JP4739777B2 - Susceptor - Google Patents

Susceptor Download PDF

Info

Publication number
JP4739777B2
JP4739777B2 JP2005053486A JP2005053486A JP4739777B2 JP 4739777 B2 JP4739777 B2 JP 4739777B2 JP 2005053486 A JP2005053486 A JP 2005053486A JP 2005053486 A JP2005053486 A JP 2005053486A JP 4739777 B2 JP4739777 B2 JP 4739777B2
Authority
JP
Japan
Prior art keywords
susceptor
sic
arithmetic average
average roughness
counterbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005053486A
Other languages
Japanese (ja)
Other versions
JP2006237499A (en
Inventor
暁 野上
清秀 佐々木
一登 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Furukawa Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Furukawa Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2005053486A priority Critical patent/JP4739777B2/en
Publication of JP2006237499A publication Critical patent/JP2006237499A/en
Application granted granted Critical
Publication of JP4739777B2 publication Critical patent/JP4739777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体製造に用いるサセプタに関し、特に、窒化ガリウム(GaN)、窒化アルニミウムガリウム(AlGaN)、窒化インジウムガリウム(InGaN)、窒化アルミニウム(AlN)を気相成長させる際に用いるサセプタに関するものである。   The present invention relates to a susceptor used for semiconductor manufacturing, and more particularly to a susceptor used for vapor phase growth of gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), and aluminum nitride (AlN). It is.

表面粗さRmax(最大高さRy)が0.5μm以下であるサセプタが、例えば、下記特許文献1に開示されている。この特許文献1のものは、黒鉛基材からなる円板状のサセプタ本体の片面に半導体ウエーハを収容する円形の多数のウエーハ収容凹部を設けてなる気相成長用縦型サセプタにおいて、前記ウエーハ収容凹部以外のサセプタ本体の片面の表面粗さをRmax0.5μm以下としたことを特徴とする気相成長用縦型サセプタである。
特開平10−195660号公報
For example, Patent Document 1 below discloses a susceptor having a surface roughness Rmax (maximum height Ry) of 0.5 μm or less. This patent document 1 discloses a vertical susceptor for vapor phase growth in which a large number of circular wafer housing recesses for housing a semiconductor wafer are provided on one side of a disc-shaped susceptor body made of a graphite substrate. A vertical susceptor for vapor phase growth characterized in that the surface roughness of one side of the susceptor body other than the recesses is set to Rmax 0.5 μm or less.
Japanese Patent Laid-Open No. 10-195660

特許文献1のような従来の気相成長用サセプタに半導体ウェハをセットして、エピタキシャル成長を行うと、半導体ウェハだけでなく、半導体ウェハの載置部分以外のサセプタ表面にも堆積した膜(以下、堆積膜とする)が形成される。その後、半導体ウェハを取り替えて、新たにエピタキシャル成長を行うという作業を繰り返すと、半導体ウェハの載置部分以外のサセプタ表面には、さらに膜が堆積形成され、結晶欠陥、パーティクルを発生させてしまう。したがって、定期的な気相エッチングにより、サセプタ表面上の堆積した膜を除去する作業が必要であった。   When a semiconductor wafer is set on a conventional vapor phase susceptor such as Patent Document 1 and epitaxial growth is performed, not only the semiconductor wafer but also a film deposited on the surface of the susceptor other than the portion on which the semiconductor wafer is mounted (hereinafter referred to as “the semiconductor wafer”). A deposited film) is formed. Thereafter, when the operation of replacing the semiconductor wafer and newly performing epitaxial growth is repeated, a film is further deposited on the surface of the susceptor other than the portion on which the semiconductor wafer is placed, and crystal defects and particles are generated. Therefore, it is necessary to remove the deposited film on the susceptor surface by periodic vapor-phase etching.

そこで、本発明の目的は、サセプタ上の表面粗さを適正化することにより、サセプタ上の堆積膜の成長速度を減少させ、気相エッチング回数を低減させ得るサセプタを提供することである。   Accordingly, an object of the present invention is to provide a susceptor capable of reducing the growth rate of a deposited film on a susceptor and reducing the number of times of vapor phase etching by optimizing the surface roughness on the susceptor.

本発明のサセプタは、少なくとも1つのザグリを有するCVD−SiC被覆黒鉛基材からなり、窒化ガリウム、窒化アルミニウムガリウム、窒化ガリウムインジウム、窒化アルミニウムの内から選ばれる少なくとも1種以上のエピタキシャル成長に使用されるサセプタであって、ザグリ面以外の表面におけるJIS B 0601に基づく算術平均粗さ(高さ)Raが、0.5μmよりも大きく且つ1μm未満である。また、ザグリ面以外の表面における前記算術平均粗さRaが0.8μm以上且つ1μm未満であることがさらに好ましいここで、「ザグリ面以外の表面」とは、上記引用文献1に開示される「ウエーハ収容凹部以外のサセプタ本体の片面」と同様のものである。 The susceptor of the present invention comprises a CVD-SiC-coated graphite substrate having at least one counterbore and is used for at least one epitaxial growth selected from gallium nitride, aluminum gallium nitride, gallium indium nitride, and aluminum nitride. JIS for susceptors on surfaces other than counterbore The arithmetic average roughness (height) Ra based on B 0601 is greater than 0.5 μm and less than 1 μm. The arithmetic average roughness Ra on the surface other than the counterbore surface is 0 . More preferably, it is 8 μm or more and less than 1 μm . Here, the “surface other than the counterbore surface” is the same as “one side of the susceptor body other than the wafer housing recess” disclosed in the above cited reference 1.

なお、上述の最大高さRy(表面粗さRmax)とは、粗さ曲線から、その平均線の方向に標準長さlだけ抜き取り、この抜き取り部分の平均線から最も高い山頂までの高さYpと最も低い谷底までの深さYvとの和のことである。一箇所でも際立って高い山や深い谷があると、大きな値になってしまい測定値のバラツキが大きくなる特徴がある。
また、算術平均粗さRaとは、粗さ曲線から、その平均線の方向に標準長さlだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し、平均した値のことである。一つの傷が測定値に及ぼす影響が非常に小さくなり、安定した結果が得られる特徴がある。
また、本願は、ウエハ収容凹部以外の全表面にわたって平均的に滑らかで、堆積膜の付着量を少なくするサセプタを提供することが最大の目的であり、表面の一部に大きな傷があったとしても、堆積膜の付着量に大きな影響を与えることがないサセプタを提供することをも目的としている。
以上の事項から、本願の目的とするサセプタの評価には、算術平均粗さRaでなければならないと判断する。
The above-mentioned maximum height Ry (surface roughness Rmax) is the height Yp from the average line of the extracted portion to the highest peak, extracted from the roughness curve by the standard length l in the direction of the average line. And the depth Yv to the lowest valley bottom. If there is a conspicuously high mountain or deep valley even in one place, it becomes a large value and there is a feature that the variation of the measured value becomes large.
The arithmetic average roughness Ra is a value obtained by extracting the standard length l from the roughness curve in the direction of the average line, and summing the absolute values of deviations from the average line of the extracted portion to the measurement curve. That is. There is a feature that the influence of one scratch on the measured value becomes very small and a stable result can be obtained.
In addition, the main purpose of the present application is to provide a susceptor that is smooth on the entire surface other than the wafer receiving recesses and that reduces the amount of deposited film deposited, and there is a large scratch on a part of the surface. Another object of the present invention is to provide a susceptor that does not greatly affect the adhesion amount of the deposited film.
From the above matters, it is determined that the arithmetic average roughness Ra must be used for the evaluation of the susceptor intended in the present application.

本発明によれば、サセプタ上の堆積膜の成長速度を減少させ、結晶欠陥、パーティクルの発生を堆積膜の一定膜厚まで抑制することができるので、気相エッチング回数を低減できる。   According to the present invention, the growth rate of the deposited film on the susceptor can be reduced, and generation of crystal defects and particles can be suppressed to a certain thickness of the deposited film, so that the number of vapor phase etchings can be reduced.

本発明の実施形態に係るサセプタは、CVD−SiC被覆黒鉛からなる窒化ガリウム、窒化アルミニウムガリウム、窒化ガリウムインジウム、窒化アルミニウムの内から選ばれる少なくとも1種以上のエピタキシャル成長に使用されるサセプタであって、ザグリ面以外の表面の算術平均粗さRaが、0.5μmよりも大きく且つ1μm未満である。本サセプタは、少なくとも1つのザグリを有すればよく、枚葉式、バレル式、パンケーキ式、いずれの型のものでもよい。 A susceptor according to an embodiment of the present invention is a susceptor used for epitaxial growth of at least one selected from gallium nitride, aluminum gallium nitride, gallium indium nitride, and aluminum nitride made of CVD-SiC-coated graphite, The arithmetic average roughness Ra of the surface other than the counterbore surface is greater than 0.5 μm and less than 1 μm. The susceptor only needs to have at least one counterbore, and may be of a single wafer type, a barrel type, or a pancake type.

