JP4753131B2 - Element heatsink - Google Patents

Element heatsink Download PDF

Info

Publication number
JP4753131B2
JP4753131B2 JP2004295434A JP2004295434A JP4753131B2 JP 4753131 B2 JP4753131 B2 JP 4753131B2 JP 2004295434 A JP2004295434 A JP 2004295434A JP 2004295434 A JP2004295434 A JP 2004295434A JP 4753131 B2 JP4753131 B2 JP 4753131B2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
plate
plane
outer loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004295434A
Other languages
Japanese (ja)
Other versions
JP2006080471A (en
Inventor
高宏 加藤
Original Assignee
ティーエス ヒートロニクス 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエス ヒートロニクス 株式会社 filed Critical ティーエス ヒートロニクス 株式会社
Priority to JP2004295434A priority Critical patent/JP4753131B2/en
Publication of JP2006080471A publication Critical patent/JP2006080471A/en
Application granted granted Critical
Publication of JP4753131B2 publication Critical patent/JP4753131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、半導体素子等の発熱体から熱を放熱するための素子放熱器に関する。特に、中央処理装置のような発熱密度が非常に高い素子に適応できる素子放熱器に関する。  The present invention relates to an element radiator for radiating heat from a heating element such as a semiconductor element. In particular, the present invention relates to an element radiator that can be applied to an element having a very high heat generation density such as a central processing unit.

電子機器の回路基板上に搭載される半導体素子等は、中央処理装置のように作動時の発熱が激しいものがあり、そのような素子の熱を放熱するために素子放熱器を用いる。このような素子放熱器の一種として、例えば、以下に述べる図7に示すものが知られている。図7は、従来の素子放熱器を概念的に示す正面図である。  Some semiconductor elements and the like mounted on a circuit board of an electronic device generate intense heat during operation like a central processing unit, and an element radiator is used to dissipate the heat of such elements. As one type of such an element radiator, for example, one shown in FIG. 7 described below is known. FIG. 7 is a front view conceptually showing a conventional element radiator.

図7に示すように、従来の素子放熱器401は、半導体素子に受熱板404が熱的に密着し、該受熱板404にラジエータ部451が取り付けられている。ラジエータ部451は、プレート状細孔ヒートパイプ405を渦巻き状に巻き、隣り合うプレート状細孔ヒートパイプ405の面間に隙間を開けてフィン409が密着されている。該ラジエータ部451は、プレート状細孔ヒートパイプ405が重なっている受熱部407を前記受熱板404と密着させ、さらに該受熱部と平行になるフィン409の装着平面部411が多くなるように構成されている。この様に構成することにより、受熱板404により半導体素子から熱を吸収し、受熱板404からプレート状細孔ヒートパイプ405に熱を伝える。
特開平9−14875号公報
As shown in FIG. 7, in a conventional element radiator 401, a heat receiving plate 404 is thermally adhered to a semiconductor element, and a radiator portion 451 is attached to the heat receiving plate 404. The radiator 451 has a plate-shaped fine pore heat pipe 405 wound in a spiral shape, and a fin 409 is in close contact with a gap between the surfaces of adjacent plate-like fine pore heat pipes 405. The radiator 451 is configured such that the heat receiving portion 407 on which the plate-shaped pore heat pipe 405 overlaps is in close contact with the heat receiving plate 404, and the mounting flat portions 411 of the fins 409 parallel to the heat receiving portion are increased. Has been. With this configuration, the heat receiving plate 404 absorbs heat from the semiconductor element, and transfers heat from the heat receiving plate 404 to the plate-shaped pore heat pipe 405.
Japanese Patent Laid-Open No. 9-14875

しかし、このような構成にした場合、受熱板404に近い部分ではプレート状細孔ヒートパイプ405の重なり部413が多く、熱移送量も多いが、受熱板404から離れるに従ってプレート状細孔ヒートパイプ405の重なり部415が減少していき、熱移送量も減少していき、放熱器としての最高性能を出すには十分な配置とはいえなかった。特に、放熱素子から、放射方向にラジエータ部451を伸ばして放熱しなければならない場合は、前記問題は顕著となっていた。
つまり、従来の放熱器で発熱素子に対して、高さを伸ばした場合、フィンの高さを固定すると、全ての段にフィンが隙間無く固着できるようにするために、巻き回し段数を増やすので、受熱部のプレート状細孔ヒートパイプの重なり枚数が増えて熱抵抗が増してしまうという問題が発生する。
逆に、巻き回し段数を2〜3に固定すると、フィン高さを増加しなければならず、フィン内部の温度降下が増加しフィン効率が低下し、冷却能力が落ちてしまうという問題が発生する。
However, in such a configuration, the portion near the heat receiving plate 404 has a large number of overlapping portions 413 of the plate-shaped fine hole heat pipe 405 and the amount of heat transfer is large, but as the distance from the heat receiving plate 404 increases, the plate-shaped fine hole heat pipe The overlapping portion 415 of 405 has decreased, the amount of heat transfer has also decreased, and it cannot be said that the arrangement is sufficient for achieving the highest performance as a radiator. In particular, when the radiator portion 451 must be extended in the radial direction from the heat dissipating element to dissipate heat, the above problem becomes significant.
In other words, if the height of the heat generating element is increased with a conventional radiator, fixing the height of the fins increases the number of winding stages so that the fins can be secured to all stages without gaps. The problem arises that the number of overlapping plate-like pore heat pipes in the heat receiving portion increases and the thermal resistance increases.
On the other hand, if the number of winding stages is fixed to 2 to 3, the fin height must be increased, the temperature drop inside the fin increases, the fin efficiency decreases, and the cooling capacity decreases. .

前記の課題を解決するため、本発明の請求項1に係る素子冷却器は、 発熱素子の表面に当てられる受熱部材と、該受熱部材に熱的に接続されたヒートパイプと、該ヒートパイプに熱的に接続された放熱フィンとを備えた素子放熱器において、前記ヒートパイプはプ レート状細孔ヒートパイプで構成され、前記細孔はプレートの長尺方向に平行な複数の細 孔が開けられており、前記ヒートパイプは長尺方向で渦巻き状に折り曲げられて形成され、前記渦巻き状に折り曲げられたヒートパイプに少なくとも1つの平面を形成し、該平面では外ループと内ループとが面状に密着され、該ヒートパイプの平面を前記受熱部材に接続し、前記ヒートパイプに熱的に接続された放熱フィンが前記渦巻きのループ間の前記少 なくとも1つの平面以外の部分に配置されている構成とした。このような構成にすることによりラジエータ部の発熱素子から遠い末端部まで多くのヒートパイプにより多くの熱を移送することができるようになり、ヒートパイプの姿勢にほとんど影響を受けない、つま りヒートパイプの姿勢が変化しても性能がほとんど劣化することの無い素子放熱器を構成 することができるIn order to solve the above-described problem, an element cooler according to claim 1 of the present invention includes a heat receiving member applied to the surface of the heat generating element, a heat pipe thermally connected to the heat receiving member, and the heat pipe. in the element radiator with a radiating fin which is thermally connected, the heat pipe consists of plate-like pores heat pipe, the pores opened plurality of parallel pores in the longitudinal direction of the plate The heat pipe is formed by being bent in a spiral shape in the longitudinal direction, and at least one plane is formed in the spirally bent heat pipe, and an outer loop and an inner loop are formed on the plane. in close contact with the Jo, connect the plane of the heat pipe to the heat-receiving member, said even without least but one planar portion between the loops of the thermally connected to heat dissipating fins the spiral in the heat pipe The configuration is arranged . Such configuration Ri name in order to be able to transfer more heat many heat pipe from the heating element of the radiator portion to the far end by, not subject to little effect on the attitude of the heat pipe, Ri knob Even if the posture of the heat pipe changes, it is possible to configure an element radiator that hardly deteriorates in performance .

また、請求項2の発明によれば、前記長尺方向に平行な複数の細孔は蛇行するように両 端部で連通され、前記渦巻きのプレート状細孔ヒートパイプの隣り合う側面間に放熱フィンコルゲートフィンもしくはスタックフィンを配置した構成とした。この様な構成にすることにより、小型で、放熱効率の良い素子放熱器を構成することができる。Further, according to the invention of claim 2, wherein the length a plurality of pores parallel to the longitudinal direction is communicated at both ends so as to meander, the heat radiation between the side surface adjacent the plate-shaped pores heat pipe of the spiral Fin corrugated fins or stack fins are arranged. By adopting such a configuration, it is possible to configure a small element heatsink having high heat dissipation efficiency .

以上の説明から明らかなように、本発明は、小型で、放熱効率の良い素子放熱器を提供することができる。特に放熱素子に対して放射方向に長く延びる空間に素子放熱器を配置する場合に前記効果は大きくなる。  As is apparent from the above description, the present invention can provide a small-sized element heatsink having good heat dissipation efficiency. In particular, when the element radiator is arranged in a space extending in the radial direction with respect to the heat radiating element, the above-described effect becomes large.

