JP4223455B2 - Susceptor - Google Patents

Susceptor Download PDF

Info

Publication number
JP4223455B2
JP4223455B2 JP2004285280A JP2004285280A JP4223455B2 JP 4223455 B2 JP4223455 B2 JP 4223455B2 JP 2004285280 A JP2004285280 A JP 2004285280A JP 2004285280 A JP2004285280 A JP 2004285280A JP 4223455 B2 JP4223455 B2 JP 4223455B2
Authority
JP
Japan
Prior art keywords
susceptor
wafer
outer peripheral
recess
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004285280A
Other languages
Japanese (ja)
Other versions
JP2005311290A (en
Inventor
雅也 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2004285280A priority Critical patent/JP4223455B2/en
Priority to DE102005045081A priority patent/DE102005045081B4/en
Priority to US11/231,938 priority patent/US7393418B2/en
Publication of JP2005311290A publication Critical patent/JP2005311290A/en
Application granted granted Critical
Publication of JP4223455B2 publication Critical patent/JP4223455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はサセプタに係り、特にウェーハポケットに被覆されるSiC被膜の一部に研磨されないSiC結晶成長面部を残したサセプタに関する。   The present invention relates to a susceptor, and more particularly, to a susceptor in which a SiC crystal growth surface portion that is not polished is left on a part of an SiC film coated on a wafer pocket.

半導体デバイスは多くの製造工程を経て製造されるが、半導体ウェーハのエピタキシャル成長工程等に使用されるサセプタは、低反応性、高強度のために炭素基材にSiCを被覆したSiC部材が多く用いられている。   Semiconductor devices are manufactured through many manufacturing processes. However, susceptors used in the epitaxial growth process of semiconductor wafers are often made of SiC members with SiC coated on a carbon substrate for low reactivity and high strength. ing.

サセプタは平板状のサセプタ基材に1個のウェーハ収納用の凹部が形成された枚葉式サセプタや多数の凹部が形成されたサセプタがある。   As the susceptor, there are a single-wafer type susceptor in which one concave portion for housing a wafer is formed on a flat susceptor base material and a susceptor in which a large number of concave portions are formed.

これらのサセプタは、機械研削等によって凹部が形成された炭素基材にSiCを被覆して製造し、被覆した状態のまま熱処理等に用いるか(特許文献1)、あるいはこのSiC被覆面をさらに研磨装置により研磨して製造し、これを熱処理等に用いていた(特許文献2)。   These susceptors are manufactured by coating SiC on a carbon base material having recesses formed by mechanical grinding or the like, and are used for heat treatment or the like with the coated state (Patent Document 1) or further polishing this SiC coated surface. It was manufactured by polishing with an apparatus and used for heat treatment or the like (Patent Document 2).

しかし、従来の製造方法で製造されたサセプタは、特許文献1のようにSiC被膜を被覆した状態のまま熱処理等に用いる場合には、SiCは非常に硬いため、結晶粒が大きくなると、その結晶頂部が刃物のごとく作用して、半導体ウェーハの表面を切削してしまうことがあり、また、特許文献2のように被覆面を研磨して用いる場合には、半導体ウェーハが搭載される凹部の底面部と垂直部の境界部分近傍に研磨工程時に応力が集中して、この部分の被覆に微細なクラックが入り、さらに、熱処理時の熱応力により微細クラックを起点として被覆面に、図6に示すようなクラックが発生することがあり、その寿命が短かった。   However, when the susceptor manufactured by the conventional manufacturing method is used for heat treatment or the like with the SiC film coated as in Patent Document 1, since SiC is very hard, when the crystal grains become large, When the top part acts like a blade and cuts the surface of the semiconductor wafer, and the coated surface is polished as in Patent Document 2, the bottom surface of the concave portion on which the semiconductor wafer is mounted FIG. 6 shows stress on the coating surface in the vicinity of the boundary portion between the vertical portion and the vertical portion, where fine cracks are formed in the coating of this portion, and the fine cracks originate from the thermal stress during heat treatment. Such cracks may occur, and their lifetime was short.

また、ウェーハを載置する凹部全ての面を研磨した場合には、この凹部内において、ウェーハは接触界面でのガス残存によって、滑り易い状態にあり、かつ当該凹部の外周角部にガスが滞留する傾向があり、サセプタの回転運動に伴う遠心力及び上記ガスの影響によって、ウェーハが当該凹部から離脱するといった不具合があった。   In addition, when the entire surface of the concave portion on which the wafer is placed is polished, the wafer is in a slippery state due to the gas remaining at the contact interface, and the gas stays at the outer peripheral corner of the concave portion. There is a problem that the wafer is detached from the concave portion due to the centrifugal force accompanying the rotational movement of the susceptor and the influence of the gas.

これを解決するために、当該凹部のウェーハ接触面にサセプタ下面に連通する孔を設けたり、格子状に溝を設ける等の対策が採られているが、この場合には、ウェーハ面内に部分的な温度差が生じ、ウェーハの均一な熱処理ができないといった課題があった。   In order to solve this, measures are taken such as providing a hole communicating with the lower surface of the susceptor on the wafer contact surface of the recess or providing a groove in a lattice shape. There is a problem that a uniform temperature difference occurs and the wafer cannot be uniformly heat-treated.

また、従来のサセプタにおいては、ウェーハを載置する凹部の外周部に連なる外周平面部が通常のCVD−SiCコート後の状態のもの、あるいは、鏡面に研磨されたものが存在したが、前者はガス流れがウェーハ載置部の外周部で乱れ、例えばウェーハエピ層の均一化を悪化させると共に、繰り返し使用時において、上記外周部において、不純物成分が凝集し、ウェーハに悪影響を与える可能性が高かった。また、後者においては、上記外周部においてガス流れが過度に均一化し、例えばガス下流側にデポ層の異常成長突起を生じ、使用を繰り返すうちにウェーハのエピ層の均一性を悪化してしまうおそれがあった。
特開昭56−10921号公報 特開平7−335572号公報
In addition, in the conventional susceptor, the outer peripheral flat part connected to the outer peripheral part of the concave portion on which the wafer is placed is in a state after a normal CVD-SiC coating, or is polished to a mirror surface. The gas flow is disturbed at the outer periphery of the wafer mounting portion, for example, worsening the uniformity of the wafer epi layer, and at the time of repeated use, there is a high possibility that the impurity components aggregate at the outer periphery and adversely affect the wafer. . In the latter case, the gas flow becomes excessively uniform in the outer peripheral portion, for example, abnormal growth protrusions of the deposition layer are formed on the gas downstream side, and the uniformity of the epilayer of the wafer may be deteriorated during repeated use. was there.
JP-A-56-10922 JP 7-335572 A

本発明は上述した事情を考慮してなされたもので、SiC被膜表面の結晶の頂部により半導体ウェーハ表面を切削してしまうことがなく、長時間使用してもウェーハが搭載される凹部の外周部下方にクラックが発生することがなく長寿命であり、また、ウェーハが凹部から離脱することなく安定した使用ができ、さらに、ウェーハ面内の均一加熱が可能なサセプタを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and does not cut the surface of the semiconductor wafer by the top of the crystal on the surface of the SiC film. The purpose of the present invention is to provide a susceptor that does not generate cracks, has a long service life, can be used stably without the wafer being detached from the recess, and can uniformly heat the wafer surface. .

また、ウェーハエピ層の均一化が図れ、かつ繰り返し使用しても凹部の外周部に不純物成分の凝集がなく、ウェーハに悪影響を与えることがないサセプタを提供することを目的とする。 It is another object of the present invention to provide a susceptor that can make the wafer epi layer uniform and that does not cause adverse effects on the wafer without aggregation of impurity components on the outer periphery of the recess even when used repeatedly.

本発明者らは、上記目的実現のために、鋭意研究した結果、半導体ウェーハ、特にシリコンウェーハの外周部には必ずウェーハ周辺を面取りするベベリングが行われ、この面取部がサセプタと接触しないことに着目し、サセプタの面取部に対向する部位に研磨されないSiC結晶成長面部を残すことで、この部分の被覆面に微細なクラックが入らないことを見出し、本発明をするに至った。   As a result of diligent research to achieve the above object, the inventors of the present invention always beveled the periphery of a semiconductor wafer, particularly a silicon wafer, so that the periphery of the wafer does not contact the susceptor. Focusing on the above, it has been found that by leaving an unpolished SiC crystal growth surface portion at a portion facing the chamfered portion of the susceptor, fine cracks are not formed on the coating surface of this portion, and the present invention has been achieved.

すなわち、上記目的を達成するため、本発明によれば、少なくとも表面がSiCで構成され、ウェーハが搭載される凹部を有するサセプタにおいて、前記凹部の外周部下方にR部が設けられ、このR部内でかつ少なくとも前記凹部の外周垂直部から0.05mm以上0.3mm以下の範囲にSiC結晶成長面部がリング状に存在し、前記凹部のウェーハと接触する部分が表面粗さRaで0.5μm以上3μm以下であることを特徴とするサセプタが提供される。これにより、SiC被膜表面の結晶の頂部により半導体ウェーハ表面を切削してしまうことがなく、長時間使用してもウェーハが搭載される凹部の外周部下方にクラックが発生することがなく長寿命であり、また、ウェーハが凹部から離脱することなく安定した使用ができ、さらに、ウェーハ面内の均一加熱が可能なサセプタが実現される。   That is, in order to achieve the above object, according to the present invention, in a susceptor having at least a surface made of SiC and having a concave portion on which a wafer is mounted, an R portion is provided below the outer peripheral portion of the concave portion. In addition, the SiC crystal growth surface portion exists in a ring shape at least in the range of 0.05 mm or more and 0.3 mm or less from the outer peripheral vertical portion of the recess, and the portion of the recess that contacts the wafer has a surface roughness Ra of 0.5 μm or more. A susceptor is provided that is 3 μm or less. As a result, the surface of the semiconductor wafer is not cut by the top of the crystal on the surface of the SiC coating, and even if it is used for a long time, cracks do not occur below the outer periphery of the concave portion on which the wafer is mounted, resulting in a long life. In addition, a susceptor that can be used stably without the wafer being detached from the recess and that can uniformly heat the wafer surface is realized.

好適には、前記凹部の外周部に連なりサセプタの表面の一部あるいは全部をなす外周平面部が、その算術平均粗さRaが0.05μm以上、0.5μm以下の凹凸形状をなす。   Preferably, the outer peripheral flat surface portion that is continuous with the outer peripheral portion of the concave portion and forms part or all of the surface of the susceptor has an irregular shape with an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less.

本発明に係わるサセプタによれば、SiC被膜表面の結晶の頂部により半導体ウェーハ表面を切削してしまうことがなく、長時間使用してもウェーハが搭載される凹部の外周部下方にクラックが発生することがなく長寿命であり、また、ウェーハが凹部から離脱することなく安定した使用ができ、さらに、ウェーハ面内の均一加熱が可能なサセプタを提供することができる。   According to the susceptor according to the present invention, the surface of the semiconductor wafer is not cut by the top of the crystal on the surface of the SiC film, and cracks are generated below the outer peripheral portion of the recess in which the wafer is mounted even when used for a long time. Therefore, it is possible to provide a susceptor that has a long life, can be used stably without detaching the wafer from the recess, and can uniformly heat the wafer surface.

また、ウェーハエピ層の均一化が図れ、かつ繰り返し使用しても凹部の外周部に不純物成分の凝集がなく、ウェーハに悪影響を与えることがないサセプタを提供することができる。   Further, it is possible to provide a susceptor in which the wafer epilayer can be made uniform, and the impurity component does not aggregate on the outer peripheral portion of the concave portion even when used repeatedly, and the wafer is not adversely affected.

以下、本発明に係るサセプタの一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a susceptor according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係るサセプタの縦断面図、図2はその使用状態を示す縦断面図、図3及び図4は図2のB部を拡大して示すR部近傍の拡大図である。   FIG. 1 is a longitudinal sectional view of a susceptor according to the present invention, FIG. 2 is a longitudinal sectional view showing a use state thereof, and FIGS. 3 and 4 are enlarged views in the vicinity of an R portion showing an enlarged portion B of FIG.

図1に示すように、本発明に係るサセプタ1は、炭素基材2の表面2aにはSiC被膜4が被覆され、複数例えば5個の半導体ウェーハ搭載用の凹部3が形成された構造になっている。   As shown in FIG. 1, the susceptor 1 according to the present invention has a structure in which a surface 2a of a carbon substrate 2 is coated with a SiC film 4 and a plurality of, for example, five recesses 3 for mounting a semiconductor wafer are formed. ing.

図2に示すように、この凹部3には、ウェーハWが搭載され接触するウェーハ接触部3aとこのウェーハ接触部3aから垂直に立ち上がる外周垂直部3b間にR部3cが形成されており、図3及び図4に示すように、研磨されずSiC結晶成長によって形成されたままのSiC結晶成長面部4aのリング状の内周端4aは、R部3c内で、かつ凹部3の外周垂直部3bから0.05mm以上0.3mm以下の範囲に位置するように形成され、かつ半導体ウェーハWと接触するウェーハ搭載面3aの表面粗さRaが0.5μm以上3μm以下になっている。すなわち、内周端4aの外周垂直部3bからの距離xが、外周垂直部3bから0.05〜0.3mmの範囲にある。 As shown in FIG. 2, an R portion 3c is formed in the recess 3 between the wafer contact portion 3a on which the wafer W is mounted and in contact with the outer peripheral vertical portion 3b rising vertically from the wafer contact portion 3a. 3 and FIG. 4, the ring-shaped inner peripheral edge 4 a 1 of the SiC crystal growth surface portion 4 a that is not polished and is formed by SiC crystal growth is within the R portion 3 c and the outer peripheral vertical portion of the recess 3. The surface roughness Ra of the wafer mounting surface 3a that is formed so as to be in the range of 3 mm to 0.05 mm and not more than 0.3 mm and is in contact with the semiconductor wafer W is not less than 0.5 μm and not more than 3 μm. That is, the distance x from the outer peripheral vertical portion 3b of the inner peripheral edge 4a 1 is in the range of 0.05~0.3mm from the outer vertical portion 3b.

外周垂直部からの距離xが0.05mmより小さいと応力緩和効果がみられず、また0.3mmを超えると結晶成長面部がウェーハ裏面に当接し、ウェーハを傷つけるおそれがある。また、結晶成長面部のRaは5μm以上10μm以下であることが好ましい。結晶成長面部の表面粗さRaが5μmより小さいと結晶粒界が多く、粒界を通じて応力によりクラックを生じる場合がある。また、Raが10μmを超えると、応力緩和の効果が大きく、凹部3において、ウェーハが搭載される搭載面と外周垂直部のなす角が歪んでしまう可能性がある。   If the distance x from the outer peripheral vertical portion is smaller than 0.05 mm, the stress relaxation effect is not observed, and if it exceeds 0.3 mm, the crystal growth surface portion may come into contact with the back surface of the wafer and the wafer may be damaged. Further, Ra of the crystal growth surface portion is preferably 5 μm or more and 10 μm or less. If the surface roughness Ra of the crystal growth surface portion is smaller than 5 μm, there are many crystal grain boundaries, and cracks may occur due to stress through the grain boundaries. Further, if Ra exceeds 10 μm, the effect of stress relaxation is great, and in the recess 3, the angle formed by the mounting surface on which the wafer is mounted and the outer peripheral vertical portion may be distorted.

基材の材質は、任意に選定してよいが、等方性黒鉛質とすることで、容易に所望の形状にすることができる。   The material of the substrate may be arbitrarily selected, but can be easily formed into a desired shape by using isotropic graphite.

本実施形態においては、外周垂直部3bに半導体ウェーハが接することがないので、その表面は未研磨のSiC結晶成長面のままであってもよい。   In the present embodiment, since the semiconductor wafer does not contact the outer peripheral vertical portion 3b, the surface thereof may be an unpolished SiC crystal growth surface.

次に本発明に係るサセプタの製造方法について説明する。   Next, the manufacturing method of the susceptor according to the present invention will be described.

図5に示すように、凹部3が形成された炭素基材2の表面2aにSiC被膜4が被覆されたサセプタ1を用意し、研磨装置11により、ウェーハ搭載面3a及び外周垂直部3bの研磨を行い表面粗さRaが0.5μm以上3μm以下にする。さらに、R部3cも外周垂直部3bから0.05mm以上0.3mm以下の範囲の非研磨面部を残し、それ以外の部位を研磨し、表面粗さRaが0.5μm以上3μm以下にする。SiC結晶成長面部4aが残るように、R部3cの外周垂直部3bから0.05mm以上0.3mm以下の範囲は研磨されない。従って、SiC結晶成長面部4aである非研磨面部には、研磨時の応力により微細なクラックが発生しない。   As shown in FIG. 5, a susceptor 1 is prepared in which a surface 2a of a carbon substrate 2 having a recess 3 formed thereon is coated with a SiC coating 4. A polishing apparatus 11 polishes the wafer mounting surface 3a and the outer peripheral vertical portion 3b. The surface roughness Ra is adjusted to 0.5 μm or more and 3 μm or less. Further, the R portion 3c also leaves a non-polished surface portion in the range of 0.05 mm or more and 0.3 mm or less from the outer peripheral vertical portion 3b, and polishes other portions so that the surface roughness Ra is 0.5 μm or more and 3 μm or less. A range from 0.05 mm to 0.3 mm from the outer peripheral vertical portion 3b of the R portion 3c is not polished so that the SiC crystal growth surface portion 4a remains. Therefore, fine cracks do not occur in the non-polished surface portion, which is the SiC crystal growth surface portion 4a, due to stress during polishing.

また、本発明に係るサセプタを用いた半導体ウェーハの熱処理方法について説明する。   Also, a method for heat-treating a semiconductor wafer using the susceptor according to the present invention will be described.

図2及び図3のように、半導体ウェーハWを炉内に設置されたサセプタ1に形成されたウェーハ搭載面3aに搭載して、凹部3に収容する。   As shown in FIGS. 2 and 3, the semiconductor wafer W is mounted on the wafer mounting surface 3 a formed on the susceptor 1 installed in the furnace and accommodated in the recess 3.

このとき、半導体ウェーハWはベベリングによって面取部cが形成されているので、R部3cのSiC結晶成長面部4aに接触することがない。   At this time, since the chamfered portion c is formed by beveling in the semiconductor wafer W, it does not contact the SiC crystal growth surface portion 4a of the R portion 3c.

しかる後、炉内に原料ガスを供給するとともに、サセプタ1及び半導体ウェーハWを加熱して、半導体ウェーハWの熱処理を行う。   Thereafter, the raw material gas is supplied into the furnace, and the susceptor 1 and the semiconductor wafer W are heated to heat-treat the semiconductor wafer W.

このような熱処理工程において、サセプタ1には、ウェーハWを搭載する凹部3の外周部下方にR部3cが設けられ、このR部3c内でかつ少なくとも凹部3の外周垂直部から0.05mm以上0.3mm以下の範囲にSiC結晶成長面部がリング状に存在し(研磨されずフラットになっていない)、SiC結晶によって適度な凹凸が外周部に存在するため、凹部3の外周角部にガスが滞留することなく、結果、ウェーハWが凹部3から離脱するといった問題も生じることもなく、安定した使用ができ、また、凹部3におけるウェーハWとの接触部が表面粗さRaで0.5μm以上3μm以下の均質な面となっている(連通孔や格子状の溝等が存在しない)ため、ウェーハWの面内均一な熱処理ができる。   In such a heat treatment step, the susceptor 1 is provided with an R portion 3c below the outer peripheral portion of the concave portion 3 on which the wafer W is mounted, and at least 0.05 mm from the outer peripheral vertical portion of the concave portion 3 in the R portion 3c. Since the SiC crystal growth surface portion exists in a ring shape in a range of 0.3 mm or less (not polished and flat), and moderate irregularities are present in the outer peripheral portion due to the SiC crystal, gas is generated in the outer peripheral corner portion of the concave portion 3. Can be used stably without causing a problem that the wafer W is detached from the recess 3 as a result, and the contact portion with the wafer W in the recess 3 has a surface roughness Ra of 0.5 μm. Since the surface is a uniform surface of 3 μm or less (there are no communication holes or lattice-like grooves), the wafer W can be uniformly heat-treated in the surface.

また、半導体ウェーハWが接するウェーハ搭載面3aが、表面粗さRaが0.5μm以上3μm以下に研磨されているので、半導体ウェーハの表面を切削してしまうこともない。また、研磨されないSiC結晶成長面部4aのリング状の内周端4aは、R部内でかつ凹部3の外周垂直部から0.05mm以上0.3mm以下の範囲に位置するように形成されているので、SiC結晶成長面部4aに研磨による微細なクラックが入っておらず、熱処理時の熱応力により微細クラックを起点としたクラックが被覆面に発生することがない。 Moreover, since the wafer mounting surface 3a with which the semiconductor wafer W is in contact is polished to a surface roughness Ra of 0.5 μm or more and 3 μm or less, the surface of the semiconductor wafer is not cut. Further, the ring-shaped inner peripheral end 4a 1 of the SiC crystal growth surface portion 4a that is not polished is formed so as to be located within the R portion and within the range of 0.05 mm or more and 0.3 mm or less from the outer peripheral vertical portion of the recess 3. Therefore, there are no fine cracks due to polishing in the SiC crystal growth surface portion 4a, and cracks originating from the fine cracks do not occur on the coated surface due to thermal stress during heat treatment.

上記のように本実施形態によれば、SiC被膜表面の結晶の頂部により半導体ウェーハ表面を切削してしまうことがなく、長時間使用してもウェーハが搭載される凹部の外周部下方にクラックが発生することがなく長寿命であり、また、ウェーハが凹部から離脱することなく安定した使用ができ、さらに、ウェーハ面内の均一加熱が可能になる。   As described above, according to the present embodiment, the surface of the semiconductor wafer is not cut by the top of the crystal on the surface of the SiC coating, and cracks are formed below the outer peripheral portion of the concave portion where the wafer is mounted even when used for a long time. It does not occur, has a long life, can be used stably without the wafer being detached from the recess, and can be uniformly heated within the wafer surface.

なお、上記実施形態では、基材に複数のウェーハ載置用の凹部が設けられた例で説明したが、本発明のサセプタは基材に1個の凹部が設けられた枚葉式サセプタであっても、同様の効果を奏する。   In the above embodiment, the example in which the substrate is provided with a plurality of recesses for mounting a wafer has been described. However, the susceptor of the present invention is a single-wafer type susceptor in which a substrate is provided with one recess. However, the same effect can be obtained.

また、本発明に係るサセプタの他の実施形態について説明する。   Further, another embodiment of the susceptor according to the present invention will be described.

本実施形態は、図2に示す上記実施形態において、凹部の外周部に連なる外周平面部の平面粗さの範囲を限定したサセプタである。   This embodiment is a susceptor in which the range of the planar roughness of the outer peripheral flat surface portion connected to the outer peripheral portion of the recess is limited in the embodiment shown in FIG.

例えば、図7に示すように、本実施形態に係るサセプタ11は、凹部3の外周部に連なりサセプタ11の表面の一部あるいは全部をなす外周平面部3dが設けられ、この外周平面部3dの算術平均粗さRa(JIS B0601−1994) は、0.05μm以上、0.5um以下の凹凸形状をなしている。   For example, as shown in FIG. 7, the susceptor 11 according to the present embodiment is provided with an outer peripheral plane portion 3 d that is connected to the outer peripheral portion of the recess 3 and forms part or all of the surface of the susceptor 11. The arithmetic average roughness Ra (JIS B0601-1994) has an uneven shape of 0.05 μm or more and 0.5 μm or less.

これにより、図8に示すように、例えばエピタキシャル成長工程において、エピタキシャル装置21のベルジャー22内に供給された原料ガスは、外周平面部3dに達し、この外周平面部3dの適度な凹凸形状の凸状部間すなわち凹状部を通って流れるため整流され、さらに、原料ガス流に含まれる不純物が凹状部に凝集して堆積されるので、ウェーハ上に流れる原料ガスの流れに乱れがなく、均一なエピ層の形成が可能となり、さらに、長期間使用しても、エピ層に不純物が混入するのが防止され、不純物不良発生が低減される。   As a result, as shown in FIG. 8, for example, in the epitaxial growth process, the source gas supplied into the bell jar 22 of the epitaxial apparatus 21 reaches the outer peripheral plane portion 3d, and this outer peripheral plane portion 3d has a moderately convex shape. Rectification is performed because the gas flows through the recesses, that is, through the recesses, and impurities contained in the source gas flow aggregate and accumulate in the recesses, so that the flow of the source gas flowing on the wafer is not disturbed and uniform epitaxy. The layer can be formed, and even when used for a long period of time, impurities are prevented from being mixed into the epi layer, and the occurrence of impurity defects is reduced.

外周平面部の表面粗さが0.5μm以上であると、整流作用が低下し、0.05μm以下であると、外周平面部のガス流れが過度に均一化し、ガス下流側すなわち外周平面部の凹部側に異常成長突起を生じ、使用を繰り返すうちにウェーハのエピ層の均一性が悪化してしまう。   When the surface roughness of the outer peripheral plane portion is 0.5 μm or more, the rectification action is reduced, and when it is 0.05 μm or less, the gas flow in the outer peripheral plane portion becomes excessively uniform, and the gas downstream side, that is, the outer peripheral plane portion Abnormal growth protrusions are formed on the concave side, and the uniformity of the epilayer of the wafer deteriorates as the use is repeated.

なお、外周平面部は、本実施形態のように、基材に5個の凹部が形成されるようなサセプタにおいては、凹部を除く基材の表面の70%以上を占めるのが好ましく、70%以上においてガス流れが飛躍的に整流化される。また、基材に1個の凹部が形成される枚葉式サセプタにあっては、表面の全部であるのが好ましい。   In the susceptor in which five concave portions are formed in the base material as in the present embodiment, the outer peripheral plane portion preferably occupies 70% or more of the surface of the base material excluding the concave portions, and 70% In this way, the gas flow is dramatically rectified. Moreover, in the single wafer type susceptor in which one concave portion is formed on the base material, the entire surface is preferable.

さらに、凹部の周囲に形成される外周平面部を含む基材が、凹部と構造上一体製造あるいは組み付けが困難である場合や、または凹部と基材の寿命が異なる場合には、基材と凹部の一部または全部を別個に製造する分割形にあっても、本発明の同様の効果が得られる。   Furthermore, if the base material including the outer peripheral flat portion formed around the recess is difficult to manufacture or assemble with the recess structurally, or if the recess and the base material have different lifetimes, the base material and the recess The same effect of the present invention can be obtained even in a divided form in which a part or all of the parts are separately manufactured.

他の構成は図2に示すサセプタと異ならないので、同一符号を付して説明は省略する。   Since the other configuration is not different from the susceptor shown in FIG.

「試験1」
(実施例1):凹部を1個備えたサセプタ形状に加工した等方性炭素基材にRaが7.2μmのSiCで被覆したサセプタについて、外周側0.3mmを除いた凹部の搭載面を、#500以下のダイヤモンド砥粒を備えた回転式研磨機で研削研磨し、サセプタを得た。
(実施例2):凹部の外周側未研磨部分を0.05mmとする以外は実施例1と同様の方法でサセプタを得た。
(実施例3):回転式研磨機の砥粒を#40以下とする以外は実施例1と同様の方法でサセプタを得た。
(実施例4):回転式研磨機の砥粒を#40以下とする以外は実施例2と同様の方法でサセプタを得た。
"Test 1"
(Example 1): For a susceptor in which an isotropic carbon base material processed into a susceptor shape having one recess is coated with SiC having Ra of 7.2 μm, the mounting surface of the recess except for 0.3 mm on the outer peripheral side is used. The susceptor was obtained by grinding and polishing with a rotary polishing machine equipped with diamond abrasive grains of # 500 or less.
(Example 2): A susceptor was obtained in the same manner as in Example 1 except that the unpolished portion on the outer peripheral side of the recess was set to 0.05 mm.
(Example 3): A susceptor was obtained in the same manner as in Example 1 except that the abrasive grains of the rotary polishing machine were set to # 40 or less.
Example 4 A susceptor was obtained in the same manner as in Example 2 except that the abrasive grains of the rotary polishing machine were set to # 40 or less.

(比較例1):凹部の外周側未研磨部分を0.4mmまでとする以外は実施例1と同様の方法でサセプタを得た。
(比較例2):凹部の外周側未研磨部分を0.4mmとする以外は実施例3と同様の方法でサセプタを得た。
(比較例3):回転式研磨機の砥粒を#800以下とする以外は実施例1と同様の方法でサセプタを得た。
(比較例4):回転式研磨機の砥粒を#800以下とする以外は実施例2と同様の方法でサセプタを得た。
(Comparative example 1): The susceptor was obtained by the same method as Example 1 except the outer peripheral side unpolished part of a recessed part made into 0.4 mm.
(Comparative Example 2): A susceptor was obtained in the same manner as in Example 3 except that the unpolished portion on the outer peripheral side of the recess was 0.4 mm.
(Comparative Example 3): A susceptor was obtained in the same manner as in Example 1 except that the abrasive grains of the rotary polishing machine were set to # 800 or less.
(Comparative Example 4): A susceptor was obtained in the same manner as in Example 2 except that the abrasive grains of the rotary polishing machine were set to # 800 or less.

各実施例および各比較例の研磨面部の表面粗さを測定し、さらに、これらをエピタキシャル成長装置に組み込み、100枚のシリコンウェーハを処理して、ウェーハ裏面キズの発生枚数を測定し、また、使用後の凹部におけるクラックの有無を調べた。   The surface roughness of the polished surface portion of each example and each comparative example is measured, and further, these are incorporated in an epitaxial growth apparatus, 100 silicon wafers are processed, the number of wafer backside scratches is measured, and used. The presence or absence of cracks in the subsequent recess was examined.

結果を表1に示す。

Figure 0004223455
The results are shown in Table 1.
Figure 0004223455

表1からもわかるように、結晶成長面部幅及び研磨面部Raは本発明の範囲内の実施例1〜4は、いずれもウェーハに傷の発生がなく、凹部クラックの発生もなかった。   As can be seen from Table 1, in Examples 1 to 4 within the scope of the present invention, the crystal growth surface portion width and the polishing surface portion Ra were all free of scratches on the wafer and no cracks were generated.

これに対して、結晶成長面部幅の上限を外れ研磨面部Ra下限内の比較例1は、傷発生が12枚あり、凹部クラックの発生はなかった。   In contrast, Comparative Example 1 outside the upper limit of the crystal growth surface portion width and within the lower limit of the polishing surface portion Ra had 12 scratches and no recess cracks.

結晶成長面部幅の上限を外れ研磨面部Ra上限内の比較例2は、傷発生が42枚あり、凹部クラックはなかった。   Comparative Example 2 outside the upper limit of the crystal growth surface portion width and within the upper limit of the polishing surface portion Ra had 42 scratches and no recess cracks.

結晶成長面部幅の下限内で研磨面部Ra下限外の比較例3は、傷発生が11枚あり、また、ウェーハと搭載面部の固着が発生し、凹部クラックはなかった。   In Comparative Example 3 within the lower limit of the crystal growth surface portion width and outside the lower limit of the polishing surface portion Ra, there were 11 scratches, the wafer and the mounting surface portion were fixed, and there were no recess cracks.

結晶成長面部幅の下限内で研磨面部Ra下限外の比較例4は、傷発生が16枚あり、また、ウェーハと搭載面部の固着が発生し、凹部トクラックはなかった。   In Comparative Example 4 within the lower limit of the crystal growth surface portion width and outside the lower limit of the polishing surface portion Ra, there were 16 scratches, the wafer and the mounting surface portion were fixed, and there were no recess cracks.

「試験2」
凹部とこの凹部の外周に平面形状の外周平面部を備えたサセプタ形状に機械加工した等方性炭素に公知の方法でSiCを被覆し、その後種々の仕上げに外周平面部を研削研磨して、表2に示すように、外周平面部の表面粗さ及び凹部を除く基材の表面に対する外周平面部の面積比を変化させ、実施例(5−9)および比較例(5、6)のサセプタを得た。
"Test 2"
The isotropic carbon machined into a susceptor shape having a flat outer peripheral plane portion on the outer periphery of the concave portion and the concave portion is coated with SiC by a known method, and then the outer peripheral flat portion is ground and polished for various finishes. As shown in Table 2, the surface roughness of the outer peripheral flat portion and the area ratio of the outer peripheral flat portion to the surface of the substrate excluding the recesses were changed, and the susceptors of Example (5-9) and Comparative Examples (5, 6) Got.

これらの実施例(5−9)および比較例(5、6)を用いて、シリコンウェーハのエピタキシャル成長処理を100枚実施し、エピ層の均一性と不純物濃度を評価した。

Figure 0004223455
Using these Examples (5-9) and Comparative Examples (5, 6), 100 silicon wafers were epitaxially grown, and the uniformity and impurity concentration of the epi layer were evaluated.
Figure 0004223455

表2からもわかるように、外周平面部面粗さRaが本発明の範囲内にある実施例5−9はいずれも、均一性不良発生数及び不純物不良発生数が少ないのに対して、範囲外の比較例5、6は均一性不良発生数が多く、また、比較例6は不純物不良発生数も多い。   As can be seen from Table 2, in Examples 5-9, in which the outer peripheral plane portion surface roughness Ra is within the scope of the present invention, the number of occurrences of uniformity defects and impurity defects is small. The other comparative examples 5 and 6 have a large number of uniformity defects, and the comparative example 6 also has a large number of impurity defects.

本発明の一実施形態に係わるサセプタの平面図。The top view of the susceptor concerning one Embodiment of this invention. 図1のA−A線に沿う断面図。Sectional drawing in alignment with the AA of FIG. 図2のB部を拡大して示す断面図。Sectional drawing which expands and shows the B section of FIG. 図2のB部を拡大して示す断面図。Sectional drawing which expands and shows the B section of FIG. 本発明の一実施形態に係わるサセプタの製造方法の概念図。The conceptual diagram of the manufacturing method of the susceptor concerning one Embodiment of this invention. 従来のサセプタのクラック発生状態を示す説明図。Explanatory drawing which shows the crack generation state of the conventional susceptor. 本発明の他の実施形態に係わるサセプタの断面図。Sectional drawing of the susceptor concerning other embodiment of this invention. 本発明の他の実施形態に係わるサセプタの使用状態を示す概念図。The conceptual diagram which shows the use condition of the susceptor concerning other embodiment of this invention.

符号の説明Explanation of symbols

1 サセプタ
2 基材
2a 表面
3 凹部
3a ウェーハ搭載面
3b 外周垂直部
3c R部
4 SiC被膜
4a SiC結晶成長面部
4a 内周端
DESCRIPTION OF SYMBOLS 1 Susceptor 2 Base material 2a Surface 3 Recess 3a Wafer mounting surface 3b Periphery vertical part 3c R part 4 SiC coating 4a SiC crystal growth surface part 4a 1 Inner peripheral edge

Claims (2)

少なくとも表面がSiCで構成され、ウェーハが搭載される凹部を有するサセプタにおいて、前記凹部の外周部下方にR部が設けられ、このR部内でかつ少なくとも前記凹部の外周垂直部から0.05mm以上0.3mm以下の範囲にSiC結晶成長面部がリング状に存在し、前記凹部のウェーハと接触する部分が表面粗さRaで0.5μm以上3μm以下であることを特徴とするサセプタ。 In a susceptor having at least a surface made of SiC and having a concave portion on which a wafer is mounted, an R portion is provided below the outer peripheral portion of the concave portion, and 0.05 mm or more from at least the outer peripheral vertical portion of the concave portion within the R portion. A susceptor characterized in that the SiC crystal growth surface portion is present in a ring shape in a range of 3 mm or less, and the portion of the recess that contacts the wafer has a surface roughness Ra of 0.5 μm or more and 3 μm or less. 前記凹部の外周部に連なりサセプタの表面の一部あるいは全部をなす外周平面部が、その算術平均粗さRaが0.05μm以上、0.5μm以下の凹凸形状をなすことを特徴とする請求項1に記載のサセプタ。 The outer peripheral plane portion that is connected to the outer peripheral portion of the concave portion and forms part or all of the surface of the susceptor has an uneven shape with an arithmetic average roughness Ra of 0.05 μm or more and 0.5 μm or less. The susceptor according to 1.
JP2004285280A 2004-03-23 2004-09-29 Susceptor Active JP4223455B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004285280A JP4223455B2 (en) 2004-03-23 2004-09-29 Susceptor
DE102005045081A DE102005045081B4 (en) 2004-09-29 2005-09-21 susceptor
US11/231,938 US7393418B2 (en) 2004-09-29 2005-09-22 Susceptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085230 2004-03-23
JP2004285280A JP4223455B2 (en) 2004-03-23 2004-09-29 Susceptor

Publications (2)

Publication Number Publication Date
JP2005311290A JP2005311290A (en) 2005-11-04
JP4223455B2 true JP4223455B2 (en) 2009-02-12

Family

ID=35439654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285280A Active JP4223455B2 (en) 2004-03-23 2004-09-29 Susceptor

Country Status (1)

Country Link
JP (1) JP4223455B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739776B2 (en) * 2005-02-28 2011-08-03 ローム株式会社 Susceptor
JP4739777B2 (en) * 2005-02-28 2011-08-03 東洋炭素株式会社 Susceptor
JP5040333B2 (en) * 2007-01-30 2012-10-03 信越半導体株式会社 Vapor growth susceptor, vapor growth apparatus and vapor growth method
WO2009020024A1 (en) * 2007-08-03 2009-02-12 Shin-Etsu Handotai Co., Ltd. Susceptor and method for manufacturing silicon epitaxial wafer
JP2010016183A (en) * 2008-07-03 2010-01-21 Sumco Corp Vapor-deposition growth device, and method of manufacturing epitaxial wafer
SG175038A1 (en) * 2009-04-27 2011-11-28 Asahi Glass Co Ltd Semiconductor heat treatment member comprising sic film
JP6485327B2 (en) * 2015-04-07 2019-03-20 株式会社Sumco Susceptor, vapor phase growth apparatus and vapor phase growth method
US10490437B2 (en) 2015-04-07 2019-11-26 Sumco Corporation Susceptor, vapor deposition apparatus, vapor deposition method and epitaxial silicon wafer
JP7055004B2 (en) * 2017-11-13 2022-04-15 昭和電工株式会社 Manufacturing method of SiC epitaxial wafer
KR102622605B1 (en) * 2019-03-18 2024-01-09 에스케이실트론 주식회사 Susceptor and semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP2005311290A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US7393418B2 (en) Susceptor
EP1871927B1 (en) Seventy five millimeter silicon carbide wafer with low warp, bow, and ttv
JP4798163B2 (en) Epitaxial growth susceptor
EP2912681B1 (en) Method of fabricating flat sic semiconductor substrate
CN110079862B (en) Silicon carbide single crystal substrate, silicon carbide epitaxial substrate, and methods for producing these
EP2748843B1 (en) Susceptor
KR102046811B1 (en) Epitaxial growth device, method of manufacturing epitaxial wafer, and lift pin for epitaxial growth device
US11041254B2 (en) Chamfered silicon carbide substrate and method of chamfering
JP4223455B2 (en) Susceptor
JP2008140856A (en) Epitaxial silicon wafer, manufacturing method thereof and silicon wafer for epitaxial growth
CN110060959B (en) Method for manufacturing bonded wafer
JP2015225902A (en) Sapphire substrate and manufacturing method of the same
JP2010147080A (en) Susceptor for vapor deposition, vapor deposition apparatus, and manufacturing method of epitaxial wafer
JP6260603B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial substrate, and manufacturing method thereof
JP2019046859A (en) SiC EPITAXIAL WAFER AND MANUFACTURING METHOD THEREOF
JP6465193B2 (en) Silicon carbide single crystal substrate and silicon carbide epitaxial substrate
JP2018104231A (en) MANUFACTURING METHOD OF SiC WAFER AND SiC WAFER
CN112789719A (en) Base seat
US20100237470A1 (en) Epitaxial wafer
JP6968670B2 (en) Manufacturing method of susceptor and epitaxial wafer
US20130180446A1 (en) Susceptor
JP7151664B2 (en) Epitaxial wafer manufacturing method
TWI776220B (en) Epitaxial wafer, wafer and manufacturing method of the same
KR20210121269A (en) Susceptor and semiconductor manufacturing equipment
JP2007036105A (en) Susceptor for silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Ref document number: 4223455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250