JP4706162B2 - 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法 - Google Patents

光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法 Download PDF

Info

Publication number
JP4706162B2
JP4706162B2 JP2002191712A JP2002191712A JP4706162B2 JP 4706162 B2 JP4706162 B2 JP 4706162B2 JP 2002191712 A JP2002191712 A JP 2002191712A JP 2002191712 A JP2002191712 A JP 2002191712A JP 4706162 B2 JP4706162 B2 JP 4706162B2
Authority
JP
Japan
Prior art keywords
light
light emitting
block
laser
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002191712A
Other languages
English (en)
Other versions
JP2003022543A (ja
JP2003022543A5 (ja
Inventor
和彦 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002191712A priority Critical patent/JP4706162B2/ja
Publication of JP2003022543A publication Critical patent/JP2003022543A/ja
Publication of JP2003022543A5 publication Critical patent/JP2003022543A5/ja
Application granted granted Critical
Publication of JP4706162B2 publication Critical patent/JP4706162B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、互いに異なる複数の光をそれぞれ出射する複数の発光素子が光出射方向と交差する方向にて共通のブロック上に並置され、更にこのブロックが基体上に固定され、前記複数の発光素子からの出射光が対物レンズを通して対応する複数の受光素子にそれぞれ導かれる光学装置(特に光ピックアップ)、前記複数の光をディスク状情報記録媒体に照射してその反射光で情報を読み取る光ディスク装置、及びこれらの光ビーム位置調整方法に関するものである。
【0002】
【従来の技術】
CD(コンパクトディスク)、DVD(デジタルビデオディスク)又はMD(ミニディスク)等の如く、光学的に情報を記録及び/又は再生する光学記録媒体(以下、光ディスクと称することがある。)に記録された情報の読み取り(再生)、或いはそれらへの情報の書き込み(記録)を行う装置(以下、光ディスク装置と称することがある。)には、光ピックアップが内蔵されている。
【0003】
こうした光ディスク装置や光ピックアップにおいては、一般に、光ディスクの種類(光ディスクシステム)が異なる場合には、波長の異なるレーザ光を用いる。例えば、CDの再生などには780nm帯の波長のレーザ光を、DVDの再生などには650nm帯の波長のレーザ光を用いる。
【0004】
このように光ディスクの種類によってレーザ光の波長が異なる状況において、例えばDVD用の光ディスク装置でCDの再生を可能にするコンパチブル光ピックアップが望まれている。
【0005】
図15は、上記のようなCD用のレーザダイオードLD1(発振波長780nm)とDVD用のレーザダイオードLD2(発振発光波長650nm)とを搭載し、CDとDVDの再生を可能にした従来のコンパチブル光ピックアップ100の概略構成図である。
【0006】
この光ピックアップ100は、例えば780nm帯の波長のレーザ光を出射する第1レーザダイオードLD1、グレーティングG、第1ビームスプリッタBS1、第1ミラーM1、第1対物レンズOL1、第1マルチレンズML1、及び第1フォトダイオードPD1がそれぞれ個々に(即ち、ディスクリートに)所定の位置に配設されたCD用光学系を有する。
【0007】
さらに、この光ピックアップ100は、例えば650nm帯の波長のレーザ光を出射する第2レーザダイオードLD2、第2ビームスプリッタBS2、コリメータC、第2ミラーM2、第2対物レンズOL2、第2マルチレンズML2、及び第2フォトダイオードPD2がそれぞれ個々に(即ち、ディスクリートに)所定の位置に配設されたDVD用光学系を有する。
【0008】
このように構成された光ピックアップ100のCD用光学系において、第1レーザダイオードLD1からの第1レーザ光L1は、グレーティングGを通過し、第1ビームスプリッタBS1によって一部反射され、第1ミラーM1により進路を屈曲して、第1対物レンズOL1により光ディスクD上に集光される。
【0009】
光ディスクDからの反射光は、第1対物レンズOL1、第1ミラーM1および第1ビームスプリッタBS1を介して、第1マルチレンズML1を通過し、第1フォトダイオードPD1上に入射され、この反射光の変化により、光ディスクDのCD用記録面上に記録された情報の読み出しがなされる。
【0010】
また、光ピックアップ100のDVD用光学系においても、上記と同様に、第2レーザダイオードLD2からの第2レーザ光L2は、第2ビームスプリッタBS2によって一部反射され、コリメータCを通過して、第2ミラーM2により進路を屈曲して、第2対物レンズOL2により光ディスクD上に集光される。
【0011】
光ディスクDからの反射光は、第2対物レンズOL2、第2ミラーM2、コリメータCおよび第2ビームスプリッタBS2を介して、第2マルチレンズML2を通過し、第2フォトダイオードPD2上に入射され、この反射光の変化により光ディスクDのDVD用記録面上に記録された情報の読み出しがなされる。
【0012】
この光ピックアップ100によれば、CD用のレーザダイオードとDVD用のレーザダイオードを搭載し、それぞれの光学系を有することにより、CDとDVDの再生を可能にしている。
【0013】
また、図16は、上記のようなCD用のレーザダイオードLD1(発光波長780nm)とDVD用のレーザダイオードLD2(発光波長650nm)を搭載し、CDとDVDの再生を可能にした従来の他のコンパチブル光ピックアップ101の概略構成図である。
【0014】
この光ピックアップ101は、例えば780nm帯の波長のレーザ光を出射する第1レーザダイオードLD1、グレーティングG、第1ビームスプリッタBS1、ダイクロイックビームスプリッタDBS、コリメータC、ミラーM、CD用開口制限アパーチャR、対物レンズOL、第1マルチレンズML1、及び第1フォトダイオードPD1がそれぞれ個々に(即ち、ディスクリートに)所定の位置に配設されたCD用光学系を有する。
【0015】
さらに、この光ピックアップ101は、例えば650nm帯の波長のレーザ光を出射する第2レーザダイオードLD2、第2ビームスプリッタBS2、ダイクロイックビームスプリッタDBS、コリメータC、ミラーM、対物レンズOL、第2マルチレンズML2、及び第2フォトダイオードPD2がそれぞれ個々に(即ち、ディスクリートに)所定の位置に配設されたDVD用光学系を有する。
【0016】
この各光学系において、一部の光学部材は共有しており、例えば、ダイクロイックビームスプリッタDBS、コリメータC、ミラーM及び対物レンズOLが両光学系により共有されている。また、ダイクロイックビームスプリッタDBSと光ディスクD間の光軸を共有しているために、CD用の開口制限アパーチャRはDVD用光学系の光軸上にも配置されることになる。
【0017】
このように構成された光ピックアップ101のCD用光学系において、第1レーザダイオードLD1からの第1レーザ光L1は、グレーティングGを通過し、第1ビームスプリッタBS1によって一部反射され、ダイクロイックビームスプリッタDBS、コリメータC、ミラーMを夫々通過又は反射して、CD用開口制限アパーチャRを介して対物レンズOL1により光ディスクD上に集光される。
【0018】
光ディスクDからの反射光は、対物レンズOL、CD用開口制限アパーチャR、ミラーM、コリメータC、ダイクロイックビームスプリッタDBSおよび第1ビームスプリッタBS1を介して、第1マルチレンズML1を通過し、第1フォトダイオードPD1上に入射され、この反射光の変化により、光ディスクDのCD用記録面上に記録された情報の読み出しがなされる。
【0019】
また光ピックアップ101のDVD用光学系においても、上記と同様に、第2レーザダイオードLD2からの第2レーザ光L2は、第2ビームスプリッタBS2によって一部反射され、ダイクロイックビームスプリッタDBS、コリメータC、ミラーMをそれぞれ通過あるいは反射して、CD用の開口制限アパーチャRを介して対物レンズOL1により光ディスクD上に集光される。
【0020】
光ディスクDからの反射光は、対物レンズOL、CD用開口制限アパーチャR、ミラーM、コリメータC、ダイクロイックビームスプリッタDBSおよび第2ビームスプリッタBS2を介して、第2マルチレンズML2を通過し、第2フォトダイオードPD2上に入射され、この反射光の変化により、光ディスクDのDVD用記録面上に記録された情報の読み出しがなされる。
【0021】
この光ピックアップ101によれば、図15に示した光ピックアップ100と同様に、CD用のレーザダイオードとDVD用のレーザダイオードを搭載し、それぞれの光学系を有することによりCDとDVDの再生を可能にしている。
【0022】
【発明に至る経過】
本発明者は、こうした従来の光ピックアップに対し、CDやDVDなどの波長の異なる光ディスクシステムを構成することが可能であって、部品点数を減らして容易に組み立てられ、小型化やコスト削減を可能にする光学装置及びそれを用いた光ディスク装置を既に提案した。
【0023】
図17〜図20には、その一例を示し、図17に示すコンパチブル光ピックアップ1aによれば、CD用のレーザダイオードLD1(発振波長780nm)とDVD用のレーザダイオードLD2(発振波長650nm)を搭載している。
【0024】
この光ピックアップ1aは、それぞれ個々に(即ち、ディスクリートに)或いは共通の基板上に(即ち、モノリシックに)構成された光学系を有し、互いに隣接して並列に形成され、例えば780nm帯の波長のレーザ光を出射する第1レーザダイオードLD1と650nm帯の波長のレーザ光を出射する第2レーザダイオードLD2を有するレーザダイオードLD、780nm帯用であって650nm帯に対しては素通しとなるグレーティングG、ビームスプリッタBS、コリメータC、ミラーM、CD用の開口制限アパーチャR、対物レンズOL、マルチレンズML、及びフォトダイオードPDがそれぞれ所定の位置に配設されている。フォトダイオードPDには、780nm帯の光を受光する第1フォトダイオードと、650nm帯の光を受光する第2フォトダイオードが互いに隣接して並列に形成されている。
【0025】
この光ピックアップ1aにおいて、第1レーザダイオードLD1からの第1レーザ光L1は、グレーティングGを通過し、ビームスプリッタBSによって一部反射され、コリメータC、ミラーM及びCD用の開口制限アパーチャRと通過(反射)して、対物レンズOLにより光ディスクD上に集光される。
【0026】
光ディスクDからの反射光は、対物レンズOL、CD用開口制限アパーチャR、ミラーM、コリメータC及びビームスプリッタBSを介して、マルチレンズMLを通過し、フォトダイオードPD(第1フォトダイオード)上に入射され、この反射光の変化により、CDなどの光ディスクDの記録面上に記録された情報の読み出しがなされる。
【0027】
そして、光ピックアップ1aにおいて、第2レーザダイオードLD2からの第2レーザ光L2も、上記と同じ経路を辿って光ディスクD上に集光され、その反射光はフォトダイオードPD(第2フォトダイオード)上に入射され、この反射光の変化により、DVDなどの光ディスクDの記録面上に記録された情報の読み出しがなされる。
【0028】
この光ピックアップ1aでは、CD用のレーザダイオードとDVD用のレーザダイオードを搭載し、共通の光学系により反射光をCD用のフォトダイオードとDVD用のフォトダイオードに結合させ、CDとDVDの再生を可能にする。
【0029】
図18は、上記のレーザダイオードLDの要部斜視図である。例えば、円盤状の基台21に設けられた突起部21a上にモニター用の光検出素子としてのPINダイオード12が形成された半導体ブロック13が固着され、その上部に第1レーザダイオード14(LD1)と第2レーザダイオード15(LD2)が配置されている。また、基台21を貫通して端子22が設けられており、リード23により上記の第1及び第2レーザダイオード14、15、或いはPINダイオード12に接続されて、それぞれのダイオードの駆動電源電圧が供給される。
【0030】
図19(a)は、上記のレーザダイオードのレーザ光の出射方向と垂直な方向からの要部平面図であり、また図19(b)は、レーザダイオードのレーザ光の出射方向からの要部平面図である。PINダイオード12が形成された半導体ブロック13の上部に第1レーザダイオード14(LD1)と第2レーザダイオード15(LD2)がディスクリートに配置されている。これらのレーザダイオードは、図19(c)のように、後述する如くにモノリシックに配置されてよい。
【0031】
ここで、PINダイオード12は、例えば2つに分割された領域を有し、第1および第2レーザダイオード14、15又はLD1、LD2のそれぞれについて、リア(後部)側に出射されたレーザ光を感知し、その強度を測定して、レーザ光の強度が一定となるように第1及び第2レーザダイオード14、15又はLD1、LD2の駆動電流を制御するAPC(Automatic Power Control)制御が行われるように構成されている。PINダイオード12は、分割されずに1つでもよい(切換えて使用可能)。
【0032】
第1レーザダイオード14のレーザ光出射部E1と第2レーザダイオード15のレーザ光出射部E2の間隔dは例えば200μm程度以下の範囲(例えば100μm程度)に設定される。各レーザ光出射部E1、E2からは、それぞれ例えば780nm帯の波長のレーザ光L1及び650nm帯の波長のレーザ光L2が互いに同一の方向(平行)に出射される。
【0033】
図20(a)は、上記のフォトダイオードPDの要部平面図である。例えば、780nm帯の光を受光する第1フォトダイオード16と、650nm帯の光を受光する第2フォトダイオード18とが互いに隣接して並列に形成されている。
【0034】
ここで、第1フォトダイオード16は図面に示すように6分割(a1、b1、c1、d1、e1、f1)された構成を有している。第1レーザダイオード14から出射された780nm帯のレーザ光は、グレーティングGにて3本のレーザ光に分割された後、上記光学系を経て、CDなどの光ディスクDからの反射光として、図20(a)に示すように第1フォトダイオード16上に3つのスポット(S1a、S1b、S1c)として入射する。
【0035】
また、第2フォトダイオード18は図面に示すように4分割(a2、b2、c2、d2)された構成を有している。第2レーザダイオード15から出射された650nm帯のレーザ光は、上記光学系を経て、DVDなどの光ディスクDからの反射光として、図20(a)に示すように第2フォトダイオード18上に1つのスポットS2として入射する。
【0036】
第1及び第2フォトダイオード16、18の間隔、すなわち、例えば第1フォトダイオード16の中心線と第2フォトダイオード18の中心線との間隔dは、例えば200μm程度以下の範囲(例えば100μm程度)に設定される。ここでは、例えば、上記の第1レーザダイオード14のレーザ光出射部E1と第2レーザダイオード15のレーザ光出射部E2との間隔と実質的に等しくなるように設定される。
【0037】
上記のように、第1及び第2レーザダイオードのレーザ光出射部の間隔、及び第1及び第2フォトダイオードの間隔を設定することにより、共通の光学部材を用いて、第1レーザダイオード及び第2レーザダイオードの出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を第1フォトダイオード及び第2フォトダイオードにそれぞれ入射させることが可能となる。
【0038】
上記のフォトダイオードPD(第1フォトダイオード16及び第2フォトダイオード18)においては、上記のように入射するレーザ光のスポットS1a、S1b、S1c、S2のスポット径、位置変化等を検出することができる。
【0039】
光ディスク装置の光ピックアップとして、上記のフォトダイオードPDにより得られる信号から、トラッキングエラー信号、フォーカスエラー信号、及び光ディスクに記録された情報信号の読み取りが行われる。これら信号の取り出しは、以下のようにそれぞれ行われる。
【0040】
即ち、第1フォトダイオード16においては、6分割された第1フォトダイオード16上に入射する中央部のスポットS1aにおいて得られた信号a1、b1、c1及びd1を用いて、次式(1)によって、CDなどの光ディスクに記録された情報信号RF1を求めることができる。
RF1=a1+b1+c1+d1 …(1)
【0041】
また、上記の信号a1、b1、c1及びd1を用いて、次式(2)によって、フォーカスエラー信号FE1を得ることができる。
FE1=(a1+c1)−(b1+d1) …(2)
【0042】
また、6分割された第1フォトダイオード16上に入射する両側部のスポットS1b、S1cにおいて得られた信号e1及びf1を用いて、次式(3)によって、トラッキングエラー信号TE1を得ることができる。
TE1=e1−f1 …(3)
【0043】
一方、第2フォトダイオード18においては、4分割された第2フォトダイオード18上に入射する中央部のスポットS2において得られた信号a2、b2、c2及びd2を用いて、次式(4)によって、DVDなどの光ディスクに記録された情報信号RF2を求めることができる。
RF2=a2+b2+c2+d2 …(4)
【0044】
また、上記の信号a2、b2、c2及びd2を用いて、次式(5)によって、フォーカスエラー信号FE2を得ることができる。
FE2=(a2+c2)−(b2+d2) …(5)
【0045】
また、上記の信号a2、b2、c2及びd2を用いて、図20(b)に示すように、DPD(位相差検出;Differential Phase Detection)法により、トラッキングエラー信号TE2を得ることができる。たとえば、位相比較器PCで信号a2とb2、信号c2とd2の位相を比較した後、加算器ADにて加算演算処理を行ってトラッキングエラー信号TE2を得る。DPD法によれば、1スポットでオフセットのない安定なトラッキングが可能となる。
【0046】
光ピックアップを内蔵する光ディスクの再生/記録装置においては、上記のようにして、CD又はDVDなどの光ディスクの上下の振れによるフォーカスエラー信号の検出を行い、得られたフォーカスエラー信号に従ってフォーカシングサーボをかける。また、トラッキングエラー信号の検出を行い、得られたトラッキングエラー信号に従ってトラッキングサーボをかける。
【0047】
上記した光ピックアップ1aは、CD用のレーザダイオードLD1(発光波長780nm)とDVD用のレーザダイオードLD2(発光波長650nm)を搭載し、CDとDVDの再生を可能にするコンパチブル光ピックアップである。
【0048】
この光ピックアップは、互いに隣接して並列に配置された第1レーザダイオードLD1及び第2レーザダイオードLD2と、互いに隣接して並列に配置された第1フォトダイオード16及び第2フォトダイオード18とを有しており、発振波長の異なるレーザダイオードからの光軸を合わせる必要がなく、共通の光学部材を用いて、第1レーザダイオードLD1及び第2レーザダイオードLD2の出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を第1フォトダイオード及び第2フォトダイオードにそれぞれ入射させる。従って、図15及び図16に示したものよりも部品点数が少なく、容易に組み立てられ、小型化やコスト削減が可能である。
【0049】
図21には、図20に示したものとは異なり、図19(c)のレーザダイオード14aを用いたレーザカプラによる信号の読み取りを説明するものである(但し、レーザダイオードの後方に設けるAPC用のPINダイオードは図示省略した:以下、同様)。
【0050】
図21では、例えば、780nm帯の光を受光する前部第1フォトダイオード16及び後部第1フォトダイオード17と、650nm帯の光を受光する前部第2フォトダイオード18及び後部第2フォトダイオード19とが図面のように形成されている。
【0051】
ここで、前部第1フォトダイオード16は4分割(a1、b1、c1、d1)された構成を有している。後部第1フォトダイオード17も4分割(i1、j1、k1、l1)された構成を有している。
【0052】
第1レーザダイオードLD1から出射された780nm帯のレーザ光は、プリズム20の分光面で反射され、更に上記光学系を経て、光ディスク(CD)からの反射光として、プリズム20を通して前部及び後部第1フォトダイオード16、17上に1つずつのスポットS1a、S1bとして入射する。
【0053】
また、前部第2フォトダイオード18は8分割(a2、b2、c2、d2、e2、f2、g2、h2)された構成を有している。後部第2フォトダイオード19は4分割(i2、j2、k2、l2)された構成を有している。
【0054】
第2レーザダイオードLD2から出射された650nm帯のレーザ光も、上記光学系を経て、光ディスク(DVD)からの反射光として、前部及び後部第2フォトダイオード18、19上に1つずつのスポットS2a、S2bとして入射する。
【0055】
上記の前部第1フォトダイオード16及び前部第2フォトダイオード18の間隔、及び、後部第1フォトダイオード17及び後部第2フォトダイオード19の間隔は、例えば200μm程度以下の範囲(例えば100μm程度)に設定される。ここでは、例えば、上記の第1レーザダイオードLD1のレーザ光出射部E1と第2レーザダイオードLD2のレーザ光出射部E2との間隔と実質的に等しくなるように設定される。
【0056】
上記のように、第1及び第2レーザダイオードのレーザ光出射部の間隔、および、第1および第2フォトダイオードの間隔を設定することにより、共通の光学部材を用いて、第1レーザダイオード及び第2レーザダイオードの出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を第1フォトダイオードおよび第2フォトダイオードにそれぞれ入射させることが可能となる。
【0057】
上記のフォトダイオード(前後部第1フォトダイオード16、17及び前後部第2フォトダイオード18、19においては、上記のように入射するレーザ光のスポットS1a、S1b、S2a、S2bのスポット径、位置変化等を検出することができる。
【0058】
このレーザカプラを用いて光ディスク装置の光ピックアップを構成した場合には、上記のフォトダイオードPDにより得られる信号から、トラッキングエラー信号、フォーカスエラー信号、及び光ディスクに記録された情報信号の読み取りが行われる。これら信号の取り出しは、それぞれ以下のように行われる。
【0059】
即ち、前後部第1フォトダイオード16、17においては、それぞれ4分割された前後部第1フォトダイオード16、17上に入射するスポットS1a、S1bにおいて得られた信号a1、b1、c1、d1、i1、j1、k1及びl1を用いて、次式(6)によって、CDなどの光ディスクに記録された情報信号RF1を求めることができる。
RF1=a1+b1+c1+d1+i1+j1+k1+l1 …(6)
【0060】
また、上記の信号a1、b1、c1、d1、i1、j1、k1及びl1を用いて、次式(7)によって、フォーカスエラー信号FE1を得ることができる。
FE1〔(a1+d1)−(b1+c1)〕
−〔(i1+l1)−(j1+k1)〕 …(7)
【0061】
また、上記の信号a1、b1、c1、d1、i1、j1、k1及びl1を用いて、次式(8)によって、トラッキングエラー信号TE1を得ることができる。
TE1=〔(a1+b1)−(c1+d1)〕
+〔(i1+j1)−(k1+l1)〕 …(8)
【0062】
一方、前後部第2フォトダイオード18、19においては、それぞれ8分割および4分割された前後部第2フォトダイオード18、19上に入射するスポットS2a、S2bにおいて得られた信号a2、b2、c2、d2、e2、f2、g2、h2、i2、j2、k2及びl2を用いて、次式(9)によって、DVDなどの光ディスクに記録された情報信号RF2を求めることができる。
RF2=a2+b2+c2+d2+e2+f2+g2+h2
+i2+j2+k2+l2 …(9)
【0063】
また、上記の信号a2、b2、c2、d2、e2、f2、g2、h2、i2、j2、k2及びl2を用いて、次式(10)によって、フォーカスエラー信号FE2を得ることができる。
FE2=〔(a2+d2+e2+h2)−(b2+c2+f2+g2)〕
−〔(i2+l2)−(j2+k2)〕 …(10)
【0064】
また、前部第2フォトダイオード18により得られる信号a2、b2、c2、d2、e2、f2、g2及びh2を用いて、後述の図10(b)に示すように、DPD(位相差検出;Differential Phase Detection)法により、トラッキングエラー信号TE2を得ることができる。たとえば、第1加算器(広帯域)AD1にて、信号a2とb2、信号c2とd2、信号e2とf2、信号g2とh2の加算演算処理を行い、位相比較器PCで、信号a2とb2との和信号と信号c2とd2との和信号、信号g2とh2との和信号と信号e2とf2との和信号の位相を比較した後、第2加算器AD2にて加算演算処理を行ってトラッキングエラー信号TE2を得る。DPD法によれば、1スポットでオフセットのない安定なトラッキングが可能となる。
【0065】
このレーザカプラを用いる光ディスクの再生/記録装置においては、上記のようにして、CDあるいはDVDなどの光ディスクの上下の振れによるフォーカスエラー信号の検出を行い、得られたフォーカスエラー信号に従ってフォーカシングサーボをかける。また、トラッキングエラー信号の検出を行い、得られたトラッキングエラー信号に従ってトラッキングサーボをかける。
【0066】
このレーザカプラは、CD用のレーザダイオードLD1(発振波長780nm)とDVD用のレーザダイオードLD2(発振波長650nm)を搭載し、CDとDVDの再生を可能にするコンパチブル光ピックアップを構成することが可能である。
【0067】
そして、このレーザカプラは、互いに隣接して並列に配置された第1レーザダイオードLD1及び第2レーザダイオードLD2と、互いに隣接して並列に配置された前後部第1フォトダイオード16、17及び前後部第2フォトダイオード18、19とを有しており、発振波長の異なるレーザダイオードからの光軸を合わせる必要がなく、共通の光学部材を用いて、第1レーザダイオードLD1及び第2レーザダイオードLD2の出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を前後部第1フォトダイオード16、17及び前後部第2フォトダイオード18、19にそれぞれ入射させる。従って、図15及び図16に示したものよりも部品点数が少なく、容易に組み立てられ、小型化やコスト削減が可能である。
【0068】
【発明が解決しようとする課題】
しかしながら、図21に示したレーザカプラにおいて、次のような改善すべき課題があることが判明した。
【0069】
このレーザカプラは、2波長レーザとしての例えばCD用の780nm帯のレーザダイオードLD1とDVD用の650nm帯のレーザダイオードLD2を1つのチップ内に形成したものであるが、これらのレーザの製造のばらつきや、上記したブロック13又は基板へのマウント精度のばらつきにより、各レーザからのレーザ光L1、L2の出射方向がばらつくことがある。
【0070】
例えば、レーザダイオードLD1のレーザ光L1の出射方向は正規の光軸(即ち、フォトダイオード16及び17の前後配列方向に沿う光軸)OA1と一致するが、他方のレーザダイオードLD2のレーザ光L2の出射方向が正規の光軸(即ち、フォトダイオード18及び19の前後配列方向に沿う光軸)OA2から外側へずれている場合には、対物レンズを介してのディスクからの反射光のスポットS1a、S1b、S2a、S2bはフォトダイオード上で位置変化しないが、そのスポット中のビーム強度が最大となる点(図中、黒点で示す:以下、同様)がスポットS2aとS2bとで光軸に関し反対側に振れてしまう。
【0071】
この結果、DVD側のフォトダイオード18、19での受光量バランスがくずれ、特に高精度な規格が要求されるDVDの信号読み取り及びサーボコントロールに支障を来たす。これを防止する上で、スポットのバランスを調整することが必要になる。
【0072】
また、DVD側を光軸に合わせた設計の場合、CD側が少し光軸から離れた位置から発光することになるため、スポットのバランスが少しくずれる。これは、対物レンズのシフトで調整する。その際、レンズの可動範囲の制約から、レンズシフト量はできるだけ小さくした方が望ましい。
【0073】
そこで、本発明の目的は、上記したCD用及びDVD用の如く、波長等が互いに異なる出射光のスポットのバランスを容易かつ正確に調整すると共に、その調整のための対物レンズのシフト量を小さくすることができる光学装置を提供し、またこの光学装置を用いた光ディスク装置、更にはこれらの光ビーム位置調整方法を提供することにある。
【0074】
【課題を解決するための手段】
即ち、本発明は、互いに異なる複数の光(例えば、波長の異なるCD用及びDVD用の第1及び第2のレーザ光:以下、同様)をそれぞれ出射する複数の発光素子(例えば、第1及び第2のレーザダイオード:以下、同様)が光出射方向と交差する方向にて共通のブロック(例えば、PINダイオードが形成された半導体ブロック:以下、同様)上に並置され、更にこのブロックが基体(例えば、レーザカプラを構成するための半導体基板:以下、同様)上に固定され、前記複数の発光素子からの出射光が対物レンズを通して対応する複数の受光素子(例えばCD用及びDVD用の第1及び第2のフォトダイオード:以下、同様)に導かれる光学装置において、
前記複数の発光素子のうち、所定の発光素子(例えば、DVD用のレーザダイオード:以下、同様)の光出射方向が正規の光軸(即ち、前記受光素子の前後配列方向に沿う光軸:以下、同様)と重なるか或いは沿うように(以下、これを「重なる」又は「重ねる」と表現することがある。)、前記ブロック上での前記複数の発光素子の位置を固定したまま前記ブロックが傾けられることにより、前記複数の発光素子が共通に傾けられて位置調整されていると共に、
この位置調整状態で更に、前記所定の発光素子以外の他の発光素子(例えば、CD用のレーザダイオード:以下、同様)の光出射方向が前記対物レンズの位置調整によって正規の光軸に重ねられる
ように構成したことを特徴とする光学装置、及び、この光学装置を用いた光ディスク装置、並びに、上記のように位置調整する光ビーム位置調整方法(以下、本発明群と称することがある。)に係るものである。
【0075】
この本発明群による光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法によれば、前記ブロック上での前記複数の発光素子の位置を固定したまま前記ブロックを傾けることにより、前記複数の発光素子を共通に傾けて、所定の発光素子の光出射方向を正規の光軸と重ねているので、例えば規格の厳しい高精度化が要求される前記所定の発光素子からの出射光の出射方向を前記要求を満たすように設定でき、しかもこれを前記ブロックを傾けることによって行える(従って、発光素子自体は直接回転調整しない)ために、前記所定の発光素子の出射光の位置調整が容易となる。
【0076】
そして、前記他の発光素子からの出射光については、対物レンズの位置調整によって光軸を正規の光軸に重ねるが、この際、
【数1】
Figure 0004706162
が広い場合には、対物レンズの振れ(レンズシフト)によりスポットバランスを適切に調整することができ、レンズシフトを行っても特性への影響は少ない。
【0077】
【発明の実施の形態】
本発明群においては、前記複数の発光素子を固定した前記ブロックが前記基体上に固定されていて、この固定後に、前記ブロックと共に前記基体が前記正規の光軸又はこれと平行な軸の周りに回転されて前記位置調整があおり補正として行われるか、或いは、前記複数の発光素子を固定した前記ブロックが前記基体上に固定されていて、この固定前に、前記ブロックがその面内にて前記基体上で回転されて前記位置調整がθ補正として行われるのがよい。
【0078】
また、前記所定の発光素子は前記他の発光素子に比べて規格がより厳しく、ビーム発散角が前記他の発光素子のそれよりも小さい場合に、本発明の効果が大きい。この場合、これらの複数の発光素子が、互いに異なる波長のレーザ光を出射し、規格がより厳しい発光素子からのレーザ光の波長が前記他の発光素子のそれよりも短いのがよい。
【0079】
そして、前記複数の発光素子の出射光が前記対物レンズを通して被照射体、例えばディスク状情報記録媒体に入射され、この反射光が前記対物レンズを通して前記複数の受光素子にそれぞれ入射されるのがよい。
【0080】
この場合、前記複数の発光素子を固定した前記ブロックと、前記複数の発光素子の各出射光を前記被照射体へ導きかつ前記反射光を前記複数の受光素子へ導くための光学部材と、前記受光素子とが共通の前記基体上に設けられ、光カプラが構成され、また、この光カプラが光ピックアップの一部として光ディスク装置に組み込まれる。
【0081】
以下、本発明の好ましい実施の形態を図面について説明する。
【0082】
実施の形態1
本実施の形態では、図1(A)に示すように、図21において示したと同様に、例えば、780nm帯の光を受光する前部第1フォトダイオード16及び後部第1フォトダイオード17と、650nm帯の光を受光する前部第2フォトダイオード18及び後部第2フォトダイオード19とが、基板11上に固定されたプリズム20下に形成されている。
【0083】
ここで、前部第1フォトダイオード16は4分割(a1、b1、c1、d1)され、後部第1フォトダイオード17も4分割(i1、j1、k1、l1)された構成を有している。
【0084】
基板11上に固定されたブロック13上に第1レーザダイオードLD1がマウントされ、このレーザダイオードから出射された780nm帯のレーザ光L1はプリズム20の分光面で反射され、更に上記光学系を経て、光ディスク(CD)からの反射光として、プリズム20を通して前部及び後部第1フォトダイオード16、17上に1つずつのスポットS1a、S1bとして入射する。
【0085】
また、前部第2フォトダイオード18は8分割(a2、b2、c2、d2、e2、f2、g2、h2)され、後部第2フォトダイオード19は4分割(i2、j2、k2、l2)された構成を有している。
【0086】
第2レーザダイオードLD2から出射された650nm帯のレーザ光L2も、上記光学系を経て、光ディスク(DVD)からの反射光として、前部及び後部第2フォトダイオード18、19上に1つずつのスポットS2a、S2bとして入射する。
【0087】
上記の前部第1フォトダイオード16及び前部第2フォトダイオード18の間隔、及び、後部第1フォトダイオード17及び後部第2フォトダイオード19の間隔は、例えば200μm程度以下の範囲(例えば100μm程度)に設定される。ここでは、例えば、上記の第1レーザダイオードLD1のレーザ光出射部E1と第2レーザダイオードLD2のレーザ光出射部E2との間隔と実質的に等しくなるように設定される。
【0088】
上記のように、第1及び第2レーザダイオードのレーザ光出射部の間隔、および、第1および第2フォトダイオードの間隔を設定することにより、共通の光学部材を用いて、第1レーザダイオード及び第2レーザダイオードの出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を第1フォトダイオードおよび第2フォトダイオードにそれぞれ入射させることが可能となる。
【0089】
上記のフォトダイオード(前後部第1フォトダイオード16、17及び前後部第2フォトダイオード18、19)においては、上記のように入射するレーザ光のスポットS1a、S1b、S2a、S2bのスポット径、位置変化等を検出することができる。
【0090】
このレーザカプラを用いて光ディスク装置の光ピックアップを構成した場合には、上記のフォトダイオードPDにより得られる信号から、光ディスクに記録された情報信号、トラッキングエラー信号、フォーカスエラー信号の読み取りが行われる。これら信号の取り出しは、CDなどの光ディスクでは、それぞれ図21について説明した上述の式(6)、(7)、(8)に基づいて行なわれ、信号の再生及び各サーボコントロールが行われる。
【0091】
一方、前後部第2フォトダイオード18、19においては、それぞれ8分割および4分割された前後部第2フォトダイオード18、19上に入射するスポットS2a、S2bにおいて得られた信号a2、b2、c2、d2、e2、f2、g2、h2、i2、j2、k2及びl2を用いて図21について説明した上述の式(9)、(10)及びDPD法に基づいて、光ディスクに記録された情報信号、フォーカスエラー信号及びトラッキングエラー信号が読み出され、信号の再生及び各サーボコントロールが行われる。
【0092】
このレーザカプラを用いる光ディスクの再生/記録装置においては、上記のようにして、CD又はDVDなどの光ディスクの上下の振れによるフォーカスエラー信号の検出を行い、得られたフォーカスエラー信号に従ってフォーカシングサーボをかける。また、トラッキングエラー信号の検出を行い、得られたトラッキングエラー信号に従ってトラッキングサーボをかける。
【0093】
このレーザカプラは、CD用のレーザダイオードLD1(発振波長780nm)とDVD用のレーザダイオードLD2(発振波長650nm)を搭載し、CDとDVDの再生を可能にするコンパチブル光ピックアップを構成することが可能である。
【0094】
そして、このレーザカプラは、互いに隣接して並列に配置された第1レーザダイオードLD1及び第2レーザダイオードLD2と、互いに隣接して並列に配置された前後部第1フォトダイオード16、17及び前後部第2フォトダイオード18、19とを有しており、発振波長の異なるレーザダイオードからの光軸を合わせる必要がなく、共通の光学部材を用いて、第1レーザダイオードLD1及び第2レーザダイオードLD2の出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を前後部第1フォトダイオード16、17及び前後部第2フォトダイオード18、19にそれぞれ入射させる。従って、図15及び図16に示したものよりも部品点数が少なく、容易に組み立てられ、小型化やコスト削減が可能である。
【0095】
ところが、このレーザカプラにおいて、図21において述べたように、CD用の780nm帯のレーザダイオードLD1とDVD用の650nm帯のレーザダイオードLD2は、製造のばらつきや、ブロック13又は基板11へのマウント精度のばらつきにより、各レーザからのレーザ光L1、L2の出射方向がばらつくことがある。
【0096】
例えば、図1(A)に示すように、レーザダイオードLD1のレーザ光L1の出射方向は正規の光軸(即ち、フォトダイオード16及び17の前後配列方向に沿う光軸)OA1と一致するが、他方のレーザダイオードLD2のレーザ光L2の出射方向が正規の光軸(即ち、フォトダイオード18及び19の前後配列方向に沿う光軸)OA2から外側へずれている場合には、対物レンズを介してのディスクからの反射光のスポットS1a、S1b、S2a、S2bはフォトダイオード上で位置変化しないが、そのスポット中のビーム強度が最大となる点(図中、黒点で示す)がスポットS2aとS2bとで光軸に関し反対側に振れてしまう。
【0097】
この結果、DVD側のフォトダイオード18、19での受光量バランスがくずれ、特に高精度な規格が要求されるDVDの信号読み取り及びサーボコントロールに支障を来たす。これを防止する上で、本実施の形態では、従来のようにDVD用の信号読み取り時に対物レンズを光軸OA2に対して上記ずれ方向とは反対側へ振る(シフトさせる)のではなく、次のようにあおり調整することによってDVD側のスポット位置を調整する。そして、その際にCD側のバランスがくずれるが、これについては、CD使用時に、対物レンズのシフトによってCD側のバランスを調整する。
【0098】
即ち、図1(B)に示すように、レーザダイオードLD1及びLD2を固定し終ったブロック13をマウントした基板11の全体を正規の光軸OA1及びOA2と平行な中心軸の周りに例えば矢印方向に回転させて厚み方向に傾けることにより、レーザ光L1、L2をレーザ光L1’、L2’に出射方向を変化させ、PD上のスポットを動かすことができる。すなわち、そうすることにより、バランス調整をする。
【0099】
こうしてDVD側のレーザ光の出射方向を正規の光軸に重ね合わせると、DVD側のフォトダイオード18、19上に形成される反射光のスポットS2a及びS2bのビーム強度が最大となる点が光軸上に並んで形成されることになり、規格の厳しいDVDに要求される条件を満たすことになる。
【0100】
但し、この状態では、今度はCD側ではPD上のスポットがずれて、バランスがくずれてしまうが、対物レンズをCD側の方向へ移動させることにより、CD側でもフォトダイオード16、17上のスポットS1a、S1bのビーム強度が最大となる点を光軸OA1上に来るように調整することができる。
【0101】
このように、厳しい規格が要求されるDVD側は、レーザスポットを正規の光軸上に形成できると同時に、その強度バランスを容易にかつ正確に安定化させることができる上に、CD側もビーム強度を容易にバランス良く調整することができる。この調整は、CD側の
【数2】
Figure 0004706162
がDVD側に比べ大きいために有利であるが、これは、許容される強度分布が広いため対物レンズを動かしてもフォトダイオードの出力バランスの変化に影響がなく、信号の再生やサーボコントロールの性能が良好に保持されるからである。
【0102】
図1(B)に示した基板は光軸OA2の周りに回転させてもよいし、また図1(A)においてレーザ光L2の出射方向が光軸の内方へ向いてずれている場合にも同様に調整可能である。その場合は、基板回転方向は上記とは逆方向となる。
【0103】
実施の形態2
本実施の形態では、図2(A)に示すように、図1(A)と同様の状態ではあるが、レーザダイオードLD1及びLD2を設けたブロック13を基板11上にマウント(固定)していない状態において、図1(A)で示したと同様にレーザ光L2の出射方向が光軸からずれている場合、図2(B)に示すように、ブロック13を基板11上で(即ち、その面内で)矢印方向に回転させて平面的にみて傾けることによって、DVD側のレーザ光のスポットS2a及びS2bの強度が最大の点を光軸OA2と一致させて又は重ねて位置調整(θ補正)する。
【0104】
次いで、実施の形態1で述べたと同様に、CD側において光軸OA1からずれたレーザ光L1’の光出射方向を対物レンズの移動によって調整する。
【0105】
このように、厳しい規格が要求されるDVD側は、レーザスポットを正規の光軸上に形成できると同時にその強度バランスを容易にかつ正確に安定化させることができる上に、CD側もビーム強度を容易にバランス良く調整することができる。この調整は、CD側の
【数3】
Figure 0004706162
がDVD側に比べて大きいために有利であり、また、
【数4】
Figure 0004706162
が大きいために対物レンズのシフト量が小さくても光強度分布のバランスをとり易く、この点でレンズシフト量をより小さくでき、光ピックアップを設計し易くなる。
【0106】
参考例
この参考例では、図3(A)に示すように、図2(A)と同様の状態ではあるが、レーザダイオードLD1及びLD2を設けたブロック13を基板11上にマウントしていない状態において、図1(A)で示したと同様にレーザ光L2の出射方向が光軸からずれている場合、図3(B)に示すように、ブロック13を基板11上で(即ち、その面内で)矢印方向に幾分過度に回転させて平面的にみて幾分過度に傾ける(過補正する)。この過補正の角度α(レーザ光L2’の出射方向と光軸OA2とのなす角度)は0°以上、1°以下程度とし、0°以上、0.5°以下が好ましい。
【0107】
次いで、ブロック13を基板11上にマウント(固定)し、更に図3(B)に相当する図4(B)の状態から、図4(C)に示すように、基板11を光軸OA1又はOA2と平行な中心軸の周りに矢印方向に回転させて、DVD側のレーザ光L2’の出射方向をL2”のように変化させて光軸OA2に重ねる。こうしてあおり補正を付加することによって、DVD側のレーザ光のスポットS2a及びS2bの強度が最大の点を光軸OA2上に位置させる。
【0108】
次いで、実施の形態1で述べたと同様に、CD側において光軸OA1からずれたレーザ光L1”の光出射方向を対物レンズの移動によって調整する。
【0109】
このように、厳しい規格が要求されるDVD側は、レーザスポットを正規の光軸上に形成できると同時に、その強度バランスを容易にかつ正確に安定化させることができる上に、CD側もビーム強度を容易にバランス良く調整することができる。この調整は、CD側の
【数5】
Figure 0004706162
がDVD側に比べて大きいために有利であり、また、
【数6】
Figure 0004706162
が大きいために対物レンズのシフト量が小さくても光強度分布のバランスをとり易く、この点でレンズシフト量をより小さくでき、光ピックアップを設計し易くなる。
【0110】
しかも、この場合、図3(B)のように面内でまず過補正した後に図4(C)のようにあおり補正をすることにより、結果的にCD側のスポットバランスを調整するために動かさなくてはならない対物レンズのシフト量を一層減らすことができる。
【0111】
次に、上述した各実施の形態に共通の構成を説明する。
【0112】
図5は、例えば780nm帯の波長のレーザ光を出射する第1レーザダイオードLD1と650nm帯の波長のレーザ光を出射する第2レーザダイオードLD2を1チップ上に搭載するモノリシックレーザダイオード14aを示すものである。
【0113】
例えば、円盤状の基台21に設けられた突起部21a上に、モニター用の光検出素子としてのPINダイオード12が形成された半導体ブロック13が固着され、その上部に、第1及び第2レーザダイオードLD1、LD2を1チップ上に有するモノリシックレーザダイオード14aが配置されている。また、基台21を貫通して端子22が設けられており、リード23により上記の第1及び第2レーザダイオードLD1、LD2、或いはPINダイオード12に接続されて、それぞれのダイオードの駆動電源が供給される。
【0114】
図6(a)は上記のレーザダイオードのレーザ光の出射方向と垂直な方向からの要部平面図であり、図6(b)はレーザダイオードのレーザ光の出射方向と垂直な平面での断面図である。PINダイオード12が形成された半導体ブロック13の上部に第1レーザダイオードLD1と第2レーザダイオードLD2を1チップ上に有するモノリシックレーザダイオード14aが配置されている。
【0115】
PINダイオード12においては、第1及び第2レーザダイオードLD1、LD2のリア側に出射されたレーザ光を感知し、その強度を測定して、レーザ光の強度が一定となるように第1及び第2レーザダイオードLD1、LD2の駆動電流を制御するAPC制御が行われるように構成されている。
【0116】
上記のモノリシックレーザダイオード14aについて説明する。第1レーザダイオードLD1として、n型GaAs基板30上に、n型GaAsバッファ層31、n型AlGaAsクラッド層32、活性層33、p型AlGaAsクラッド層34、p型GaAsキャップ層35が積層している。p型GaAsキャップ層35表面からp型AlGaAsクラッド層34の途中の深さまで絶縁化された領域41となって、電流狭窄構造となるストライプを形成している。
【0117】
一方、第2レーザダイオードLD2として、n型GaAs基板30上に、n型GaAsバッファ層31、n型InGaPバッファ層36、n型AlGaInPクラッド層37、活性層38、p型AlGaInPクラッド層39、p型GaAsキャップ層40が積層している。p型GaAsキャップ層40表面からp型AlGaInPクラッド層39の途中の深さまで絶縁化された領域41となって、電流狭窄構造となるストライプを形成している。
【0118】
上記の第1レーザダイオードLD1及び第2レーザダイオードLD2においては、p型GaAsキャップ層35、40にはp電極42が、n型GaAs基板30にはn電極43が接続して形成されている。このモノリシックレーザダイオード14aは、p電極42側から、半導体ブロック13上に形成された電極13aにハンダなどにより接続及び固定されている。
【0119】
上記の第1レーザダイオードLD1のレーザ光出射部と第2レーザダイオードLD2のレーザ光出射部の間隔dは例えば200μm程度以下の範囲(例えば100μm程度)に設定される。各レーザ光出射部からは、例えば780nm帯の波長のレーザ光L1及び650nm帯の波長のレーザ光L2がほぼ同一の方向(ほぼ平行)に出射される。
【0120】
一方、上記した第1及び第2フォトダイオード16−17、18−19間の間隔も上記と同様に200μm程度以下の範囲(例えば100μm程度)に設定され、共通の光学部材を用いて、第1レーザダイオード及び第2レーザダイオードの出射光をCDやDVDなどの光ディスクに照射し、光ディスクからの反射光を第1フォトダイオード及び第2フォトダイオードにそれぞれ結合させることが可能となる。
【0121】
次に、上記の第1レーザダイオードLD1と第2レーザダイオードLD2をチップ上に搭載するモノリシックレーザダイオード14aの形成方法について説明する。
【0122】
まず、図7(a)に示すように、例えば有機金属気相エピタキシャル成長法(MOVPE)などのエピタキシャル成長法により、n型GaAs基板30上に、n型GaAsバッファ層31、n型AlGaAsクラッド層32、活性層(発振波長780nmの多重量子井戸構造)33、p型AlGaAsクラッド層34、p型GaAsキャップ層35を順に積層させる。
【0123】
次に、図7(b)に示すように、第1レーザダイオードLD1として残す領域をレジスト膜(図示せず)で保護して、硫酸系の無選択エッチング、及び、フッ酸系のAlGaAs選択エッチングなどのウエットエッチング(EC1)により、第1レーザダイオードLD1領域以外の領域でn型AlGaAsクラッド層32までの上記の積層体を除去する。
【0124】
次に、図8(c)に示すように、例えば有機金属気相エピタキシャル成長法(MOVPE)などのエピタキシャル成長法により、n型GaAsバッファ層31上に、n型InGaPバッファ層36、n型AlGaInPクラッド層37、活性層(発振波長650nmの多重量子井戸構造)38、p型AlGaInPクラッド層39、p型GaAsキャップ層40を順に積層させる。
【0125】
次に、図8(d)に示すように、第2レーザダイオードLD2として残す領域をレジスト膜(図示せず)で保護して、硫酸系のキャップエッチング、リン酸−塩酸系の4元選択エッチング、塩酸系の分離エッチングなどのウエットエッチング(EC2)により、第2レーザダイオードLD2領域以外の領域でn型InGaPバッファ層36までの上記の積層体を除去し、第1レーザダイオードLD1と第2レーザダイオードLD2を分離する。
【0126】
次に、図9(e)に示すように、レジスト膜(図示せず)で電流注入領域となる部分を保護して、不純物Dをイオン注入などにより導入し、p型GaAsキャップ層35、40の表面からp型AlGaAsクラッド層34、39の途中の深さまで絶縁化された領域41を形成し、電流狭窄構造となるストライプとする。
【0127】
次に、図9(f)に示すように、p型GaAsキャップ層35、40に接続するように、Ti/Pt/Auなどのp型電極42を形成し、一方、n型GaAs基板30に接続するように、AuGe/Ni/Auなどのn型電極43を形成し、ペレタイズ工程を経て、所望の第1レーザダイオードLD1と第2レーザダイオードLD2を1チップ上に搭載するモノリシックレーザダイオード14aとする。
【0128】
図10は、上記したフォトダイオードの配置(a)を示し、このフォトダイオードにより得られる信号から、トラッキングエラー信号、フォーカスエラー信号、及び光ディスクに記録された情報信号の読み取りが図21において説明したと同様にして行われる。そして、上記のようにして、CD又はDVDなどの光ディスクの上下の振れによるフォーカスエラー信号の検出を行い、得られたフォーカスエラー信号に従ってフォーカシングサーボをかける。また、トラッキングエラー信号の検出を行い、得られたトラッキングエラー信号に従ってトラッキングサーボをかける。
【0129】
図11は、上記の本実施の形態によるレーザカプラを用いた光ピックアップの構成を示す。このレーザカプラ1aに内蔵される第1及び第2レーザダイオードからの出射レーザ光L1、L2をコリメータC、ミラーM、CD用開口制限アパーチャR及び対物レンズOLを介して、CD又はDVDなどの光ディスクDに入射する。光ディスクDからの反射光は、入射光と同一の経路をたどってレーザカプラに戻り、レーザカプラに内蔵される第1及び第2フォトダイオードにより受光される。
【0130】
このレーザカプラにおいては、第1及び第2フォトダイオードを図12に示すように分割することも可能である。この場合、前部第1フォトダイオード16の領域d1と、前部第2フォトダイオード18の領域a2とe2が共通化されており、信号a2とe2を加算することで信号d1が得られる。また、後部第1フォトダイオード17の領域l1と、後部第2フォトダイオード19の領域i2が共通化されている。
【0131】
図13(a)は、本実施の形態にかかるレーザカプラ1aの概略構成を示す説明図である。レーザカプラ1aは、第1パッケージ部材2の凹部に装填され、ガラスなどの透明な第2パッケージ部材3により封止されている。
【0132】
図13(b)は上記のレーザカプラ1aの要部斜視図である。例えば、シリコンの単結晶を切り出した基板である集積回路基板11上に、モニター用の光検出素子としてのPINダイオード12が形成された半導体ブロック13が配置され、さらに、この半導体ブロック13上に、発光素子として第1レーザダイオードLD1及び第2レーザダイオードLD2を1チップ上に搭載するモノリシックレーザダイオード14aが配置されている。
【0133】
第1レーザダイオードLD1から出射されたレーザ光L1は、プリズム20の分光面20aで一部反射して進行方向を屈曲し、第2パッケージに形成された出射窓から出射方向に出射し、反射ミラーや対物レンズ(図示せず)などを介して光ディスク(CD)などの被照射対象物に照射される。
【0134】
上記の被照射対象物からの反射光は、被照射対象物への入射方向と反対方向に進み、レーザカプラ1aのプリズム20の分光面20aに入射する。このプリズム20の上面で焦点を結びながら、プリズム20の下面となる集積回路基板11上に形成された前部第1フォトダイオード16及び後部第1フォトダイオード17に入射する。
【0135】
一方、第2レーザダイオードLD2から出射されたレーザ光L2は、上記と同様に、プリズム20の分光面20aで一部反射して進行方向を屈曲し、第2パッケージに形成された出射窓から出射し、反射ミラーや対物レンズなど(図示せず)を介して光ディスク(DVD)などの被照射対象物に照射される。
【0136】
上記の被照射対象物からの反射光は、被照射対象物への入射方向と反対方向に進み、レーザカプラ1aのプリズム20の分光面20aに入射する。このプリズム20の上面で焦点を結びながら、プリズム20の下面となる集積回路基板11上に形成された前部第2フォトダイオード18および後部第2フォトダイオード19に入射する。
【0137】
このように、本実施の形態のレーザカプラは、CD用のレーザダイオードLD1(発振波長780nm)とDVD用のレーザダイオードLD2(発振波長650nm)を搭載し、CDとDVDの再生を可能にするコンパチブル光ピックアップを構成することが可能である。さらに、第1レーザダイオードと第2レーザダイオードを1チップ上に搭載するモノリシックレーザダイオードを用いることから、光学系の組み立てがさらに容易となる。
【0138】
以上、本発明を実施の形態により説明したが、本発明はこれらの実施の形態に何ら限定されるものではない。
【0139】
例えば、本発明に用いる発光素子としては、レーザダイオードに限定されず、発光ダイオード(LED)を用いることも可能である。
【0140】
また、第1及び第2レーザダイオードの発振波長は、780nm帯と650nm帯に限定されるものではなく、その他の光ディスクシステムに採用されている波長とすることができる。すなわち、種々の波長の組み合せを用い、CDとDVD以外の他の組み合わせの光ディスクシステムを採用することができる。また、波長が同じであっても、パワーが異なる光や偏光方向が異なる光を用いてもよい。また、波長など、物性の異なる光は2種類に限らず、それ以上としてもよい。
【0141】
また、APC制御を行うためのPINダイオードは、第1及び第2フォトダイオードが形成されている集積回路基板上に形成する構成としてもよい。この場合には、プリズムの構成を変更して、第1及び第2レーザダイオードのフロント側の出射光の一部を取り出してPINダイオードに結合する構成とすることが好ましい。再生信号やトラッキング、フォーカスエラー信号の読み取りは、図20で述べたように行ってもよい。
【0142】
また、図14に示すように、レーザダイオード14(LD1)と15(LD2)を別々に(即ち、ディスクリートに)作製し、それぞれをマウントする構成としたレーザカプラ1bとしてもよい。
【0143】
その他、フォトダイオードのパターン、レイアウトなどは種々変更してよく、ダイオード以外のディテクタ構造としてもよい。
【0144】
【発明の作用効果】
本発明は上述した如く、前記ブロック上での前記複数の発光素子の位置を固定したまま前記ブロックを傾けることにより、前記複数の発光素子を共通に傾けて、所定の発光素子の光出射方向を正規の光軸と重ねているので、例えば規格の厳しい高精度化が要求される前記所定の発光素子からの出射光の出射方向を前記要求を満たすように設定でき、しかもこれを前記ブロックを傾けることによって行える(従って、発光素子自体は直接回転調整しない)ために、前記所定の発光素子の出射光の位置調整が容易となる。
【0145】
そして、前記他の発光素子からの出射光については、対物レンズの位置調整によって光軸を正規の光軸に重ねるが、この際、
【数7】
Figure 0004706162
が広い場合には、対物レンズの振れ(レンズシフト)によりスポットバランスを適切に調整することができ、レンズシフトを行っても特性への影響は少ない。
【図面の簡単な説明】
【図1】本発明の実施の形態1によるレーザカプラの光ビーム位置調整方法を示す概略平面図である。
【図2】本発明の実施の形態2によるレーザカプラの光ビーム位置調整方法を示す概略平面図である。
【図3】参考例によるレーザカプラの光ビーム位置調整方法の第1段階を示す概略平面図である。
【図4】同、レーザカプラの光ビーム位置調整方法の第2段階を示す概略平面図である。
【図5】本発明の各実施の形態に用いるレーザダイオードの要部斜視図である。
【図6】同、レーザダイオードのレーザ光の出射方向を示す要部平面図(a)と同出射方向と垂直方向における断面図(b)である。
【図7】同、レーザダイオードの製造方法を工程順に示す断面図である。
【図8】同、レーザダイオードの製造方法を工程順に示す断面図である。
【図9】同、レーザダイオードの製造方法を工程順に示す断面図である。
【図10】同、フォトダイオードの要部平面図(a)とDPD法を説明するためのブロック図(b)である。
【図11】同、レーザカプラを用いた光ピックアップの概略構成図である。
【図12】同、フォトダイオードの変形例の要部平面図である。
【図13】同、レーザカプラのパッケージの斜視図(a)と同レーザカプラの斜視図(b)である。
【図14】同、レーザカプラの他のパッケージの斜視図(a)と同レーザカプラの斜視図(b)である。
【図15】従来例による光ピックアップの概略構成図である。
【図16】他の従来例による光ピックアップの概略構成図である。
【図17】本発明者が既に提案した光ピックアップの概略構成図である。
【図18】同、レーザダイオードの要部斜視図である。
【図19】同、レーザダイオードのレーザ光の出射方向を示す要部平面図(a)と同出射側の要部側面図(b)と他のレーザダイオードのレーザ光の出射方向を示す要部平面図(c)である。
【図20】同、フォトダイオードの要部平面図(a)とDPD法を説明するためのブロック図(b)である。
【図21】同、レーザカプラでの光ビーム出射方向とそのスポットを示す概略平面図である。
【符号の説明】
1a、1b…レーザカプラ、11…集積回路基板、12…PINダイオード、
13…半導体ブロック、14、LD1…第1レーザダイオード、
14a…モノリシックレーザダイオード、
15、LD2…第2レーザダイオード、16…前部第1フォトダイオード、
17…後部第1フォトダイオード、18…前部第2フォトダイオード、
19…後部第2フォトダイオード、20…プリズム、20a…分光面、
E1、E2…レーザ光出射部、BS…ビームスプリッタ、C…コリメータ、
R…CD用の開口制限アパーチャ、ML…マルチレンズ、
PD…フォトダイオード、G…グレーティング、M…ミラー、
OL…対物レンズ、D…光ディスク、L1、L1’、L1”…第1レーザ光、
L2、L2’、L2”…第2レーザ光、PC…位相比較器、AD…加算器、
OA1、OA2…正規の光軸、S1a、S1b、S2a、S2b…スポット

Claims (12)

  1. 互いに波長の異なる複数の光をそれぞれ出射する複数の発光素子が光出射方向と交差する方向にて共通のブロック上に並置され、更にこのブロックが基体上に固定され、前記複数の発光素子からの出射光が対物レンズを通して対応する複数の受光素子にそれぞれ導かれる光学装置において、前記複数の発光素子を位置固定するに際し、前記出射光のビーム位置を調整するために、
    光学装置製造段階にて、前記複数の発光素子のうち、波長のより短かい光を出射する
    所定の発光素子の出射光の光出射方向が正規の光軸と重なるように、前記ブロック上で
    の前記複数の発光素子の位置を固定したまま前記ブロックを傾けることにより、前記複
    数の発光素子を共通に傾けて位置調整し、
    この位置調整状態で更に、前記所定の発光素子以外の、波長のより長い光を出射する
    他の発光素子の使用段階にて、トラッキングサーボ以前に、前記他の発光素子の出射光
    が前記対物レンズに入射した後にこの対物レンズから出射する際に、この出射光の光出
    射方向が正規の光軸と重なるように前記対物レンズを位置調整する
    光ビーム位置調整方法。
  2. 前記複数の発光素子を固定した前記ブロックを前記基体上に固定した後に、前記ブロックと共に前記基体を前記正規の光軸又はこれと平行な軸の周りに回転させて前記位置調整を行う、請求項1に記載した光ビーム位置調整方法。
  3. 前記複数の発光素子を固定した前記ブロックを前記基体上に固定する前に、前記ブロックをその面内にて前記基体上で回転させて前記位置調整を行う、請求項1に記載した光ビーム位置調整方法。
  4. 前記所定の発光素子のビーム発散角が前記他の発光素子のそれよりも小さい、請求項1に記載した光ビーム位置調整方法。
  5. 前記複数の発光素子の出射光が前記対物レンズを通して被照射体に入射し、この反射光が前記対物レンズを通して前記複数の受光素子にそれぞれ入射する、請求項1に記載した光ビーム位置調整方法
  6. 前記複数の発光素子を固定した前記ブロックと、前記複数の発光素子の各出射光を前記被照射体へ導きかつ前記反射光を前記複数の受光素子へ導くための光学部材と、前記受光素子とが共通の前記基体上に設けられた光カプラに適用する、請求項5に記載した光ビーム位置調整方法。
  7. 光ディスク装置の光ピックアップに適用する、請求項5に記載した光ビーム位置調整方法。
  8. 互いに波長の異なる複数の光をそれぞれ出射する複数の発光素子が光出射方向と交差する方向にて共通のブロック上に並置され、更にこのブロックが基体上に固定され、前記複数の発光素子からの出射光が対物レンズを通してディスク状情報記録媒体に照射され、この反射光が前記対物レンズを通して対応する複数の受光素子にそれぞれ導かれる光ディスク装置において、前記複数の発光素子を位置固定するに際し、前記出射光のビーム位置を調整するために、
    光ディスク装置製造段階にて、前記複数の発光素子のうち、波長のより短かい光を出
    射する所定の発光素子の出射光の光出射方向が正規の光軸と重なるように、前記ブロッ
    ク上での前記複数の発光素子の位置を固定したまま前記ブロックを傾けることにより、
    前記複数の発光素子を共通に傾けて位置調整し、
    この位置調整状態で更に、前記所定の発光素子以外の、波長のより長い光を出射する
    他の発光素子の使用段階にて、トラッキングサーボ以前に、前記他の発光素子の出射光
    が前記対物レンズに入射した後にこの対物レンズから出射する際に、この出射光の光出
    射方向が正規の光軸と重なるように前記対物レンズを位置調整する
    光ビーム位置調整方法。
  9. 前記複数の発光素子を固定した前記ブロックを前記基体上に固定した後に、前記ブロックと共に前記基体を前記正規の光軸又はこれと平行な軸の周りに回転させて前記位置調整を行う、請求項8に記載した光ビーム位置調整方法。
  10. 前記複数の発光素子を固定した前記ブロックを前記基体上に固定する前に、前記ブロックをその面内にて前記基体上で回転させて前記位置調整を行う、請求項8に記載した光ビーム位置調整方法。
  11. 前記所定の発光素子のビーム発散角が前記他の発光素子のそれよりも小さい、請求項8に記載した光ビーム位置調整方法。
  12. 前記複数の発光素子を固定した前記ブロックと、前記複数の発光素子の各出射光を前記ディスク状情報記録媒体へ導きかつ前記反射光を前記複数の受光素子へ導くための光学部材と、前記受光素子とが共通の前記基体上に設けられた光カプラに適用する、請求項8に記載した光ビーム位置調整方法。
JP2002191712A 2002-07-01 2002-07-01 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法 Expired - Fee Related JP4706162B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191712A JP4706162B2 (ja) 2002-07-01 2002-07-01 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191712A JP4706162B2 (ja) 2002-07-01 2002-07-01 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000056393A Division JP3558121B2 (ja) 2000-03-01 2000-03-01 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法

Publications (3)

Publication Number Publication Date
JP2003022543A JP2003022543A (ja) 2003-01-24
JP2003022543A5 JP2003022543A5 (ja) 2007-01-25
JP4706162B2 true JP4706162B2 (ja) 2011-06-22

Family

ID=19195508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191712A Expired - Fee Related JP4706162B2 (ja) 2002-07-01 2002-07-01 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法

Country Status (1)

Country Link
JP (1) JP4706162B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696794B2 (ja) * 2005-09-06 2011-06-08 船井電機株式会社 光ピックアップ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152260A (ja) * 2001-11-09 2003-05-23 Sharp Corp 半導体レーザ装置およびそれを用いた光ピックアップ装置、ならびに半導体レーザ装置の製造装置および製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584957B2 (ja) * 1997-07-16 2004-11-04 ミツミ電機株式会社 光ピックアップ及びその調整方法
JPH11149657A (ja) * 1997-11-14 1999-06-02 Sony Corp 情報記録再生装置および方法、並びに光学ピックアップ
JPH11296893A (ja) * 1998-04-14 1999-10-29 Ricoh Co Ltd 光ピックアップ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152260A (ja) * 2001-11-09 2003-05-23 Sharp Corp 半導体レーザ装置およびそれを用いた光ピックアップ装置、ならびに半導体レーザ装置の製造装置および製造方法

Also Published As

Publication number Publication date
JP2003022543A (ja) 2003-01-24

Similar Documents

Publication Publication Date Title
US6646975B1 (en) Semiconductor laser array and its manufacturing method, optical integrated unit and optical pickup
JP3882210B2 (ja) 光学装置
JP5240156B2 (ja) 半導体発光装置の製造方法
JP2001102676A (ja) 光集積ユニット、光ピックアップ及び光記録媒体駆動装置
US20060104186A1 (en) Optical pickup apparatus employing a grating and a hologram that generate multiple beams detected by a photodetector
JP2000244060A (ja) 半導体発光装置およびその製造方法
US6816450B2 (en) Optical pickup apparatus that emits two light beams having two different wavelengths
JP4590660B2 (ja) 光ピックアップ装置
JP4706162B2 (ja) 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法
JP2001229570A (ja) 光ピックアップ装置及びレーザダイオードチップ
JP3558121B2 (ja) 光学装置、光ディスク装置、及びこれらの光ビーム位置調整方法
US6914869B1 (en) Optical pickup for CD/DVD compatible player
US20050041700A1 (en) Multiwavelength semiconductor laser
JP2001250255A (ja) 光学装置及び光ディスク装置
JP2011227980A (ja) 光ピックアップ装置
JP2000187876A (ja) 光学装置および光ディスク装置
JP2001250253A (ja) 光学装置、光ディスク装置、及びこれらの光スポット調整方法
JP2001250252A (ja) 光ディスク装置
JP3533273B2 (ja) 光学装置
JP2001250254A (ja) 光学装置及び光ディスク装置
JP4821829B2 (ja) 半導体発光装置の製造方法
JP2000020997A (ja) 光ピックアップ装置
JPH11144307A (ja) 受発光素子とこれを用いた光学ピックアップ及び光ディスク装置
US20050162994A1 (en) Two-wavelength optical element
JP2002237083A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees