JP2007117835A - Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle - Google Patents

Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle Download PDF

Info

Publication number
JP2007117835A
JP2007117835A JP2005311272A JP2005311272A JP2007117835A JP 2007117835 A JP2007117835 A JP 2007117835A JP 2005311272 A JP2005311272 A JP 2005311272A JP 2005311272 A JP2005311272 A JP 2005311272A JP 2007117835 A JP2007117835 A JP 2007117835A
Authority
JP
Japan
Prior art keywords
particles
plate
oxide
noble metal
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005311272A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sato
吉宣 佐藤
Hiroko Sawaki
裕子 澤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005311272A priority Critical patent/JP2007117835A/en
Publication of JP2007117835A publication Critical patent/JP2007117835A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tabular oxide particle-deposited carbon particle which can be used as a substitutive material of a platinum-deposited carbon particle or a metal platinum particle each of which is used generally as an electrode catalyst for a fuel cell at present. <P>SOLUTION: The tabular oxide particle-deposited carbon particle is characterized in that a tabular oxide particle, on the surface of which a noble metal particle is deposited, is deposited on a carbon particle and a crystal face appearing on the surface of the noble metal particle is the (111) face. The method for manufacturing the tabular oxide particle-deposited carbon particle comprises the steps of: preparing a solution containing a complex ion of a noble metal; dispersing the tabular oxide particle in the prepared solution to adsorb the complex ion of the noble metal on the tabular oxide particle; drying the noble metal-adsorbed tabular oxide particle to deposit the noble metal particle on the surface of the tabular oxide particle; depositing the obtained noble metal-deposited tabular oxide particle on the carbon particle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池の電極用触媒などに好適に用いうる板状酸化物担持カーボン粒子と、その製造方法等に関する。   The present invention relates to a plate-like oxide-supporting carbon particle that can be suitably used for a catalyst for an electrode of a fuel cell, a production method thereof, and the like.

従来、金属粒子、合金粒子、金属酸化物粒子等を担体粒子に担持させたものは、消臭、抗菌、自動車排ガスの浄化、燃料電池、NOx還元など、各種触媒として多用されている。この場合の担体粒子としては主に酸化チタン、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化コバルトなどの金属酸化物やカーボン等が用いられている。特に導電性を持つカーボン粒子を担体として用いた触媒は、燃料電池の電極用触媒として有効なものである。中でも、白金とルテニウムとの合金粒子をカーボン担体上に担持させたものや、酸化モリブデン、酸化セリウム等の特定の金属酸化物粒子を助触媒として、これを金属白金微粒子と共にカーボン担体上に担持させたものは、優れた電極用触媒として知られている。   Conventionally, metal particles, alloy particles, metal oxide particles and the like supported on carrier particles have been widely used as various catalysts such as deodorizing, antibacterial, automobile exhaust gas purification, fuel cell, NOx reduction. As carrier particles in this case, metal oxides such as titanium oxide, zirconium oxide, iron oxide, nickel oxide and cobalt oxide, carbon, and the like are mainly used. In particular, a catalyst using conductive carbon particles as a carrier is effective as a catalyst for an electrode of a fuel cell. Among them, platinum and ruthenium alloy particles supported on a carbon carrier, and specific metal oxide particles such as molybdenum oxide and cerium oxide as a cocatalyst are supported on a carbon carrier together with metal platinum fine particles. Is known as an excellent electrode catalyst.

このような触媒材料に関する技術文献としては例えば特許文献1や非特許文献1がある。このうち、特許文献1には、酸化セリウムや酸化ジルコニウムなどの耐食性酸化物粒子に白金粒子を担持させたものを、カーボン担体上に担持させることにより、白金粒子同士の凝集を抑えることができることが記載されている。また、非特許文献1には、白金微粒子の結晶面を制御することで、より高い触媒能が得られること、具体的には白金の(111)面において高い触媒活性が得られることが記載されている。   For example, Patent Document 1 and Non-Patent Document 1 are technical documents relating to such a catalyst material. Among these, in Patent Document 1, aggregation of platinum particles can be suppressed by supporting platinum particles supported on corrosion-resistant oxide particles such as cerium oxide and zirconium oxide on a carbon carrier. Are listed. Non-Patent Document 1 describes that a higher catalytic ability can be obtained by controlling the crystal plane of the platinum fine particles, specifically, a higher catalytic activity can be obtained on the (111) plane of platinum. ing.

一方、酸化物粒子については、例えば特許文献2や特許文献3に記載されているように、塩化物を原料に用いて共沈法により金属の水酸化物あるいは水和物を生成させ、この生成物に水熱処理を施すことで、板状の酸化物粒子を得る方法が知られている。このうち、特許文献2には、前記方法により10〜100nmの板状酸化セリウム、板状酸化アルミニウム、板状酸化ジルコニウム、板状酸化鉄、板状酸化ケイ素粒子が得られることが記載され、特許文献3には、同様の方法により10〜100nmの板状酸化アルミニウム粒子について任意の結晶構造の粒子が得られることが記載されている。   On the other hand, for oxide particles, for example, as described in Patent Literature 2 and Patent Literature 3, a metal hydroxide or hydrate is produced by coprecipitation using chloride as a raw material, and this production is performed. There is known a method of obtaining plate-like oxide particles by subjecting a product to hydrothermal treatment. Among these, Patent Document 2 describes that 10 to 100 nm of plate-like cerium oxide, plate-like aluminum oxide, plate-like zirconium oxide, plate-like iron oxide, and plate-like silicon oxide particles can be obtained by the above method. Document 3 describes that particles having an arbitrary crystal structure can be obtained from 10 to 100 nm of plate-like aluminum oxide particles by a similar method.

特開2004−363056号公報JP 2004-363056 A 特開2003−206475号公報JP 2003-206475 A 特開2004−51390公報JP 2004-51390 A N.M.Makovic,et.al.,J.Phys.Chem.,99,11,3411(1995)N.M.Makovic, et.al., J.Phys.Chem., 99,11,3411 (1995)

先に述べたように、カーボン担体上に白金粒子あるいは白金と他物質との合金粒子を担持させたもの(以下では単に「白金担持カーボン粒子」ともいう)は、燃料電池などの電極用触媒の材料として好適であることが知られている。しかしなから、電極用触媒として用いられる白金担持カーボン粒子は、現状では白金の使用量が多いために、コスト面で不利であることに加えて、白金の枯渇をも招くおそれがある。このため、白金の使用量を減少させることは喫緊の課題となっている。   As described above, a platinum particle or an alloy particle of platinum and another substance supported on a carbon support (hereinafter, also simply referred to as “platinum-supported carbon particle”) is used as an electrode catalyst for a fuel cell or the like. It is known that it is suitable as a material. However, platinum-supported carbon particles used as an electrode catalyst have a large amount of platinum used at present, which is disadvantageous in terms of cost and may lead to depletion of platinum. For this reason, reducing the amount of platinum used is an urgent issue.

本発明は、このような問題に対処するもので、燃料電池の電極用触媒などに現在一般に使用されている白金担持カーボン粒子や金属白金粒子の代替材料として使用でき、しかもそのような従来の白金担持カーボン粒子等と比べると貴重な資源である白金の使用量を大幅に減らすことのできる板状酸化物粒子担持カーボン粒子およびその製造方法を提供することを目的とする。   The present invention addresses such problems, and can be used as an alternative material for platinum-supported carbon particles and metal platinum particles that are currently commonly used in fuel cell electrode catalysts, and such conventional platinum. It is an object of the present invention to provide plate-like oxide particle-supporting carbon particles and a method for producing the same that can significantly reduce the amount of platinum used as a valuable resource compared to the support carbon particles and the like.

本発明者らは、貴金属粒子を担持した板状酸化物粒子(貴金属担持板状酸化物粒子)を合成し、これをカーボン粒子の表面に吸着させることにより、貴金属担持板状酸化物粒子をカーボン粒子に担持させることができること、しかもこのようにして得られた貴金属担持板状酸化物粒子においては、板状酸化物粒子の表面に担持された貴金属粒子の特定の結晶面、すなわち(111)面が当該貴金属粒子の表面に現れることによって高い触媒活性を示すことを見出した。本発明は、このような知見に基づいてなされもので、以下の構成としたものである。   The present inventors synthesized plate-like oxide particles carrying noble metal particles (noble metal-carrying plate-like oxide particles) and adsorbed them on the surface of the carbon particles, thereby converting the noble metal-carrying plate-like oxide particles into carbon. In the noble metal-supported plate-like oxide particles obtained in this way, the specific crystal plane of the noble metal particles supported on the surface of the plate-like oxide particles, that is, the (111) plane Was found to show high catalytic activity by appearing on the surface of the noble metal particles. The present invention has been made based on such knowledge, and has the following configuration.

すなわち、本発明の板状酸化物粒子担持カーボン粒子は、表面に貴金属粒子を担持した板状酸化物粒子がカーボン粒子に担持されており、前記貴金属粒子の表面に現れている結晶面が(111)面である構成としたものである。   That is, in the plate-like oxide particle-supported carbon particles of the present invention, the plate-like oxide particles carrying the noble metal particles on the surface are carried on the carbon particles, and the crystal plane appearing on the surface of the noble metal particles is (111 ).

また、このような貴金属担持板状酸化物粒子を担持したカーボン粒子を得るために、本発明方法は、板状酸化物粒子に担持させるべき貴金属の錯イオンを含む溶液を調整し、得られた溶液中に板状酸化物粒子を分散させて貴金属の錯イオンを板状酸化物粒子に吸着させた後、乾燥させることにより、板状酸化物粒子表面に貴金属粒子を析出させて担持させ、得られた貴金属担持板状酸化物粒子をカーボン粒子に担持させる構成としたものである。   Further, in order to obtain carbon particles carrying such noble metal-supported plate-like oxide particles, the method of the present invention was obtained by preparing a solution containing noble metal complex ions to be supported on the plate-like oxide particles. After the plate-like oxide particles are dispersed in the solution to adsorb the noble metal complex ions to the plate-like oxide particles, the plate-like oxide particles are deposited and supported on the surface of the plate-like oxide particles by drying. The obtained noble metal-supported plate-like oxide particles are supported on carbon particles.

本発明方法によれば、板状酸化物粒子に担持された貴金属粒子の表面が触媒活性の高い(111)面である板状酸化物粒子担持カーボン粒子が得られる。加えて、本発明方法によれば、板状酸化物粒子に担持された貴金属粒子の平均粒子径が1〜5nmで、これを担持した板状酸化物粒子の平均粒子径も1〜50nmと微小な板状酸化物粒子担持カーボン粒子を製造することができる。   According to the method of the present invention, plate-like oxide particle-supported carbon particles in which the surface of the noble metal particles supported on the plate-like oxide particles is a (111) surface having high catalytic activity can be obtained. In addition, according to the method of the present invention, the average particle diameter of the noble metal particles supported on the plate-like oxide particles is 1 to 5 nm, and the average particle size of the plate-like oxide particles carrying the particles is also as small as 1 to 50 nm. A plate-like oxide particle-supporting carbon particle can be produced.

このようにして得られる本発明の板状酸化物粒子担持カーボン粒子は、板状酸化物粒子に担持された貴金属粒子の表面に現れている結晶面が特定の方向を向いて揃っており、かつ当該結晶面が触媒活性の高い(111)面となっているから、白金表面の結晶面がバラバラの方向を向いていた従来の白金担持カーボン粒子等と比べると、これと同程度の触媒性能を、より少ない白金使用量で実現することができる。そして、板状酸化物粒子を構成する酸化物として助触媒機能をもつ酸化物、すなわち酸化セリウム、酸化ジルコニウム、酸化アルミニウム、酸化チタン、酸化シリコンなどの金属酸化物を選択した場合には、この種の金属酸化物による助触媒機能と、表面の結晶面が特定方向を向いた上記貴金属による触媒機能との相乗効果により、さらなる触媒能の向上が可能となる。   The plate-like oxide particle-supported carbon particles of the present invention thus obtained have crystal faces appearing on the surface of the noble metal particles supported on the plate-like oxide particles aligned in a specific direction, and Since the crystal plane is a (111) plane with high catalytic activity, the catalyst performance is comparable to that of conventional platinum-supported carbon particles, etc., where the crystal plane of the platinum surface is in a different direction. This can be realized with a smaller amount of platinum used. When an oxide having a promoter function, that is, a metal oxide such as cerium oxide, zirconium oxide, aluminum oxide, titanium oxide, or silicon oxide is selected as an oxide constituting the plate-like oxide particles, this type Due to the synergistic effect of the co-catalyst function of the metal oxide and the catalytic function of the noble metal whose surface crystal plane is oriented in a specific direction, further improvement of the catalytic ability becomes possible.

こうして、本発明によれば、従来の白金担持カーボン粒子や金属白金粒子の代替材料として燃料電池の電極用触媒などに使用でき、しかもそのような従来の白金担持カーボン粒子等と比べると白金の使用量を大幅に減らすことのできる、燃料電池の電極用触媒材料として有用な板状酸化物粒子担持カーボン粒子を実現することできる。   Thus, according to the present invention, it can be used as an alternative material for conventional platinum-supported carbon particles and metal platinum particles, such as a catalyst for fuel cell electrodes, and the use of platinum compared to such conventional platinum-supported carbon particles. It is possible to realize plate-like oxide particle-supporting carbon particles useful as a catalyst material for an electrode of a fuel cell, the amount of which can be greatly reduced.

本発明の貴金属板状酸化物粒子担持カーボン粒子は、以下に述べるような方法によって製造することができる。   The noble metal plate-like oxide particle-supporting carbon particles of the present invention can be produced by the method described below.

まず、貴金属を担持させるべき板状酸化物粒子を合成する。この板状酸化物粒子の作製に当たっては、公知の方法が適用できる。具体的には、作製しようとしている板状酸化物粒子を構成する各金属の塩化物、硝酸塩、硫酸塩などの水溶液を調整し、これをアルカリ溶液中に滴下することにより、各金属の水酸化物あるいは水和物を含む懸濁液を得る。その後、この懸濁液のpHを調整し、100〜300℃の範囲で水熱処理を施した後、洗浄、ろ過、乾燥し、必要に応じて空気中加熱処理を施すことにより、板状酸化物粒子が合成される。   First, plate-like oxide particles on which a noble metal is to be supported are synthesized. In producing the plate-like oxide particles, a known method can be applied. Specifically, by preparing an aqueous solution of chloride, nitrate, sulfate, etc. of each metal constituting the plate-like oxide particles to be produced and dropping this into an alkaline solution, the hydroxylation of each metal is performed. A suspension containing the product or hydrate is obtained. Thereafter, the pH of the suspension is adjusted, hydrothermally treated in the range of 100 to 300 ° C., then washed, filtered, dried, and subjected to heat treatment in the air as necessary to obtain a plate-like oxide. Particles are synthesized.

ここで、板状酸化物粒子の平均粒子径は1〜50nmであることが好ましい。平均粒子径が1nm未満でも、最終生成物の触媒特性上の問題はないと考えられるが、この後に1〜5nmの貴金属粒子を担持させること、および、担持された貴金属粒子の結晶面が特定面を向くためには、板状酸化物粒子の板面の結晶性が高いことが必要であることなどから、酸化物粒子の平均粒子径が1nm未満であることは好ましくない。また、平均粒子径が50nmを超えても貴金属粒子を担持させる点では問題はないが、貴金属を担持させた後、さらに20〜90nmのカーボン粒子上に担持させること、および、担持された貴金属粒子同士の固着、粒成長を最小限に抑えるという点から、板状酸化物の平均粒子径は50nm以下であることが好ましく、20nm以下であることがより好ましい。   Here, the average particle diameter of the plate-like oxide particles is preferably 1 to 50 nm. Even if the average particle diameter is less than 1 nm, it is considered that there is no problem in the catalytic properties of the final product. However, after this, 1-5 nm noble metal particles are supported, and the crystal plane of the supported noble metal particles is a specific surface. In order to face the surface, it is necessary for the plate surface of the plate-like oxide particles to have high crystallinity, and it is not preferable that the average particle size of the oxide particles is less than 1 nm. In addition, even if the average particle diameter exceeds 50 nm, there is no problem in that the noble metal particles are supported, but after the noble metal is supported, it is further supported on carbon particles of 20 to 90 nm, and the supported noble metal particles The average particle diameter of the plate-like oxide is preferably 50 nm or less, and more preferably 20 nm or less, from the viewpoint of minimizing mutual sticking and grain growth.

なお、本発明において、合成される板状酸化物の粒子径を10nm以下にまで小さくする際には、水熱処理時のpHは中性〜弱アルカリ性に調整し、水熱処理後の加熱処理は酸化物を得るための必要最低温度で行う。さらに、その後の行程において、板状酸化物粒子の分散性を高められるという点において、洗浄は、純水およびメタノールにて行うことが好ましい。板状酸化物粒子の平均粒子径は、透過型電子顕微鏡(TEM)写真で観測される粒子100個の平均から求めることとする。   In the present invention, when the particle size of the synthesized plate-like oxide is reduced to 10 nm or less, the pH during hydrothermal treatment is adjusted to neutral to weak alkaline, and the heat treatment after hydrothermal treatment is oxidized. At the lowest temperature necessary to obtain the product. Further, in the subsequent process, the washing is preferably performed with pure water and methanol in that the dispersibility of the plate-like oxide particles can be improved. The average particle diameter of the plate-like oxide particles is determined from the average of 100 particles observed with a transmission electron microscope (TEM) photograph.

次に、担持させるべき貴金属の錯イオンを含む溶液を調整する。錯体種としては、塩化物錯体、硝酸アミン錯体などの無機物錯体、あるいは、クエン酸錯体、リンゴ酸錯体、ピコリン酸錯体などの有機物を含有した錯体が挙げられ、溶液中でイオンとして存在し得る最適なものを選択する。前記錯体のうちではクエン酸錯体が酸化物表面に対する吸着効率が良いことから、クエン酸錯体を用いるのが最も好ましい。   Next, a solution containing a complex ion of a noble metal to be supported is prepared. Examples of complex species include inorganic complexes such as chloride complexes and amine nitrate complexes, and complexes containing organic substances such as citric acid complexes, malic acid complexes, and picolinic acid complexes. Choose what. Among the complexes, the citrate complex is most preferably used because the citrate complex has good adsorption efficiency on the oxide surface.

次に、前記貴金属錯体イオンを含む溶液中に、前記板状酸化物粒子を分散させる。この際、溶液中に含まれる貴金属元素量が、貴金属担持板状酸化物粒子を構成する金属元素に対して3〜50重量%となるように、板状酸化物粒子を分散させる。板状酸化物粒子中の貴金属担持量が3重量%より少なくても問題はないが、例えば触媒として利用する場合には、全体としての貴金属元素量が少なくなるためにその機能が発現しにくくなる恐れがあり、また50重量%より多くても問題はないが、含有量が多くなれば、板状酸化物粒子表面に単層で被着せずに、貴金属微粒子同士が重なり合ったり凝集してしまったりする恐れがあり、好ましくない。   Next, the plate-like oxide particles are dispersed in a solution containing the noble metal complex ions. At this time, the plate-like oxide particles are dispersed so that the amount of the noble metal element contained in the solution is 3 to 50% by weight with respect to the metal elements constituting the noble metal-supported plate-like oxide particles. There is no problem even if the amount of noble metal supported in the plate-like oxide particles is less than 3% by weight. However, when used as a catalyst, for example, the amount of noble metal elements as a whole is reduced, so that the function is hardly exhibited. There is a possibility, and even if it exceeds 50% by weight, there is no problem. However, if the content increases, the noble metal fine particles may overlap or aggregate without being deposited as a single layer on the surface of the plate-like oxide particles. This is not preferable.

以上のようにして、板状酸化物粒子表面に貴金属の錯イオンを吸着させた後、乾燥することにより、板状酸化物粒子表面に貴金属の前駆体微粒子を析出させる。板状酸化物表面に吸着させる貴金属錯体はイオンの状態であり、溶液中に分子レベルで分散しているため、この分散状態を保持したまま板状酸化物粒子の吸着点に吸着させることができ、これを乾燥させた際には再隣接の錯体同士のみが結晶化し、5nm以下の貴金属粒子の前駆体粒子を析出させることができる。乾燥させる雰囲気は、特に限定されるものではなく、空気中乾燥が最も簡便かつ低コストであり、好ましい。   As described above, the noble metal complex ions are adsorbed on the surface of the plate-like oxide particles, and then dried to deposit the noble metal precursor fine particles on the surface of the plate-like oxide particles. The noble metal complex adsorbed on the surface of the plate-like oxide is in an ionic state and is dispersed at a molecular level in the solution, so that it can be adsorbed on the adsorption point of the plate-like oxide particles while maintaining this dispersed state. When this is dried, only re-adjacent complexes are crystallized, and precursor particles of noble metal particles of 5 nm or less can be precipitated. The atmosphere to be dried is not particularly limited, and drying in the air is the simplest and the lowest cost and is preferable.

次に、貴金属の前駆体微粒子を担持した板状酸化物粒子に加熱処理を施し、貴金属粒子担持板状酸化物粒子とする。この際、加熱処理は水素ガスなどの還元雰囲気、あるいは窒素ガスやアルゴンガスなどの不活性雰囲気中で行うことが好ましい。酸化雰囲気下での加熱処理は、担持された貴金属前駆体粒子の表面あるいは全体を酸化物にしてしまう危険性があり、貴金属粒子を得る上では好ましくない。また、加熱処理温度は200〜800℃の温度範囲であることが好ましく、貴金属の前駆体粒子を貴金属粒子にすることのできる最低温度で行うことが好ましい。   Next, the plate-like oxide particles carrying the noble metal precursor fine particles are subjected to heat treatment to form noble metal particle-carrying plate-like oxide particles. At this time, the heat treatment is preferably performed in a reducing atmosphere such as hydrogen gas or in an inert atmosphere such as nitrogen gas or argon gas. Heat treatment in an oxidizing atmosphere has a risk of converting the surface or the whole of the supported noble metal precursor particles into an oxide, and is not preferable for obtaining the noble metal particles. The heat treatment temperature is preferably in the temperature range of 200 to 800 ° C., and is preferably performed at the lowest temperature at which the noble metal precursor particles can be converted into noble metal particles.

上記により、貴金属を担持した、結晶子サイズが1nmから50nmの範囲にある板状酸化物粒子が得られる。この際、担持された貴金属粒子の平均粒子径は1nm未満でも触媒としての特性上はより良いと考えられるが、作製するのが困難であるとともに、凝集が激しく、分散状態を保ったまま担持させることが困難となる。また、貴金属粒子の平均粒子径が5nmを超える場合でも触媒としての特性が完全に失われることはないが、十分な比表面積が得られないために触媒としての性能が劣化する傾向にある。以上の理由により、板状酸化物粒子表面に担持する貴金属微粒子の平均粒子径は、1〜5nmとすることが好ましい。   According to the above, plate-like oxide particles carrying a noble metal and having a crystallite size in the range of 1 nm to 50 nm can be obtained. At this time, even if the average particle diameter of the supported noble metal particles is less than 1 nm, it is considered that the characteristics as a catalyst are better. However, it is difficult to produce, and the particles are supported in a dispersed state while being difficult to produce. It becomes difficult. Further, even when the average particle diameter of the noble metal particles exceeds 5 nm, the characteristics as a catalyst are not completely lost. However, since a sufficient specific surface area cannot be obtained, the performance as a catalyst tends to deteriorate. For the above reasons, the average particle diameter of the noble metal fine particles supported on the surface of the plate-like oxide particles is preferably 1 to 5 nm.

この場合の貴金属粒子の平均粒子径については、以下のような理由により、平均結晶子サイズから求める。一般に、粒子径が5nmに満たないような金属微粒子においては、1つの粒子内で多結晶構造をとることは稀であり、ほとんどの場合に単結晶の粒子となる。従って、担持された金属微粒子の平均粒子径は、TEM写真から平均を求める方法の他に、粉末X線回折スペクトルから求められる平均結晶子サイズからも求めることができる。特に、粒子径が数nm以下であるような微粒子の場合には、TEM写真などから目視で粒子径を求める際の測定誤差が大きく、平均結晶子サイズから求めることが好ましい。ただし、多結晶構造を持つ粗大な粒子が存在している場合には、その粗大粒子に含まれる結晶子のサイズを測定している可能性もあるため、平均結晶子サイズから求められた粒子径と、TEMで観察される粒子の大きさとの間に整合性があるかどうかを確認することが必要である。   In this case, the average particle diameter of the noble metal particles is obtained from the average crystallite size for the following reason. In general, in a metal fine particle having a particle diameter of less than 5 nm, it is rare to have a polycrystalline structure in one particle, and in most cases, it becomes a single crystal particle. Accordingly, the average particle diameter of the supported metal fine particles can be obtained from the average crystallite size obtained from the powder X-ray diffraction spectrum in addition to the method for obtaining the average from the TEM photograph. In particular, in the case of fine particles having a particle diameter of several nanometers or less, the measurement error when the particle diameter is visually determined from a TEM photograph or the like is large, and it is preferable to determine from the average crystallite size. However, if coarse particles with a polycrystalline structure are present, the size of the crystallites contained in the coarse particles may be measured, so the particle diameter determined from the average crystallite size It is necessary to check whether there is consistency between the particle size observed by TEM and the particle size observed by TEM.

このようにして得られた貴金属粒子担持板状酸化物粒子においては、板状酸化物粒子の板面に貴金属粒子が担持されることにより、担持された貴金属粒子の表面に現れる結晶面が特定の方向を向くという性質が現れる。これは、板状酸化物粒子の板面が或る特定の結晶面を向いているために、その上に吸着された貴金属の錯イオンが結合し結晶化する際に、特定の方向を向いて結晶成長するためであると考えられる。そして、このように貴金属粒子の表面が或る特定の方向を向いている場合には、電極用触媒としての性能が向上することが知られている。例えば白金粒子では、表面に現れる結晶面が(111)面である場合に最も高い触媒性能が得られる。これは、表面に現れている結晶面が(111)面であるときに表面における白金の密度が最も高くなるためであると考えられる。したがって、白金粒子のみならず、ルテニウム、パラジウム、イリジウム、ロジウム、金などにおいても、これらの粒子表面に現れる結晶面が(111)面である場合に最も高い触媒性能が得られるものと推測される。   In the noble metal particle-supported plate-like oxide particles thus obtained, the crystal plane appearing on the surface of the supported noble metal particles is specified by having the noble metal particles supported on the plate surface of the plate-like oxide particles. The property of facing the direction appears. This is because the plate surface of the plate-like oxide particles faces a specific crystal plane, and the noble metal complex ions adsorbed thereon are bonded and crystallized to face a specific direction. This is thought to be due to crystal growth. It is known that when the surface of the noble metal particles is directed in a specific direction, the performance as an electrode catalyst is improved. For example, in the case of platinum particles, the highest catalyst performance is obtained when the crystal plane appearing on the surface is the (111) plane. This is presumably because the density of platinum on the surface is highest when the crystal plane appearing on the surface is the (111) plane. Therefore, not only platinum particles but also ruthenium, palladium, iridium, rhodium, gold and the like are presumed to have the highest catalytic performance when the crystal plane appearing on the surface of these particles is the (111) plane. .

ここで、板状酸化物粒子のTEM観察において格子線を観察すると、ほぼ全ての粒子について同一間隔の格子線が現れ、ほぼ全ての粒子が板面方向を向いて観測される。このことから、板状酸化物粒子の板面上に担持された貴金属粒子については、TEM観察時に貴金属粒子の表面のみを観察していることとなる。これらの、板面上に担持された貴金属粒子の格子線を観測することにより、貴金属粒子の表面に現れている結晶面が、ある一種の特定面であるのか、各々別々の方向を向いているのかを確認することが可能である。   Here, when the lattice lines are observed in the TEM observation of the plate-like oxide particles, lattice lines with the same interval appear for almost all the particles, and almost all the particles are observed facing the plate surface direction. From this, for the noble metal particles supported on the plate surface of the plate-like oxide particles, only the surface of the noble metal particles is observed during TEM observation. By observing the lattice lines of the noble metal particles supported on the plate surface, the crystal plane appearing on the surface of the noble metal particles is a kind of specific surface, or each facing a different direction. It is possible to confirm.

続いて、前記貴金属担持板状酸化物粒子を分散させた溶液中に、電気化学工業社製のデンカブラック(登録商標)等のアセチレンブラック、CABOT社製のバルカン(登録商標)等のファーネスカーボン、あるいはケッチェンブラック等のカーボン粒子を分散させ、カーボン粒子表面に、前記貴金属担持板状酸化物粒子を吸着させる。使用するカーボン粒子の平均粒子径は20〜90nmであることが好ましい。平均粒子径が20nmより小さくても最終生成物である板状酸化物粒子担持カーボン粒子の触媒能において問題ないが、合成過程において粒子径が小さいために凝集が激しく、均一分散することが困難となるため、平均粒子径20nm未満のカーボン粒子は好ましくない。また、平均粒子径が90nmより大きい場合、最終生成物の板状酸化物粒子担持カーボン粒子の触媒能が完全になくなることはないが、比表面積が小さくなるため触媒能が低下し、好ましくない。なお、カーボン粒子の平均粒子径は、TEM写真で観測される粒子100個の平均から求める。   Subsequently, in the solution in which the noble metal-supported plate-like oxide particles are dispersed, acetylene black such as Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., furnace carbon such as Vulcan (registered trademark) manufactured by CABOT, Alternatively, carbon particles such as ketjen black are dispersed, and the noble metal-supported plate-like oxide particles are adsorbed on the carbon particle surfaces. The average particle size of the carbon particles used is preferably 20 to 90 nm. Even if the average particle size is smaller than 20 nm, there is no problem in the catalytic ability of the plate-like oxide particle-supporting carbon particles that are the final product, but since the particle size is small in the synthesis process, the aggregation is intense and it is difficult to uniformly disperse. Therefore, carbon particles having an average particle diameter of less than 20 nm are not preferable. On the other hand, when the average particle size is larger than 90 nm, the catalytic activity of the final product plate-like oxide particle-supporting carbon particles is not completely lost, but the specific surface area is small, so that the catalytic capability is lowered, which is not preferable. The average particle diameter of the carbon particles is determined from the average of 100 particles observed in the TEM photograph.

上記の場合において、溶液中には、最終生成物である板状酸化物粒子担持カーボン粒子中の貴金属担持板状酸化物が5〜50重量%となるように、カーボン粒子を分散させる。板状酸化物担持カーボン粒子中の微粒子担持量が5重量%より少なくても問題はないが、例えば触媒として利用する場合には、全体としての貴金属元素量が少なくなるためにその機能が発現しにくくなる恐れがあり、また50重量%より多くても問題はないが、含有量が多くなれば、カーボン粒子表面に単層で吸着せずに、貴金属担持板状酸化物粒子同士が重なり合ったり凝集したりする恐れがあるため、50重量%を超えるのは好ましくない。   In the above case, the carbon particles are dispersed in the solution so that the noble metal-supported plate-like oxide in the plate-like oxide particle-supported carbon particles as the final product is 5 to 50% by weight. There is no problem if the amount of fine particles supported in the plate-like oxide-supported carbon particles is less than 5% by weight, but when used as a catalyst, for example, the function is manifested because the total amount of noble metal elements is reduced. Although there is no problem even if it exceeds 50% by weight, if the content increases, the noble metal-supported plate-like oxide particles overlap or aggregate without adsorbing on the carbon particle surface as a single layer. It is not preferable to exceed 50% by weight.

《Pt担持板状CeO2 ・40 重量%担持カーボン(板状酸化セリウム2nm・Pt仕込み量20重量%)》
まず、硝酸セリウム六水和物1.77gを含む水溶液を調整し、これとは別に、当量の水酸化ナトリウムを溶解したアルカリ溶液を調整した。前記硝酸セリウム水溶液をアルカリ溶液中へ滴下し、セリウムの水和物を含む懸濁液を得た。その後、この懸濁液をpH8に調整し、室温で24時間熟成し、180℃で4時間の水熱処理を施した後、吸引濾過し、メタノール、純水にて洗浄し、空気中で乾燥させ、板状酸化セリウム粒子を得た。続いて、塩化白金酸六水和物0.181g および当量のクエン酸を含む水溶液を調整し、この白金溶液中へ、前記板状酸化セリウム粒子を加え、超音波で分散させた後、2時間攪拌し、10時間静置した後、濾過、洗浄を行い、白金の前駆体粒子を担持した板状酸化セリウム粉末を得た。その後、この粉末を窒素雰囲気において、300度で加熱することで、白金担持板状酸化セリウム粒子を得た。
<< Pt-supported plate-like CeO 2 · 40 wt% supported carbon (plate-like cerium oxide 2 nm · Pt charge 20 wt%) >>
First, an aqueous solution containing 1.77 g of cerium nitrate hexahydrate was prepared. Separately, an alkaline solution in which an equivalent amount of sodium hydroxide was dissolved was prepared. The cerium nitrate aqueous solution was dropped into an alkaline solution to obtain a suspension containing cerium hydrate. The suspension is then adjusted to pH 8, aged for 24 hours at room temperature, hydrothermally treated at 180 ° C. for 4 hours, filtered with suction, washed with methanol and pure water, and dried in air. Then, plate-like cerium oxide particles were obtained. Subsequently, an aqueous solution containing 0.181 g of chloroplatinic acid hexahydrate and an equivalent amount of citric acid was prepared, and the plate-like cerium oxide particles were added to the platinum solution and dispersed by ultrasonic waves for 2 hours. After stirring and allowing to stand for 10 hours, filtration and washing were performed to obtain a plate-like cerium oxide powder carrying platinum precursor particles. Thereafter, this powder was heated at 300 ° C. in a nitrogen atmosphere to obtain platinum-supported plate-like cerium oxide particles.

得られた白金担持板状酸化セリウム粒子について透過型電子顕微鏡(TEM)観察を行った結果、平均粒子径2.2nmの板状酸化セリウム上に、約1nmの白金粒子が担持されていることが確認された。この際、観測されるほぼ全ての酸化セリウム粒子には(111)面に由来する格子線が現れており、これら酸化セリウム粒子が特定の方向に配向して存在し、板状形状を持つことが確認された。また、白金粒子の結晶面は(111)面であることが確認された。また、粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび白金に由来する明確なピークが現れていることが確認された。この回折ピークの半値幅から求めた白金の平均結晶子サイズは1.2nmであり、酸化セリウムの平均結晶子サイズは2.4nmであった。   The obtained platinum-supported plate-like cerium oxide particles were observed with a transmission electron microscope (TEM), and as a result, about 1 nm of platinum particles were supported on the plate-like cerium oxide having an average particle size of 2.2 nm. confirmed. At this time, almost all of the observed cerium oxide particles have lattice lines derived from the (111) plane, and these cerium oxide particles exist in a specific direction and have a plate shape. confirmed. Moreover, it was confirmed that the crystal plane of the platinum particles is the (111) plane. Further, as a result of powder X-ray diffraction spectrum measurement, it was confirmed that a clear peak derived from cerium oxide and platinum appeared. The average crystallite size of platinum determined from the half width of this diffraction peak was 1.2 nm, and the average crystallite size of cerium oxide was 2.4 nm.

次に、水50mlに、カーボン粒子として1gのバルカンXC−72(CABOT社製のカーボンブラック、平均粒子径30nm)と、上記白金担持板状酸化セリウム0.667gとを加え、超音波で分散させた後、2時間攪拌し、白金担持板状酸化セリウムをカーボン粒子表面に吸着させた。その後、約20時間放置し、吸引濾過した後90℃で乾燥させ、板状酸化セリウムを吸着担持したカーボン粒子(本発明でいう板状酸化物粒子担持カーボン粒子)を得た。   Next, 1 g of Vulcan XC-72 (CABOT carbon black, average particle size 30 nm) and 0.667 g of the above platinum-supported plate-like cerium oxide are added to 50 ml of water and dispersed with ultrasonic waves. Then, the mixture was stirred for 2 hours to adsorb platinum-supported plate-like cerium oxide on the surface of the carbon particles. Then, it was allowed to stand for about 20 hours, filtered by suction, and dried at 90 ° C. to obtain carbon particles adsorbing and supporting plate-like cerium oxide (plate-like oxide particle-supporting carbon particles referred to in the present invention).

この板状酸化セリウム粒子担持カーボン粒子(粉末)について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよび白金に由来する明確なピークが確認された。この粉末X線回折スペクトルを図1に示す。   When a powder X-ray diffraction spectrum was measured for the plate-like cerium oxide particle-supported carbon particles (powder), clear peaks derived from cerium oxide and platinum were confirmed on a broad curve of carbon. The powder X-ray diffraction spectrum is shown in FIG.

《Pt担持板状CeO2 ・30重量%担持カーボン(板状酸化セリウム20nm・Pt仕込み量45重量%》
実施例1の白金担持板状酸化セリウム粒子の作製方法において、セリウムの水和物を含む懸濁液を得た後、この懸濁液のpHを10に調整した以外は実施例1と同様にして板状酸化セリウム粒子を得た。その後、この板状酸化セリウム粉末について、空気中600℃で1時間の加熱処理を施した。次に、塩化白金酸六水和物0.59gおよび当量のクエン酸を含む水溶液を調整した以外は、実施例1と同様にして、白金の前駆体粒子を担持した板状酸化セリウム粉末を得た後、窒素中加熱処理を施し、白金担持板状酸化セリウム粒子を得た。
<Pt-supported plate-like CeO 2 .30 wt% supported carbon (plate-like cerium oxide 20 nm / Pt charge 45 wt%>
In the method for producing platinum-supported plate-like cerium oxide particles of Example 1, a suspension containing cerium hydrate was obtained, and then the pH of the suspension was adjusted to 10 in the same manner as in Example 1. Thus, plate-like cerium oxide particles were obtained. Thereafter, the plate-like cerium oxide powder was subjected to a heat treatment in air at 600 ° C. for 1 hour. Next, a plate-like cerium oxide powder carrying platinum precursor particles was obtained in the same manner as in Example 1, except that an aqueous solution containing 0.59 g of chloroplatinic acid hexahydrate and an equivalent amount of citric acid was prepared. After that, heat treatment was performed in nitrogen to obtain platinum-supported plate-like cerium oxide particles.

得られた白金担持板状酸化セリウム粒子についてTEM観察を行った結果、平均粒子径21nmの板状酸化セリウム粒子上に、約5nmの白金粒子が担持されており、白金粒子の表面に現れている結晶面は(111)面であることが確認された。また、粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび白金に由来する明確なピークが現れていることが確認された。回折ピークの半値幅から求めた白金の平均結晶子サイズは4.8nmであった。   As a result of TEM observation of the obtained platinum-supported plate-like cerium oxide particles, platinum particles of about 5 nm are supported on the plate-like cerium oxide particles having an average particle diameter of 21 nm and appear on the surface of the platinum particles. It was confirmed that the crystal plane was a (111) plane. Further, as a result of powder X-ray diffraction spectrum measurement, it was confirmed that a clear peak derived from cerium oxide and platinum appeared. The average crystallite size of platinum determined from the half width of the diffraction peak was 4.8 nm.

次に、実施例1と同様にして、板状酸化セリウムを吸着担持したカーボン粒子を得た。この板状酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよび白金に由来する明確なピークが確認された。   Next, carbon particles adsorbing and supporting plate-like cerium oxide were obtained in the same manner as in Example 1. When a powder X-ray diffraction spectrum was measured for the plate-like cerium oxide particle-supporting carbon particles, clear peaks derived from cerium oxide and platinum were confirmed on the broad curve of carbon.

《Pt担持板状CeO2 ・30重量%担持カーボン(板状酸化セリウム20nm・Pt仕込み量3重量%)》
実施例2の白金担持板状酸化セリウム粒子の作製方法において、実施例2と同様にして板状酸化セリウム粒子を得た後、塩化白金酸六水和物0.02gおよび当量のクエン酸を含む水溶液を調整した以外は、実施例1と同様にして、白金担持板状酸化セリウム粒子を得た。
<< Pt-supported plate-like CeO 2 · 30 wt% carbon (plate-like cerium oxide 20 nm · Pt charge 3 wt%) >>
In the method for producing platinum-supported plate-like cerium oxide particles of Example 2, plate-like cerium oxide particles were obtained in the same manner as in Example 2, and then 0.02 g of chloroplatinic acid hexahydrate and an equivalent amount of citric acid were contained. Platinum-supported plate-like cerium oxide particles were obtained in the same manner as in Example 1 except that the aqueous solution was adjusted.

このようにして得られた白金担持板状酸化セリウム粒子についてTEM観察を行った結果、平均粒子径23nmの板状酸化セリウム粒子上に、約1nmの白金粒子が担持されており、白金粒子の表面に現れている結晶面は(111)面であることが確認された。また、粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび白金に由来する明確なピークが現れていることが確認された。回折ピークの半値幅から求めた白金の平均結晶子サイズは1.1nmであった。   As a result of TEM observation of the platinum-supported plate-like cerium oxide particles obtained in this manner, about 1 nm of platinum particles are supported on the plate-like cerium oxide particles having an average particle diameter of 23 nm. It was confirmed that the crystal plane appearing in (111) was a (111) plane. Further, as a result of powder X-ray diffraction spectrum measurement, it was confirmed that a clear peak derived from cerium oxide and platinum appeared. The average crystallite size of platinum determined from the half width of the diffraction peak was 1.1 nm.

次に、実施例1と同様にして、板状酸化セリウムを吸着担持したカーボン粒子を得た。この板状酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよび白金に由来する明確なピークが確認された。   Next, carbon particles adsorbing and supporting plate-like cerium oxide were obtained in the same manner as in Example 1. When a powder X-ray diffraction spectrum was measured for the plate-like cerium oxide particle-supporting carbon particles, clear peaks derived from cerium oxide and platinum were confirmed on the broad curve of carbon.

《Pt担持板状CeO2 ・45重量%担持カーボン(板状酸化セリウム20nm・Pt仕込み量20重量%)》
実施例2の白金担持板状酸化セリウム粒子の作製方法において、実施例2と同様にして板状酸化セリウム粒子を得た後、塩化白金酸六水和物0.02gおよび当量のクエン酸を含む水溶液を調整した以外は、実施例1と同様にして、白金担持板状酸化セリウム粒子を得た。
<< Pt-supported plate-like CeO 2 · 45 wt% supported carbon (plate-like cerium oxide 20 nm · Pt charge 20 wt%) >>
In the method for producing platinum-supported plate-like cerium oxide particles of Example 2, plate-like cerium oxide particles were obtained in the same manner as in Example 2, and then 0.02 g of chloroplatinic acid hexahydrate and an equivalent amount of citric acid were contained. Platinum-supported plate-like cerium oxide particles were obtained in the same manner as in Example 1 except that the aqueous solution was adjusted.

得られた白金担持板状酸化セリウム粒子についてTEM観察を行った結果、平均粒子径23nmの板状酸化セリウム粒子上に、約1nmの白金粒子が担持されており、白金粒子の表面に現れている結晶面は(111)面であることが確認された。また、粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび白金に由来する明確なピークが現れていることが確認された。回折ピークの半値幅から求めた白金の平均結晶子サイズは1.1nmであった。   As a result of TEM observation of the obtained platinum-supported plate-like cerium oxide particles, about 1 nm of platinum particles are supported on the plate-like cerium oxide particles having an average particle diameter of 23 nm and appear on the surface of the platinum particles. It was confirmed that the crystal plane was a (111) plane. Further, as a result of powder X-ray diffraction spectrum measurement, it was confirmed that a clear peak derived from cerium oxide and platinum appeared. The average crystallite size of platinum determined from the half width of the diffraction peak was 1.1 nm.

次に、実施例1と同様にして、板状酸化セリウムを吸着担持したカーボン粉末を得た。この板状酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよび白金に由来する明確なピークが確認された。   Next, in the same manner as in Example 1, carbon powder adsorbing and supporting plate-like cerium oxide was obtained. When a powder X-ray diffraction spectrum was measured for the plate-like cerium oxide particle-supporting carbon particles, clear peaks derived from cerium oxide and platinum were confirmed on the broad curve of carbon.

《PtRu担持板状CeO2 ・30重量%担持カーボン(板状酸化セリウム20nm・Pt15重量%・Ru5重量%)》
実施例2の白金担持板状酸化セリウム粒子の作製方法において、実施例2と同様にして板状酸化セリウム粒子を得た後、塩化白金酸六水和物0.02g、塩化ルテニウム0.005gおよび当量のクエン酸を含む水溶液を調整した以外は、実施例1と同様にして、白金ルテニウム担持板状酸化セリウム粒子を得た。
<PtRu-supported plate-like CeO 2 .30 wt% supported carbon (plate-like cerium oxide 20 nm, Pt 15 wt.%, Ru 5 wt.%) >>
In the method for producing platinum-supported plate-like cerium oxide particles of Example 2, after obtaining plate-like cerium oxide particles in the same manner as in Example 2, 0.02 g of chloroplatinic acid hexahydrate, 0.005 g of ruthenium chloride and Platinum ruthenium-supported plate-like cerium oxide particles were obtained in the same manner as in Example 1 except that an aqueous solution containing an equivalent amount of citric acid was prepared.

得られた白金ルテニウム担持板状酸化セリウム粒子についてTEM観察を行った結果、平均粒子径23nmの板状酸化セリウム粒子上に約2nmの金属粒子が担持されており、それら金属粒子の表面に現れている結晶面は(111)面であることが確認された。また、粉末X線回折スペクトル測定を行った結果、酸化セリウム、白金およびルテニウムに由来する明確なピークが現れていることが確認された。回折ピークの半値幅から求めた白金の平均結晶子サイズは1.8nm、ルテニウムの平均結晶子サイズは2.3nmであった。   As a result of TEM observation of the obtained platinum ruthenium-supported plate-like cerium oxide particles, metal particles of about 2 nm were supported on the plate-like cerium oxide particles having an average particle diameter of 23 nm and appeared on the surfaces of these metal particles. It was confirmed that the existing crystal plane was the (111) plane. Further, as a result of powder X-ray diffraction spectrum measurement, it was confirmed that a clear peak derived from cerium oxide, platinum and ruthenium appeared. The average crystallite size of platinum determined from the half width of the diffraction peak was 1.8 nm, and the average crystallite size of ruthenium was 2.3 nm.

次に、実施例1と同様にして、板状酸化セリウムを吸着担持したカーボン粒子(粉末)を得た。この板状酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよびルテニウムに由来する明確なピークが確認された。   Next, in the same manner as in Example 1, carbon particles (powder) carrying plate-like cerium oxide by adsorption were obtained. When a powder X-ray diffraction spectrum was measured for the plate-like cerium oxide particle-supporting carbon particles, clear peaks derived from cerium oxide and ruthenium were confirmed on the broad curve of carbon.

《Pt担持板状ZrO2 ・30重量%担持カーボン(板状酸化ジルコニウム45nm・Pt仕込み量20重量%)》
塩化酸化ジルコニウム八水和物1.83gを含む水溶液を調整し、これとは別に、当量の水酸化ナトリウムを溶解したアルカリ溶液を調整した。前記ジルコニウムイオンを含む水溶液をアルカリ溶液中へ滴下し、ジルコニウムの水和物を含む懸濁液を得た。その後、この懸濁液をpH12に調整し、室温で24時間熟成し、180℃で4時間の水熱処理を施した後、吸引濾過し、純水にて洗浄し、空気中で乾燥させ、板状酸化ジルコニウムの前駆体粒子を得た。この前駆体粒子を空気中600℃で1時間加熱処理を施し、板状酸化ジルコニウム粒子を得た。次に、塩化白金酸六水和物0.59gおよび当量のクエン酸を含む水溶液を調整した以外は、実施例1と同様にして、白金担持板状酸化ジルコニウム粒子を得た。
<Pt-supported plate-like ZrO 2 .30 wt% supported carbon (plate-like zirconium oxide 45 nm / Pt charge 20 wt%)>
An aqueous solution containing 1.83 g of zirconium chloride octahydrate was prepared. Separately, an alkaline solution in which an equivalent amount of sodium hydroxide was dissolved was prepared. The aqueous solution containing zirconium ions was dropped into an alkaline solution to obtain a suspension containing a hydrate of zirconium. The suspension was then adjusted to pH 12, aged at room temperature for 24 hours, hydrothermally treated at 180 ° C. for 4 hours, filtered with suction, washed with pure water, dried in air, Precursor particles of zirconium oxide were obtained. The precursor particles were heat-treated in air at 600 ° C. for 1 hour to obtain plate-like zirconium oxide particles. Next, platinum-supported plate-like zirconium oxide particles were obtained in the same manner as in Example 1 except that an aqueous solution containing 0.59 g of chloroplatinic acid hexahydrate and an equivalent amount of citric acid was prepared.

このようにして得られた白金担時板状酸化ジルコニウム粒子についてTEM観察を行った結果、平均粒子径46nmの板状酸化セリウム粒子上に、約1〜2nmの白金粒子が担持されていることが確認された。この際、観測されるほぼ全ての酸化ジルコニウム粒子には(011)面に由来する格子線が現れており、これら酸化ジルコニウム粒子が特定の方向に配向して存在し、板状形状を持つことが確認された。また、白金粒子の結晶面は(111)面であることが確認された。また、粉末X線回折スペクトル測定を行った結果、酸化ジルコニウムおよび白金に由来する明確なピークが現れていることが確認された。この際、回折ピークの半値幅から求めた白金の平均結晶子サイズは1.5nmであった。   As a result of TEM observation of the platinum-supported plate-like zirconium oxide particles thus obtained, platinum particles of about 1 to 2 nm are supported on the plate-like cerium oxide particles having an average particle diameter of 46 nm. confirmed. At this time, almost all the zirconium oxide particles observed have lattice lines derived from the (011) plane, and these zirconium oxide particles are oriented in a specific direction and have a plate shape. confirmed. Moreover, it was confirmed that the crystal plane of the platinum particles is the (111) plane. Further, as a result of powder X-ray diffraction spectrum measurement, it was confirmed that clear peaks derived from zirconium oxide and platinum appeared. At this time, the average crystallite size of platinum obtained from the half width of the diffraction peak was 1.5 nm.

次に、実施例1と同様にして、板状酸化セリウムを吸着担持したカーボン粉末を得た。この板状酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化ジルコニウムおよび白金に由来する明確なピークが確認された。   Next, in the same manner as in Example 1, carbon powder adsorbing and supporting plate-like cerium oxide was obtained. When a powder X-ray diffraction spectrum was measured for the plate-like cerium oxide particle-supporting carbon particles, clear peaks derived from zirconium oxide and platinum were confirmed on the broad curve of carbon.

[比較例1]
《Pt担持粒状ZCeO2 ・30重量%担持カーボン(板状酸化セリウム15nm・Pt仕込み量20重量%)》
実施例1の白金担持板状酸化セリウム粒子の作製方法において、セリウムの水和物を含む懸濁液を得た後、水熱処理を施さずに空気中600℃で1時間の加熱処理を施し、酸化セリウム粒子を得た。次に、塩化白金酸六水和物0.59gおよび当量のクエン酸を含む水溶液を調整した以外は、実施例1と同様にして、白金の前駆体粒子を担持した酸化セリウム粉末を得た後、窒素中加熱処理を施し、白金担持酸化セリウム粒子を得た。
[Comparative Example 1]
<< Pt-supported granular ZCeO 2 · 30 wt% carbon (plate-like cerium oxide 15 nm · Pt charge 20 wt%) >>
In the method for producing platinum-supported plate-like cerium oxide particles of Example 1, after obtaining a suspension containing cerium hydrate, heat treatment was performed in air at 600 ° C. for 1 hour without performing hydrothermal treatment, Cerium oxide particles were obtained. Next, after obtaining a cerium oxide powder carrying platinum precursor particles in the same manner as in Example 1, except that an aqueous solution containing 0.59 g of chloroplatinic acid hexahydrate and an equivalent amount of citric acid was prepared. Then, heat treatment was performed in nitrogen to obtain platinum-supported cerium oxide particles.

得られた白金担持酸化セリウム粒子についてTEM観察を行った結果、平均粒子径15nmの酸化セリウム上に、約1〜2nmの白金粒子が担持されていることが確認された。この際、観測される酸化セリウム粒子に現れた格子線は各々全く別の結晶面を表すものであり、板状形状を持たない粒状粒子であることが確認された。また、白金粒子の結晶面は各々別の結晶面であることが確認された。この粒子について粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび白金に由来する明確なピークが現れていることが確認された。回折ピークの半値幅から求めた白金の平均結晶子サイズは1.6nmであった。   As a result of TEM observation of the obtained platinum-supporting cerium oxide particles, it was confirmed that platinum particles of about 1 to 2 nm were supported on cerium oxide having an average particle diameter of 15 nm. At this time, the observed lattice lines in the cerium oxide particles each represent a completely different crystal plane, and it was confirmed that the particles were granular particles having no plate shape. Moreover, it was confirmed that the crystal planes of the platinum particles are different crystal planes. As a result of measuring the powder X-ray diffraction spectrum of the particles, it was confirmed that a clear peak derived from cerium oxide and platinum appeared. The average crystallite size of platinum determined from the half width of the diffraction peak was 1.6 nm.

次に、水50mlに、カーボン粒子として1gのバルカンXC−72(CABOT社製のカーボンブラック、平均粒子径30nm)と、0.428gの上記白金担持酸化セリウムとを加え、超音波で分散させた後、2時間攪拌し、白金担持板状酸化セリウムをカーボン粒子表面に吸着させた。その後、約20時間放置し、吸引濾過した後90℃で乾燥させ、酸化セリウムを吸着担持したカーボン粒子(粉末)を得た。   Next, 1 g of Vulcan XC-72 (CABOT carbon black, average particle size 30 nm) and 0.428 g of the above platinum-supporting cerium oxide as carbon particles were added to 50 ml of water and dispersed with ultrasonic waves. Thereafter, the mixture was stirred for 2 hours to adsorb platinum-supported plate-like cerium oxide on the surface of the carbon particles. Then, it was allowed to stand for about 20 hours, suction filtered, and dried at 90 ° C. to obtain carbon particles (powder) carrying cerium oxide by adsorption.

この酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよび白金に由来する明確なピークが確認された。   When a powder X-ray diffraction spectrum was measured for the cerium oxide particle-supporting carbon particles, clear peaks derived from cerium oxide and platinum were confirmed on the broad curve of carbon.

[比較例2]
《PtO2 担持板状CeO2 ・30重量%担持カーボン(板状酸化セリウム20nm・Pt仕込み量20重量%)》
実施例2と同様にして白金の前駆体粒子を担持した板状酸化セリウム粒子(粉末)を得た後、空気中300℃で加熱処理を施した以外は実施例2と同様にして白金担持板状酸化セリウム粒子を得た。
[Comparative Example 2]
<< PtO 2 -supported plate-like CeO 2 · 30% by weight supported carbon (plate-like cerium oxide 20nm · Pt charge 20% by weight) »
A platinum-carrying plate was obtained in the same manner as in Example 2 except that plate-like cerium oxide particles (powder) carrying platinum precursor particles were obtained in the same manner as in Example 2 and then heat-treated at 300 ° C. in air. A cerium oxide particle was obtained.

得られた白金担持板状酸化セリウム粒子についてTEM観察を行った結果、平均粒子径23nmの板状酸化セリウム粒子上に約2nmの粒子が担持されていることが確認された。この粒子について粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび酸化白金に由来するピークが現れていることが確認された。回折ピークの半値幅から求めた酸化白金の平均結晶子サイズは2.2nmであった。   As a result of TEM observation of the obtained platinum-supported plate-like cerium oxide particles, it was confirmed that about 2 nm particles were supported on the plate-like cerium oxide particles having an average particle diameter of 23 nm. As a result of measuring the powder X-ray diffraction spectrum of the particles, it was confirmed that peaks derived from cerium oxide and platinum oxide appeared. The average crystallite size of platinum oxide determined from the half width of the diffraction peak was 2.2 nm.

次に、実施例1と同様にして、板状酸化セリウムを吸着担持したカーボン粒子(粉末)を得た。この酸化セリウム粒子担持カーボン粒子について粉末X線回折スペクトルを測定したところ、カーボンのブロードな曲線の上に、酸化セリウムおよび酸化白金に由来するピークが確認された。   Next, in the same manner as in Example 1, carbon particles (powder) carrying plate-like cerium oxide by adsorption were obtained. When a powder X-ray diffraction spectrum was measured for the cerium oxide particle-supporting carbon particles, peaks derived from cerium oxide and platinum oxide were confirmed on a broad curve of carbon.

表1に、以上の各実施例および比較例についての結果をまとめて示す。   Table 1 summarizes the results of the above examples and comparative examples.

Figure 2007117835
Figure 2007117835

表1からわかるように、いずれの実施例においても、平均粒子径が5nm以下の白金微粒子を担持した板状酸化セリウム粒子(貴金属担持板状酸化物粒子)がカーボン粒子に担持されてなる板状酸化セリウム粒子担持カーボン粒子(板状酸化物粒子担持カーボン粒子)が得られていることがわかる。一方、比較例1においては、粒状の酸化セリウム粒子を用いたために、担持された白金粒子の結晶面が特定方向に向いていないことがわかる。また、比較例2においては、空気中加熱処理を施したために白金の前駆体粒子が金属白金にならず、酸化白金粒子が担持されていることがわかる。   As can be seen from Table 1, in any of the examples, plate-like cerium oxide particles (noble metal-carrying plate-like oxide particles) carrying platinum fine particles having an average particle diameter of 5 nm or less are carried on carbon particles. It turns out that the cerium oxide particle carrying | support carbon particle (plate-like oxide particle carrying | support carbon particle) is obtained. On the other hand, in the comparative example 1, since the granular cerium oxide particle was used, it turns out that the crystal plane of the carry | supported platinum particle is not suitable for the specific direction. Moreover, in the comparative example 2, since the heat processing in air was performed, it turns out that the platinum precursor particle | grains do not become metal platinum but the platinum oxide particle is carry | supported.

実施例1で作製した板状酸化セリウム粒子担持カーボン粒子(板状酸化物粒子担持カーボン粒子)の粉末X線回折スペクトルを示した図である。3 is a diagram showing a powder X-ray diffraction spectrum of plate-like cerium oxide particle-supported carbon particles (plate-like oxide particle-supported carbon particles) produced in Example 1. FIG.

Claims (10)

表面に貴金属粒子を担持した板状酸化物粒子がカーボン粒子に担持されており、前記貴金属粒子の表面に現れている結晶面が(111)面であることを特徴とする板状酸化物粒子担持カーボン粒子。   Plate-like oxide particles carrying noble metal particles on the surface are carried on carbon particles, and the crystal plane appearing on the surface of the noble metal particles is a (111) plane, Carbon particles. 前記貴金属粒子が白金、ルテニウム、パラジウム、イリジウム、ロジウム、金から選ばれる一種以上の元素からなる、請求項1記載の板状酸化物粒子担持カーボン粒子。   The plate-like oxide particle-supporting carbon particle according to claim 1, wherein the noble metal particle comprises one or more elements selected from platinum, ruthenium, palladium, iridium, rhodium, and gold. 前記板状酸化物粒子が、酸化セリウム、酸化ジルコニウム、酸化アルミニウム、酸化チタン、酸化シリコンのいずれかからなる、請求項1または2記載の板状酸化物粒子担持カーボン粒子。   The plate-like oxide particle-supporting carbon particles according to claim 1 or 2, wherein the plate-like oxide particles are made of any one of cerium oxide, zirconium oxide, aluminum oxide, titanium oxide, and silicon oxide. 前記貴金属粒子の担持量(貴金属担持量)が、前記板状酸化物粒子を構成する金属元素に対して3〜50重量%である、請求項1ないし3のいずれかに記載の板状酸化物粒子担持カーボン粒子。   The plate-like oxide according to any one of claims 1 to 3, wherein a loading amount of the noble metal particles (noble metal loading amount) is 3 to 50% by weight with respect to a metal element constituting the plate-like oxide particles. Particle-supporting carbon particles. 前記貴金属粒子の平均粒子径が1〜5nmである、請求項1ないし4のいずれかに記載の板状酸化物粒子担持カーボン粒子。   The plate-like oxide particle-carrying carbon particles according to any one of claims 1 to 4, wherein the noble metal particles have an average particle diameter of 1 to 5 nm. 前記貴金属粒子を担持した板状酸化物粒子の担持量(貴金属担持板状酸化物担持量)が当該板状酸化物粒子担持カーボン粒子全体の5〜50重量%である、請求項1ないし5のいずれかに記載の板状酸化物粒子担持カーボン粒子。   The supported amount of the plate-like oxide particles carrying the noble metal particles (noble metal-supported plate-like oxide supported amount) is 5 to 50% by weight of the whole plate-like oxide particle-supported carbon particles. The plate-shaped oxide particle carrying | support carbon particle in any one. 前記貴金属粒子を担持した板状酸化物粒子の平均粒子径が1〜50nmである、請求項1ないし6のいずれかに記載の板状酸化物粒子担持カーボン粒子。   The plate-like oxide particle-carrying carbon particles according to any one of claims 1 to 6, wherein the plate-like oxide particles carrying the noble metal particles have an average particle diameter of 1 to 50 nm. 前記貴金属を担持した板状酸化物粒子を担持するカーボン粒子の平均粒子径が20〜90nmである、請求項1ないし7のいすれかに記載の板状酸化物粒子担持カーボン粒子。   The plate-like oxide particle-carrying carbon particle according to any one of claims 1 to 7, wherein an average particle diameter of the carbon particle carrying the plate-like oxide particle carrying the noble metal is 20 to 90 nm. 請求項1に記載した板状酸化物粒子担持カーボン粒子を製造するにあたり、
まず、板状酸化物粒子に担持させるべき貴金属の錯イオンを含む溶液を調整し、得られた溶液中に板状酸化物粒子を分散させて、貴金属の錯イオンを板状酸化物粒子に吸着させた後、乾燥させることにより、板状酸化物粒子表面に貴金属粒子を析出させて担持させ、次いで、得られた貴金属担持板状酸化物粒子をカーボン粒子に担持させることを特徴とする板状酸化物粒子担持カーボン粒子の製造方法。
In producing the plate-like oxide particle-supporting carbon particles according to claim 1,
First, a solution containing noble metal complex ions to be supported on the plate-like oxide particles is prepared, and the plate-like oxide particles are dispersed in the obtained solution to adsorb the noble metal complex ions to the plate-like oxide particles. The noble metal particles are deposited and supported on the surface of the plate-like oxide particles by drying, and then the obtained noble metal-supported plate-like oxide particles are supported on the carbon particles. A method for producing oxide particle-supporting carbon particles.
貴金属の錯イオンを含む溶液を調整し、得られた溶液中に板状酸化物粒子を分散させて前記貴金属の錯イオンを板状酸化物粒子に吸着させた後、乾燥させることにより、板状酸化物粒子表面に貴金属粒子を析出させることを特徴とする貴金属担持板状酸化物粒子の製造方法。   By preparing a solution containing noble metal complex ions, dispersing plate-like oxide particles in the resulting solution, adsorbing the noble metal complex ions to the plate-like oxide particles, and then drying, plate-like A method for producing noble metal-supported plate-like oxide particles, wherein noble metal particles are deposited on the surface of oxide particles.
JP2005311272A 2005-10-26 2005-10-26 Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle Withdrawn JP2007117835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311272A JP2007117835A (en) 2005-10-26 2005-10-26 Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311272A JP2007117835A (en) 2005-10-26 2005-10-26 Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle

Publications (1)

Publication Number Publication Date
JP2007117835A true JP2007117835A (en) 2007-05-17

Family

ID=38142260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311272A Withdrawn JP2007117835A (en) 2005-10-26 2005-10-26 Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle

Country Status (1)

Country Link
JP (1) JP2007117835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251297A (en) * 2009-03-27 2010-11-04 National Institute For Materials Science Cathode material
JP2013151398A (en) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd Method for reducing graphene oxide, and method for producing electrode material using the method
US11489169B2 (en) * 2019-07-30 2022-11-01 Hyundai Motor Company Method of manufacturing anode dual catalyst for fuel cell for preventing reverse voltage phenomenon and dual catalyst manufactured thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251297A (en) * 2009-03-27 2010-11-04 National Institute For Materials Science Cathode material
JP2013151398A (en) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd Method for reducing graphene oxide, and method for producing electrode material using the method
US11489169B2 (en) * 2019-07-30 2022-11-01 Hyundai Motor Company Method of manufacturing anode dual catalyst for fuel cell for preventing reverse voltage phenomenon and dual catalyst manufactured thereby

Similar Documents

Publication Publication Date Title
EP2050497B1 (en) Exhaust gas purifying catalyst and method of preparation
JP4989457B2 (en) Platinum catalyst obtained by reducing platinum dioxide formed in situ
JP4875410B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
Yang et al. Core-shell CdSe@ Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect
JPH0857317A (en) Platinum alloy catalyst and its manufacturing process
JP2000123843A (en) Platinum alloy catalyst and manufacture thereof
JP4708943B2 (en) Perovskite complex oxide particles and method for producing the same
US9666877B2 (en) Metal-oxide catalysts for fuel cells
JP6196579B2 (en) Platinum hollow nanoparticles, particle-supported catalyst body, and method for producing the catalyst body
Kostuch et al. Morphology and dispersion of nanostructured manganese–cobalt spinel on various carbon supports: the effect on the oxygen reduction reaction in alkaline media
JP2007123195A (en) Method of manufacturing catalyst
Feng et al. A universal approach to the synthesis of nanodendrites of noble metals
JP5703924B2 (en) Columnar ceria catalyst
JP4879658B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
JP2005034779A (en) Electrode catalyst and its production method
JP5506075B2 (en) Platinum ordered lattice catalyst for fuel cell and method for producing the same
WO2015087780A1 (en) Exhaust gas purifying catalyst
He et al. PdAg Bimetallic Nanoparticles Encapsulated in Porous Carbon Derived from UIO-66 as Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions
JP2007117835A (en) Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
JP2011016090A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
US9083052B2 (en) Nanocomposites
JP2005193182A (en) Catalyst and its production method
JP2022527037A (en) Methods for Preparing Supported Noble Metal-Metal Alloy Composites, and Obtained Supported Noble Metal-Metal Alloy Composites

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070709

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106