まず、本件発明に用いるプレート状細孔ヒートパイプについて図面を参照しつつ説明する。
まず、プレート状細孔ヒートパイプは、一部の細孔の構成を除いて以下の特性を有する。
(A)細孔の両端末が相互に流通自在に連結されて密閉されている。
(B)細孔の一部は受熱部、他の部分は放熱部となっている。
(C)受熱部と放熱部が交互に配置されており、両部の間を細孔が蛇行している。
(D)細孔内には2相凝縮性流体が封入されている。
(E)細孔の内壁は、上記作動流体が常に孔内を閉塞した状態のままで循環または移動することができる最大直径以下の径をもつ。
First, the plate-shaped pore heat pipe used in the present invention will be described with reference to the drawings.
First, the plate-like pore heat pipe has the following characteristics except for some pores.
(A) Both ends of the pores are connected to each other so as to be freely flowable and sealed.
(B) A part of the pore is a heat receiving part, and the other part is a heat radiating part.
(C) The heat receiving portions and the heat radiating portions are alternately arranged, and the pores meander between the two portions.
(D) A two-phase condensable fluid is sealed in the pores.
(E) The inner wall of the pore has a diameter equal to or smaller than the maximum diameter that allows the working fluid to circulate or move while the inside of the pore is always closed.

ここで、本発明に用いるプレート状細孔ヒートパイプについて具体的には、図1及び図2に例示するように、蛇行細孔や並列細孔が比較的薄い平板の中に作りこまれたタイプのもの、あるいは、それらの折衷型の細孔の構成がある。ここで、細孔の構成を以下の3種類のタイプに分けて例示する。
(1)プレート状非ループ型蛇行細孔ヒートパイプ(特許2714883号、USP5,219,020FIG1参照)
このヒートパイプは、前記ヒートパイプの(A)の特性を有しないもの、すなわち細孔の両端末が行き止まりとなっており、相互に連結されていないものである。
具体的な製造方法は、図1に示す様に、プレート状ループ型蛇行細孔ヒートパイプは、アルミニウムやマグネシウム等の軽金属を押出し成形してできた多細孔プレートを用いる。この多細孔プレート51は、全体として平板状の外形を有し、内部に平行に配置された多数の貫通細孔57a及び57bが押し出し成形時に形成される。該貫通細孔の端面の所定の隔壁を所定の深さだけ切除し、反対側の端面でも同様に切除する。該端面において多細孔プレートを溶接や圧設等の手段で封止することにより各細孔は端部で連通して一連の蛇行トンネル(熱媒体通路)となり、ここに作動流体を封入する。
Here, the plate-shaped pore heat pipe used in the present invention is specifically a type in which meandering pores and parallel pores are formed in a relatively thin flat plate as illustrated in FIG. 1 and FIG. Or their eclectic pore structure. Here, the configuration of the pores is illustrated by being divided into the following three types.
(1) Plate-like non-loop type meandering pore heat pipe (see Japanese Patent No. 2,714,883, USP 5,219,020 FIG. 1)
This heat pipe does not have the characteristic (A) of the heat pipe, that is, both ends of the pores are dead ends and are not connected to each other.
As a specific manufacturing method, as shown in FIG. 1, a plate-like loop-type meandering pore heat pipe uses a multi-pore plate made by extruding a light metal such as aluminum or magnesium. The multi-pore plate 51 has a flat plate-like outer shape as a whole, and a large number of through-holes 57a and 57b arranged parallel to the inside are formed at the time of extrusion molding. A predetermined partition wall at the end face of the through-hole is cut by a predetermined depth, and the opposite end face is cut similarly. By sealing the multi-pore plate at the end face by means such as welding or pressing, each pore communicates at the end portion to form a series of meandering tunnels (heat medium passages), and the working fluid is sealed therein.

(2)プレート状ループ型蛇行細孔ヒートパイプ(特開平4−190090号、USP5,219,020FIG5参照)
このヒートパイプは、前記(1)のヒートパイプの両端末の行き止まり部分が細孔で連通されているものである。
(2) Plate-like loop-shaped meandering pore heat pipe (refer to Japanese Patent Laid-Open No. 4-190090, USP 5,219,020 FIG. 5)
In this heat pipe, the dead ends of both ends of the heat pipe (1) are communicated with each other through pores.

(3)プレート状並列型細孔ヒートパイプ(特開平9−33181号、USP5,737,840FIG7参照)
このヒートパイプは、受熱部や放熱部(あるいはその中間の部分)で、隣り合う細孔間を繋ぐ細孔を設けたものである。
具体的な製造方法は図1と同様、図2に示す様に、プレート状並列型細孔ヒートパイプは、多細孔プレート61の内部に平行に配置された多数の貫通細孔68a及び68bの端面の隔壁を所定の深さだけ全て切除し、反対側の端面でも全て切除する。各細孔は端部で全て連通し並列トンネル(熱媒体通路)となり、ここに作動流体が封入される。
(3) Plate-shaped parallel type pore heat pipe (see JP-A-9-33181, USP 5,737,840FIG7)
This heat pipe is provided with pores connecting adjacent pores at a heat receiving portion and a heat radiating portion (or an intermediate portion thereof).
The specific manufacturing method is the same as in FIG. 1, and as shown in FIG. 2, the plate-like parallel pore heat pipe has a large number of through-holes 68 a and 68 b arranged in parallel inside the multi-pore plate 61. The entire end wall is cut by a predetermined depth, and all the other end face is also cut. All the pores communicate with each other at the end portions to form parallel tunnels (heat medium passages), in which the working fluid is sealed.

次に、前記プレート状細孔ヒートパイプを用いた本件発明の第一実施例に係る素子放熱器について説明する。図3は回路基板上に取り付けた状態を概念的に示す斜視図である。
図3において受熱板4は、アルミニウムや銅等の熱伝導性の高い金属からなる板状体である。図3に示す素子放熱器1の取り付け状態において、この受熱板4は、高熱伝導性グリスや熱伝導シート等を介して、CPUコア56の表面にピッタリと当接される。
Next, the element radiator according to the first embodiment of the present invention using the plate-shaped fine hole heat pipe will be described. FIG. 3 is a perspective view conceptually showing a state of being mounted on a circuit board.
In FIG. 3, the heat receiving plate 4 is a plate-like body made of a metal having high thermal conductivity such as aluminum or copper. In the attached state of the element radiator 1 shown in FIG. 3, the heat receiving plate 4 is brought into perfect contact with the surface of the CPU core 56 through a high thermal conductive grease, a thermal conductive sheet, or the like.

前記プレート状細孔ヒートパイプの下端には、前述の受熱板4が、ロウ付けや接着剤等を用いた熱伝導率の高い方法で取り付けられている。受熱板4の取り付けられたプレート状細孔ヒートパイプ5の部分(つまり下端部)が受熱部5aとなる。図3に示すように、前記図1や図2で示した様な、プレート状細孔ヒートパイプ5は、正面からみて渦巻き状に折り曲げられて形成されている。基本的に細孔はプレートの長尺方向で開けられており、本件の場合折り曲げ線に垂直な方向に多細孔が配置される。  The above-described heat receiving plate 4 is attached to the lower end of the plate-shaped fine hole heat pipe by a method having high thermal conductivity using brazing, adhesive or the like. A portion (that is, a lower end portion) of the plate-like pore heat pipe 5 to which the heat receiving plate 4 is attached becomes the heat receiving portion 5a. As shown in FIG. 3, the plate-shaped fine pore heat pipe 5 as shown in FIGS. 1 and 2 is formed by being bent in a spiral shape when viewed from the front. Basically, the pores are opened in the longitudinal direction of the plate, and in this case, the multipores are arranged in a direction perpendicular to the folding line.

ここで、正面からみて渦巻き状に折り曲げられて形成されたプレート状細孔ヒートパイプ5の形状ついて具体的に説明する。プレート状細孔ヒートパイプ5は、受熱部5aを底辺とすると、底辺の一端(図3の左端)からほぼ直角に上向きに折り曲げられて左側辺を形成する。この左側辺は所定の高さまで延びて、受熱部5aと平行に且つ対向するように、ほぼ直角に右向きに折り曲げられて上辺5bを形成する。この上辺5bは放熱部となる。さらに、ほぼ直角に下向きに折り曲げられて右側辺を形成し、受熱部5aの上面に達する。これで受熱部5a(底辺)、左側辺、上辺5b及び右側辺からなる四角形の外ループが形成される。  Here, the shape of the plate-shaped pore heat pipe 5 formed by being bent in a spiral shape when viewed from the front will be specifically described. The plate-shaped fine pore heat pipe 5 is bent upward substantially at a right angle from one end of the base (left end in FIG. 3) when the heat receiving portion 5a is the base, and forms the left side. The left side extends to a predetermined height and is bent to the right at a substantially right angle so as to be parallel to and opposed to the heat receiving portion 5a to form the upper side 5b. This upper side 5b becomes a heat radiating portion. Further, it is bent downward at a substantially right angle to form the right side and reaches the upper surface of the heat receiving portion 5a. Thus, a rectangular outer loop composed of the heat receiving portion 5a (bottom side), the left side, the upper side 5b, and the right side is formed.

外ループの受熱部5a(底辺)に達したプレート状細孔ヒートパイプ5は、ほぼ直角に左向きに折り曲げられて、受熱部5aに沿って延びる第1内ループの受熱部5c(底辺)を形成する。この受熱部5cは、外ループの手前2/3の距離まで延びると、ほぼ直角に上向きに折り曲げられて中央左側辺を形成する。この左側辺は所定の高さまで延びて、受熱部5cと平行に且つ対向するように、ほぼ直角に右向きに折り曲げられて第1内ループの上辺5dを形成する。この上辺5dも放熱部となる。上辺5dは、外ループの右側辺に達する距離の半分まで延びると、ほぼ直角に下向きに折り曲げられて中央右側辺を形成し、第1内ループの受熱部5cの上面に達する。これで受熱部5c(底辺)、中央左側辺、上辺5d及び中央右側辺からなる略四角形の内ループが形成される。  The plate-shaped pore heat pipe 5 that has reached the heat receiving portion 5a (bottom side) of the outer loop is bent leftward substantially at a right angle to form a heat receiving portion 5c (bottom side) of the first inner loop extending along the heat receiving portion 5a. To do. When the heat receiving portion 5c extends to a distance of 2/3 before the outer loop, the heat receiving portion 5c is bent upward at a substantially right angle to form a central left side. The left side extends to a predetermined height and is bent to the right at a substantially right angle so as to be parallel to and opposed to the heat receiving portion 5c to form the upper side 5d of the first inner loop. This upper side 5d is also a heat radiating part. When the upper side 5d extends to half of the distance reaching the right side of the outer loop, it is bent downward at a substantially right angle to form a central right side and reaches the upper surface of the heat receiving part 5c of the first inner loop. Thus, a substantially rectangular inner loop composed of the heat receiving portion 5c (bottom side), the central left side, the upper side 5d, and the central right side is formed.

この内ループと同様にして、受熱部5cに沿って中央左側辺まで延びる受熱部5e(底辺)が形成される。
このとき、プレート状細孔ヒートパイプ5の外ループの受熱部5a、内ループの受熱部5c、5e及び上辺放熱部5b、5dは、互いに熱伝導性の高い方法(ロウ付け等)で接合されている。
In the same manner as the inner loop, a heat receiving portion 5e (bottom side) extending to the central left side along the heat receiving portion 5c is formed.
At this time, the heat receiving portion 5a of the outer loop, the heat receiving portions 5c and 5e of the inner loop, and the upper side heat radiating portions 5b and 5d of the plate-shaped fine hole heat pipe 5 are joined together by a method having high thermal conductivity (such as brazing). ing.

外ループの左側辺と中央左側辺、中央左側辺と中央右側辺、中央右側辺と外ループ右側辺のそれぞれの間には、空間が形成される。これらの空間には、それぞれ放熱フィン7A、7B及び7Cが配置される。放熱フィンの形状としては図4に示すようなジグザグに折り曲げた本実施例に適応したコルゲートフィンや、図5に示すような略コの字状の材質を連続的に繋げたスタックフィン等が使用される。各放熱フィン7A〜7Cは、アルミニウム等の熱伝導性の高い材料が波状に折り曲げられてなるコルゲートフィンである。放熱フィン7A〜7Cの波状部の上面と下面は、各空間の側面を形成するプレート状細孔ヒートパイプ5に、熱伝導性の高い方法(ロウ付け等)で片面あるいは両面で接合されている。このようなプレート状細孔ヒートパイプ5は、コンパクトでありながら放熱面積を大きくとることができる。特に放熱素子に対して放射方向に長い放熱空間が伸びている場合、具体的には外ループ受熱部面積よりも外ループ左右側面の面積が大きい場合、放熱素子から距離の遠い放熱部まで大容量の熱を輸送することができ、各放熱フィン7A〜7Cの末端部まで大容量の熱を移送することができ、放熱効率を上げることができる。  Spaces are formed between the left side and the center left side of the outer loop, between the center left side and the center right side, and between the center right side and the right side of the outer loop. Radiation fins 7A, 7B and 7C are arranged in these spaces, respectively. As the shape of the radiating fin, a corrugated fin adapted to the present embodiment bent in a zigzag as shown in FIG. 4 or a stack fin continuously connecting substantially U-shaped materials as shown in FIG. 5 is used. Is done. Each of the radiation fins 7A to 7C is a corrugated fin formed by bending a highly heat conductive material such as aluminum into a wave shape. The upper and lower surfaces of the corrugated portions of the radiation fins 7A to 7C are joined to the plate-like pore heat pipe 5 forming the side surface of each space on one side or both sides by a method with high thermal conductivity (such as brazing). . Such a plate-shaped fine pore heat pipe 5 can take a large heat radiation area while being compact. In particular, when a long heat radiation space extends in the radial direction with respect to the heat dissipation element, specifically, when the area of the left and right side surfaces of the outer loop is larger than the area of the outer loop heat receiving part, the capacity is large from the heat dissipation element to the heat dissipation part far away Heat can be transported, and a large amount of heat can be transferred to the end portions of the radiation fins 7A to 7C, so that the heat radiation efficiency can be increased.

次に、本件発明の第二実施例に係る素子放熱器について説明する。図4は回路基板上に取り付けた状態を概念的に示す斜視図である。
図4において図3と共通する受熱板104、CPUコア156については説明を省略する。第一実施例と同様に、前記図1や図2で示した様な、プレート状細孔ヒートパイプ105は、正面からみて渦巻き状に折り曲げられて形成されている。
Next, an element radiator according to a second embodiment of the present invention will be described. FIG. 4 is a perspective view conceptually showing a state of being mounted on a circuit board.
In FIG. 4, the description of the heat receiving plate 104 and the CPU core 156 that are the same as those in FIG. 3 is omitted. As in the first embodiment, the plate-shaped fine pore heat pipe 105 as shown in FIGS. 1 and 2 is formed in a spiral shape when viewed from the front.

該渦巻き状のプレート状細孔ヒートパイプ105は放熱部105aを頂辺とし、頂辺の一端(図4の左端)からほぼ垂直に下向きに折り曲げられて左側辺を形成する。この左側辺は所定の長さまで延びて、放熱部105aと平行に且つ対抗するように、ほぼ直角に右向きに折り曲げられて底辺105bを形成する。
この底辺105bは受熱部となる。さらに、底辺右端部においてほぼ直角に上向きに折り曲げられて右側辺を形成し、放熱部105aの下面に達する。これで放熱部105a(頂辺)、左側辺、底辺105b及び右側辺からなる四角形の外ループが形成される。
外ループの放熱部105a(頂辺)に達したプレート状細孔ヒートパイプ105は、ほぼ直角に左向きに折り曲げられて、放熱部105aに沿って延びる第1内ループの放熱部105c(上辺)を形成する。この放熱部105cは、外ループの左端手前2/3の距離まで延びると、ほぼ直角に下向きに折り曲げられて中央左側辺を形成する。この左側辺は所定の長さまで延びて、放熱部105cと平行に且つ対向するように、ほぼ直角に右向きに折り曲げられて内ループの下辺105dを形成する。この下辺105dも受熱部となる。下辺105dは、外ループの右側辺に達する距離の半分まで延びると、ほぼ直角に上向きに折り曲げられて中央右側辺を形成し、内ループの放熱部105cの下面に達する。これで放熱部105c、中央左側辺、下辺5d及び中央右側辺からなる略四角形の内ループが形成される。
このとき、プレート状細孔ヒートパイプ105の外ループの放熱部105a、内ループの放熱部105c及び下辺放熱部105b、105dは、互いに熱伝導性の高い方法(ロウ付け等)で接合されている。
下端には、受熱板104が、ロウ付けや接着剤等を用いた熱伝導率の高い方法で取り付けられている。受熱板104の取り付けられたプレート状細孔ヒートパイプ105の部分(つまり下端部)が受熱部となる。
The spiral plate-shaped fine pore heat pipe 105 has the heat radiating portion 105a as a top side and is bent downward substantially perpendicularly from one end of the top side (left end in FIG. 4) to form a left side. The left side extends to a predetermined length and is bent to the right at a substantially right angle so as to be parallel to and opposed to the heat radiating portion 105a to form a bottom 105b.
This bottom 105b becomes a heat receiving part. Furthermore, it is bent upward at a substantially right angle at the bottom right end portion to form a right side and reaches the lower surface of the heat radiating portion 105a. Thus, a rectangular outer loop composed of the heat radiating portion 105a (top side), the left side, the bottom side 105b, and the right side is formed.
The plate-shaped fine hole heat pipe 105 that has reached the heat radiating portion 105a (top side) of the outer loop is bent leftward substantially at a right angle, and the heat radiating portion 105c (upper side) of the first inner loop extending along the heat radiating portion 105a. Form. When the heat dissipating part 105c extends to a distance of 2/3 of the outer loop to the left end, it is bent downward substantially at a right angle to form a central left side. The left side extends to a predetermined length, and is bent to the right at a substantially right angle so as to be parallel to and opposed to the heat radiating portion 105c to form a lower side 105d of the inner loop. This lower side 105d is also a heat receiving part. When the lower side 105d extends to half of the distance reaching the right side of the outer loop, the lower side 105d is bent upward at a substantially right angle to form a central right side, and reaches the lower surface of the heat dissipation part 105c of the inner loop. Thus, a substantially rectangular inner loop composed of the heat radiating portion 105c, the central left side, the lower side 5d, and the central right side is formed.
At this time, the heat radiating portion 105a of the outer loop, the heat radiating portion 105c of the inner loop, and the lower heat radiating portions 105b and 105d of the plate-shaped fine hole heat pipe 105 are joined together by a method having high thermal conductivity (such as brazing). .
A heat receiving plate 104 is attached to the lower end by a method having high thermal conductivity using brazing, an adhesive, or the like. A portion (that is, a lower end portion) of the plate-shaped fine pore heat pipe 105 to which the heat receiving plate 104 is attached becomes a heat receiving portion.

外ループの左側辺と中央左側辺、中央左側辺と中央右側辺、中央右側辺と外ループ右側辺のそれぞれの間には、空間が形成される。これらの空間には、それぞれ放熱フィン107A、107B及び107Cが配置される。放熱フィンの形状としては第一実施例と同様に、図4に示すようなジグザグに折り曲げた本実施例に適応したコルゲートフィンや、図5に示すような略コの字状の材質を連続的に繋げたスタックフィン等が使用される。各放熱フィン107A〜107Cは、アルミニウム等の熱伝導性の高い材料が波状に折り曲げられてなるコルゲートフィンである。放熱フィン107A〜107Cの波状部の上面と下面は、各空間の側面を形成するプレート状細孔ヒートパイプ105に、熱伝導性の高い方法(ロウ付け等)で片面あるいは両面で接合されている。このようなプレート状細孔ヒートパイプ105は、コンパクトでありながら放熱面積を大きくとることができる。特に放熱素子に対して放射方向に長い放熱空間が伸びている場合、具体的には外ループ受熱部面積よりも外ループ左右側面の面積が大きい場合、放熱素子から距離の遠い放熱部まで大容量の熱を輸送することができ、各放熱フィン107A〜107Cの末端部まで大容量の熱を移送することができ、放熱効率を上げることができる。さらに第一実施例と比較して、折り曲げや接合部を減らすことができるので、製造が容易になる。Spaces are formed between the left side and the center left side of the outer loop, between the center left side and the center right side, and between the center right side and the right side of the outer loop. Radiation fins 107A, 107B, and 107C are disposed in these spaces, respectively. As in the first embodiment, the shape of the radiating fin is a continuous corrugated fin adapted to the present embodiment bent in a zigzag as shown in FIG. 4 or a substantially U-shaped material as shown in FIG. A stack fin or the like connected to is used. Each of the radiation fins 107A to 107C is a corrugated fin formed by bending a material having high thermal conductivity such as aluminum into a wave shape. The upper and lower surfaces of the corrugated portions of the radiating fins 107A to 107C are joined to the plate-shaped fine pore heat pipe 105 that forms the side surface of each space on one or both sides by a method with high thermal conductivity (such as brazing). . Such a plate-shaped fine hole heat pipe 105 can take a large heat radiation area while being compact. If elongation particularly long heat radiation space in the radial direction with respect to the radiating element, when in particular a large area of the outer loop left and right side surfaces than the outer loop heat receiving unit area, the large to the far-release thermal unit of distance from the radiator element Capacity heat can be transported, large capacity heat can be transferred to the end portions of the radiation fins 107A to 107C, and heat radiation efficiency can be increased. Furthermore, compared with the first embodiment, the number of bendings and joints can be reduced, so that the manufacture becomes easy.

本件実施例の構成は渦巻き状に折り曲げられて形成されたプレート状細孔ヒートパイプ5の図3及び図4においてX方向の長さよりもY方向の長さが長いと場合に特に効果がある。  The configuration of this embodiment is particularly effective when the length of the plate-shaped fine pore heat pipe 5 formed by being bent in a spiral shape is longer in the Y direction than in the X direction in FIGS. 3 and 4.

プレート状細孔ヒートパイプ(蛇行型)の内部を透視したものである。The inside of the plate-shaped pore heat pipe (meandering type) is seen through. プレート状細孔ヒートパイプ(並列型)の内部を透視したものである。The inside of a plate-shaped fine pore heat pipe (parallel type) is seen through. 本発明の第一実施例を示す斜視図である。It is a perspective view which shows the 1st Example of this invention. コルゲートフィンの斜視図である。It is a perspective view of a corrugated fin. スタックフィンの斜視図である。It is a perspective view of a stack fin. 本発明の第二実施例を示す斜視図である。It is a perspective view which shows the 2nd Example of this invention. 従来の素子放熱器を示す斜視図である。It is a perspective view which shows the conventional element heat radiator.

符号の説明Explanation of symbols

1 素子放熱器
4 受熱板
5 プレート状細孔ヒートパイプ
7A、7B、7C 放熱フィン
51、61 多細孔プレート
56 CPUコア
57a、57b、68a、68b 貫通細孔
DESCRIPTION OF SYMBOLS 1 Element heat radiator 4 Heat receiving plate 5 Plate-shaped pore heat pipe 7A, 7B, 7C Radiation fin 51, 61 Multi-pore plate 56 CPU core 57a, 57b, 68a, 68b Through-hole

Claims (2)

発熱素子の表面に当てられる受熱部材と、該受熱部材に熱的に接続されたヒートパイプと、該ヒートパイプに熱的に接続された放熱フィンとを備えた素子放熱器において、前記ヒートパイプはプレート状細孔ヒートパイプで構成され、前記細孔はプレートの長尺方向に平行な複数の細孔が開けられており、前記ヒートパイプは長尺方向で渦巻き状に折り曲げられて形成され、前記渦巻き状に折り曲げられたヒートパイプはつの平面で外ループを形成し、該平面のうち少なくとも1つの平面では前記外ループと内ループとが面状に密着され、該ヒートパイプの前記外ループと内ループとが面状に密着された平面を前記受熱部材に接続し、前記ヒートパイプの内ループは前記受熱部材を接続した平面と隣り合う前記外ロープの平面と平行に隙間を空けて平面状 に形成され、前記放熱フィンが少なくとも前記外ループの平面と平行に隙間を空けて平面状に形成された内ループの外ループ側平面と、前記外ループを形成する内平面との間に配置されており、前記外ループの受熱部材を接続した平面の面積よりも前記外ループ受熱部材を接続した平面に隣接する平面の面積のほうが大きいことを特徴とする素子放熱器。In an element radiator comprising a heat receiving member applied to the surface of the heat generating element, a heat pipe thermally connected to the heat receiving member, and a heat dissipating fin thermally connected to the heat pipe, the heat pipe is It is composed of a plate-shaped fine pore heat pipe, and the fine pore has a plurality of fine pores parallel to the longitudinal direction of the plate, and the heat pipe is formed by being bent in a spiral shape in the longitudinal direction, heat pipe bent in a spiral shape the outer loop is formed by four planes, and at least one of the outer loop and the inner loop in the plane of the flat surface is in close contact with the surface, and the outer loop of the heat pipe the plane and the inner loop is in close contact with the surface connected to the heat receiving member, the inner loop of the heat pipe is a gap parallel to the plane of the outer ropes adjacent to the plane connecting the heat-receiving member Is formed in a planar shape spaced, an outer loop-side plane of the loop within which is formed in a planar shape the radiation fins with a gap parallel to the plane of at least the outer loop, and a plane inside to form the outer loop It is disposed between an element radiator, characterized in that towards the area of the plane adjacent to the plane connecting the outer loop receiving member than the area of the plane connecting the heat-receiving member of the outer loop is large. 前記放熱フィンとしてコルゲートフィンもしくはスタックフィンを配置したことを特徴とする請求項1に記載の素子放熱器。The element radiator according to claim 1, wherein a corrugated fin or a stack fin is disposed as the radiation fin .
JP2004295434A 2004-09-08 2004-09-08 Element heatsink Expired - Fee Related JP4753131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295434A JP4753131B2 (en) 2004-09-08 2004-09-08 Element heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295434A JP4753131B2 (en) 2004-09-08 2004-09-08 Element heatsink

Publications (2)

Publication Number Publication Date
JP2006080471A JP2006080471A (en) 2006-03-23
JP4753131B2 true JP4753131B2 (en) 2011-08-24

Family

ID=36159645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295434A Expired - Fee Related JP4753131B2 (en) 2004-09-08 2004-09-08 Element heatsink

Country Status (1)

Country Link
JP (1) JP4753131B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049405A1 (en) 2017-09-08 2019-03-14 株式会社日立製作所 Power conversion device for rail cars and rail car equipped with power conversion device
KR102409446B1 (en) * 2020-08-20 2022-06-14 이상민 Porous conductive heat exchanger and smart server rack and portable data center for servers using it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947797B2 (en) * 1997-05-08 2007-07-25 アクトロニクス株式会社 Three-dimensional mounting type heat dissipation module
JP3863255B2 (en) * 1997-08-28 2006-12-27 カルソニックカンセイ株式会社 Heat pipe heat exchanger
JP4358963B2 (en) * 2000-03-10 2009-11-04 ティーエス ヒートロニクス 株式会社 heatsink
JP4485013B2 (en) * 2000-05-16 2010-06-16 ティーエス ヒートロニクス 株式会社 Plate type heat pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006080471A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US8464780B2 (en) Heat sink with heat pipes and method for manufacturing the same
JP6688936B2 (en) heatsink
TWI722736B (en) Heat sink
JP5684228B2 (en) heatsink
EP1231632A2 (en) Heat sink with fins
WO2019131814A1 (en) Heat sink
JP5323614B2 (en) Heat pipe and manufacturing method thereof
JP2001223308A (en) Heat sink
CN101415312B (en) Radiating device
JP4707840B2 (en) Radiator and manufacturing method thereof
JP4753131B2 (en) Element heatsink
JP2002151636A (en) Heat sink
JP5546280B2 (en) Connection part of heat pipe heat receiving part and connection method of heat pipe heat receiving part
JP4324367B2 (en) Element heatsink
JP5076476B2 (en) Cooling system
JP4521250B2 (en) Heat dissipation device and manufacturing method thereof
JP2001251079A (en) Method for producing heat sink using heat pipe and method for producing heat pipe
JP4332261B2 (en) Heat transport equipment
JP3959428B2 (en) Stereo heat pipe radiator
JP4358963B2 (en) heatsink
JP6044157B2 (en) Cooling parts
JP2572766Y2 (en) heatsink
TW202411588A (en) Radiator
JPH10132478A (en) Heat pipe type radiator
JPH08250629A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees