき、互いに打ち消し合うようにできるため、Siチップ1と接合部材4若しくは放熱板8との熱膨張係数の相違から生じるバイメタル効果による反りをさらに抑制することができる。
【0032】
次に、本実施形態における大電流用デバイスの実装工程について説明する。この実装工程を図2に示し、この図に基づいて説明する。
【0033】
まず、複数のユニットセルからなるIGBT、及びこのIGBTのエミッタ電極2が形成されたSiチップ1を用意すると共に、先端位置に接合部材4が配置されたリード3を用意する。
【0034】
この接合部材4は、Siチップ1と対向する面を有している。この面のうち、Siチップ1のエミッタ電極2のそれぞれと対応する位置には、突起部4aが形成されており、この突起部4aの先端をNi/Auメッキ5を施す。このように、Niメッキを施すことにより、Zn−Snはんだ6が濡れ易いようにできる。また、このようにNiメッキのみでなく、Auメッキも施すことにより、Niメッキの酸化を防止することができる。
【0035】
そして、各突起部4aの先端にZn−Snはんだ6を塗布したのち、対応し合う突起部4aとエミッタ電極2のそれぞれが一致するように位置合わせして、リード3をSiチップ1上に搭載する。
【0036】
そして、Zn−Snの共晶温度以上の温度、例えば210〜250℃の熱処理を施し、Zn−Snはんだ6を溶融する。これにより、エミッタ電極2及びNi/Auメッキ5にZn−Snはんだ6が濡れ広がり、リード3とSiチップ1が接合される。
【0037】
この後、表面に金属箔配線9、16をパターニングした放熱板8を用意し、はんだ10を介して放熱板8上の金属箔配線9とSiチップ1の裏面とを接続すると共に、配線部14やはんだ15を介してSiチップ1表面側に形成されたゲート電極12と金属箔配線16とを接合する。
【0038】
接合手順は、はんだ材質によりSiチップ1と接合部材4を接合後、Siチップ1と放熱板8、Siチップ1と配線部14を接合しても、Siチップ1と放熱板8を接合後、Siチップ1と接合部材4、Siチップ1と配線部14を接合しても、Siチップ1と放熱板8、Siチップ1と接合部材4、Siチップ1と配線部14を同時に接合してもよい。
【0039】
そして、金属箔配線9、16にリード11、17を接続すると共に、Siチップ1の表面側に配置されたリード3上に放熱板7を固定し、さらに放熱板7、8の外周を樹脂ケース18で囲むことによって本実施形態に示す実装構造が完成する。
【0040】
(他の実施形態)
上記実施形態では、Zn−Snはんだ6を介してリード3の先端位置に備えられた接合部材4とSiチップ1上の各エミッタ電極2との電気的接合を行なったが、この他の方法を用いて行なってもよい。
【0041】
例えば、図3に示すように、接合部材4のうちSiチップ2と対向する面に、各エミッタ電極2のそれぞれと対応する位置に軟金属20を配置する。この軟金属20としては、例えば、Alを採用することができる。そして、各エミッタ電極2と各軟金属20とを位置合わせして、リード3をSiチップ1上に搭載する。その後、図中の矢印に示すように、超音波振動を加えることによって軟金属20とエミッタ電極2とを擦り合わせることで、これらを電気的に接合する事も可能である。
【0042】
なお、このとき、接合部分全体を360℃程度に加熱すれば、振動幅、振動速度を下げることができるため、振動によるSiチップ1のダメージを低減することができる。また、軟金属20をAl等で形成する場合、軟金属20の両接合面をAu膜で覆ったり、Au微粉末で覆ったりすることによって、よりエミッタ電極2や接合部材4と接合され易くすることもできる。
【0043】
また、接合部材4に突起部4aを形成しなくても接合部材4とSiチップ1とを接合する事も可能である。
【0044】
例えば、Siチップの表面に備えられるエミッタ電極をSiチップの表面から突出するように構成し、接合部材にZn−Snはんだを用いてはんだ付けすることができる。また、SiチップのAl電極上にAuバンプあるいはCuバンプを配置し、超音波接合によってAl電極上の各バンプと接合部材とを接合するようにしてもよい。また、SiチップのAl電極上にAuバンプ等を配置したのち、Auバンプなどに接合部材を押し付け、加熱処理を施す事で、各バンプと接合部材とを接合してもよい。
【図面の簡単な説明】
【図1】 本発明の一実施形態における大電流用デバイスの実装構造を表わす断面図である。
【図2】 図1の大電流用デバイスの実装方法を示す図である。
【図3】 他の実施形態における大電流用デバイスの実装構造を表わす断面図である。
【図4】 従来における大電流用デバイスの実装構造を表わす断面図である。
【符号の説明】
1…Siチップ、2…エミッタ電極、3、11、17…リード、3…接合部材、4a…突起部、5…Ni/Auメッキ、6、13…Zn−Snはんだ、7、8…放熱板、9、16…金属箔配線、10、15…はんだ、12…ゲート電極、14…配線部、18…樹脂ケース。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mounting structure and a mounting method for a semiconductor device used for bonding to an electrode of a high power semiconductor device.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, the electrical connection between the electrode of the semiconductor device and the electric wiring or the like is such that an Al wire 53 is indicated by an arrow in each of the plurality of electrodes 52 provided on the Si chip 51. This is performed by wire bonding of Al wires 53 one by one. For example, wire bonding using an Al wire 53 with a diameter of 200 μm or more is widely used for the electrode 52 provided on the Si chip 51.
[0003]
[Problems to be solved by the invention]
However, as described above, when the connection method using the Al wire 53 is used for the high power semiconductor device, when the Si element generates heat when a large current is passed through the Al wire 53, the heat between the Al wire 53 and the Si chip 51 is generated. A thermal stress is generated in the bonding portion due to the difference in expansion coefficient, and a crack may develop from the periphery of the bonding portion toward the center portion, resulting in a problem of poor connection.
[0004]
In recent years, as a power device is required to have a larger current, it is necessary to increase the number of Al wires 53 connected to the Si chip 51 and increase the diameter. In particular, the above problem is likely to occur.
[0005]
Further, as the Si chip 51 is downsized, the current density per unit area increases, so that heat is generated more and the thermal durability life of wire bonding tends to be further shortened.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to improve the thermal durability at an electrical junction site with an electrode of a high power semiconductor device.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention according to claim 1, a semiconductor chip (1) made of Si in which an electrode (2) is formed on one surface side, and a bump portion arranged on the electrode (6) and a bonding member having a surface facing the surface on which the electrode is formed in the semiconductor chip, bonded to the bump portion, and electrically bonded to the electrode via the bump portion ( 4), a lead (3) connected to the joining member, and a first heat radiating plate (8) disposed on the opposite side of the surface of the semiconductor chip where the electrodes are provided, The bonding member and the first heat radiating plate are made of Mo and the first heat radiating plate is made of AlN so that the thermal expansion coefficient is similar to that of the semiconductor chip material. with the plate is composed of equal thickness, of the bonding member in contact with the bump portion Position is characterized by that a protrusion (4a).
As described above, it is preferable that a portion of the bonding member that contacts the bump portion is a protrusion (4a).
[0008]
Further, the semiconductor chip is sandwiched between the joining member and the first heat radiation plate, and the material of the joining member is set to Mo so that the joining member and the heat radiation plate are made of a material whose thermal expansion coefficient approximates that of the semiconductor chip. In addition, by forming the first heat radiating plate with AlN, it is possible to suppress the generation of thermal stress based on the difference in thermal expansion coefficient. For this reason, it is possible to improve the thermal durability at the electrical junction with the semiconductor chip.
In this case, a junction member and a first heat radiating plate when the equivalent thickness, it is possible to suppress the generation of thermal stress due to thermal expansion coefficient difference.
[0009]
The invention according to claim 2 is characterized in that a second heat radiating plate (7) is disposed on the opposite side of the semiconductor chip with the joining member interposed therebetween.
[0010]
Thus, first, if to sandwich the semiconductor chip in the second discharge hot plate, first, since it is possible to radiate heat in each of the second heat radiating plate, suppressing the high temperature of the semiconductor chip can do.
[0011]
For example, as shown in claim 3 , the outer periphery of the first and second heat radiating plates is surrounded by a frame member (18), and the first and second heat radiating plates and the frame member are liquid-tight between them. If the semiconductor device is assembled so as to be held, it is possible to cool the semiconductor device by putting it in a coolant such as water.
[0012]
Incidentally, the mounting structure of a semiconductor device according to claims 1 to 5, as shown in claim 6, it is preferable to use a large current for devices such as flow 100A / cm 2 or more current into the semiconductor chip.
[0013]
In the structure shown in claims 1 to 6 , as shown in claim 7 , a semiconductor chip (1) and a lead (3) provided with a joining member (4) are prepared, and between the electrode and the joining member, After the bump portion is disposed, the electrode and the bonding member are bonded via the bump portion, and the portion of the bonding member that is in contact with the bump portion is formed as a protrusion (4a).
In this case, preferably on the opposite side of the surface on which the electrodes are formed of a semi-conductor chip, arranged a heat dissipating plate made is configured with a joint member equivalent thickness (8). Such radiating plate (8) can be configured by the A l N.
[0014]
In this case, as shown in claim 8 , a lead provided with a joining member may be mounted on a semiconductor chip, and the joining member and the electrode may be joined by performing ultrasonic vibration of the joining member.
[0015]
( Reference embodiment)
In the above embodiment, the bonding member 4 provided at the tip position of the lead 3 and the respective emitter electrodes 2 on the Si chip 1 are electrically connected via the Zn—Sn solder 6. May be used.
[0016]
In addition, the code | symbol in the said parenthesis has shown the correspondence with the code | symbol represented in the figure in embodiment mentioned later.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross-sectional configuration of a high-power device mounting structure to which an embodiment of the present invention is applied. Hereinafter, the mounting structure will be described with reference to FIG.
[0018]
In the Si chip 1 shown in FIG. 1, a so-called vertical structure IGBT in which a current flows toward the front and back surfaces of the Si chip 1 is formed as a high power device. This IGBT is composed of a plurality of unit cells. On the surface of the Si chip 1, a plurality of electrodes 2 electrically connected to each of the IGBTs composed of a plurality of unit cells are formed. The plurality of electrodes 2 are made of Al and constitute an IGBT emitter electrode. Hereinafter, the electrode 2 is referred to as an emitter electrode.
[0019]
A joining member 4 having a surface facing the surface of the Si chip 1 is disposed at the tip of the lead 3 for extraction connected to the emitter electrode 2, that is, at the connection portion with the emitter electrode 2. The joining member 4 is made of Mo which has a thermal expansion coefficient closer to that of Si than Al.
[0020]
On the surface of the bonding member 4 facing the Si chip 1, projections 4 a are provided at positions corresponding to the plurality of emitter electrodes 2, respectively. Ni / Au plating 5 is applied to the tip positions of the protrusions 4 a, and Zn—Sn solder 6 is disposed on the surface of the Ni / Au plating 5.
[0021]
The plurality of emitter electrodes 2 and the joining member 4 are electrically joined through the Zn—Sn solder 6. Zn contained in the Zn—Sn solder 6 is a metal having a large diffusion constant with respect to Al and good electrical conductivity. However, since the melting point of Zn is as high as 420 ° C., the melting point temperature is lowered to the eutectic temperature of Zn—Sn of 198 ° C. by using an alloy with Sn.
[0022]
Thus, the lead 3 for extraction from the emitter electrode 2 is configured to be electrically joined to the emitter electrode 2 on the Si chip 1 via the joining member 4.
[0023]
Further, a heat radiating plate 7 made of AlN is provided on the opposite side of the lead 3 to the side where the joining member 4 is disposed. Thus, on the surface side of the Si chip 1, heat generated by the Si chip 1 can be radiated through the heat dissipation plate 7.
[0024]
On the other hand, a heat radiating plate 8 made of AlN is disposed on the back side of the Si chip 1. The heat radiating plate 8 has a thickness substantially equal to that of the bonding member 4. A metal foil wiring 9 is patterned on the surface of the heat radiating plate 8, and the back surface of the Si chip 1 is electrically connected to the metal foil wiring 9 via a solder 10. A lead 11 for taking out is connected to the metal foil wiring 9. Thus, on the back side of the Si chip 1, the heat generated by the Si chip 1 can be radiated through the heat radiating plate 8.
[0025]
Further, an IGBT gate electrode 12 is also formed on the surface side of the Si chip 1. The gate electrode 12 is connected to the wiring part 14 via a Zn—Sn solder 13. This wiring portion 14 is routed in the direction of the heat sink 8 connected to the back side of the Si chip 1 and is electrically connected to the metal foil wiring 16 patterned on the heat sink 8 via the solder 15. A lead 17 for taking out is connected to the metal foil wiring 16.
[0026]
And the heat sink 7 arrange | positioned at the surface side of Si chip 1 and the heat sink 8 arrange | positioned at the back surface side of Si chip 1 are comprised by the same shape (for example, square shape), These heat sink 7 , 8 is surrounded by a resin case 18 so that the Si chip 1 is waterproofed.
[0027]
The resin case 18 is partially formed with an opening, and the leads 3, 11, and 17 can be drawn out of the resin case 18 through the opening.
[0028]
The high power device mounting structure configured as described above is configured such that heat is radiated from the heat sinks 7 and 8 to the coolant by immersing the heat sinks 7 and 8 in the coolant. At this time, since the heat radiation plates 7 and 8 are arranged on both the front and back surfaces of the Si chip 1 so that heat is radiated from both surfaces, the heat radiation efficiency is improved as compared with the case where the heat radiation is performed from only one surface. be able to. As a result, even when a large current of, for example, 100 A / cm 2 or more is passed through the Si chip 1, even if the Si chip 1 generates heat, the Si chip 1 can be prevented from reaching a high temperature.
[0029]
In this way, by suppressing the high temperature of the Si chip 1, the generation of thermal stress due to the difference in the coefficient of thermal expansion of the portion where electrical bonding with the Si chip 1 is generated due to the high temperature of the Si chip 1. Can be further reduced.
[0030]
Further, in the mounting structure of the present embodiment, the bonding member 4 and the heat radiating plate 8 are used as a substrate bonded to the Si chip 1. Since the joining member 4 and the heat radiating plate 8 are made of a material having a thermal expansion coefficient similar to that of Si and Mo and AlN, respectively, thermal stress due to the difference in thermal expansion coefficient from the Si chip 1 is hardly generated. it can. For this reason, it is possible to make it difficult for the connection site to peel off due to thermal stress.
[0031]
However, even if the thermal expansion coefficient of Mo or AlN approximates the thermal expansion coefficient of Si, the thermal stress cannot be completely suppressed. For this reason, in this embodiment, by adopting a sandwich structure in which the Si chip 1 is sandwiched between the joining member 4 and the heat radiating plate 8, it is possible to generate the same thermal stress on the front and back of the Si chip 1 so as to cancel each other. Therefore, it is possible to further suppress the warp due to the bimetal effect caused by the difference in thermal expansion coefficient between the Si chip 1 and the bonding member 4 or the heat radiating plate 8.
[0032]
Next, the mounting process of the large current device in the present embodiment will be described. This mounting process is shown in FIG. 2 and will be described based on this figure.
[0033]
First, an IGBT composed of a plurality of unit cells and an Si chip 1 on which the emitter electrode 2 of the IGBT is formed are prepared, and a lead 3 having a bonding member 4 disposed at the tip position is prepared.
[0034]
The bonding member 4 has a surface facing the Si chip 1. On this surface, projections 4a are formed at positions corresponding to the respective emitter electrodes 2 of the Si chip 1, and Ni / Au plating 5 is applied to the tips of the projections 4a. Thus, by applying Ni plating, the Zn—Sn solder 6 can be easily wetted. Further, not only Ni plating but also Au plating can be used to prevent oxidation of Ni plating.
[0035]
Then, after applying Zn-Sn solder 6 to the tip of each protrusion 4a, the corresponding protrusion 4a and the emitter electrode 2 are aligned so that they correspond to each other, and the lead 3 is mounted on the Si chip 1. To do.
[0036]
Then, heat treatment at a temperature equal to or higher than the eutectic temperature of Zn—Sn, for example, 210 to 250 ° C. is performed to melt the Zn—Sn solder 6. As a result, the Zn—Sn solder 6 wets and spreads on the emitter electrode 2 and the Ni / Au plating 5, and the lead 3 and the Si chip 1 are joined.
[0037]
Thereafter, a heat radiating plate 8 patterned with metal foil wirings 9 and 16 is prepared on the front surface, and the metal foil wiring 9 on the heat radiating plate 8 and the back surface of the Si chip 1 are connected via the solder 10, and the wiring portion 14. Further, the gate electrode 12 formed on the surface side of the Si chip 1 and the metal foil wiring 16 are joined via the solder 15.
[0038]
The joining procedure is that after joining the Si chip 1 and the joining member 4 with the solder material, the Si chip 1 and the heat radiating plate 8 and the Si chip 1 and the wiring portion 14 are joined, but after the Si chip 1 and the heat radiating plate 8 are joined, Even if the Si chip 1 and the bonding member 4 and the Si chip 1 and the wiring portion 14 are bonded, the Si chip 1 and the heat sink 8, the Si chip 1 and the bonding member 4, and the Si chip 1 and the wiring portion 14 are bonded simultaneously. Good.
[0039]
Then, the leads 11 and 17 are connected to the metal foil wirings 9 and 16, the heat sink 7 is fixed on the leads 3 arranged on the surface side of the Si chip 1, and the outer periphery of the heat sinks 7 and 8 is attached to the resin case. The mounting structure shown in this embodiment is completed by enclosing it with 18.
[0040]
(Other embodiments)
In the above embodiment, the bonding member 4 provided at the tip position of the lead 3 and the respective emitter electrodes 2 on the Si chip 1 are electrically connected via the Zn—Sn solder 6. May be used.
[0041]
For example, as shown in FIG. 3, a soft metal 20 is disposed on the surface of the bonding member 4 facing the Si chip 2 at a position corresponding to each emitter electrode 2. As this soft metal 20, for example, Al can be adopted. Then, each emitter electrode 2 and each soft metal 20 are aligned, and the lead 3 is mounted on the Si chip 1. Thereafter, as indicated by the arrows in the figure, the soft metal 20 and the emitter electrode 2 are rubbed together by applying ultrasonic vibrations, so that they can be electrically joined.
[0042]
At this time, if the entire bonded portion is heated to about 360 ° C., the vibration width and vibration speed can be lowered, so that damage to the Si chip 1 due to vibration can be reduced. Further, when the soft metal 20 is formed of Al or the like, both the joining surfaces of the soft metal 20 are covered with an Au film or covered with Au fine powder, thereby making it easier to join the emitter electrode 2 and the joining member 4. You can also.
[0043]
It is also possible to bond the bonding member 4 and the Si chip 1 without forming the protrusion 4 a on the bonding member 4.
[0044]
For example, the emitter electrode provided on the surface of the Si chip can be configured to protrude from the surface of the Si chip, and the bonding member can be soldered using Zn—Sn solder. Further, Au bumps or Cu bumps may be disposed on the Al electrode of the Si chip, and each bump on the Al electrode and the bonding member may be bonded by ultrasonic bonding. Alternatively, after arranging Au bumps or the like on the Al electrode of the Si chip, each bump and the joining member may be joined by pressing the joining member against the Au bump or the like and performing a heat treatment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a mounting structure of a device for large current in an embodiment of the present invention.
FIG. 2 is a diagram showing a mounting method of the large current device of FIG. 1;
FIG. 3 is a cross-sectional view illustrating a mounting structure of a high-current device in another embodiment.
FIG. 4 is a cross-sectional view showing a conventional mounting structure of a device for large current.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Si chip, 2 ... Emitter electrode 3, 11, 17 ... Lead, 3 ... Joining member, 4a ... Projection part , 5 ... Ni / Au plating, 6, 13 ... Zn-Sn solder, 7, 8 ... Heat sink 9, 16 ... metal foil wiring, 10, 15 ... solder, 12 ... gate electrode, 14 ... wiring part, 18 ... resin case.

Claims (8)

一面側に電極(2)が形成されてなるSiにて構成された半導体チップ(1)と、
前記電極上に配置されたバンプ部(6)と、
前記半導体チップのうち前記電極が形成されている面と対向する面を有してなり、前記バンプ部と接合されて、該バンプ部を介して前記電極と電気的に接合された接合部材(4)と、
前記接合部材に接続されたリード(3)と、
前記半導体チップのうち、前記電極が設けられた面の反対側に配置された第1の放熱板(8)とを有して構成され、
前記接合部材と前記第1の放熱板とは、前記半導体チップの材料と熱膨張係数が近似するように、前記接合部材の材料はMo、前記第1の放熱板はAlNで構成され、
前記接合部材と前記第1の放熱板とは同等の厚みで構成されていると共に、前記接合部材のうち、前記バンプ部と接する部位は、突起部(4a)となっていることを特徴とする半導体装置の実装構造。
A semiconductor chip (1) made of Si having an electrode (2) formed on one side thereof;
A bump portion (6) disposed on the electrode;
A bonding member (4) having a surface opposite to the surface on which the electrode is formed in the semiconductor chip, bonded to the bump portion, and electrically bonded to the electrode through the bump portion. )When,
A lead (3) connected to the joining member;
Of the semiconductor chip, the first heat dissipation plate (8) disposed on the opposite side of the surface provided with the electrode,
The joining member and the first heat radiating plate are made of Mo, and the first heat radiating plate is made of AlN, so that the thermal expansion coefficient of the material of the semiconductor chip is similar.
The joining member and the first heat radiating plate are configured to have the same thickness, and a portion of the joining member that is in contact with the bump portion is a protrusion (4a). Semiconductor device mounting structure.
前記接合部材を挟んで、前記半導体チップの反対側には、第2の放熱板(7)が配置されていることを特徴とする請求項1に記載の半導体装置の実装構造。Across the junction member, the opposite side of the semiconductor chip, the mounting structure of a semiconductor device according to claim 1, wherein the second heat radiating plate (7) is arranged. 前記第1、第2の放熱板の外周は、枠部材(18)で囲まれており、前記第1、第2の放熱板及び前記枠部材は、これらの間の液密性が保持されるように組付けられていることを特徴とする請求項に記載の半導体装置の実装構造。The outer peripheries of the first and second heat radiating plates are surrounded by a frame member (18), and the first and second heat radiating plates and the frame member maintain liquid tightness therebetween. 3. The semiconductor device mounting structure according to claim 2 , wherein the semiconductor device mounting structure is assembled as described above. 前記接合部材のうち前記バンプ部と接する部位には、Niを含む金属材料が塗布されていることを特徴とする請求項1ないしのいずれか1つに記載の半導体装置の実装構造。Mounting structure of a semiconductor device according to the portion contacting with the bump portion of the joining member is any one of claims 1 to 3 metal material is characterized in that it is applied including Ni. 前記バンプ部は、Znを含有するはんだで構成されていることを特徴とする請求項1ないしのいずれか1つに記載の半導体装置の実装構造。The bump portion, the mounting structure of a semiconductor device according to any one of claims 1 to 4, characterized in that consists of solder containing Zn. 前記半導体チップには、100A/cm2以上の電流が流されることを特徴とする請求項1ないしのいずれか1つに記載の半導体装置の実装構造。Mounting structure of a semiconductor device according to the semiconductor chip is any one of claims 1 to 5, characterized in that 100A / cm 2 or more current flows. 一面側に電極(2)が備えられている半導体チップ(1)の該電極を、バンプ部(6)を介してリード(3)に電気的に接合する半導体装置の実装方法において、
一面側に電極が備えられたSiにて構成される半導体チップを用意する工程と、
前記半導体チップのうち前記電極が形成されている面と対向する面を有すると共に前記半導体チップと熱膨張係数が近似する材質で構成された接合部材(4)を備えたリード(3)を用意する工程と、
前記電極と前記接合部材の間に前記バンプ部を配置したのち、該バンプ部を介して前記電極と前記接合部材とを接合する工程と、
前記半導体チップのうち前記電極が形成された面の反対側に、前記半導体チップと熱膨張係数が近似するAlNにて構成され、かつ、前記接合部材と同等の厚みを有して構成されてなる放熱板(8)を配置する工程と、を含み、
前記接合部材のうち前記バンプ部と接する部位を突起部(4a)とすることを特徴とする半導体装置の実装方法。
In the mounting method of the semiconductor device, in which the electrode of the semiconductor chip (1) provided with the electrode (2) on one side is electrically joined to the lead (3) through the bump part (6),
Preparing a semiconductor chip composed of Si with electrodes provided on one side;
A lead (3) having a surface facing the surface on which the electrode is formed in the semiconductor chip and including a joining member (4) made of a material whose thermal expansion coefficient approximates that of the semiconductor chip is prepared. Process,
After disposing the bump portion between the electrode and the bonding member, bonding the electrode and the bonding member through the bump portion;
The semiconductor chip is made of AlN whose thermal expansion coefficient is similar to that of the semiconductor chip, on the opposite side of the surface on which the electrodes are formed, and has the same thickness as the bonding member. Arranging the heat sink (8) ,
A method of mounting a semiconductor device, wherein a portion of the bonding member that contacts the bump is a protrusion (4a).
前記電極と前記接合部材との接合工程は、前記半導体チップ上に前記接合部材を備えたリードを搭載し、前記接合部材を超音波振動させることによって行なうことを特徴とする請求項に記載の半導体装置の実装方法。Bonding process of the bonding member and the electrode is equipped with a lead provided with the joint member on said semiconductor chip, according to the joining member to claim 7, characterized in that done by ultrasonic vibration Semiconductor device mounting method.
JP15574599A 1999-06-02 1999-06-02 Mounting structure and mounting method of semiconductor device Expired - Fee Related JP4023032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15574599A JP4023032B2 (en) 1999-06-02 1999-06-02 Mounting structure and mounting method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15574599A JP4023032B2 (en) 1999-06-02 1999-06-02 Mounting structure and mounting method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2000349207A JP2000349207A (en) 2000-12-15
JP4023032B2 true JP4023032B2 (en) 2007-12-19

Family

ID=15612512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15574599A Expired - Fee Related JP4023032B2 (en) 1999-06-02 1999-06-02 Mounting structure and mounting method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4023032B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085639B2 (en) * 2002-01-28 2008-05-14 富士電機デバイステクノロジー株式会社 Semiconductor device and manufacturing method thereof
JP4207672B2 (en) * 2003-06-05 2009-01-14 トヨタ自動車株式会社 Semiconductor device cooling structure
JP4649948B2 (en) * 2004-10-22 2011-03-16 トヨタ自動車株式会社 Semiconductor device
JP4645276B2 (en) * 2005-04-12 2011-03-09 富士電機システムズ株式会社 Semiconductor device
JP4797492B2 (en) * 2005-08-01 2011-10-19 富士電機株式会社 Semiconductor device
JP4645406B2 (en) * 2005-10-13 2011-03-09 富士電機システムズ株式会社 Semiconductor device
JP4455488B2 (en) * 2005-12-19 2010-04-21 三菱電機株式会社 Semiconductor device
JP5241177B2 (en) * 2007-09-05 2013-07-17 株式会社オクテック Semiconductor device and manufacturing method of semiconductor device
JP5473733B2 (en) 2010-04-02 2014-04-16 株式会社日立製作所 Power semiconductor module
JP5887716B2 (en) * 2011-05-23 2016-03-16 アイシン精機株式会社 Manufacturing method of semiconductor device
JP5409889B2 (en) * 2012-12-10 2014-02-05 株式会社日立製作所 Inverter
US9196577B2 (en) * 2014-01-09 2015-11-24 Infineon Technologies Ag Semiconductor packaging arrangement
WO2019244492A1 (en) 2018-06-18 2019-12-26 富士電機株式会社 Semiconductor device
EP4213203A1 (en) * 2022-01-12 2023-07-19 Nexperia B.V. Semiconductor device package and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000349207A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP3601432B2 (en) Semiconductor device
JP4438489B2 (en) Semiconductor device
JP3596388B2 (en) Semiconductor device
JP4991042B2 (en) IC chip package with direct lead wire
TWI450373B (en) Dual side cooling integrated power device package and module and methods of manufacture
US9905494B2 (en) Semiconductor device
JP4023032B2 (en) Mounting structure and mounting method of semiconductor device
JP2003264265A (en) Power semiconductor device
JPH11195680A (en) Semiconductor device connection structure and method
JP2000223634A (en) Semiconductor device
JP2004047883A (en) Electric power semiconductor device
JP5023604B2 (en) Semiconductor device
JP2001284525A (en) Semiconductor chip and semiconductor device
JP2013539919A (en) Semiconductor module and method of manufacturing semiconductor module
CN109698179B (en) Semiconductor device and method for manufacturing semiconductor device
JPH11265976A (en) Power-semiconductor module and its manufacture
JP3601529B2 (en) Semiconductor device
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP2003289129A (en) Semiconductor device
JPH11214612A (en) Power semiconductor module
JP2002329804A (en) Semiconductor device
JP2000082721A (en) Manufacture of semiconductor device
JPH06268027A (en) Semiconductor device
JPH07176664A (en) Semiconductor device and fabrication thereof
JP5418654B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees