JP4729914B2 - Fine iron oxide powder and method for producing the same - Google Patents

Fine iron oxide powder and method for producing the same Download PDF

Info

Publication number
JP4729914B2
JP4729914B2 JP2004357208A JP2004357208A JP4729914B2 JP 4729914 B2 JP4729914 B2 JP 4729914B2 JP 2004357208 A JP2004357208 A JP 2004357208A JP 2004357208 A JP2004357208 A JP 2004357208A JP 4729914 B2 JP4729914 B2 JP 4729914B2
Authority
JP
Japan
Prior art keywords
iron oxide
oxide
carrier
fine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004357208A
Other languages
Japanese (ja)
Other versions
JP2006160579A (en
Inventor
敏生 山本
美穂 畑中
孝夫 谷
明彦 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004357208A priority Critical patent/JP4729914B2/en
Publication of JP2006160579A publication Critical patent/JP2006160579A/en
Application granted granted Critical
Publication of JP4729914B2 publication Critical patent/JP4729914B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒などに用いられる微細な酸化鉄粉末とその製造方法に関する。   The present invention relates to a fine iron oxide powder used for a catalyst or the like and a method for producing the same.

安定な酸化鉄としては、黒色の Fe3O4と赤茶色の Fe2O3が知られ、粉末状態として磁性体原料、顔料、研磨材、触媒などの用途に広く用いられている。しかし酸化鉄粒子は、単独では凝集して粗大粒子になりやすく、触媒として用いた場合には表面積の低下によって活性が低下するという不具合があった。 As stable iron oxide, black Fe 3 O 4 and red-brown Fe 2 O 3 are known, and they are widely used in powdered materials, pigments, abrasives, catalysts and the like. However, iron oxide particles tend to agglomerate into coarse particles by themselves, and when used as a catalyst, there is a problem that the activity decreases due to a decrease in surface area.

この問題を解決するために、例えば特開平06−116504号公報には、面積平均径が 0.1〜 1.0μmの酸化鉄粒子粉末にAl、Zrなどの酸化物を付着させてなる酸化鉄粒子粉末が提案されている。しかし酸化鉄粒子の表面がAl、Zrなどの酸化物で覆われるために、酸化鉄としての表面効果が低下するため、触媒として用いる場合には実用的でない。   In order to solve this problem, for example, Japanese Patent Laid-Open No. 06-116504 discloses an iron oxide particle powder obtained by attaching an oxide such as Al or Zr to an iron oxide particle powder having an area average diameter of 0.1 to 1.0 μm. Proposed. However, since the surface of the iron oxide particles is covered with an oxide such as Al or Zr, the surface effect as iron oxide is reduced, so that it is not practical when used as a catalyst.

また酸化鉄に比べて凝集しにくい他の酸化物を担体とし、その担体に酸化鉄を担持して用いることも行われている。例えば特開平11−123330号公報には、アルミナ、ジルコニアなどの酸化物担体にIr、Pt、Rh、Pd、Ag、Co、Cu、Ni、Fe、Mg及びランタニド元素からなる群より選択される少なくとも一種の元素を0.01〜10重量%担持させた排ガス浄化触媒が開示されている。担持されたFeは、使用中に酸化されて酸化鉄となると考えられる。   In addition, other oxides that are less likely to aggregate than iron oxide are used as a carrier, and iron oxide is supported on the carrier and used. For example, in JP-A-11-123330, at least selected from the group consisting of Ir, Pt, Rh, Pd, Ag, Co, Cu, Ni, Fe, Mg and a lanthanide element on an oxide carrier such as alumina and zirconia. An exhaust gas purification catalyst carrying 0.01 to 10% by weight of a kind of element is disclosed. The supported Fe is considered to be oxidized to iron oxide during use.

ところが酸化物担体に酸化鉄を担持した場合には、高温雰囲気下では担持されている酸化鉄どうしが粒成長して粗大化し、活性が低下するのが免れない。例えば上記公報に記載された触媒では、図2に示すように、Fe2は酸化物担体の一次粒子1が凝集してなる二次粒子の表面に担持されている。二次粒子は表面積が比較的小さいため、所定量の酸化鉄を担持した場合には酸化鉄粒子どうしの距離が近くなって粒成長しやすくなる。   However, when iron oxide is supported on an oxide carrier, it is inevitable that the supported iron oxide grows and coarsens in a high temperature atmosphere and the activity decreases. For example, in the catalyst described in the above publication, as shown in FIG. 2, Fe2 is supported on the surface of secondary particles formed by agglomerating primary particles 1 of an oxide carrier. Since the secondary particles have a relatively small surface area, when a predetermined amount of iron oxide is supported, the distance between the iron oxide particles becomes close to each other and grain growth is facilitated.

また特開平09−262473号公報には、アルミナ、チタニアなどの母材に、粒径10〜1000Åの Fe2O3と、粒径10〜1000ÅのPtとを担持してなる光触媒が記載されている。この光触媒によれば、可視領域の光を照射すると粒径10〜1000Åの微粒子状の Fe2O3によって水が分解され水素が発生する。Ptは水素発生反応の助触媒として働く。 Japanese Patent Application Laid-Open No. 09-262473 describes a photocatalyst formed by supporting Fe 2 O 3 having a particle size of 10 to 1000 と and Pt having a particle size of 10 to 1000 に on a base material such as alumina or titania. Yes. According to this photocatalyst, when irradiated with light in the visible region, water is decomposed by finely divided Fe 2 O 3 having a particle diameter of 10 to 1000 mm to generate hydrogen. Pt acts as a promoter for the hydrogen generation reaction.

しかし母材上に Fe2O3を粒径10〜1000Åの微粒子として担持するには、上記公報には鉄をターゲットとするスパッタリングによって行う旨の記載があり、一般的な担持方法に比べて装置が大がかりとなるとともに工数が多大となるため、高価な触媒となってしまう。
特開平06−116504号 特開平11−123330号 特開平09−262473号
However, in order to support Fe 2 O 3 as fine particles having a particle diameter of 10 to 1000 mm on the base material, the above publication has a description that it is performed by sputtering using iron as a target. Becomes a large scale and requires a large number of man-hours, resulting in an expensive catalyst.
JP 06-116504 JP-A-11-123330 JP 09-262473 A

本発明は、上記事情に鑑みてなされたものであり、酸化鉄粒子を微細な状態で長期間保持することを解決すべき課題とする。また本発明のもう一つの目的は、そのような微細酸化鉄粉末を安価に製造することにある。   This invention is made | formed in view of the said situation, and makes it the subject which should be solved to hold | maintain an iron oxide particle in a fine state for a long period of time. Another object of the present invention is to produce such fine iron oxide powder at low cost.

上記課題を解決する本発明の微細酸化鉄粉末の特徴は、セリア及びジルコニアの少なくとも一方を含み平均粒径が1〜 100nmの一次粒子レベルまで微細化された担体酸化物粒子と、担体酸化物粒子に2〜30重量%の範囲で担持された酸化鉄と、からなることにある。 A feature of the fine iron oxide powder of the present invention that solves the above problems is that carrier oxide particles containing at least one of ceria and zirconia and having an average particle size of 1 to 100 nm and being refined to a primary particle level, and carrier oxide particles And iron oxide supported in the range of 2 to 30% by weight .

そして本発明の微細酸化鉄粉末の製造方法の特徴は、本発明の微細酸化鉄粉末を製造する方法であって、マイクロビーズを用いセリア及びジルコニアの少なくとも一方を含む担体酸化物を平均粒径が1〜 100nmの一次粒子レベルまで粉砕して微細な担体酸化物粒子を調製する分散工程と、担体酸化物粒子に鉄イオンを担持した後に焼成し担体酸化物粒子に2〜30重量%の範囲で酸化鉄を担持する担持工程と、を行うことにある。 A feature of the method for producing fine iron oxide powder of the present invention is a method for producing the fine iron oxide powder of the present invention, wherein the carrier oxide containing at least one of ceria and zirconia is used in the average particle diameter using microbeads. A dispersion step of preparing fine carrier oxide particles by pulverizing to a primary particle level of 1 to 100 nm, and firing after supporting iron ions on the carrier oxide particles in a range of 2 to 30% by weight in the carrier oxide particles And a supporting step for supporting iron oxide.

分散工程は湿式で行うことが望ましい。またマイクロビーズは、担体酸化物に含まれる少なくとも一種の金属の酸化物からなることが好ましい。さらに、分散工程は液体中で行うことで微細な担体酸化物粒子が分散した分散液を調製し、担持工程は分散液中に鉄イオンを溶解し蒸発乾固した後に、又はpH調整により沈殿物を生成した後に、焼成することが望ましい。   It is desirable to carry out the dispersion process in a wet manner. The microbead is preferably made of an oxide of at least one metal contained in the carrier oxide. Furthermore, the dispersion step is performed in a liquid to prepare a dispersion in which fine carrier oxide particles are dispersed. In the supporting step, the iron ions are dissolved in the dispersion and evaporated to dryness, or the precipitate is adjusted by adjusting the pH. It is desirable to bake after producing.

本発明の微細酸化物粉末によれば、一次粒子レベルまで微細化された担体酸化物粒子は凝集状態が緩和された粒子であり高分散状態を形成できるので、それに担持された酸化鉄も高分散となり粒成長が抑制される。また担持されている酸化鉄が拡散障壁となるために、担体酸化物粒子どうしの凝集も抑制される。したがって担体酸化物粒子に酸化鉄が担持された粒子が集合してなる本発明の微細酸化物粉末は、粗大化が抑制され微細な状態を長期間維持することができる。   According to the fine oxide powder of the present invention, the carrier oxide particles refined to the primary particle level are particles whose aggregation state is relaxed and can form a highly dispersed state, so that the iron oxide supported thereon is also highly dispersed. Grain growth is suppressed. Further, since the supported iron oxide serves as a diffusion barrier, aggregation of the carrier oxide particles is suppressed. Therefore, the fine oxide powder of the present invention in which iron oxide-supported particles are aggregated on carrier oxide particles can suppress coarsening and maintain a fine state for a long period of time.

そして本発明の製造方法によれば、マイクロビーズを用いて担体酸化物粒子を一次粒子レベルまで粉砕し、それに酸化鉄を担持するだけであるので、スパッタリングなどを用いる必要なく安価に、かつ安定して微細酸化物粉末を製造することができる。   According to the production method of the present invention, the carrier oxide particles are pulverized to the primary particle level using microbeads, and only iron oxide is supported thereon, so that it is inexpensive and stable without the need to use sputtering or the like. Thus, a fine oxide powder can be produced.

本発明の微細酸化物粉末では、一次粒子レベルまで微細化された担体酸化物粒子に酸化鉄が担持されている。この状態は、図1に示すように、担体酸化物粒子の微細な一次粒子1それぞれの表面に酸化鉄2が略層状に担持された状態である。   In the fine oxide powder of the present invention, iron oxide is supported on carrier oxide particles refined to the primary particle level. In this state, as shown in FIG. 1, iron oxide 2 is supported in a substantially layered manner on the surface of each fine primary particle 1 of the carrier oxide particles.

一方、通常状態の担体酸化物は、図2に示すように、一次粒子1が凝集してなる二次粒子の状態で存在している。したがって、それに酸化鉄を担持すると、酸化鉄2は二次粒子の表面に略層状に担持される。ここで図1と図2の一次粒子1の量を同量とし、酸化鉄2の担持量を同量とした場合、担体酸化物の表面積は一次粒子1が分散状態にある図1の方が大きいので、酸化鉄2の担持密度は図1の方が低くなる。したがって図1の本発明の場合には、担持されている酸化鉄どうしの距離が大きく、酸化鉄どうしの粒成長が抑制される。   On the other hand, the carrier oxide in the normal state exists in the state of secondary particles formed by agglomeration of the primary particles 1 as shown in FIG. Therefore, when iron oxide is supported on the iron oxide 2, the iron oxide 2 is supported on the surface of the secondary particles in a substantially layered manner. Here, when the amount of primary particles 1 in FIG. 1 and FIG. 2 is the same, and the amount of iron oxide 2 supported is the same, the surface area of the carrier oxide is that in FIG. 1 where the primary particles 1 are in a dispersed state. Since it is large, the loading density of iron oxide 2 is lower in FIG. Therefore, in the case of the present invention shown in FIG. 1, the distance between the supported iron oxides is large, and the grain growth of the iron oxides is suppressed.

さらに担持されている酸化鉄2が拡散障壁となるために、一次粒子1どうしの凝集も抑制される。したがって本発明の微細酸化物粉末は、粗大化が抑制され微細な状態を長期間維持することができる。   Further, since the supported iron oxide 2 becomes a diffusion barrier, aggregation of the primary particles 1 is also suppressed. Therefore, the fine oxide powder of the present invention can suppress coarsening and maintain a fine state for a long period of time.

担体酸化物としては、鉄との相互作用に優れているという意味から、セリア及びジルコニアの少なくとも一方を含むことが好ましい。 The carrier oxide preferably contains at least one of ceria and zirconia from the viewpoint of excellent interaction with iron .

酸化鉄としては、 Fe3O4及び Fe2O3のどちらも用いることができるが、触媒として用いる場合には Fe2O3が好ましい。この酸化鉄の担持量は、2〜30重量%の範囲とすることが好ましい。担持量が2重量%未満であると酸化鉄としての機能の発現が困難となり、30重量%を超えて担持すると酸化鉄どうしが粗大化しやすく微細な状態を維持することが困難となる。 As the iron oxide, both Fe 3 O 4 and Fe 2 O 3 can be used, but Fe 2 O 3 is preferable when used as a catalyst. The amount of iron oxide supported is preferably in the range of 2 to 30% by weight. If the loading amount is less than 2% by weight, it will be difficult to exhibit the function as iron oxide. If the loading amount exceeds 30% by weight, the iron oxides are likely to be coarsened and it is difficult to maintain a fine state.

担体酸化物を一次粒子レベルまで微細化するには、レーザー粉砕などを用いることもできるが、直径が30〜 100μm程度のマイクロビーズを用いるのが簡便であり安価である。また一次粒子レベルまで微細化された担体酸化物を安定して保持し、再凝集を抑制するためには、乾式粉砕より湿式粉砕を用いることが望ましいし、現時点では乾式粉砕は困難である。   Laser pulverization or the like can be used to refine the carrier oxide to the primary particle level, but it is simple and inexpensive to use microbeads having a diameter of about 30 to 100 μm. In order to stably hold the carrier oxide refined to the primary particle level and suppress reaggregation, it is desirable to use wet pulverization rather than dry pulverization, and at present, dry pulverization is difficult.

マイクロビーズを用いる場合、不純物の混入を避けるために、担体酸化物に含まれる少なくとも一種の金属の酸化物からなるマイクロビーズを用いることが望ましい。ジルコニアは粉砕媒体として好適であるので、ジルコニア製のマイクロビーズを用いる場合には、担体酸化物として少なくともジルコニアを用いることが望ましい。なお同様の理由から、粉砕容器も担体酸化物に含まれる少なくとも一種の金属の酸化物からなるものを用いることが望ましい。   When microbeads are used, it is desirable to use microbeads made of an oxide of at least one metal contained in the carrier oxide in order to avoid contamination with impurities. Since zirconia is suitable as a grinding medium, when using zirconia microbeads, it is desirable to use at least zirconia as a carrier oxide. For the same reason, it is desirable to use a pulverization container made of at least one metal oxide contained in the carrier oxide.

一次粒子レベルまで微細化された担体酸化物粒子に酸化鉄を担持するには、先ず鉄イオンを担持した後に焼成して酸化鉄とする。最初から酸化鉄として担持するためには、酸化鉄を微細な担体酸化物粒子以上に微細とする必要があり、粗大化しやすい酸化鉄をそのような微粒子状態とすることは困難であるからである。   In order to support iron oxide on carrier oxide particles refined to the primary particle level, iron ions are first supported and then baked to obtain iron oxide. This is because it is necessary to make iron oxide finer than fine carrier oxide particles in order to carry it as iron oxide from the beginning, and it is difficult to make iron oxide that tends to coarsen into such fine particle state .

鉄イオンを担持するには、硝酸鉄など水溶性の鉄塩の水溶液を担体酸化物粒子に接触させて吸着担持する方法、水溶性の鉄塩の水溶液を担体酸化物粉末に含浸させた後に焼成して吸水担持する方法などがある。   In order to support iron ions, a method of adsorbing and supporting an aqueous solution of a water-soluble iron salt such as iron nitrate on the carrier oxide particles, and impregnating the carrier oxide powder with an aqueous solution of a water-soluble iron salt and firing. Then, there is a method of carrying water absorption.

本発明の製造方法では、分散工程は液体中で行うことで微細な担体酸化物粒子が分散した分散液を調製し、担持工程は分散液中に鉄イオンを溶解し蒸発乾固した後に、又はアンモニア水などでpH調整することで沈殿を生成した後に、焼成することが特に望ましい。この方法によれば、微細な担体酸化物粒子を常に水で保護された状態として酸化鉄を担持できるので、酸化鉄の担持までに担体酸化物粒子どうしが凝集するのを抑制でき、きわめて微細な微細酸化鉄粉末を製造することができる。また分散工程と担持工程を連続的に行うことができるので、生産性が向上する。   In the production method of the present invention, the dispersion step is performed in a liquid to prepare a dispersion in which fine carrier oxide particles are dispersed, and the supporting step is performed after dissolving iron ions in the dispersion and evaporating to dryness, or It is particularly desirable to calcine after producing a precipitate by adjusting the pH with aqueous ammonia or the like. According to this method, iron oxide can be supported in a state where the fine carrier oxide particles are always protected with water, so that the aggregation of the carrier oxide particles before the iron oxide is supported can be suppressed. Fine iron oxide powder can be produced. Further, since the dispersing step and the supporting step can be performed continuously, productivity is improved.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
CeO2−ZrO2複合酸化物粉末(モル比Ce:Zr=1:1、平均粒子径 320nm、80重量%以上の粒子が粒径 380nmで比表面積が65m2/g)を0.25Lのジルコニア製容器に80g投入し、さらにジルコニア製マイクロビーズ(直径50μm) 400gと、イオン交換水 700gを投入し、6000 rpmにて90分間分散し、最後に酢酸を添加してpHを3とした。これにより平均粒子径が22nm、80重量%以上の粒子が粒径43nm、比表面積が62m2/gであるCeO2−ZrO2複合酸化物粉末のゾル液が得られた。
(Example 1)
CeO 2 —ZrO 2 composite oxide powder (molar ratio Ce: Zr = 1: 1, average particle size 320 nm, particles of 80% by weight or more having a particle size of 380 nm and a specific surface area of 65 m 2 / g) made of 0.25 L of zirconia 80 g was charged into the container, 400 g of zirconia microbeads (diameter 50 μm) and 700 g of ion-exchanged water were added, dispersed for 90 minutes at 6000 rpm, and finally acetic acid was added to adjust the pH to 3. As a result, a sol solution of CeO 2 —ZrO 2 composite oxide powder having an average particle size of 22 nm, particles having a particle size of 43 nm and a specific surface area of 62 m 2 / g was obtained.

得られたゾル液に所定濃度の硝酸鉄水溶液の所定量を混合し、蒸発乾固後 300℃で3時間焼成して、各CeO2−ZrO2複合酸化物粒子に Fe2O3を担持した。 Fe2O3の担持量は 7.4重量%である。この触媒粉末を圧粉成形した後粉砕し、 0.5〜1mmに整粒してペレット触媒を調製した。 A predetermined amount of an aqueous iron nitrate solution having a predetermined concentration was mixed with the obtained sol solution, evaporated to dryness, and calcined at 300 ° C. for 3 hours to carry Fe 2 O 3 on each CeO 2 —ZrO 2 composite oxide particle. . The supported amount of Fe 2 O 3 is 7.4% by weight. This catalyst powder was compacted and then pulverized and sized to 0.5 to 1 mm to prepare a pellet catalyst.

(比較例1)
実施例1と同様のCeO2−ZrO2複合酸化物粉末(モル比Ce:Zr=1:1、平均粒子径 320nm、80重量%以上の粒子が粒径 380nmで比表面積が65m2/g)に所定濃度の硝酸鉄水溶液の所定量を含浸させ、実施例1と同様に Fe2O3を担持し、ペレット触媒を調製した。
(Comparative Example 1)
CeO 2 —ZrO 2 composite oxide powder as in Example 1 (molar ratio Ce: Zr = 1: 1, average particle size 320 nm, particles of 80 wt% or more having a particle size of 380 nm and a specific surface area of 65 m 2 / g) Was impregnated with a predetermined amount of an aqueous iron nitrate solution having a predetermined concentration, and Fe 2 O 3 was supported in the same manner as in Example 1 to prepare a pellet catalyst.

<試験・評価>
各ペレット触媒を評価装置にそれぞれ 1.5g充填し、H2が5%過剰のリッチガスとO2が5%過剰のリーンガスを5分間ずつ交互に流しながら 800℃で5時間保持する耐久試験を行った。耐久試験後の各ペレット触媒について、表1に示すモデルガスを流しながら、 100℃〜 500℃まで12℃/分で昇温させ、その時のC3H6浄化率を連続的に測定した。そしてC3H6を50%浄化できる温度を求め、結果を表2に示す。
<Test and evaluation>
An endurance test was performed in which 1.5 g of each pellet catalyst was filled in the evaluation apparatus, and the gas was held at 800 ° C. for 5 hours while alternately flowing a rich gas containing 5% excess of H 2 and a lean gas containing 5% excess of O 2 for 5 minutes each. . With respect to each pellet catalyst after the durability test, the temperature was raised from 100 ° C. to 500 ° C. at 12 ° C./min while flowing the model gas shown in Table 1, and the C 3 H 6 purification rate at that time was continuously measured. The temperature at which C 3 H 6 can be purified by 50% was determined, and the results are shown in Table 2.

Figure 0004729914
Figure 0004729914

Figure 0004729914
Figure 0004729914

表2より、実施例1のペレット触媒は比較例1に比べてC3H6浄化活性が高いことがわかり、これは実施例1の触媒における酸化鉄の表面積が比較例1の触媒より高いことに起因していると考えられる。すなわち一次粒子レベルの微細なCeO2−ZrO2複合酸化物粒子に酸化鉄を担持することで、浄化活性が大幅に向上していることが明らかであり、実施例1の触媒は各粒子どうしの分散性が維持されていることが明らかである。 From Table 2, it can be seen that the pellet catalyst of Example 1 has a higher C 3 H 6 purification activity than that of Comparative Example 1, which indicates that the surface area of iron oxide in the catalyst of Example 1 is higher than that of the catalyst of Comparative Example 1. It is thought to be caused by That is, it is clear that the purification activity is greatly improved by supporting iron oxide on fine CeO 2 —ZrO 2 composite oxide particles at the primary particle level. It is clear that the dispersibility is maintained.

本発明の微細酸化鉄粉末は、自動車の排ガス浄化用触媒の他、分散安定性に優れているので、塗料や化粧品などの顔料、微細研磨材などにも有用である。   Since the fine iron oxide powder of the present invention is excellent in dispersion stability in addition to a catalyst for exhaust gas purification of automobiles, it is useful for pigments such as paints and cosmetics, fine abrasives, and the like.

本発明の微細酸化鉄粉末の粒子構造を示す説明図である。It is explanatory drawing which shows the particle structure of the fine iron oxide powder of this invention. 酸化物担体に酸化鉄が担持されてなる従来の酸化鉄粉末の粒子構造を示す説明図である。It is explanatory drawing which shows the particle structure of the conventional iron oxide powder by which an iron oxide is carry | supported by the oxide support | carrier.

符号の説明Explanation of symbols

1:一次粒子 2:酸化鉄   1: Primary particles 2: Iron oxide

Claims (5)

セリア及びジルコニアの少なくとも一方を含み平均粒径が1〜 100nmの一次粒子レベルまで微細化された担体酸化物粒子と、該担体酸化物粒子に2〜30重量%の範囲で担持された酸化鉄と、からなることを特徴とする微細酸化鉄粉末。   A carrier oxide particle containing at least one of ceria and zirconia and having an average particle size of 1 to 100 nm and refined to a primary particle level; and iron oxide supported on the carrier oxide particle in a range of 2 to 30% by weight; A fine iron oxide powder characterized by comprising: 請求項1に記載の微細酸化鉄粉末を製造する方法であって、
マイクロビーズを用いセリア及びジルコニアの少なくとも一方を含む担体酸化物を平均粒径が1〜 100nmの一次粒子レベルまで粉砕して微細な担体酸化物粒子を調製する分散工程と、
該担体酸化物粒子に鉄イオンを担持した後に焼成し該担体酸化物粒子に2〜30重量%の範囲で酸化鉄を担持する担持工程と、を行うことを特徴とする微細酸化鉄粉末の製造方法。
A method for producing the fine iron oxide powder according to claim 1,
A dispersion step of preparing fine carrier oxide particles by pulverizing a carrier oxide containing at least one of ceria and zirconia to a primary particle level of 1 to 100 nm using microbeads;
And a supporting step of supporting iron oxide in the range of 2 to 30% by weight after supporting iron ions on the carrier oxide particles and firing. Method.
前記分散工程は湿式で行う請求項2に記載の微細酸化鉄粉末の製造方法。   The method for producing fine iron oxide powder according to claim 2, wherein the dispersing step is performed by a wet method. 前記マイクロビーズは前記担体酸化物に含まれる少なくとも一種の金属の酸化物からなる請求項2又は請求項3に記載の微細酸化鉄粉末の製造方法。   The method for producing fine iron oxide powder according to claim 2 or 3, wherein the microbead is made of an oxide of at least one kind of metal contained in the carrier oxide. 前記分散工程は液体中で行うことで微細な担体酸化物粒子が分散した分散液を調製し、前記担持工程は該分散液中に鉄イオンを溶解し蒸発乾固した後に、又はpH調整により沈殿物を生成した後に、焼成する請求項3又は請求項4に記載の微細酸化鉄粉末の製造方法。   The dispersion step is performed in a liquid to prepare a dispersion in which fine carrier oxide particles are dispersed, and the supporting step is performed after dissolving iron ions in the dispersion and evaporating to dryness or by adjusting the pH. The manufacturing method of the fine iron oxide powder of Claim 3 or Claim 4 which bakes after producing | generating a thing.
JP2004357208A 2004-12-09 2004-12-09 Fine iron oxide powder and method for producing the same Expired - Fee Related JP4729914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357208A JP4729914B2 (en) 2004-12-09 2004-12-09 Fine iron oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357208A JP4729914B2 (en) 2004-12-09 2004-12-09 Fine iron oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006160579A JP2006160579A (en) 2006-06-22
JP4729914B2 true JP4729914B2 (en) 2011-07-20

Family

ID=36663009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357208A Expired - Fee Related JP4729914B2 (en) 2004-12-09 2004-12-09 Fine iron oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4729914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853495B2 (en) * 2008-05-30 2012-01-11 マツダ株式会社 Exhaust gas purification catalyst

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270201A (en) * 1985-01-23 1986-11-29 Catalysts & Chem Ind Co Ltd Production of spherical inorganic oxide powder
JPH07284672A (en) * 1994-04-20 1995-10-31 Toyota Central Res & Dev Lab Inc Production of catalyst
JPH09225303A (en) * 1995-12-21 1997-09-02 Asahi Glass Co Ltd Photocatalyst composition, its manufacture, and substrate with photocatalyst composition
JPH10151348A (en) * 1996-11-22 1998-06-09 Toyota Central Res & Dev Lab Inc Oxidation catalyst
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2000233929A (en) * 1998-11-30 2000-08-29 High Frequency Heattreat Co Ltd Superfine particle powder of v(1-x)o2mx composition, its production and ir ray shielding material
JP2000351631A (en) * 1999-06-10 2000-12-19 Mitsui Mining & Smelting Co Ltd Granular iron oxide aggregated particle and powder containing the aggregated particle
JP2001002423A (en) * 1999-06-17 2001-01-09 Mitsui Mining & Smelting Co Ltd Production of granular iron oxide agglomerate powder
JP2002515393A (en) * 1998-05-15 2002-05-28 アドバンスド ナノ テクノロジーズ プロプライエタリー リミテッド Manufacturing method of ultrafine powder
JP2004331479A (en) * 2003-05-12 2004-11-25 Tokuyama Corp Wet-type silica dispersion and its manufacturing method
JP2004345920A (en) * 2003-05-23 2004-12-09 Toyota Motor Corp Manufacturing method of composite oxide
JP2005231954A (en) * 2004-02-20 2005-09-02 Tokuyama Corp Wet type silica dispersion liquid and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427644A (en) * 1987-07-22 1989-01-30 Sumitomo Metal Mining Co Manufacture of iron-supported catalyst

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270201A (en) * 1985-01-23 1986-11-29 Catalysts & Chem Ind Co Ltd Production of spherical inorganic oxide powder
JPH07284672A (en) * 1994-04-20 1995-10-31 Toyota Central Res & Dev Lab Inc Production of catalyst
JPH09225303A (en) * 1995-12-21 1997-09-02 Asahi Glass Co Ltd Photocatalyst composition, its manufacture, and substrate with photocatalyst composition
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JPH10151348A (en) * 1996-11-22 1998-06-09 Toyota Central Res & Dev Lab Inc Oxidation catalyst
JP2002515393A (en) * 1998-05-15 2002-05-28 アドバンスド ナノ テクノロジーズ プロプライエタリー リミテッド Manufacturing method of ultrafine powder
JP2000233929A (en) * 1998-11-30 2000-08-29 High Frequency Heattreat Co Ltd Superfine particle powder of v(1-x)o2mx composition, its production and ir ray shielding material
JP2000351631A (en) * 1999-06-10 2000-12-19 Mitsui Mining & Smelting Co Ltd Granular iron oxide aggregated particle and powder containing the aggregated particle
JP2001002423A (en) * 1999-06-17 2001-01-09 Mitsui Mining & Smelting Co Ltd Production of granular iron oxide agglomerate powder
JP2004331479A (en) * 2003-05-12 2004-11-25 Tokuyama Corp Wet-type silica dispersion and its manufacturing method
JP2004345920A (en) * 2003-05-23 2004-12-09 Toyota Motor Corp Manufacturing method of composite oxide
JP2005231954A (en) * 2004-02-20 2005-09-02 Tokuyama Corp Wet type silica dispersion liquid and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006160579A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP3749391B2 (en) Exhaust gas purification catalyst and method for producing the same
US9115621B2 (en) Metal particles, exhaust gas purifying catalyst comprising metal particles, and methods for producing them
WO2018142787A1 (en) Methanation reaction catalyst, method for producing methanation reaction catalyst, and method for producing methane
JP2007123195A (en) Method of manufacturing catalyst
JP2012223667A (en) Columnar ceria catalyst
JP5708767B1 (en) Exhaust gas purification catalyst and method for producing the same
JP4777891B2 (en) Catalyst and process for producing cycloolefin
JP2005111336A (en) Heat-resistant catalyst and manufacturing method therefor
JP2013103143A (en) METHOD FOR PRODUCING Co3O4/CeO2 COMPOSITE CATALYST FOR EXHAUST GAS PURIFICATION AND CATALYST OBTAINED BY THE SAME
JP5168527B2 (en) Oxide powder and production method thereof
JP2011016090A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
CN106984318B (en) Bimetal cobalt-based catalyst, preparation method and application
JP2003277060A (en) Cerium-zirconium compound metallic oxide
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
JP2011020013A (en) Catalyst for cleaning exhaust gas and method for producing the same
JP4729914B2 (en) Fine iron oxide powder and method for producing the same
EP2870997B1 (en) Catalyst for emission gas purification and production method thereof
JP6719363B2 (en) Method for producing catalyst for methane oxidation removal and catalyst for methane oxidation removal
JP5019019B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JP4120862B2 (en) Catalyst for CO shift reaction
JP5887710B2 (en) Exhaust gas purification catalyst
JP2005270873A (en) Oxide fine particle carrying catalyst and its manufacturing method
JP4677779B2 (en) Composite oxide and exhaust gas purification catalyst
JP2007117835A (en) Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle
JP2005087826A (en) Nano honeycomb catalyst and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees