JP4758293B2 - 酸素センサの劣化信号発生装置 - Google Patents

酸素センサの劣化信号発生装置 Download PDF

Info

Publication number
JP4758293B2
JP4758293B2 JP2006178747A JP2006178747A JP4758293B2 JP 4758293 B2 JP4758293 B2 JP 4758293B2 JP 2006178747 A JP2006178747 A JP 2006178747A JP 2006178747 A JP2006178747 A JP 2006178747A JP 4758293 B2 JP4758293 B2 JP 4758293B2
Authority
JP
Japan
Prior art keywords
signal
reference signal
gain
value
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006178747A
Other languages
English (en)
Other versions
JP2008008186A (ja
Inventor
聡 戸田
邦彦 高松
直人 澤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006178747A priority Critical patent/JP4758293B2/ja
Publication of JP2008008186A publication Critical patent/JP2008008186A/ja
Application granted granted Critical
Publication of JP4758293B2 publication Critical patent/JP4758293B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気ガス中の酸素濃度に感応すると共に、理論空燃比を境にしてセンサ出力信号が急変する酸素センサが劣化した状態において出力するセンサ出力信号を、劣化信号として擬似的に発生する酸素センサの劣化信号発生装置に関するものである。
従来より、自動車のエンジンなどの内燃機関の排気通路に取り付けられ、排気ガス中の酸素濃度に基づき、排気ガスの空燃比がリッチ側にあるかリーン側にあるかを検出する酸素センサが知られている。この酸素センサのセンサ素子は、ジルコニア等の固体電解質体を主体に構成されており、出力電圧(センサ出力信号)が排気ガス中の酸素の濃度に応じて(換言すれば、理論空燃比を境にして)二値的に変化することを利用して、排気ガスの空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出するものである。酸素センサから出力されるセンサ出力信号はエンジンの各種制御を司るECU(電子制御ユニット)に送信され、ECUでは、受信したセンサ出力信号に基づきエンジンにおける燃料の噴射量の調整等の空燃比フィードバック制御が行われる。
こうした酸素センサは、センサ素子が排気通路内で排気ガスに曝されることとなるため、長期間の使用に伴い経時劣化が生ずる。そこでECUの開発では、酸素センサがある程度劣化した状態でも空燃比フィードバック制御の精度を維持することができるように、酸素センサ劣化時のセンサ出力信号(劣化信号)に対しても最適な空燃比フィードバック制御のパラメータを決定できるようにする設計が行われている。例えば、加速耐久試験により劣化度合いの異なる酸素センサを用意し、それら酸素センサから得られる劣化信号と、正常な酸素センサのセンサ出力信号とを用い、劣化信号の過渡的な段階における信号状態を予測して、パラメータの設定を行っている。
ところで、実車において排気ガスの浄化状態を確認するための試験を行う場合、酸素センサが劣化した状態においてもECUによる空燃比フィードバック制御が正しく行われているか否かを確認するため、上記のように加速耐久試験により劣化させた酸素センサが実車に取り付けられる。しかし、こうした試験に用いるため、数種類の劣化状態を再現した酸素センサそれぞれを加速耐久試験により目標通りに作成することは困難である。また、試験において、劣化状態の異なる酸素センサを試験の都度取り換えるには手間もかかる。そのため、酸素センサの劣化信号を擬似的に発生することができる劣化信号発生装置(劣化シミュレータ)が開発されている(例えば、特許文献1参照。)。
このような劣化信号発生装置は、実車に取り付けた正常な酸素センサ(還元すれば、劣化信号を発生するための基準となる酸素センサ)とECUとの間に介在され、入力された酸素センサのセンサ出力信号を加工して擬似的に劣化信号を発生し、この劣化信号をECUに対して出力するものである。特許文献1の劣化信号発生装置では、具体的には、排気ガス中の酸素濃度に応じ、センサ出力信号がリニアに変化する全領域空燃比センサのセンサ出力信号のゲインを変化させたり、センサ出力信号の応答特性に遅れを生じさせたりすることで、擬似的に劣化信号を発生している。
特開2004−93957号公報
しかしながら、酸素センサが劣化した場合、排気ガスの空燃比がリッチ側にある場合とリーン側にある場合とで異なった劣化状態を示すことがあった。例えば、空燃比がリッチ側にある場合には正常なセンサ出力信号が出力され、リーン側にある場合に劣化したセンサ出力信号が出力される場合である。特許文献1のように酸素センサのセンサ出力信号のゲインを変化させた場合、センサ出力信号の最大値と最小値との差を変化させることができるものの、最大値と最小値とが共に変動してしまうため、特に、排気ガス中の酸素の濃度に応じてセンサ出力信号の値が二値的に変化する酸素センサにおいて、その劣化状態を正しくシミュレートすることが難しいという問題があった。
本発明は上記問題点を解決するためになされたものであり、理論空燃比を境にセンサ出力信号が急変する酸素センサが劣化したときに出力するセンサ出力信号を劣化信号として擬似的に発生するにあたって、排気ガスの空燃比がリッチ側にある場合とリーン側にある場合とで異なった利得率を用いてセンサ出力信号のゲインを変更することができる酸素センサの劣化信号発生装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明の酸素センサの劣化信号発生装置は、内燃機関の排気ガス中の酸素濃度に感応すると共に、理論空燃比を境にしてセンサ出力信号が急変する酸素センサが劣化したときに出力する当該センサ出力信号を、劣化信号として疑似的に発生する劣化信号発生装置であって、前記酸素センサと同構成をなし、排気ガス中の酸素の濃度に関連した基準信号を出力する基準酸素センサに接続されると共に、前記基準信号を取得する基準信号取得手段と、前記基準信号のゲインを変更した状態で出力するための利得率として、前記基準信号の値が所定のしきい値よりもリーン側である場合の当該基準信号のゲインを変更させるためのリーン利得率、および、前記基準信号の値が所定のしきい値よりもリッチ側である場合の当該基準信号のゲインを変更させるためのリッチ利得率を、それぞれ個別に設定する利得率設定手段と、前記基準信号の値が所定のしきい値よりもリーン側であると判定された場合、前記基準信号に前記リーン利得率を掛け合わせる一方、前記基準信号の値が所定のしきい値よりもリッチ側であると判定された場合、前記基準信号に前記リッチ利得率を掛け合わせることで、前記基準信号のゲインを変更した前記劣化信号を発生するゲイン変更信号発生手段とを備えたことを特徴とする。
また、請求項2に係る発明の酸素センサの劣化信号発生装置は、前記所定のしきい値、前記リーン利得率、および前記リッチ利得率のそれぞれの設定値を記憶するとともに、装置の電源切断時にも前記設定値を保存する記憶手段をさらに備える。
請求項1に係る発明の酸素センサの劣化信号発生装置によれば、酸素センサの出力するセンサ出力信号のゲインが低下した状態を想定した劣化信号を基準センサの基準信号から擬似的に発生することができる。さらに、基準信号のゲインを変更するための利得率として、基準信号が所定のしきい値よりもリッチ側にある場合のリッチ利得率とリーン側にある場合のリーン利得率とを個別に設定することができる。酸素センサの被毒の状態(例えば、排気ガス中に含まれていたPb成分による被毒が特に進んでいる状態や、排気ガス中に含まれるSi成分による被毒が特に進んでいる状態)によっては、酸素センサから出力される劣化信号の状態が、排気ガスの空燃比がリッチ側とリーン側とで異なった状態を示す場合がある。そこで上記のようにリッチ利得率とリーン利得率とを個別に設定することができれば、排気ガスの空燃比が所定のしきい値よりもリッチ側にある場合にのみ劣化した状態の劣化信号を出力する酸素センサや、排気ガスの空燃比が所定のしきい値を境界にしてリッチ側とリーン側とで劣化の度合いの異なる劣化信号を出力する酸素センサなどの劣化信号を擬似的に発生することができ、酸素センサの様々な劣化態様に応じた劣化信号を発生することができる。つまり、本発明の劣化信号発生装置を用いることにより、排気ガスの空燃比が所定の値を境界にしてリッチ側にある場合とリーン側にある場合とでゲインを自由に異ならせて変更させた劣化信号を得ることができ、精密な空燃比フィードバック制御を実現可能なシステムの開発を円滑に行えると共に、その開発期間の短縮を図ることが可能となる。なお、本発明でいう「所定のしきい値」としては、センサ出力信号が実使用において取り得る値であれば特に限定されず、例えばセンサ出力信号の理論空燃比時に出力する値をしきい値にすることができる。
以下、本発明を具体化した劣化信号発生装置の一実施の形態について、図面を参照して説明する。図1は、本実施の形態の劣化信号発生装置の一例としてのセンサシミュレータ1の概略的な構成を示すブロック図である。なお、本発明の劣化信号発生装置に接続される酸素センサは、排気ガス中の酸素濃度に反応すると共に、理論空燃比を境にしてセンサ出力信号が急変する、いわゆるλ型の酸素センサであり、基準センサ2として、正常な(劣化していない)λ型酸素センサを用いたものとして説明する。
なお、λ型酸素センサについては公知のものを使用しているため、その構造等の詳細については説明を省略するが、以下に、酸素センサに用いられるセンサ素子による排気ガスの空燃比の検出原理について簡単に説明する。このセンサ素子は、高温雰囲気下で酸素イオン導電性を示す性質を有する、例えばジルコニア製の固体電解質体を一対の多孔質電極で挟んだ筒状ないしは板状をなしており、この固体電解質体で2つの雰囲気を隔て、両雰囲気間で酸素分圧に差が生じたとき、固体電解質体内を酸素イオンが移動することを利用するものである。具体的には、固体電解質体で排気ガス雰囲気と大気雰囲気(あるいは基準となる酸素濃度を有する雰囲気)とを隔て、両雰囲気間で酸素分圧の平衡化がなされる際に、固体電解質体内を移動する酸素イオンによって電子が運搬されることにより生ずる起電力を測定し、排気ガスの空燃比がリッチ側かリーン側かを検出するものである。酸素センサの出力するセンサ出力信号の値(起電力)は、排気ガスの空燃比が理論空燃比である場合を境にリッチ側とリーン側とで二値的に急激な変動を示し、一般には、排気ガスの空燃比がリッチ側である場合、センサ素子の出力するセンサ出力信号の値は約0.9Vを示し、リーン側である場合、約0.05Vを示す。このようなλ型酸素センサの一例として、本実施の形態では、特開2004−138599号公報に開示する筒型のセンサ素子を備えると共に、センサ素子にヒータを内挿させた酸素センサを使用しているものとして説明することとする。
図1に示すように、センサシミュレータ1は、自動車の排気通路(図示外)に取り付けられる酸素センサとしての基準センサ2と、自動車の電子制御を司るECU3との間に介在される装置である。基準センサ2は、上記のように、排気通路内を流通する排気ガス中の酸素濃度に応じたセンサ出力信号を出力し、このセンサ出力信号が基準信号としてセンサシミュレータ1に入力されている。センサシミュレータ1は、入力された基準信号に対し、後述する劣化信号発生プログラムの実行により加工を施して劣化信号を発生し、ECU3に対して出力を行っている。ECU3は、入力された劣化信号に基づき、図示外のエンジンの制御(例えば、インジェクタから噴射する燃料の噴射量や噴射タイミングの調整や、点火時期の調整など)を行っている。また、ECU3は、基準センサ2のヒータ回路(図示外)にヒータ駆動電圧の供給も行っており、センサ素子(図示外)の早期活性化や活性化後の安定化を図っている。
センサシミュレータ1は、図示しないケーシング内に、自身の制御を司るCPU11と、後述する劣化信号発生プログラム等が記憶された、書き換え可能なEEPROM12と、各種のデータを一時的に記憶するRAM13とを有するマイクロコンピュータ10を備えている。なお、マイクロコンピュータ10のCPU11、EEPROM12およびRAM13は公知の構成からなるものである。EEPROM12およびRAM13の記憶エリアの構成については後述する。
マイクロコンピュータ10には、入力インターフェイス20を介して基準センサ2から入力される基準信号をA/D変換するA/Dコンバータ30と、後述する劣化信号発生プログラムによって発生した劣化信号を出力バッファ40を介してECU3に出力するためにD/A変換するD/Aコンバータ50とが接続されている。更に、マイクロコンピュータ10には、劣化信号発生プログラムに用いられる設定値等を利用者が入力するための入力部60と、入力された設定値等を確認できるように表示する表示部80の表示制御を行う表示制御部70とが接続されている。入力部60としては、例えばプッシュスイッチやロータリースイッチ等が用いられ、表示部80としては、例えばLCDディスプレイ等が用いられる。また、図示しないが、センサシミュレータ1は電源回路等も備えている。
次に、EEPROM12の記憶エリアおよびRAM13の記憶エリアの概略的な構成について、図2および図3を参照して説明する。図2は、EEPROM12の記憶エリアの構成を示す概念図である。図3は、RAM13の記憶エリアの構成を示す概念図である。
図2に示すように、EEPROM12には、設定値記憶エリア121、プログラム記憶エリア122、初期値記憶エリア123が設けられている。設定値記憶エリア121は、後述する3つの変数(RichGain,LeanGain,GainThreshold)の設定値が記憶され、劣化信号発生プログラムにおいて利用される。これらの設定値は、予め利用者により入力部60から任意の値が入力され、EEPROM12に記憶されることで、電源切断時にも保存することができるように構成されている。プログラム記憶エリア122には、劣化信号発生プログラムが記憶されている。EEPROM12を使用することで、バージョンアップ等にも柔軟に対応できるように構成されている。初期値記憶エリア123には、劣化信号発生プログラムで使用される各変数の初期値が記憶されている。更にEEPROM12には、図示外の各種の記憶エリアが設けられている。
また、図3に示すように、RAM13には、ワークエリア131、変数記憶エリア132が設けられている。ワークエリア131には、劣化信号発生プログラムが読み込まれて展開される記憶エリアであり、その実行に利用される。変数記憶エリア132には、以下に示す、各種変数が記憶され、劣化信号発生プログラムの実行に際し使用される。
ここで、劣化信号発生プログラムで使用される各変数について説明する。「Vin」は、基準センサ2から取得される基準信号の電圧値を記憶するための変数であり、初期値には0がセットされる。「GainThreshold」は、基準信号の電圧値をもって排気ガスの空燃比がリッチ側にあるかリーン側にあるかを判定するための所定のしきい値を記憶するための変数であり、初期値には利用者により予め設定された値がセットされる。「RichGain」は、排気ガスの空燃比が所定のしきい値よりもリッチ側にある場合に、基準信号の電圧値に掛け合わせて劣化信号(電圧値Vout)を得るための利得率(リッチ利得率)を記憶するための変数であり、初期値には利用者により予め設定された値がセットされる。「LeanGain」は、排気ガスの空燃比が所定のしきい値よりもリーン側にある場合に、基準信号の電圧値に掛け合わせて劣化信号(電圧値Vout)を得るための利得率(リーン利得率)を記憶するための変数であり、初期値には利用者により予め設定された値がセットされる。「Vout」は、基準信号の電圧値Vinのゲインを変更した劣化信号の電圧値を記憶するための変数であり、初期値には0がセットされる。更にRAM13には、図示外の各種の記憶エリアが設けられている。
このような構成のセンサシミュレータ1では、図4,図5のフローチャートで示す劣化信号発生プログラムの実行に従って、基準センサ2から1ms毎に基準信号を取得し、加工を施して劣化信号を発生し、ECU3に対し出力を行っている。以下、図4,図5に示す劣化信号発生プログラムの詳細について、図6〜図8のグラフを参照しながら説明する。図4は、劣化信号発生プログラムのメインルーチンのフローチャートである。図5は、ゲイン処理サブルーチンのフローチャートである。図6は、空燃比をリッチ側とリーン側とに交番させた場合に得られる基準信号を時間軸に沿って示した例を示すグラフである。図7は、図6に示した基準信号のリッチ側のゲインを変更した劣化信号の例を示すグラフである。図8、図6に示した基準信号のリーン側のゲインを変更した劣化信号の例を示すグラフである。なお、フローチャートの各ステップを「S」と略記する。
センサシミュレータ1では、予め、利用者により各種設定値の入力が行われる。具体的には、基準信号のゲインを変更するためのリッチ側における利得率(リッチ利得率)およびリーン側における利得率(リーン利得率)(それぞれ変数RichGain,LeanGainの値として利用される。)および所定のしきい値(変数GainThresholdの値として利用される。)が設定される。これらの設定値は入力部60の操作により行われ、EEPROM12の設定値記憶エリア121に記憶されることで、センサシミュレータ1の電源が落とされた後に再度使用される場合にも、以前入力された設定値が保存されるように構成されている。
センサシミュレータ1による基準センサ2の基準信号から劣化信号の発生は、図4に示す、劣化信号発生プログラムが、EEPROM12のプログラム記憶エリア122よりRAM13のワークエリア131に読み込まれ実行されることによって開始される。図4に示す劣化信号発生プログラムでは、S1でまず初期化処理が行われた後、S2で1ms毎のリセット信号の受信待ちが行われる。本実施の形態では、劣化信号発生プログラムと並列に図示外のタイマプログラムが実行されており、1ms毎にリセット信号が出力されている。S2ではリセット信号の受信待ちが行われ、リセット信号の受信を契機にS3へ進むように構成されている。そしてS3でゲイン処理のサブルーチンがコールされて実行され、基準センサ2から取得される基準信号(電圧値Vin)を元としてゲインが変更(増幅または減衰)された劣化信号(電圧値Vout)が発生されて、ECU3に対し出力される。このときVinは、予め設定された所定のしきい値GainThresholdに対し、大きい場合と小さい場合とで異なる利得率RichGain,LeanGainにより増幅または減衰されるように構成されている。そしてS3の処理後にはS2に戻り、次のリセット信号の受信待ちが行われる。すなわち、基準信号を加工して劣化信号を発生するS3の処理は、1ms毎に行われている。以下、劣化信号発生プログラムの具体的な処理内容について説明する。
初期化処理では、劣化信号発生プログラムで使用される各種変数の初期化が行われる(S1)。初期化は、EEPROM12の初期値記憶エリア123に記憶された初期値(前述)が読み込まれ、各変数の値として、RAM13の対応する変数記憶エリア132の記憶エリアに記憶されることで行われる。また、上記した、予め利用者により設定された3つの変数(RichGain,LeanGain,GainThreshold)の値がEEPROM12の設定値記憶エリア121より読み込まれ、各変数の値として、対応する変数記憶エリア132の記憶エリアに記憶される。劣化信号発生プログラムのS1以降の処理では、各変数の値の読み出し、書き込み等はすべて、変数記憶エリア132に設けられた、それぞれの処理に対応する各変数の記憶エリアに対して行われる。そしてリセット信号の受信待ちが行われ(S2:NO)、リセット信号の受信を契機にゲイン処理のサブルーチンがコールされる(S2:YES,S3)。なお、S1において、予め利用者により入力部60から入力されEEPROM12に記憶され保存された利得率RichGain,LeanGainを、劣化信号発生プログラムで使用するため読み込み、RAM13の変数記憶エリアに記憶させるCPU11が、本発明における「利得率設定手段」に相当する。
[ゲイン処理]
ゲイン処理は、基準信号の電圧値Vinに対し、排気ガスの空燃比がリッチ側である場合とリーン側である場合とで異なる利得率RichGain,LeanGainを掛け合わせて劣化信号(電圧値Vout)を発生させる処理である。前述したように、本実施の形態の基準センサ2はλ型酸素センサであり、排気ガスの空燃比がリッチ側にあるとき、その排気ガスに曝されるλ型酸素センサの出力電圧値は約0.9Vを示し、リーン側にあるときには約0.05Vを示す。従って、混合気の目標空燃比が約1秒毎にリッチ側とリーン側とで交番された場合、λ型酸素センサ、すなわち基準センサ2の基準信号の電圧値は、図6に示すように、約1秒毎に約0.05Vと約0.9Vとの間で急峻な変化(例えば区間[A−B]や区間[C−D]など)を示す。
図5に示すゲイン処理では、まず、A/Dコンバータ30を介して入力される基準センサ2の出力電圧が取得され、その電圧値が変数Vinとして記憶される(S21)。取得された基準信号の電圧値Vinは、予め利用者に設定されたしきい値GainThresholdと比較される(S22)。上記したように基準信号の電圧値は、約0.05Vと約0.9Vとの間で変化するため、GainThresholdは通常、略中間の電圧値(換言すれば、理論空燃比のときに出力される電圧値)である0.45Vに設定される。VinがGainThresholdよりも大きかった場合(S22:YES)、取得された基準信号の電圧値は、空燃比がリッチ側にある場合の電圧値であると判断される。そして、基準信号のGainThresholdを上回る分の電圧値に利得率RichGainを掛け合わせることでリッチ側のゲインのみを変更した劣化信号(電圧値Vout)が算出される(S23)。具体的には、「GainThreshold+(Vin−GainThreshold)×RichGain」が計算され、その結果がVoutに記憶される。ここで、基準信号に対し、空燃比がリッチ側である場合にのみゲインを変更した場合の例を、図7に示す。なお、本実施の形態では、RichGainとして0.90が設定されており、図7ではその設定での劣化信号の波形を示している。図7では、点線で示される基準信号(電圧値Vin)のグラフに対比させ、基準信号の電圧値がGainThresholdとしての0.45Vよりも大きな値を示す場合にのみ電圧値を減衰させた劣化信号(電圧値Vout)のグラフを1点鎖線で示している。従って基準信号の電圧値が0.45V以下である場合には、劣化信号のグラフは基準信号のグラフに一致した状態となる。なお、S21で基準センサ2の基準信号を取得してVinとして記憶させるA/Dコンバータ30およびCPU11が、本発明における「基準信号取得手段」に相当する。
一方、図5に示すように、VinがGainThresholdよりも小さかった場合(S22:NO,S25:YES)、同様に、取得された基準信号の電圧値は、空燃比がリーン側にある場合の電圧値であると判断される。そして、基準信号のGainThresholdを下回る分の電圧値に利得率LeanGainを掛け合わせることでリーン側のゲインのみを変更した劣化信号(電圧値Vout)が算出される(S26)。具体的には、「GainThreshold−(GainThreshold−Vin)×LeanGain」が計算され、その計算結果がVoutに記憶される。ここで、基準信号に対し、空燃比がリーン側である場合にのみゲインを変更した場合の例を、図8に示す。なお、本実施の形態では、LeanGainとして0.70が設定されており、図8ではその設定での劣化信号の波形を示している。図8では、点線で示される基準信号(電圧値Vin)のグラフに対比させ、基準信号の電圧値がGainThresholdとしての0.45Vよりも小さな値を示す場合にのみ電圧値を増幅させた劣化信号(電圧値Vout)のグラフを1点鎖線で示している。従って基準信号の電圧値が0.45V以上である場合には、劣化信号のグラフは基準信号のグラフに一致した状態となる。なお、S23およびS26の処理で、基準信号のゲインを変更した劣化信号を発生するCPU11が、本発明における「ゲイン変更信号発生手段」に相当する。
また、図5に示すように、VinがGainThresholdと同じ値である場合には(S22:NO,S25:NO)、基準信号のゲインを変更する処理は行われず、その電圧値Vinが劣化信号の電圧値Voutとして記憶される(S27)。このようにして劣化信号の電圧値Voutが求められた後には(S23/S26/S27)、S29に進む。そして、ゲインを変更したことによって電圧値Voutが適正値、すなわち0V以上5V未満の範囲外となった場合、適正値の範囲内に収まるように補正が行われる。具体的には、Voutが5V以上であれば(S29:YES)、Voutには4.99Vが記憶される(S30)。一方、Voutが0V未満であれば(S29:NO,S31:YES)、Voutには0Vが記憶される(S33)。また、Voutが0V以上5V未満であれば(S29:NO,S31:NO)、Voutは適正値であると判断され、補正は行われない。こうして補正が行われた後(S30/S33/S31:NO)、劣化信号(電圧値Vout)がD/Aコンバータ50に対して出力され(S35)、その後、メインルーチンに戻り、S2に戻る。そして次のリセット信号の受信を契機に再びゲイン処理が実行され、劣化信号の電圧値Voutが更新されることとなる。なお、D/Aコンバータ50では入力される劣化信号の電圧値Voutがアナログの電圧値にD/A変換され、出力バッファ40に出力される。出力バッファ40では、アナログの電圧値に変換された劣化信号をECU3に対し出力するが、次回のゲイン処理の実行により変更されるまでその電圧値が維持される。
以上説明したように、劣化信号発生プログラムの実行によって、基準信号(電圧値Vin)に対しゲイン処理を行った劣化信号(電圧値Vout)が発生される。ゲイン処理では排気ガスの空燃比がリッチ側にある場合とリーン側にある場合とで異なるパラメータを用い、基準信号に対する利得率を個別に設定することが可能であり、様々な形態の基準信号の劣化状態を疑似的に発生することができる。
なお、本発明は上記実施の形態に限られず、各種の変形が可能である。例えばUSBやRS232C等の入出力インターフェイスを備え、対応するケーブルを用いてパーソナルコンピュータに接続し、設定値等の入力や表示確認等を行ってもよい。また、基準センサ2の基準信号や、発生した劣化信号をその入出力インターフェイスを介してパーソナルコンピュータに出力し、パーソナルコンピュータ上で出力波形を発生してモニタリングできるようにしてもよいし、もちろん、表示部80に出力波形を表示させてもよい。
また、利用者の設定可能な3つの変数(RichGain,LeanGain,GainThreshold)は、S1の初期化処理でEEPROM12の設定値記憶エリア121からRAM13の変数記憶エリア132にコピーされ、以降の処理では変数記憶エリア132の記憶値が参照されたが、これら3つの変数については設定値記憶エリア121の記憶値が参照されるようにしてもよい。このようにすれば、利用者が、劣化信号発生プログラムの実行中に設定値を変更した場合に、その変更結果を、発生される劣化信号に即座に反映させることができる。また、EEPROM12ではなく一般的なROMを用い、劣化信号発生プログラムの実行開始時に上記3つの変数の設定値を利用者に入力させるようにしてもよい。
また、S29〜S33で行われた劣化信号の電圧値の補正において、その適正値の範囲は、任意に設定できるようにしてもよい。また、本実施の形態では、劣化信号発生プログラムを実行することでソフトウェア的に基準信号から劣化信号を発生したが、ロジック回路を構成したアナログまたはデジタルハードウェア回路を作製し、劣化信号の発生を行ってもよい。
さらに、本実施の形態では、利得率RichGain,LeanGainとして0.90,0.70に利用者が個別に設定した例を示したが、利得率はそれぞれ上記値に限られず、他の値を任意に且つ個別に設定可能であることは言うまでもない。
また、本実施の形態のセンサシミュレータ1は、基準信号のゲインを変更した劣化信号を発生することができるが、更に、基準信号の応答特性や遅延時間を変更した劣化信号も発生することができるようにしてもよい。ここで、応答特性とは、目標空燃比が所定の値(理論空燃比に限定されない)を境にしてリッチ側からリーン側、あるいはリーン側からリッチ側へ変更されたことに伴い、酸素センサの出力するセンサ出力信号が変化を開始して予め設定した値となるまでにかかる時間をいう。また、遅延時間とは、目標空燃比がリッチ側からリーン側、あるいはリーン側からリッチ側へ変更されたことに伴い、酸素センサの出力するセンサ出力信号が変化を開始し始めるまでの遅れ時間をいう。そして、上記のように基準信号の応答特性や遅延時間を変更する場合、応答特性を変更するための変移率や遅延時間について、本実施の形態と同様に、目標空燃比がリッチ側からリーン側へ変更された場合と、リーン側からリッチ側へ変更された場合とで、それぞれ個別に設定できるようにすると、精密な空燃比フィードバック制御を実現可能なシステムの開発をより高度に且つ円滑に行える観点から、なおよい。
理論空燃比を境にしてセンサ出力信号が急変する酸素センサが劣化した状態において出力する劣化信号を擬似的に発生することができる劣化信号発生装置に適用することができる。
本実施の形態の劣化信号発生装置の一例としてのセンサシミュレータ1の概略的な構成を示すブロック図である。 EEPROM12の記憶エリアの構成を示す概念図である。 RAM13の記憶エリアの構成を示す概念図である。 劣化信号発生プログラムのメインルーチンのフローチャートである。 ゲイン処理サブルーチンのフローチャートである。 空燃比をリッチ側とリーン側とに交番させた場合に得られる基準信号を時間軸に沿って示した例を示すグラフである。 図6に示した基準信号のリッチ側のゲインを変更した劣化信号の例を示すグラフである。 図6に示した基準信号のリーン側のゲインを変更した劣化信号の例を示すグラフである。
1 センサシミュレータ
2 基準センサ
11 CPU
12 EEPROM
13 RAM
60 入力部
121 設定値記憶エリア
132 変数記憶エリア
Vin 基準信号
Vout 劣化信号
RichGain リッチ利得率
LeanGain リーン利得率
GainThreshold しきい値

Claims (2)

  1. 内燃機関の排気ガス中の酸素濃度に感応すると共に、理論空燃比を境にしてセンサ出力信号が急変する酸素センサが劣化したときに出力する当該センサ出力信号を、劣化信号として疑似的に発生する劣化信号発生装置であって、
    前記酸素センサと同構成をなし、排気ガス中の酸素の濃度に関連した基準信号を出力する基準酸素センサに接続されると共に、前記基準信号を取得する基準信号取得手段と、
    前記基準信号のゲインを変更した状態で出力するための利得率として、前記基準信号の値が所定のしきい値よりもリーン側である場合の当該基準信号のゲインを変更させるためのリーン利得率、および、前記基準信号の値が所定のしきい値よりもリッチ側である場合の当該基準信号のゲインを変更させるためのリッチ利得率を、それぞれ個別に設定する利得率設定手段と、
    前記基準信号の値が所定のしきい値よりもリーン側であると判定された場合、前記基準信号に前記リーン利得率を掛け合わせる一方、前記基準信号の値が所定のしきい値よりもリッチ側であると判定された場合、前記基準信号に前記リッチ利得率を掛け合わせることで、前記基準信号のゲインを変更した前記劣化信号を発生するゲイン変更信号発生手段と
    を備えたことを特徴とする酸素センサの劣化信号発生装置。
  2. 前記所定のしきい値、前記リーン利得率、および前記リッチ利得率のそれぞれの設定値を記憶するとともに、装置の電源切断時にも前記設定値を保存する記憶手段をさらに備えることを特徴とする請求項1に記載の酸素センサの劣化信号発生装置。
JP2006178747A 2006-06-28 2006-06-28 酸素センサの劣化信号発生装置 Expired - Fee Related JP4758293B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178747A JP4758293B2 (ja) 2006-06-28 2006-06-28 酸素センサの劣化信号発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178747A JP4758293B2 (ja) 2006-06-28 2006-06-28 酸素センサの劣化信号発生装置

Publications (2)

Publication Number Publication Date
JP2008008186A JP2008008186A (ja) 2008-01-17
JP4758293B2 true JP4758293B2 (ja) 2011-08-24

Family

ID=39066620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178747A Expired - Fee Related JP4758293B2 (ja) 2006-06-28 2006-06-28 酸素センサの劣化信号発生装置

Country Status (1)

Country Link
JP (1) JP4758293B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760806B2 (ja) * 2007-09-04 2011-08-31 株式会社デンソー ガスセンサの劣化シミュレータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869338B2 (ja) * 2002-08-30 2007-01-17 日本特殊陶業株式会社 酸素センサの劣化シミュレータ
JP2004308466A (ja) * 2003-04-03 2004-11-04 Toyota Motor Corp 酸素濃度センサの擬似劣化信号生成回路とそれを備える内燃機関制御装置

Also Published As

Publication number Publication date
JP2008008186A (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
US7499789B2 (en) Deterioration signal generation device for gas sensor
JP4938721B2 (ja) ガスセンサの劣化信号生成装置
JP5138051B2 (ja) ガス・センサの作動方法
JP5179523B2 (ja) 酸素センサの劣化信号生成装置
JP5102778B2 (ja) 筒内圧センサの出力補正装置及びこれを備えた筒内圧検出装置
JP4369872B2 (ja) シリンダごとのλ制御に使用されるλセンサの動特性の診断方法および装置
JP4624511B2 (ja) 線形酸素センサのための制御装置
JP4758293B2 (ja) 酸素センサの劣化信号発生装置
JP3869338B2 (ja) 酸素センサの劣化シミュレータ
JP5964678B2 (ja) 酸素センサ制御装置
JP5053657B2 (ja) 酸素センサの劣化信号生成装置
JP4578544B2 (ja) 内燃機関の制御装置
JP2008203152A5 (ja)
KR20040022411A (ko) 보정된 내부 저항 측정에 의한 배기 가스 센서의 온도결정 방법
US8166800B2 (en) Gas concentration detection apparatus and gas concentration detection system
JP5139337B2 (ja) 模擬信号生成装置
JP2008291762A (ja) ガスセンサの疑似信号生成装置
JP5118098B2 (ja) ガスセンサの疑似信号生成装置
JP5851569B1 (ja) エンジン制御装置
KR100273526B1 (ko) 산소 센서 활성화 판단 방법
JP2011185274A (ja) ガスセンサの劣化信号発生装置
JP2006236207A (ja) 車両用電子制御装置及びその製造方法
JP2013213768A (ja) ガスセンサ回路装置
KR20070063233A (ko) 차량 엔진의 산소 센서 신호 적용 방법
JP2013221432A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

R150 Certificate of patent or registration of utility model

Ref document number: 4758293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees