JP4858238B2 - Laser welding member and semiconductor device using the same - Google Patents

Laser welding member and semiconductor device using the same Download PDF

Info

Publication number
JP4858238B2
JP4858238B2 JP2007053959A JP2007053959A JP4858238B2 JP 4858238 B2 JP4858238 B2 JP 4858238B2 JP 2007053959 A JP2007053959 A JP 2007053959A JP 2007053959 A JP2007053959 A JP 2007053959A JP 4858238 B2 JP4858238 B2 JP 4858238B2
Authority
JP
Japan
Prior art keywords
laser
welding
copper
plating film
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007053959A
Other languages
Japanese (ja)
Other versions
JP2008212977A (en
Inventor
克彦 吉原
圭輔 佐藤
友彰 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007053959A priority Critical patent/JP4858238B2/en
Publication of JP2008212977A publication Critical patent/JP2008212977A/en
Application granted granted Critical
Publication of JP4858238B2 publication Critical patent/JP4858238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40491Connecting portions connected to auxiliary connecting means on the bonding areas being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/8421Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/84214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

この発明は、溶接バラツキが少なく、低パワー・低エネルギーでレーザ溶接できるレーザ溶接部材およびそれを用いた半導体装置に関する。     The present invention relates to a laser welding member capable of performing laser welding with low power and low energy with little welding variation, and a semiconductor device using the same.

図7〜図9は、従来の半導体モジュールの構成図であり、図7は要部平面図、図8は図7のY−Y線で切断した要部断面図、図9は図7のX−X線で切断した要部断面図である。
図7に示したのは、IGBT(絶縁ゲート型バイポーラトランジスタ)が6チップ、FWD(フリーホイーリングダイオード)が6チップで構成される半導体モジュールの例であり、コンバータ回路やインバータ回路などの上下2アーム分で1相分に相当する。
7 to 9 are configuration diagrams of a conventional semiconductor module, in which FIG. 7 is a plan view of the main part, FIG. 8 is a cross-sectional view of the main part cut along line YY in FIG. 7, and FIG. It is principal part sectional drawing cut | disconnected by -X ray.
FIG. 7 shows an example of a semiconductor module in which an IGBT (insulated gate bipolar transistor) is composed of 6 chips and an FWD (free wheeling diode) is composed of 6 chips. The arm portion corresponds to one phase.

従って、例えば、三相モータを駆動するインバータ回路に用いる場合には、この半導体モジュール100が3個必要になり、単相モータを駆動するインバータ回路に用いる場合には2個必要になる。
また、図7で半導体モジュール100の右半分に位置する配線パターン4に形成された3個の並列接続されたIGBTチップ16と3個の並列接続されたFWDチップ18は、後述する図10で示す上アームを構成し、左半分に位置する配線パターン7上に形成された3個の並列接続されたIGBTチップ16と3個の並列接続されたFWDチップ18は図10で示す下アームを構成する。
Therefore, for example, three semiconductor modules 100 are required when used in an inverter circuit that drives a three-phase motor, and two semiconductor modules 100 are required when used in an inverter circuit that drives a single-phase motor.
Further, three parallel-connected IGBT chips 16 and three parallel-connected FWD chips 18 formed in the wiring pattern 4 located in the right half of the semiconductor module 100 in FIG. 7 are shown in FIG. The three parallel-connected IGBT chips 16 and the three parallel-connected FWD chips 18 that form the upper arm and are formed on the wiring pattern 7 located in the left half form the lower arm shown in FIG. .

また、半導体モジュール100の上半分と下半分のIGBTチップ16およびFWDチップ18の個数がそれぞれ3個づつで同数になるように配置されているのは、半導体モジュール100の発熱が均一になるようにしているためである。
図10は、三相モータを駆動するインバータ回路である。IGBT51とFWD52は逆並列に接続して上アームまたは下アームを構成し、その3個の出力端子14は三相モータ53に接続する。IGBT51は図7の3個の並列接続されたIGBTチップ16で構成され、FWD52は図7の3個の並列接続されたFWDチップ18で構成される。
In addition, the number of IGBT chips 16 and FWD chips 18 in the upper half and the lower half of the semiconductor module 100 are arranged to be the same number by three so that the heat generation of the semiconductor module 100 is uniform. This is because.
FIG. 10 is an inverter circuit that drives a three-phase motor. The IGBT 51 and the FWD 52 are connected in antiparallel to form an upper arm or a lower arm, and the three output terminals 14 are connected to the three-phase motor 53. The IGBT 51 is composed of the three parallel-connected IGBT chips 16 shown in FIG. 7, and the FWD 52 is composed of the three parallel-connected FWD chips 18 shown in FIG.

つぎに、図7〜図9の半導体モジュールの構成について説明する。セラミックス2aおよびセラミックス2bの表側にそれぞれ形成された配線パターン4、5および配線パターン3、6、7と、裏面に形成された裏面導電膜21と、配線パターン4、7にコレクタ側がはんだ24で固着されるIGBTチップ16とカソード側がはんだ22で固着されるFWDチップ18と、IGBTチップ16のエミッタ側にはんだ25で固着されるヒートスプレッダ17と、FWDチップ18のアノード側にはんだ23で固着されるヒートスプレッダ19と、ヒートスプレッダ17、19と配線パターン6を接続するアルミワイヤ20と、配線パターン3、5、6とプラス端子8、マイナス端子15、出力端子14および配線パターン3と配線パターン4および配線パターン5と配線パターン7とをそれぞれ接続するアルミワイヤ9〜13と、裏面導電膜21にはんだ26で固着される放熱基板1と、これらを被覆する図示しないモールド樹脂で構成される。     Next, the configuration of the semiconductor module of FIGS. 7 to 9 will be described. The wiring patterns 4, 5 and the wiring patterns 3, 6, 7 formed on the front side of the ceramics 2a and 2b, the back surface conductive film 21 formed on the back surface, and the collector side fixed to the wiring patterns 4, 7 with solder 24 IGBT chip 16 and FWD chip 18 whose cathode side is fixed by solder 22, heat spreader 17 fixed by solder 25 on the emitter side of IGBT chip 16, and heat spreader fixed by solder 23 on the anode side of FWD chip 18 19, heat spreaders 17 and 19, aluminum wire 20 connecting wiring pattern 6, wiring patterns 3, 5 and 6, plus terminal 8, minus terminal 15, output terminal 14 and wiring pattern 3, wiring pattern 4 and wiring pattern 5. And wiring pattern 7 are connected to each other. A wire 9 to 13, a heat dissipating substrate 1 is fixed by solder 26 to the back-surface conductive film 21, composed of a mold resin not shown to cover them.

図7を用いて、半導体モジール100内の電流経路46、47について説明する。
プラス端子8⇒アルミワイヤ9⇒配線パターン3⇒アルミワイヤ10⇒配線パターン4⇒配線パターン上に搭載されたIGBTチップ16⇒IGBTチップ16上に搭載されたヒートスプレッダ17⇒アルミワイヤ20⇒配線パターン5⇒アルミワイヤ12⇒出力端子14⇒図10の三相モータ53などの負荷装置⇒ここでは便宜的に図7の半導体モジュール100で説明するが、実際は別の半導体モジュールの出力端子14へ電流は流れる(図10参照)⇒アルミワイヤ12⇒配線パターン5⇒アルミワイヤ11⇒配線パターン7⇒7上のIGBTチップ16⇒IGBTチップ16上のヒートスプレッダ17⇒アルミワイヤ20⇒配線パターン6⇒アルミワイヤ13⇒マイナス端子15となる。この場合のアルミワイヤの線径は、φ300μm〜500μmが用いられる。
The current paths 46 and 47 in the semiconductor module 100 will be described with reference to FIG.
Positive terminal 8 ⇒ aluminum wire 9 ⇒ wiring pattern 3 ⇒ aluminum wire 10 ⇒ wiring pattern 4 ⇒ IGBT chip 16 mounted on the wiring pattern ⇒ heat spreader 17 mounted on the IGBT chip 16 ⇒ aluminum wire 20 ⇒ wiring pattern 5 ⇒ Aluminum wire 12 ⇒ output terminal 14 ⇒ load device such as three-phase motor 53 in FIG. 10 ⇒ Here, the semiconductor module 100 in FIG. 7 will be described for convenience, but in reality, current flows to the output terminal 14 of another semiconductor module ( 10) ⇒ Aluminum wire 12 ⇒ Wiring pattern 5 ⇒ Aluminum wire 11 ⇒ Wiring pattern 7 ⇒ IGBT chip 16 on 7 ⇒ Heat spreader 17 on IGBT chip 16 ⇒ Aluminum wire 20 ⇒ Wiring pattern 6 ⇒ Aluminum wire 13 ⇒ Negative terminal 15 In this case, φ300 μm to 500 μm is used as the wire diameter of the aluminum wire.

近年のチップに通電する電流が増大するのにともない、アルミワイヤ20、アルミワイヤ9、アルミワイヤ10およびアルミワイヤ12に流れる電流が増加し、これらのアルミワイヤの自己発熱による温度上昇が問題となっている。自己発熱を回避するために、これらのアルミワイヤを太くしたり、本数を増やすなどの対応がなされているが、ヒートスプレッダ17、19の表面積が限られているため、アルミワイヤの太線化及び本数増加には限界がある。一方、性能向上にともなって、IGBTチップ16やFWDチップ18は年々小型化されてきており、ワイヤボンディング可能な面積はさらに縮小化されてくるため、アルミワイヤに代わる配線方法が必要となってきている。     As current flowing through the chip increases in recent years, the current flowing through the aluminum wire 20, the aluminum wire 9, the aluminum wire 10, and the aluminum wire 12 increases, and the temperature rise due to self-heating of these aluminum wires becomes a problem. ing. In order to avoid self-heating, measures such as thickening these aluminum wires or increasing the number of wires have been taken, but since the surface area of the heat spreaders 17 and 19 is limited, the aluminum wires are thickened and the number of wires is increased. Has its limits. On the other hand, as the performance is improved, the IGBT chip 16 and the FWD chip 18 are miniaturized year by year, and the area capable of wire bonding is further reduced, so that a wiring method instead of an aluminum wire is required. Yes.

そこで、アルミワイヤよりも断面積が大きな銅箔(リードフレーム)などを用いることにより、大電流化に対応する技術が考案されている(特許文献1など)。
特許文献1において、半導体チップ上面のエミッタ電極に、銅箔などのリードフレームを超音波溶接する方法が開示されている。また、絶縁基板上の配線パターンと銅箔との接合は超音波接合もしくはレーザ溶接方法とすることが開示されている。
In view of this, there has been devised a technique corresponding to the increase in current by using a copper foil (lead frame) having a cross-sectional area larger than that of the aluminum wire (Patent Document 1, etc.).
Patent Document 1 discloses a method of ultrasonically welding a lead frame such as a copper foil to an emitter electrode on an upper surface of a semiconductor chip. Further, it is disclosed that the bonding between the wiring pattern on the insulating substrate and the copper foil is an ultrasonic bonding or a laser welding method.

つぎに、リードフレームをレーザ溶接した従来の半導体装置(半導体モジュール)について説明する。
図11〜図13は、リードフレームをレーザ溶接した従来の半導体装置の構成図であり、図11は要部平面図、図12は図11のY−Y線で切断した要部断面図、図13は図11のX−X線で切断した要部断面図である。
Next, a conventional semiconductor device (semiconductor module) in which a lead frame is laser-welded will be described.
11 to 13 are configuration diagrams of a conventional semiconductor device in which a lead frame is laser-welded. FIG. 11 is a plan view of a main part, and FIG. 12 is a cross-sectional view of a main part taken along line YY in FIG. 13 is a cross-sectional view of a principal part taken along line XX in FIG.

図11〜図13に示した構造例は、図7〜図9に示したアルミワイヤ9〜13部分をリードフレーム27、28、60とレーザ溶接部33、34に代え、リードフレーム27、28、60の固着をレーザ溶接(レーザ溶接部35、61、62、63)にて行った場合のものである。図7で示した電流経路46、47は図11でも同じであるので説明を省略する。     11 to 13, the aluminum wires 9 to 13 shown in FIGS. 7 to 9 are replaced with lead frames 27, 28, 60 and laser welded portions 33, 34, and the lead frames 27, 28, This is a case where 60 is fixed by laser welding (laser welding portions 35, 61, 62, 63). The current paths 46 and 47 shown in FIG. 7 are the same in FIG.

ここでレーザ溶接部材はヒートスプレッダ17、19とリードフレーム60およびリードフレーム27、28、60と配線パターン3、4、5、7さらには配線パターン3、5、6とプラス端子8、出力端子14、マイナス端子15であり、レーザ溶接部33〜35、61〜63でそれぞれが固着する。
また、特許文献2によれば、表面に母材よりもレーザ吸収率の高い金属膜を形成してこの高い金属膜にレーザ照射して溶接することが開示されている。
Here, the laser welding members are the heat spreaders 17 and 19, the lead frame 60, the lead frames 27, 28 and 60, the wiring patterns 3, 4, 5, 7 and the wiring patterns 3, 5, 6 and the plus terminal 8, the output terminal 14, The negative terminal 15 is fixed to each other at the laser welding portions 33 to 35 and 61 to 63.
Further, Patent Document 2 discloses that a metal film having a laser absorption rate higher than that of the base material is formed on the surface, and this high metal film is irradiated with laser and welded.

また、特許文献3によれば、銅からなるリードフレームをYAGレーザ溶接する場合、そのリードフレーム表面にNiめっき膜が形成されていることが開示されている。
特開2004−96135号公報 特開平7−214369号公報 特開2001−168244号公報
Patent Document 3 discloses that when a lead frame made of copper is YAG laser welded, a Ni plating film is formed on the surface of the lead frame.
JP 2004-96135 A JP 7-214369 A JP 2001-168244 A

図12に示した上側のリードフレーム60(例えば、銅)を下側のヒートスプレッダ17、19(例えば、モリブデンの焼結体に銅を含浸させた複合材(以下、CuMo材という)にレーザ溶接する場合、上側のリードフレーム60のレーザ照射面の吸収率が重要となる。例えば、レーザ光にYAGレーザを用いた場合、YAGレーザの波長である1064nmに対する銅(無酸素銅など)の吸収率は約10%であり、そのままでは溶接が困難であることは周知である。そこで、銅のような低吸収率材の表面には、より吸収率の高いNiめっき膜等が形成されている。NiめっきのYAGレーザに対する吸収率は約28%であり、銅の2.8倍である。     The upper lead frame 60 (for example, copper) shown in FIG. 12 is laser-welded to the lower heat spreaders 17 and 19 (for example, a composite material in which a molybdenum sintered body is impregnated with copper (hereinafter referred to as CuMo material). In this case, the absorptance of the laser irradiation surface of the upper lead frame 60 is important, for example, when a YAG laser is used as the laser light, the absorptance of copper (such as oxygen-free copper) with respect to the YAG laser wavelength of 1064 nm is Therefore, it is well known that welding is difficult as it is, and therefore, a Ni plating film having a higher absorption rate is formed on the surface of a low absorption rate material such as copper. The absorptivity of the plating with respect to the YAG laser is about 28%, which is 2.8 times that of copper.

前記したように、銅からなるリードフレーム60とCuMo材材からなるヒートスプレッダ17、19をYAGレーザ溶接する場合、そのリードフレーム60表面にNiめっき膜が形成されていることは、特許文献3で示されている。しかし、このNiめっき膜の形成はレーザの吸収率を上げる目的か否かは記載されていない。また、このNiめっき膜の膜質が無電解Niめっき膜なのか電解Niめっき膜なのかは記載されていない。     As described above, Patent Document 3 shows that when the lead frame 60 made of copper and the heat spreaders 17 and 19 made of a CuMo material are YAG laser welded, a Ni plating film is formed on the surface of the lead frame 60. Has been. However, it is not described whether or not the formation of the Ni plating film is for the purpose of increasing the absorption rate of the laser. Moreover, it is not described whether the film quality of this Ni plating film is an electroless Ni plating film or an electrolytic Ni plating film.

また、特許文献2には、レーザ照射面となる金属膜と母材の融点差については触れられていない。
また、特許文献1においては、レーザ溶接するときNiめっき膜を銅箔に被覆することなどは示されていない。
発明者がYAGレーザを用いて、図12に示すリードフレーム60を形成する銅の表面に無電解Niめっき処理を行い、ヒートスプレッダ17、19であるCuMo材とレーザ溶接をしたので、その結果について説明する。ヒートスプレッダ17、19は半導体チップで発生した熱を効率よく放散させる効果があり、シリコンとの熱膨張係数が銅より近いCuMo材やダングステンの焼結体に銅を含浸させた複合材(以下、CuW材という)などの銅より高融点材料が多用される。
Patent Document 2 does not mention the difference in melting point between the metal film serving as the laser irradiation surface and the base material.
Further, Patent Document 1 does not show that a Ni plating film is coated on a copper foil when laser welding is performed.
The inventor performed an electroless Ni plating process on the surface of copper forming the lead frame 60 shown in FIG. 12 using a YAG laser, and performed laser welding with the CuMo material as the heat spreaders 17 and 19, and the results will be described. To do. The heat spreaders 17 and 19 have an effect of efficiently dissipating heat generated in the semiconductor chip, and a CuMo material having a thermal expansion coefficient close to that of silicon or a composite material obtained by impregnating copper into a sintered body of dungsten (hereinafter referred to as CuW). High melting point materials are used more frequently than copper.

図14は、表面に無電解Niめっき膜を形成した無酸素銅とCuMo材との溶接強度のバラツキとレーザパワーの関係を示した図である。用いたレーザ溶接部材は上側に厚さが0.5mmの無酸素銅37、下側に厚さが1.0mmのCuMo材39である。上側の無酸素銅37の表面に無電解Niめっき膜38を形成した。無電解Niめっき膜38の厚さは2μm〜3μmとした。YAGレーザ36を用い、ファイバ径φ0.8mm、エネルギー100Jおよびピークパワー7.3kW〜8.0kWの範囲で溶接を行った。     FIG. 14 is a graph showing the relationship between the laser power and the variation in welding strength between oxygen-free copper having a surface formed with an electroless Ni plating film and a CuMo material. The laser welding member used is an oxygen-free copper 37 having a thickness of 0.5 mm on the upper side and a CuMo material 39 having a thickness of 1.0 mm on the lower side. An electroless Ni plating film 38 was formed on the surface of the upper oxygen-free copper 37. The thickness of the electroless Ni plating film 38 was 2 μm to 3 μm. Welding was performed using a YAG laser 36 in a range of fiber diameter φ0.8 mm, energy 100 J, and peak power 7.3 kW to 8.0 kW.

図14から分かるように、無電解Niめっき膜38はレーザパワー7.9kW以下では強度不足であり、レーザパワー8kWにするとスパッタが発生し、使用できるレーザパワー範囲が7.9kWを超えて8kW未満と狭い。このように、許容されるレーザパワー範囲が狭く、溶接状態のバラツキも大きい理由について説明する。
図15は、無酸素銅の表面に無電解Niめっき膜を形成し、CuMo材とレーザ溶接した場合の溶接様態を示す図で、同図(a)は溶接の初期状態の図、同図(b)はパワーを増大させて溶接した場合の図、同図(c)はパワーをさらに増大した場合の図である。これは無酸素銅37の表面に無電解Niめっき膜38を行ったリードフレーム60と、CuMo材39で形成したヒートスプレッダ17、19とをYAGレーザ36を用いて溶接した状態を示す。レーザ溶接部材としては上側が無酸素銅37であり下側がCuMo材39である。
As can be seen from FIG. 14, the electroless Ni plating film 38 has insufficient strength when the laser power is 7.9 kW or less, and spatter occurs when the laser power is 8 kW, and the usable laser power range exceeds 7.9 kW and less than 8 kW. And narrow. The reason why the allowable laser power range is narrow and the variation in the welding state is large will be described.
FIG. 15 is a diagram showing a welding state when an electroless Ni plating film is formed on the surface of oxygen-free copper and laser welding is performed with a CuMo material. FIG. 15 (a) is a diagram of an initial state of welding. (b) is a diagram in the case of welding with increasing power, and (c) is a diagram in the case of further increasing power. This shows a state in which the lead frame 60 in which the electroless Ni plating film 38 is formed on the surface of the oxygen-free copper 37 and the heat spreaders 17 and 19 formed of the CuMo material 39 are welded using the YAG laser 36. As the laser welding member, the upper side is oxygen-free copper 37 and the lower side is CuMo material 39.

図15(a)において、照射したYAGレーザ光36が無電解Niめっき38表面に当たり、一部(約28%)がNiめっきに吸収され、熱エネルギーに変換される。変換された熱エネルギーによりNiが加熱され、融点を超えると溶融する。ここで、用いた無電解Niめっき膜38の融点は890℃であるので、熱エネルギーによってNiが加熱され、融点である890℃を超えた箇所(無電解Niめっき膜が無くなった箇所40)から溶融が始まる。無電解Niめっき膜38下層の無酸素銅37の融点は1083℃であるので、表層の無電解Niめっき膜38が溶融しても、下層の無酸素銅37の融点には達しないため、溶融初期は無電解Niめっき膜38のみが溶融した状態となる。     In FIG. 15A, the irradiated YAG laser beam 36 hits the surface of the electroless Ni plating 38, and a part (about 28%) is absorbed by the Ni plating and converted into thermal energy. Ni is heated by the converted thermal energy and melts when the melting point is exceeded. Here, since the melting point of the electroless Ni plating film 38 used is 890 ° C., Ni is heated by the thermal energy, and from the point where the melting point exceeds 890 ° C. (the point 40 where the electroless Ni plating film disappears). Melting begins. Since the melting point of the oxygen-free copper 37 under the electroless Ni plating film 38 is 1083 ° C., even if the electroless Ni plating film 38 in the surface layer melts, the melting point of the oxygen-free copper 37 in the lower layer does not reach the melting point. Initially, only the electroless Ni plating film 38 is melted.

図15(b)において、所望の溶接強度を得るために、さらにレーザパワーを高くすると、溶融した無電解Niめっき膜38が除去され、下層の無酸素銅37の表面が出現すると考えられる。無酸素銅37のYAGレーザ光36に対する吸収率は約10%に過ぎないため、表層の無電解Niめっき膜38が溶融するレーザパワーであっても、無酸素銅37を溶融することができない。このため、レーザパワーを高くすると、今度は無電解Niめっき膜38が飛散してしまい、レーザ吸収率が低い下層の無酸素銅37が露出する。無電解Niめっき膜の除去状態により、下層の無酸素銅37に対するYAGレーザ光36の当たり方にバラツキが生じるため、溶接バラツキが生じるものと考えられる。     In FIG. 15B, it is considered that when the laser power is further increased in order to obtain a desired welding strength, the melted electroless Ni plating film 38 is removed and the surface of the lower oxygen-free copper 37 appears. Since the absorptivity of the oxygen-free copper 37 with respect to the YAG laser light 36 is only about 10%, the oxygen-free copper 37 cannot be melted even with a laser power that melts the electroless Ni plating film 38 on the surface layer. For this reason, when the laser power is increased, the electroless Ni plating film 38 is scattered this time, and the lower oxygen-free copper 37 having a low laser absorption rate is exposed. Depending on the state of removal of the electroless Ni plating film, variations occur in the manner in which the YAG laser light 36 strikes the underlying oxygen-free copper 37, which is considered to cause variations in welding.

また、この無酸素銅37の面にYAGレーザ光36が照射されても吸収率が低いため、なかなか溶融させることができない。銅溶融部41の面積が少なく、下側のCuMo材39との接合面積が不足しており、充分な溶接強度が得られていない。
図15(c)において、充分な溶接強度を得るためにさらにレーザパワーを高くすると、今度は銅溶接部41が下側のCuMo材39を貫通してしまう。図15では省略しているが、下側のCuMo材39の下には、はんだ23、25を介してIGBTチップ16およびFWDチップ18が配置されているため、銅溶接部41が貫通することでチップ破壊を引き起こしてしまう。また、仮に下側のCuMo材39がセラミックス2a、2b上の配線パターン3〜7である場合(通常は銅であるが)には、銅溶融部41が配線パターン3〜7下のセラミックス2a、2bを破壊し、電気的な不具合を引き起こしてしまう。
Further, even if the surface of the oxygen-free copper 37 is irradiated with the YAG laser light 36, the absorption rate is low, so that it cannot be easily melted. The area of the copper melted portion 41 is small, and the joining area with the lower CuMo material 39 is insufficient, so that sufficient welding strength is not obtained.
In FIG. 15C, if the laser power is further increased in order to obtain sufficient welding strength, the copper welded portion 41 will penetrate the lower CuMo material 39 this time. Although omitted in FIG. 15, since the IGBT chip 16 and the FWD chip 18 are disposed under the lower CuMo material 39 via the solders 23 and 25, the copper welded portion 41 penetrates. This will cause chip destruction. Also, if the lower CuMo material 39 is the wiring patterns 3 to 7 on the ceramics 2a and 2b (usually copper), the copper melting portion 41 is the ceramics 2a below the wiring patterns 3 to 7, 2b will be destroyed and an electrical failure will be caused.

また、図15(c)に示したように、銅溶融部41の一部がスパッタ42として飛散した場合には、セラミックス2a、2b上のIGBTチップ16およびFWDチップ18の損傷、配線間の短絡が起こり、使用できなくなる。
このように、表面がNiめっき膜などの他の金属膜で被覆されていない無垢の無酸素銅37の表面ではレーザ吸収率が低いため、無酸素銅37の表面に無電解Niめっき膜38を形成しても、無酸素銅37で形成されたリードフレーム60とCuMo材39で形成されたヒートスプレッダ17、19とのレーザ溶接においては所望の溶接状態を得ることが困難である。また、無電解Niめっき膜38の飛散状態により、溶接状態が左右されるため溶接バラツキが多く、所望の溶接強度が得られるレーザパワー領域は狭い。これにより、出力の変動や、部材厚さのバラツキ、表面状態のバラツキなど、許容寸法公差内であっても、無電解めっき膜38を形成した無酸素銅37とCuMo材39のレーザ溶接部材の場合には、溶接バラツキが大きく、高パワー・高エネルギーのレーザ溶接となる。
Further, as shown in FIG. 15C, when a part of the copper melting portion 41 is scattered as the sputter 42, the IGBT chip 16 and the FWD chip 18 on the ceramics 2a and 2b are damaged, and the wiring is short-circuited. Occurs and cannot be used.
Thus, since the laser absorptance is low on the surface of the solid oxygen-free copper 37 whose surface is not covered with another metal film such as a Ni plating film, the electroless Ni plating film 38 is formed on the surface of the oxygen-free copper 37. Even if formed, it is difficult to obtain a desired welding state in laser welding of the lead frame 60 formed of oxygen-free copper 37 and the heat spreaders 17 and 19 formed of the CuMo material 39. Further, since the welding state depends on the scattering state of the electroless Ni plating film 38, there are many welding variations, and the laser power region in which a desired welding strength can be obtained is narrow. Thereby, even within the allowable dimensional tolerances such as output fluctuation, member thickness variation, surface state variation, etc., the laser-welded member of the oxygen free copper 37 and the CuMo material 39 on which the electroless plating film 38 is formed. In some cases, the welding variation is large, resulting in high power / high energy laser welding.

この発明の目的は、前記の課題を解決して、溶接バラツキが少なく、低パワー・低エネルギーでレーザ溶接できるレーザ溶接部材およびそれを用いた半導体装置を提供することある。     An object of the present invention is to solve the above-described problems, and to provide a laser welding member that can be laser-welded with low power and low energy with little welding variation, and a semiconductor device using the same.

前記の目的を達成するために、第1部材と該第1部材より融点の高い金属を主体主材とする第2部材で構成されるレーザ溶接部材において、前記第1部材の表面に該第1部材より融点の高い金属膜を被覆し、該金属膜をレーザ光の照射面とすることを特徴とするレーザ溶接部材。
また、前記第1部材が、無酸素銅もしくはタフピッチ銅であるとよい。
In order to achieve the above object, in a laser welding member composed of a first member and a second member mainly composed of a metal having a melting point higher than that of the first member, the first member is formed on the surface of the first member. A laser welding member characterized in that a metal film having a melting point higher than that of the member is coated, and the metal film is used as a laser light irradiation surface.
The first member may be oxygen-free copper or tough pitch copper.

また、前記第2部材が、モリブデンもしくはタングステンを主材とし、その気孔部に銅を有する複合材であるとよい。この複合材はたとえば、モリブデンもしくはタングステンの焼結体に銅を含浸させて形成する。
また、前記金属膜が、電解Niメッキ膜、Cr膜、Co膜、Ti膜もしくはPd膜のいずれか一つであるとよい。
The second member may be a composite material having molybdenum or tungsten as a main material and copper in the pores. For example, this composite material is formed by impregnating a sintered body of molybdenum or tungsten with copper.
The metal film may be any one of an electrolytic Ni plating film, a Cr film, a Co film, a Ti film, and a Pd film.

また、前記金属膜の膜厚が、1μm〜100μmであるとよい。
また、前記金属膜の膜厚が、1μm〜10μmであるとさらに好ましい。
また、前記のレーザ溶接部材を用いて形成した半導体装置において、ヒートスプレッダが前記第2部材で形成され、リードフレームが前記金属膜を被覆した前記第1部材で形成される半導体装置とする。
Moreover, the film thickness of the said metal film is good in it being 1 micrometer-100 micrometers.
Further, the thickness of the metal film is more preferably 1 μm to 10 μm.
In the semiconductor device formed using the laser welding member, a heat spreader is formed of the second member, and a lead frame is formed of the first member coated with the metal film.

この発明によれば、銅であるリードフレームと銅より高融点材料であるCuMo材やCuW材で形成されたヒートスプレッダとをレーザ溶接する場合に、リードフレームの表面に電解Niめっき膜を形成し、この電解Niめっき膜面にレーザ光を照射してレーザ溶接することで、溶接バラツキが少なく、低パワー・低エネルギーでレーザ溶接することができる。その結果、良好なレーザ溶接とスパッタの飛散防止により、半導体装置の良品率を高めることができる。     According to the present invention, when laser welding a lead frame made of copper and a heat spreader made of CuMo material or CuW material which is a higher melting point than copper, an electrolytic Ni plating film is formed on the surface of the lead frame, By performing laser welding by irradiating the surface of the electrolytic Ni plating film with laser light, there is little welding variation, and laser welding can be performed with low power and low energy. As a result, the good product rate of the semiconductor device can be increased by good laser welding and prevention of spatter scattering.

実施の形態を以下の実施例で説明する。     Embodiments will be described in the following examples.

図1〜図4は、この発明の第1実施例の半導体装置の構成図であり、図1は要部平面図、図2は図1のY−Y線で切断した要部断面図、図3は図1のX−X線で切断した要部断面図、図4は図2のA部拡大図である。この半導体装置は複数の半導体チップ(ここでは3個のIGBTチップ16と3個のFWDチップ18である)で構成される半導体モジュールである。図11〜図13と同一部位には同一の符号を付した。但し、ヒートスプレッダ17、19とレーザ溶接されるリードフレームは本発明のポイントとなる部位のため、その符号を60(図11)から29(図1)と変更した。     1 to 4 are block diagrams of a semiconductor device according to a first embodiment of the present invention. FIG. 1 is a plan view of a main part, and FIG. 2 is a cross-sectional view of the main part taken along line YY in FIG. 3 is a cross-sectional view of the main part taken along line XX in FIG. 1, and FIG. 4 is an enlarged view of part A in FIG. This semiconductor device is a semiconductor module composed of a plurality of semiconductor chips (here, three IGBT chips 16 and three FWD chips 18). The same parts as those in FIGS. 11 to 13 are denoted by the same reference numerals. However, since the lead frame to be laser welded to the heat spreaders 17 and 19 is a part of the present invention, the reference numeral was changed from 60 (FIG. 11) to 29 (FIG. 1).

セラミックス2aおよびセラミックス2bの表側にそれぞれ形成された配線パターン4、5および配線パターン3、6、7と、裏面に形成された裏面導電膜21と、配線パターン4、7にコレクタ側がはんだ24で固着されるIGBTチップ16とカソード側がはんだ22で固着されるFWDチップ18と、IGBTチップ16のエミッタ側およびFWDチップ18のアノード側にはんだ25、23でそれぞれ固着されるヒートスプレッダ17、19と、これらのヒートスプレッダ17、19および配線パターン6にレーザ溶接でそれぞれ固着されるリードフレーム29と、配線パターン3、5、6にレーザ溶接でそれぞれ固着されるプラス端子8、出力端子14およびマイナス端子15と、配線パターン3と配線パターン4にレーザ溶接で固着されるリードフレーム27と、配線パターン5と配線パターン7にレーザ溶接で固着されるリードフレーム28と、裏面導電膜21にはんだ26で固着される放熱基板1と、この放熱基板1の裏面を露出させ前記したIGBTチップ16やFWDチップ18などを被覆した図示しないモールド樹脂(パッケージなど)で構成される。     The wiring patterns 4, 5 and the wiring patterns 3, 6, 7 formed on the front side of the ceramics 2a and 2b, the back surface conductive film 21 formed on the back surface, and the collector side fixed to the wiring patterns 4, 7 with solder 24 FWD chip 18 whose cathode side is fixed by solder 22 to IGBT chip 16 to be formed, heat spreaders 17 and 19 fixed by solder 25 and 23 to the emitter side of IGBT chip 16 and the anode side of FWD chip 18, respectively, Lead frames 29 fixed to the heat spreaders 17 and 19 and the wiring pattern 6 by laser welding, plus terminals 8, output terminals 14 and minus terminals 15 respectively fixed to the wiring patterns 3, 5, and 6 by laser welding, wiring Laser welding to pattern 3 and wiring pattern 4 The lead frame 27 to be attached, the lead frame 28 fixed to the wiring pattern 5 and the wiring pattern 7 by laser welding, the heat dissipation substrate 1 fixed to the back surface conductive film 21 with solder 26, and the back surface of the heat dissipation substrate 1 It is composed of a mold resin (package or the like) (not shown) that is exposed and covers the IGBT chip 16 or the FWD chip 18 described above.

ここでレーザ溶接部材はヒートスプレッダ17、19とリードフレーム29およびリードフレーム27、28、29と配線パターン3、4、5、7さらには配線パターン3、5、6とプラス端子8、出力端子14、マイナス端子15であり、レーザ溶接部30〜35でそれぞれが固着する。各部のレーザ溶接部の個数は流れる電流の大きさに応じて1個から10個程度である。     Here, the laser welding members are the heat spreaders 17 and 19, the lead frame 29, the lead frames 27, 28 and 29, the wiring patterns 3, 4, 5, 7 and the wiring patterns 3, 5, 6 and the plus terminal 8, the output terminal 14, The negative terminal 15 is fixed to each other at the laser welding portions 30 to 35. The number of laser welds in each part is about 1 to 10 depending on the magnitude of the flowing current.

前記のヒートスプレッダ17、19は、高融点部材であり、モリブデンもしくはタングステンを主材とし、その気孔部に銅を有する複合材である。この複合材はたとえば、モリブデンもしくはタングステンの焼結体に銅を含浸させて形成する。
モリブデンの焼結体に銅を含浸させた複合材(CuMo材)、タングステンの焼結体に銅を含浸させた複合材(CuW材)である。また、このヒートスプレッダ17、19とレーザ溶接で固着されるリードフレーム29は無酸素銅37(もしくはタフピッチ銅)の表面にこれらの銅より融点の高い金属膜(例えば、電解Niめっき膜43)などが被覆されている。この電解Niめっき膜43の厚さは1μm〜100μmとし、好ましくは1μm〜10μmの範囲とする。厚さが1μm未満にするとNi膜が形成されない箇所が発生する。また、100μmを超えるとめっきする時間が長くなり製造コストが増大する。尚、前記のヒートスプレッダ17、19の表面にも電解Niめっき膜43を形成した場合にも同様の結果が得られる。
The heat spreaders 17 and 19 are high melting point members, and are composite materials having molybdenum or tungsten as a main material and copper in the pores. For example, this composite material is formed by impregnating a sintered body of molybdenum or tungsten with copper.
A composite material (CuMo material) obtained by impregnating molybdenum into a sintered body of molybdenum, and a composite material (CuW material) obtained by impregnating copper into a sintered body of tungsten. Further, the lead frame 29 fixed to the heat spreaders 17 and 19 by laser welding has a metal film (for example, electrolytic Ni plating film 43) having a melting point higher than those of copper on the surface of oxygen-free copper 37 (or tough pitch copper). It is covered. The thickness of the electrolytic Ni plating film 43 is 1 μm to 100 μm, preferably 1 μm to 10 μm. When the thickness is less than 1 μm, a portion where the Ni film is not formed occurs. On the other hand, when the thickness exceeds 100 μm, the plating time becomes long and the manufacturing cost increases. The same result can be obtained when the electrolytic Ni plating film 43 is also formed on the surfaces of the heat spreaders 17 and 19.

またレーザ溶接に用いるレーザ光の波長は0.19μm(エキシマレーザ)〜10.6μm(COガスレーザ)の範囲で所望の波長を用いる。通常よく用いられるのはYAGレーザ(波長が1.064μm)である。
尚、前記の電解Niめっき膜43の代わりに、銅(Cu:融点1083℃)より高融点材料である、クロム(Cr:同1857℃)、コバルト(Co:同1495℃)、チタン(Ti:同1660℃)およびパラジウム(Pd:同1554℃)などを用いてもよい。膜厚や使用するレーザ光の波長の範囲は電解Niめっき膜43の場合と同じである。
The wavelength of the laser beam used for laser welding is a desired wavelength in the range of 0.19 μm (excimer laser) to 10.6 μm (CO 2 gas laser). A YAG laser (wavelength: 1.064 μm) is usually used frequently.
In place of the electrolytic Ni plating film 43, chromium (Cr: 1857 ° C), cobalt (Co: 1495 ° C), titanium (Ti: 1660 ° C.) and palladium (Pd: 1554 ° C.) may be used. The film thickness and the range of the wavelength of the laser beam used are the same as in the case of the electrolytic Ni plating film 43.

また、これらの金属膜はめっき法で形成しても良いし、加熱圧接法を用いても良い。工業的に簡便なのは電気めっき法であるが、形成させる母材(無酸素銅もしくはタフピッチ銅)と金属膜の種類により、適宜選定すれば良い。
ここで、電解Niめっき膜43で被覆した無酸素銅37とCuMo材39とのレーザ溶接について詳細に説明する。
Further, these metal films may be formed by a plating method, or a heating pressure welding method may be used. The electroplating method is industrially simple, but may be selected as appropriate depending on the base material (oxygen-free copper or tough pitch copper) to be formed and the type of metal film.
Here, laser welding of the oxygen-free copper 37 covered with the electrolytic Ni plating film 43 and the CuMo material 39 will be described in detail.

従来例に示した無電解Niめっき膜38は非晶質であるため、融点は890℃であるが、電解Niめっき膜43は微結晶から結晶性(結晶化されていること)であるため融点が高く、1450℃である。
図5は、電解Niめっき膜を形成した銅と銅より高融点材料であるCuMo材との溶接強度のバラツキとレーザパワーの関係を示した図である。参考までに図14で説明した無電解Niめっき膜38の場合も図示した。
Since the electroless Ni plating film 38 shown in the conventional example is amorphous, the melting point is 890 ° C., but since the electrolytic Ni plating film 43 is crystalline (crystalline), it has a melting point. Is 1450 ° C.
FIG. 5 is a diagram showing the relationship between the laser power and the variation in welding strength between copper on which an electrolytic Ni plating film is formed and a CuMo material having a higher melting point than copper. For reference, the electroless Ni plating film 38 described with reference to FIG. 14 is also illustrated.

用いたレーザ溶接部材は上側に厚さが0.5mmの無酸素銅37(リードフレーム29)、下側に厚さが1.0mmのCuMo材39(ヒートスプレッダ17、19)である。上側の無酸素銅37の表面に電解Niめっき膜43(従来は無電解Niめっき膜38)を形成した。電解Niめっき膜43の厚さは2μm〜3μmとした。レーザはYAGレーザ36を用い、ファイバ径φ0.8mm、エネルギー100Jおよびピークパワー7.3kW〜8.0kWの範囲で溶接を行った。     The laser welding member used is oxygen-free copper 37 (lead frame 29) having a thickness of 0.5 mm on the upper side and CuMo material 39 (heat spreaders 17 and 19) having a thickness of 1.0 mm on the lower side. An electrolytic Ni plating film 43 (conventional electroless Ni plating film 38) was formed on the surface of the upper oxygen-free copper 37. The thickness of the electrolytic Ni plating film 43 was 2 μm to 3 μm. The laser was YAG laser 36, and welding was performed in the range of fiber diameter φ0.8 mm, energy 100 J, and peak power 7.3 kW to 8.0 kW.

従来の無電解Niめっき膜38では前記したように溶接強度のバラツキが大きいが、電解Niめっき膜43ではバラツキが小さく抑制された。また、前記したように、無電解Niめっき膜38では使用できるレーザパワー範囲が7.9kWを超えて8kW未満と狭いが、電解Niめっき膜43では、レーザパワー7.4kW〜7.6kWの広い範囲で充分な接合強度が得られ、スパッタの発生も無く良好であった。     The conventional electroless Ni plating film 38 has a large variation in welding strength as described above, but the electrolytic Ni plating film 43 has a small variation. In addition, as described above, the laser power range that can be used for the electroless Ni plating film 38 is as narrow as less than 8 kW, exceeding 7.9 kW, but the electrolytic Ni plating film 43 has a wide laser power range of 7.4 kW to 7.6 kW. Sufficient bonding strength was obtained in the range, and no spatter was generated.

ここで、電解Niめっき膜43にすることで、溶接バラツキが少なくなりレーザパワーが低くても溶接が可能となった理由について、以下に説明する。
図6は、無酸素銅に電解Niめっき膜を形成し、CuMo材とレーザ溶接した場合の溶接形態を説明する図で、同図(a)は溶接の初期状態の図、同図(b)は溶接後の状態の図である。
Here, the reason why the electrolytic Ni plating film 43 is used for welding even when the welding variation is reduced and the laser power is low will be described.
FIG. 6 is a diagram for explaining a welding mode when an electrolytic Ni plating film is formed on oxygen-free copper and laser welding is performed with a CuMo material. FIG. 6 (a) is a diagram of an initial state of welding, and FIG. These are figures of the state after welding.

図6(a)において、無酸素銅37の表面に形成された電解Niめっき膜43の表面をレーザ照射面としてYAGレーザ光36を照射すると、無電解Niめっき膜38で説明した場合と同じように、一部のレーザ光(NiのYAGレーザ光36に対する吸収率は約28%)はNiに吸収され、熱エネルギーに変換される。この熱エネルギーによって電解Niめっき膜43が加熱され、電解Niめっき膜43の融点1450℃に達すると、溶融し始め溶融したNiめっき層44が形成される。ここで、電解Niめっき膜43の下層である無酸素銅37の融点は1083℃であるので、表層の電解Niめっき膜43が溶融した時(溶融したNiめっき層44が形成された時)は、既に下層の無酸素銅37は溶融状態にあると考えられる。     In FIG. 6A, when the YAG laser light 36 is irradiated with the surface of the electrolytic Ni plating film 43 formed on the surface of the oxygen-free copper 37 as the laser irradiation surface, it is the same as the case described for the electroless Ni plating film 38. In addition, a part of the laser light (the absorption rate of Ni with respect to the YAG laser light 36 is approximately 28%) is absorbed by Ni and converted into thermal energy. The electrolytic Ni plating film 43 is heated by this thermal energy, and when the melting point of the electrolytic Ni plating film 43 reaches 1450 ° C., the molten Ni plating layer 44 is formed. Here, since the melting point of the oxygen-free copper 37 which is the lower layer of the electrolytic Ni plating film 43 is 1083 ° C., when the surface electrolytic Ni plating film 43 is melted (when the molten Ni plating layer 44 is formed). The underlying oxygen-free copper 37 is considered to be in a molten state.

溶融した電解Niめっき膜44(融点1450℃)が無酸素銅37表面から一部除去され、無垢(電解Niめっき膜43のない)の無酸素銅37表面が露出したとしても、既に無酸素銅37表面は融点の1083℃以上に達していると思われるため、もはや固体の銅のレーザ吸収率ではなくなり、レーザ吸収率は高くなっている。
溶融状態の金属に対するYAGレーザ36の吸収率は、固体状態の金属より数倍高くなることは一般的によく知られていることである。よって、表面に電解Niめっき膜43を形成したものは、表面に無電解Niめっき膜38を形成した場合よりも低いレーザパワーで溶接が可能となったと考えられる。
Even if the molten electrolytic Ni plating film 44 (melting point 1450 ° C.) is partially removed from the surface of the oxygen-free copper 37 and the surface of the pure oxygen (without the electrolytic Ni plating film 43) is exposed, the oxygen-free copper is already present. Since the surface of 37 seems to have reached the melting point of 1083 ° C. or higher, it is no longer the solid laser absorption rate of copper, and the laser absorption rate is high.
It is generally well known that the absorptance of the YAG laser 36 for molten metal is several times higher than for solid metal. Accordingly, it is considered that welding with the electrolytic Ni plating film 43 on the surface enabled welding with a lower laser power than when the electroless Ni plating film 38 was formed on the surface.

電解Niめっき膜43を表層に形成することで、表面材質自体の融点は高くなるが、一度溶融すればその下層の無酸素銅37も溶融状態にあるため、低いレーザパワーで容易に溶接が可能となるものと考えられる。
また、図6(b)に示すように、レーザパワーとしては、表層の電解Niめっき膜43を溶融させることができるパワーを少し超えたパワーで下側のCuMo材39を溶融させ、所望の深さの銅溶融部45(レーザ溶接部30、31)が形成されるので、溶融状態のコントロールがしやすく、溶接バラツキの少ない接合が可能となる。
By forming the electrolytic Ni plating film 43 on the surface layer, the melting point of the surface material itself becomes high, but once melted, the underlying oxygen-free copper 37 is also in a molten state, so that it can be easily welded with low laser power. It is considered that.
Further, as shown in FIG. 6 (b), as the laser power, the CuMo material 39 on the lower side is melted at a power slightly higher than the power capable of melting the electrolytic Ni plating film 43 on the surface layer, and a desired depth is obtained. Since the copper melted part 45 (laser welded parts 30, 31) is formed, it is easy to control the melted state, and joining with less welding variation is possible.

尚、前記の実施例での説明は、電解Niめっき膜43をリードフレーム29の表面に形成し場合であるが、リードフレーム27、28、プラス端子8、出力端子14およびマイナス端子15が無酸素銅37で形成されている場合、その表面に電解Niめっき膜43を形成しても、前記と同様に溶接バラツキが少なくなりレーザパワーを低くても溶接が可能となる。但し、この場合には下地が、通常、銅(例えば、無酸素銅)で形成された配線パターン3〜7である場合には、レーザ溶接時にスパッタが発生しやすいので、溶接箇所以外の領域にスパッタが飛散するのを防止する方策が必要となる。     In the above embodiment, the electrolytic Ni plating film 43 is formed on the surface of the lead frame 29. However, the lead frames 27 and 28, the positive terminal 8, the output terminal 14 and the negative terminal 15 are oxygen-free. In the case of being formed of copper 37, even if the electrolytic Ni plating film 43 is formed on the surface, welding variation is reduced as described above, and welding is possible even if the laser power is low. However, in this case, when the base is usually a wiring pattern 3 to 7 formed of copper (for example, oxygen-free copper), spatter is likely to occur during laser welding. A measure to prevent the spatter from scattering is required.

この発明の第1実施例の半導体装置の要部平面図The principal part top view of the semiconductor device of 1st Example of this invention 図1のY−Y線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the YY line of FIG. 図1のX−X線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the XX line of FIG. 図2のA部拡大図Part A enlarged view of FIG. 電解Niめっき膜を形成した銅と銅より高融点材料であるCuMo材との溶接強度のバラツキとレーザパワーの関係を示した図The figure which showed the relation between the welding power variation and the laser power of copper which formed the electrolytic Ni plating film and CuMo material which is higher melting point material than copper 無酸素銅に電解Niめっき膜を形成し、CuMo材とレーザ溶接した場合の溶接形態を説明する図で、(a)は溶接の初期状態の図、(b)は溶接後の状態の図It is a figure explaining the welding form at the time of forming an electrolytic Ni plating film in oxygen free copper, and carrying out laser welding with a CuMo material, (a) is a figure of the initial state of welding, (b) is a figure of the state after welding. 従来の半導体モジュールの要部平面図Plan view of main parts of a conventional semiconductor module 図7のY−Y線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the YY line of FIG. 図7のX−X線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the XX line of FIG. 三相モータを駆動するインバータ回路Inverter circuit that drives a three-phase motor リードフレームをレーザ溶接した従来の半導体装置の要部平面図Plan view of relevant parts of a conventional semiconductor device with a lead frame laser welded 図11のY−Y線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the YY line of FIG. 図11のX−X線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the XX line of FIG. 表面に無電解Niめっき膜を形成した無酸素銅とCuMo材との溶接強度のバラツキとレーザパワーの関係を示した図The figure which showed the relation between laser power and variation in welding strength between oxygen free copper and CuMo material with electroless Ni plating film formed on the surface 無酸素銅の表面に無電解Niめっき膜を形成し、CuMo材とレーザ溶接した場合の溶接様態を示す図で、(a)は溶接の初期状態の図、(b)はパワーを増大させて溶接した場合の図、(c)はパワーをさらに増大した場合の図It is a figure which shows the welding mode at the time of forming an electroless Ni plating film on the surface of oxygen free copper, and laser welding with CuMo material, (a) is a figure of the initial state of welding, (b) is increasing power. Figure when welding, (c) is a figure when the power is further increased

符号の説明Explanation of symbols

1 放熱基板
2a セラミックス(上アーム)
2b セラミックス(下アーム)
3、4、5、6、7 配線パターン
8 プラス端子
14 出力端子
15 マイナス端子
16 IGBTチップ
17 ヒートスプレッダ(IGBT上)
18 FWDチップ
19 ヒートスプレッダ(FWD上)
21 裏面導電膜
22、23、24、25、26 はんだ
27、28 リードフレーム(配線パターン間接続)
29 リードフレーム(ヒートスプレッダと接続)
30、31、32、33、34、35 レーザ溶接部
36 レーザ光
37 無酸素銅
39 CuMo材
43 電解Niめっき膜
44 溶融したNiめっき層
45 銅溶融部
1 Heat dissipation board 2a Ceramics (upper arm)
2b Ceramics (lower arm)
3, 4, 5, 6, 7 Wiring pattern 8 Positive terminal 14 Output terminal 15 Negative terminal 16 IGBT chip 17 Heat spreader (on IGBT)
18 FWD chip 19 Heat spreader (on FWD)
21 Back surface conductive film 22, 23, 24, 25, 26 Solder 27, 28 Lead frame (connection between wiring patterns)
29 Lead frame (connected to heat spreader)
30, 31, 32, 33, 34, 35 Laser welded portion 36 Laser light 37 Oxygen-free copper 39 CuMo material 43 Electrolytic Ni plating film 44 Melted Ni plating layer 45 Copper fusion zone

Claims (7)

第1部材と該第1部材より融点の高い金属を主材とする第2部材で構成されるレーザ溶接部材において、前記第1部材の表面に該第1部材より融点の高い金属膜を被覆し、該金属膜をレーザ光の照射面とすることを特徴とするレーザ溶接部材。 In a laser welding member composed of a first member and a second member mainly composed of a metal having a melting point higher than that of the first member, a metal film having a melting point higher than that of the first member is coated on the surface of the first member. A laser welding member, wherein the metal film is used as a laser light irradiation surface. 前記第1部材が、無酸素銅もしくはタフピッチ銅であることを特徴とする請求項1に記載のレーザ溶接部材。 The laser welding member according to claim 1, wherein the first member is oxygen-free copper or tough pitch copper. 前記第2部材が、モリブデンもしくはタングステンを主材とし気孔部に銅を有する複合材であることを特徴とする請求項1に記載のレーザ溶接部材。 The laser welding member according to claim 1, wherein the second member is a composite material having molybdenum or tungsten as a main material and copper in a pore portion. 前記金属膜が、電解Niメッキ膜、Cr膜、Co膜、Ti膜もしくはPd膜のいずれか一つであることを特徴とする請求項1〜3のいずれか一項に記載のレーザ溶接部材。 The laser welding member according to any one of claims 1 to 3, wherein the metal film is any one of an electrolytic Ni plating film, a Cr film, a Co film, a Ti film, or a Pd film. 前記金属膜の膜厚が、1μm〜100μmであることを特徴とする請求項4に記載のレーザ溶接部材。 The thickness of the said metal film is 1 micrometer-100 micrometers, The laser welding member of Claim 4 characterized by the above-mentioned. 前記金属膜の膜厚が、1μm〜10μmであることを特徴とする請求項5に記載のレーザ溶接部材。 The thickness of the said metal film is 1 micrometer-10 micrometers, The laser welding member of Claim 5 characterized by the above-mentioned. 請求項1〜6のいずれか一項に記載のレーザ溶接部材を用いて形成した半導体装置において、ヒートスプレッダが前記第2部材で形成され、リードフレームが前記金属膜を被覆した前記第1部材で形成されることを特徴とする半導体装置。
The semiconductor device formed using the laser welding member according to claim 1, wherein a heat spreader is formed by the second member, and a lead frame is formed by the first member covered with the metal film. A semiconductor device that is characterized in that:
JP2007053959A 2007-03-05 2007-03-05 Laser welding member and semiconductor device using the same Active JP4858238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053959A JP4858238B2 (en) 2007-03-05 2007-03-05 Laser welding member and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053959A JP4858238B2 (en) 2007-03-05 2007-03-05 Laser welding member and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2008212977A JP2008212977A (en) 2008-09-18
JP4858238B2 true JP4858238B2 (en) 2012-01-18

Family

ID=39833646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053959A Active JP4858238B2 (en) 2007-03-05 2007-03-05 Laser welding member and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4858238B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082673A (en) * 2008-10-01 2010-04-15 Fuji Electric Systems Co Ltd Laser beam welding member and laser beam welding method
JP2014056920A (en) * 2012-09-12 2014-03-27 Calsonic Kansei Corp Semiconductor device
JP2014179547A (en) * 2013-03-15 2014-09-25 Toshiba Corp Semiconductor module and method of manufacturing the same
FR3036303B1 (en) * 2015-05-21 2017-10-20 Valeo Equip Electr Moteur WELDING PROCESS WITHOUT CONTENT OF MATERIAL AND ELECTRONIC POWER MODULE MADE THEREBY
US10714404B2 (en) 2016-01-29 2020-07-14 Mitsubishi Electric Corporation Semiconductor device
DE102016108656A1 (en) * 2016-05-11 2017-11-16 Danfoss Silicon Power Gmbh Power electronic assembly with vibration-free contacting
JP2020035960A (en) * 2018-08-31 2020-03-05 株式会社ジェイテクト Joint device and joint manufacturing method
JP6691984B2 (en) * 2019-02-04 2020-05-13 ローム株式会社 Power module
DE112020001100T5 (en) * 2019-03-05 2022-01-05 Rohm Co., Ltd. SEMICONDUCTOR COMPONENT AND BOND PROCESS
JP7451521B2 (en) 2019-06-20 2024-03-18 ローム株式会社 Semiconductor device and semiconductor device manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232082A (en) * 1985-04-09 1986-10-16 Mitsubishi Electric Corp Welding method of different metals
JPH0810586B2 (en) * 1986-12-08 1996-01-31 松下電器産業株式会社 Sealed battery
JPH08218137A (en) * 1995-02-14 1996-08-27 Kobe Steel Ltd Copper or copper alloy member excellent in laser weldability
JP3174286B2 (en) * 1997-06-17 2001-06-11 株式会社オートネットワーク技術研究所 Laser welding structure
JPH11191607A (en) * 1997-12-26 1999-07-13 Hitachi Cable Ltd Lead frame for semiconductor

Also Published As

Publication number Publication date
JP2008212977A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4858238B2 (en) Laser welding member and semiconductor device using the same
US10147671B2 (en) Semiconductor device and method for manufacturing same
JP4764983B2 (en) Manufacturing method of semiconductor device
JP4976688B2 (en) Joining method between heat spreader and metal plate
JP4775327B2 (en) Manufacturing method of semiconductor device
JP4765853B2 (en) Manufacturing method of semiconductor device
JP5103863B2 (en) Semiconductor device
JP2015119072A (en) Laser welding method, laser welding jig, and semiconductor device
US10236230B2 (en) Electronic device and method for manufacturing the same
WO2017154289A1 (en) Semiconductor device and semiconductor device manufacturing method
CN109075149A (en) The manufacturing method of semiconductor device and semiconductor device
JP2009105266A (en) Method of manufacturing semiconductor apparatus
WO2016092791A1 (en) Semiconductor device and method for manufacturing same
WO2013039099A1 (en) Method for producing semiconductor device, and semiconductor device produced using production method
JP5119139B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2008205058A (en) Semiconductor device
JP6939679B2 (en) Semiconductor device
KR101956983B1 (en) Power module and manufacturing method therefor
JP2007305620A (en) Manufacturing method of semiconductor device
JP2022013800A (en) Semiconductor device and welding method
JP2020113639A (en) Power module and method of manufacturing the same, and electric power conversion apparatus
JP2020198388A (en) Semiconductor device and method for manufacturing the same
JP2007287991A (en) Manufacturing method of semiconductor device
JP2012094643A (en) Semiconductor device and manufacturing method thereof
JP2022185936A (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4858238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250