CVD法において、ガスの種類の選択や温度等の調整を行うことで、ザグリ面以外の表面の算術平均粗さRaが0.5μmよりも大きく且つ1μm未満のサセプタを容易に製造することができる。 In the CVD method, by selecting the type of gas and adjusting the temperature, a susceptor having an arithmetic average roughness Ra of a surface other than the counterbore surface larger than 0.5 μm and smaller than 1 μm can be easily manufactured. .

また、CVD法でSiC膜を炭素基材表面に形成した後、SiC膜表面を研磨して、ザグリ面以外の表面の算術平均粗さRaが0.5μmよりも大きく且つ1μm未満となるように調整してもよい。この研磨方法としては、例えば、Ra1〜5μmのCVD−SiC膜を被覆した治具によって行うSiC共材研磨が挙げられる。また、他の方法として、研磨剤を用いて、乾式又は湿式研磨を行ってもよい。このとき、Raを0.5μmよりも大きく且つ1μm未満とするために、#350以上、好ましくは#600以上のSiC若しくはダイヤモンドの研磨剤を使用する。また、砥石で直接研磨することとしてもよい Further, after forming the SiC film on the carbon substrate surface by the CVD method, the SiC film surface is polished so that the arithmetic average roughness Ra of the surface other than the counterbore surface is larger than 0.5 μm and smaller than 1 μm. You may adjust. As this polishing method, for example, SiC co-material polishing performed with a jig coated with a CVD-SiC film of Ra 1 to 5 μm can be mentioned. As another method, dry or wet polishing may be performed using an abrasive. At this time, in order to make Ra larger than 0.5 μm and smaller than 1 μm, a SiC or diamond abrasive of # 350 or more, preferably # 600 or more is used. Moreover, it is good also as grind | polishing directly with a grindstone .

本実施形態によれば、容易に製造でき、かつ、コストを抑制し、さらに堆積膜の膜厚を一定以上厚くできるサセプタを提供できる。また、本実施形態に係るサセプタは、パーティクルの発生を堆積膜の一定膜厚まで抑制することができるので、エッチング回数を低減できるものである。   According to the present embodiment, it is possible to provide a susceptor that can be easily manufactured, that can reduce costs, and that can further increase the thickness of the deposited film. Moreover, since the susceptor according to the present embodiment can suppress the generation of particles to a certain thickness of the deposited film, the number of etchings can be reduced.

(実施例)
CVD装置内において、1250℃、SiCl4/C3H8/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。サセプタの算術平均粗さRaは0.8μm(Ry6μm)であった。このサセプタ上に窒化ガリウム(GaN)を堆積させたところ、GaN膜の厚さが1150μmになったところでパーティクルが発生した。
( Example)
In a CVD apparatus, a graphite substrate was coated with 100 μm of SiC using 1250 ° C. and SiCl 4 / C 3 H 8 / H 2 gas. The arithmetic average roughness Ra of the susceptor was 0.8 μm (Ry6 μm). When gallium nitride (GaN) was deposited on the susceptor, particles were generated when the thickness of the GaN film reached 1150 μm.

比較例1
CVD装置内において、1400℃、SiCl4/C3H8/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。SiC製砥石と純水とを用いて、ザグリ以外の面を約10μm湿式研磨し、サセプタの算術平均粗さRaを0.3μm(Ry2.5μm)に調整した。このサセプタ上にGaNを堆積させたところ、GaN膜の厚さが1200μmになったところでパーティクルが発生した。
( Comparative Example 1 )
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. A surface other than the counterbore was wet-polished by about 10 μm using a SiC grindstone and pure water, and the arithmetic average roughness Ra of the susceptor was adjusted to 0.3 μm (Ry 2.5 μm). When GaN was deposited on this susceptor, particles were generated when the thickness of the GaN film reached 1200 μm.

(比較例
CVD装置内において、1400℃、SiCl4/C3H8/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。サセプタの算術平均粗さRaは5μm(Ry27μm)であった。このサセプタ上にGaNを堆積させたところ、GaN膜の厚さが300μmになったところでパーティクルが発生した。
(Comparative Example 2 )
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. The arithmetic average roughness Ra of the susceptor was 5 μm (Ry 27 μm). When GaN was deposited on this susceptor, particles were generated when the thickness of the GaN film reached 300 μm.

(比較例
CVD装置内において、1400℃、SiCl4/C3H8/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。ザグリ以外の面を約3μm乾式研磨し、サセプタの算術平均粗さRaを2μm(Ry11μm)に調整した。このサセプタ上にGaNを堆積させたところ、GaN膜の厚さが500μmになったところでパーティクルが発生した。
(Comparative Example 3 )
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. The surface other than the counterbore was dry-polished by about 3 μm, and the arithmetic average roughness Ra of the susceptor was adjusted to 2 μm (Ry11 μm). When GaN was deposited on this susceptor, particles were generated when the thickness of the GaN film reached 500 μm.

(比較例
CVD装置内において、1400℃、SiCl4/C3H8/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。回転式研磨装置を用いて、ダイヤモンド砥粒と純水を用いてザグリ面以外の面を約20μm湿式研磨し、サセプタの算術平均粗さRaを0.05μm(Ry0.8μm)に調整した。このサセプタ上にGaNを堆積させたところ、GaN膜の厚さが1230μmになったところでパーティクルが発生した。
(Comparative Example 4 )
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. Using a rotary polishing apparatus, a surface other than the counterbore surface was wet-polished using diamond abrasive grains and pure water by about 20 μm, and the arithmetic average roughness Ra of the susceptor was adjusted to 0.05 μm (Ry 0.8 μm). When GaN was deposited on the susceptor, particles were generated when the thickness of the GaN film reached 1230 μm.

これらの結果をまとめて図1のグラフに示す。実施例では、GaN膜が1150μmに達するまで,比較例1ではGaN膜が1200μmに達するまでパーティクルが発生しなかったのに対し、比較例では300μm,比較例では500μmになったところでパーティクルが発生した。これらの結果により、本発明に係る実施例によれば、比較例2、3に比べ、パーティクルの発生をGaN膜の一定膜厚まで抑制することができるので、エッチング回数を低減できるサセプタを容易に製造することができることがわかる。また、比較例では,GaN膜が1230μmに達するまでパーティクルの発生はなかったが、回転式研磨装置を用いなければならず研磨コストが高額になった。さらに,複雑な形状のサセプタには応用できないデメリットもあることがわかった。 These results are summarized in the graph of FIG. In the embodiment, until GaN film reaches 1150Myuemu, particles where GaN layer in Comparative Example 1 became whereas particles to reach 1200μm did not occur in Comparative Example 2 300 [mu] m, to 500μm Comparative Example 3 There has occurred. From these results , according to the example according to the present invention, the generation of particles can be suppressed to a certain thickness of the GaN film as compared with Comparative Examples 2 and 3 , and thus the susceptor capable of reducing the number of etchings can be easily achieved It can be seen that it can be manufactured. In Comparative Example 4 , particles were not generated until the GaN film reached 1230 μm, but a rotary polishing apparatus had to be used, and the polishing cost was high. Furthermore, it was found that there are some disadvantages that cannot be applied to complex shaped susceptors.

図2に本発明にかかる実施例及び比較例のサセプタのザグリ以外の表面の算術平均粗さRaと最大高さRyの関係を示す FIG. 2 shows the relationship between the arithmetic average roughness Ra and the maximum height Ry of the surface of the susceptor other than the counterbore in the examples and comparative examples according to the present invention .

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

本発明にかかる実施例及び比較例のSiC算術表面粗さRaとパーティクル発生時のEPI−GaN膜厚との関係を示すグラフ。The graph which shows the relationship between the SiC arithmetic surface roughness Ra of the Example concerning this invention, and the EPI-GaN film thickness at the time of particle generation. 本発明にかかわる実施例及び比較例のSiC算術表面粗さRaとSiC最大高さRyの関係を示すグラフ。The graph which shows the relationship between the SiC arithmetic surface roughness Ra of the Example and comparative example which concern on this invention, and SiC maximum height Ry.

Claims (2)

少なくとも1つのザグリを有するCVD−SiC被覆黒鉛基材からなり、窒化ガリウム、窒化アルミニウムガリウム、窒化ガリウムインジウム、窒化アルミニウムの内から選ばれる少なくとも1種以上のエピタキシャル成長に使用されるサセプタであって、ザグリ面以外の表面におけるJIS B 0601に基づく算術平均粗さRaが、0.5μmよりも大きく且つ1μm未満であるサセプタ。 A susceptor comprising a CVD-SiC-coated graphite substrate having at least one counterbore and used for at least one epitaxial growth selected from gallium nitride, aluminum gallium nitride, gallium indium nitride, and aluminum nitride, JIS on surfaces other than surfaces A susceptor having an arithmetic average roughness Ra based on B 0601 greater than 0.5 μm and less than 1 μm. 前記算術平均粗さRaが0.8μm以上且つ1μm未満であ請求項1に記載のサセプタ。 The arithmetic average roughness Ra is 0 . The susceptor of claim 1 Ru and 1μm less der than 8 [mu] m.
JP2005053486A 2005-02-28 2005-02-28 Susceptor Expired - Fee Related JP4739777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053486A JP4739777B2 (en) 2005-02-28 2005-02-28 Susceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053486A JP4739777B2 (en) 2005-02-28 2005-02-28 Susceptor

Publications (2)

Publication Number Publication Date
JP2006237499A JP2006237499A (en) 2006-09-07
JP4739777B2 true JP4739777B2 (en) 2011-08-03

Family

ID=37044779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053486A Expired - Fee Related JP4739777B2 (en) 2005-02-28 2005-02-28 Susceptor

Country Status (1)

Country Link
JP (1) JP4739777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173094B2 (en) * 2020-05-15 2022-11-16 株式会社豊田中央研究所 Susceptor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853453B2 (en) * 1997-01-06 2006-12-06 徳山東芝セラミックス株式会社 Vertical susceptor for vapor phase growth
JP4372988B2 (en) * 2000-05-22 2009-11-25 東洋炭素株式会社 CVD-SiC excellent in NH3 resistance, CVD-SiC coating material excellent in NH3 resistance, and jig for CVD or MBE apparatus
JP2002043397A (en) * 2000-07-26 2002-02-08 Hitachi Chem Co Ltd Susceptor
JP4223455B2 (en) * 2004-03-23 2009-02-12 コバレントマテリアル株式会社 Susceptor

Also Published As

Publication number Publication date
JP2006237499A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4581081B2 (en) Method for producing silicon carbide smoothed substrate used for producing epitaxial wafer, apparatus for smoothing silicon carbide substrate surface and SiC epitaxial growth
JP4322846B2 (en) Susceptor
JP6858872B2 (en) Wafer with group III nitride layer and diamond layer
JP2008181953A (en) Manufacturing method of group iii-v compound semiconductor substrate
JPH10167886A (en) Susceptor for vapor growth
TW200501243A (en) Coated semiconductor wafer, and process and device for producing the semiconductor wafer
JP4739776B2 (en) Susceptor
JP6381229B2 (en) Method for manufacturing silicon carbide epitaxial wafer
KR101547621B1 (en) Silicon carbide structures for plasma processing device and manufacturing method thereof
JP4739777B2 (en) Susceptor
JP5996406B2 (en) Method for manufacturing silicon carbide epitaxial wafer
CN110592665A (en) Method for improving flatness of semiconductor film
JP4130389B2 (en) Method for producing group III nitride compound semiconductor substrate
CN116716591A (en) Molybdenum support structure and diamond preparation method
JP2020100528A (en) Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate
WO2018207942A1 (en) Susceptor, method for producing epitaxial substrate, and epitaxial substrate
JP2009239103A (en) Treatment method for planarization
JP4261600B2 (en) Nitride semiconductor devices
KR20130021026A (en) Process of surface treatment for wafer
JP2021046336A (en) Method for processing surface of graphite support substrate, method for depositing silicon carbide polycrystalline film and method for manufacturing silicon carbide polycrystalline substrate
JP6573514B2 (en) Pretreatment method for SiC single crystal substrate and method for producing epitaxial SiC wafer
TWI802406B (en) METHOD OF SiC WAFER PROCESSING
KR102416913B1 (en) Semiconductor wafers with epitaxial layers
WO2022013906A1 (en) SiC EPITAXIAL SUBSTRATE MANUFACTURING DEVICE AND MANUFACTURING METHOD
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees