JP4701601B2 - Electrolytic solution for lithium secondary battery and lithium secondary battery using the same - Google Patents

Electrolytic solution for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP4701601B2
JP4701601B2 JP2003369360A JP2003369360A JP4701601B2 JP 4701601 B2 JP4701601 B2 JP 4701601B2 JP 2003369360 A JP2003369360 A JP 2003369360A JP 2003369360 A JP2003369360 A JP 2003369360A JP 4701601 B2 JP4701601 B2 JP 4701601B2
Authority
JP
Japan
Prior art keywords
lithium secondary
lithium
electrolyte
secondary battery
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003369360A
Other languages
Japanese (ja)
Other versions
JP2005135701A (en
Inventor
功二 宇津木
雄樹 草地
伊紀子 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003369360A priority Critical patent/JP4701601B2/en
Publication of JP2005135701A publication Critical patent/JP2005135701A/en
Application granted granted Critical
Publication of JP4701601B2 publication Critical patent/JP4701601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用電解液およびそれを用いたリチウム二次電池に関するものである。 The present invention relates to a lithium secondary battery using the same electrolyte and a lithium secondary battery.

負極に炭素材料、酸化物、リチウム合金またはリチウム金属を用い、正極にリチウム含有遷移金属複合酸化物を用いた非水電解液リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できることから携帯電話、ノートパソコン用などの電源として注目されている。この二次電池において、電極の表面には表面膜または保護膜またはSEIまたは皮膜と呼ばれる膜が生成することが知られている。この表面膜は、充放電効率、サイクル寿命、安全性に大きな影響を及ぼすことから電極の高性能化には表面膜の制御が不可欠であることが知られている。炭素材料、酸化物材料についてはその不可逆容量の低減が必要であり、リチウム金属、合金負極においては充放電効率の低下とデンドライト生成による安全性の問題を解決する必要がある。   Non-aqueous electrolyte lithium ion or lithium secondary batteries using carbon materials, oxides, lithium alloys or lithium metals for the negative electrode and lithium-containing transition metal composite oxides for the positive electrode can realize high energy density. It is attracting attention as a power source for notebook computers. In this secondary battery, it is known that a film called a surface film, a protective film, SEI or a film is formed on the surface of the electrode. Since this surface film has a great influence on charge / discharge efficiency, cycle life, and safety, it is known that control of the surface film is indispensable for improving the performance of the electrode. For carbon materials and oxide materials, it is necessary to reduce the irreversible capacity, and for lithium metal and alloy negative electrodes, it is necessary to solve the problem of safety due to reduction in charge / discharge efficiency and generation of dendrites.

これらの課題を解決する手法として様々な手法が提案されてきている。例えば、リチウム金属またはリチウム合金の表面に、化学反応を利用してフッ化リチウム等からなる皮膜層を設けることによってデンドライトの生成を抑制することが提案されている。   Various techniques have been proposed as a technique for solving these problems. For example, it has been proposed to suppress the formation of dendrite by providing a film layer made of lithium fluoride or the like using a chemical reaction on the surface of lithium metal or lithium alloy.

特許文献1には、フッ化水素酸を含有する電解液にリチウム負極を曝し、負極をフッ化水素酸と反応させることによりその表面をフッ化リチウムの膜で覆う技術が開示されている。フッ化水素酸は、LiPFおよび微量の水の反応により生成する。一方、リチウム負極表面には、空気中での自然酸化により水酸化リチウムや酸化リチウムの表面膜が形成されている。これらが反応することにより、負極表面にフッ化リチウムの表面膜が生成するのである。しかしながら、このフッ化リチウム膜は、電極界面と液との反応を利用して形成されるものであり、副反応成分が表面膜中に混入しやすく、均一な膜が得られにくい。また、水酸化リチウムや酸化リチウムの表面膜が均一に形成されていない場合や一部リチウムがむきだしになっている部分が存在する場合もあり、これらの場合には均一な薄膜の形成ができない上、水やフッ化水素等とリチウムが反応することから安全性の点でも改善の余地を有していた。また、反応が不十分であった場合には、フッ化物以外の不要な化合物成分が残り、イオン伝導性の低下を招く等の悪影響が考えられる。さらに、このような界面での化学反応を利用してフッ化物層を形成する方法では、利用できるフッ化物や電解液の選択幅が限定され、安定な表面膜を歩留まり良く形成することは困難であった。 Patent Document 1 discloses a technique in which a lithium negative electrode is exposed to an electrolytic solution containing hydrofluoric acid, and the negative electrode is reacted with hydrofluoric acid to cover the surface with a lithium fluoride film. Hydrofluoric acid is produced by the reaction of LiPF 6 and a small amount of water. On the other hand, a surface film of lithium hydroxide or lithium oxide is formed on the surface of the lithium negative electrode by natural oxidation in air. When these react, a surface film of lithium fluoride is formed on the negative electrode surface. However, this lithium fluoride film is formed by utilizing the reaction between the electrode interface and the liquid, and side reaction components are easily mixed into the surface film, making it difficult to obtain a uniform film. Also, there may be cases where the surface film of lithium hydroxide or lithium oxide is not uniformly formed or there is a part where lithium is exposed. In these cases, a uniform thin film cannot be formed. In addition, there is room for improvement in terms of safety because lithium reacts with water, hydrogen fluoride, and the like. Moreover, when reaction is inadequate, unnecessary compound components other than a fluoride remain, and bad influences, such as causing the fall of ion conductivity, are considered. Furthermore, in the method of forming a fluoride layer using such a chemical reaction at the interface, the selection range of the available fluoride and electrolyte is limited, and it is difficult to form a stable surface film with a high yield. there were.

特許文献2では、アルゴンとフッ化水素の混合ガスとアルミニウム−リチウム合金とを反応させ、負極表面にフッ化リチウムの表面膜を得ている。しかしながら、リチウム金属表面にあらかじめ表面膜が存在する場合、特に複数種の化合物が存在する場合には反応が不均一になり易く、フッ化リチウムの膜を均一に形成することが困難である。このため、十分なサイクル特性のリチウム二次電池を得ることが困難となる。   In Patent Document 2, a mixed gas of argon and hydrogen fluoride and an aluminum-lithium alloy are reacted to obtain a lithium fluoride surface film on the negative electrode surface. However, when a surface film is present on the lithium metal surface in advance, particularly when a plurality of types of compounds are present, the reaction tends to be non-uniform, and it is difficult to form a lithium fluoride film uniformly. For this reason, it becomes difficult to obtain a lithium secondary battery having sufficient cycle characteristics.

特許文献3には、均一な結晶構造すなわち(100)結晶面が優先的に配向しているリチウムシートの表面に、岩塩型結晶構造を持つ物質を主成分とする表面皮膜構造を形成する技術が開示されている。こうすることにより、均一な析出溶解反応すなわち電池の充放電を行うことができ、リチウム金属のデンドライト析出を抑え、電池のサイクル寿命が向上できるとされている。表面膜に用いる物質としては、リチウムのハロゲン化物を有していることが好ましく、LiCl、LiBr、LiIより選ばれる少なくとも一種と、LiFとの固溶体を用いることが好ましいと述べられている。具体的には、LiCl、LiBr、LiIの少なくとも一種と、LiFとの固溶体皮膜を形成するために、押圧処理(圧延)により作成した(100)結晶面が優先的に配向しているリチウムシートを、塩素分子もしくは塩素イオン、臭素分子もしくは臭素イオン、ヨウ素分子もしくはヨウ素イオンのうち少なくとも一種とフッ素分子もしくはフッ素イオンを含有している電解液に浸すことにより非水電解質電池用負極を作成している。この技術の場合、圧延のリチウム金属シートを用いており、リチウムシートが大気中に曝され易いため表面に水分などに由来する皮膜が形成され易く、活性点の存在が不均一となり、目的とした安定な表面膜を作ることが困難となり、デントライトの抑制効果は必ずしも充分に得られなかった。   Patent Document 3 discloses a technique for forming a surface film structure mainly composed of a substance having a rock salt type crystal structure on the surface of a lithium sheet having a uniform crystal structure, that is, a (100) crystal plane preferentially oriented. It is disclosed. By carrying out like this, it is said that uniform precipitation dissolution reaction, ie, charge / discharge of a battery, can be performed, dendrite precipitation of lithium metal can be suppressed, and the cycle life of the battery can be improved. It is stated that the substance used for the surface film preferably has a halide of lithium, and it is preferable to use a solid solution of LiF with at least one selected from LiCl, LiBr, and LiI. Specifically, in order to form a solid solution film of at least one of LiCl, LiBr, and LiI and LiF, a lithium sheet with a (100) crystal plane preferentially oriented formed by pressing (rolling) is used. A negative electrode for a non-aqueous electrolyte battery is created by immersing in an electrolyte containing at least one of chlorine molecules or chlorine ions, bromine molecules or bromine ions, iodine molecules or iodine ions, and fluorine molecules or fluorine ions. . In the case of this technology, a rolled lithium metal sheet is used, and since the lithium sheet is easily exposed to the atmosphere, a film derived from moisture and the like is easily formed on the surface, and the presence of active sites becomes uneven, which is the purpose. It became difficult to produce a stable surface film, and the effect of suppressing dentlite was not always sufficiently obtained.

また、リチウムイオンを吸蔵、放出し得る黒鉛やハードカーボン等の炭素材料を負極として用いた場合、容量および充放電効率の向上に係る技術が報告されている。   In addition, when a carbon material such as graphite or hard carbon capable of occluding and releasing lithium ions is used as the negative electrode, a technique for improving capacity and charge / discharge efficiency has been reported.

特許文献4では、アルミニウムで炭素材料を被覆した負極が提案されている。これにより、リチウムイオンと溶媒和した溶媒分子の炭素表面での還元分解が抑制され、サイクル寿命の劣化を抑えられるとされている。ただし、アルミニウムが微量の水と反応してしまうため、サイクルを繰り返すと急速に容量が低下するという課題を有している。   In patent document 4, the negative electrode which coat | covered the carbon material with aluminum is proposed. Thereby, reductive decomposition on the carbon surface of solvent molecules solvated with lithium ions is suppressed, and deterioration of cycle life is suppressed. However, since aluminum reacts with a small amount of water, there is a problem that the capacity rapidly decreases when the cycle is repeated.

また、特許文献5では、炭素材料の表面をリチウムイオン伝導性固体電解質の薄膜を被覆した負極が提示されている。これにより、炭素材料を使用した際に生じる溶媒の分解を抑制し、特に炭酸プロピレンを使用できるリチウムイオン二次電池を提供できるとしている。しかしながら、リチウムイオンの挿入、脱離時の応力変化により固体電解質中に生じるクラックが特性劣化を導くことがあった。また、固体電解質の結晶欠陥等の不均一性により、負極表面において均一な反応が得られずサイクル寿命の劣化につながることがあった。   Patent Document 5 proposes a negative electrode in which the surface of a carbon material is covered with a thin film of a lithium ion conductive solid electrolyte. Thereby, it is said that the decomposition | disassembly of the solvent which arises when using a carbon material can be suppressed, and especially the lithium ion secondary battery which can use propylene carbonate can be provided. However, cracks generated in the solid electrolyte due to changes in stress during insertion and desorption of lithium ions may lead to deterioration of characteristics. Further, due to non-uniformity such as crystal defects of the solid electrolyte, a uniform reaction could not be obtained on the negative electrode surface, leading to deterioration of cycle life.

また、特許文献6では、負極がグラファイトを含む材料からなり、電解液として環状カーボネート及び鎖状カーボネートを主成分とし、且つ前記電解液中に0.1質量%以上4質量%以下の1,3−プロパンスルトン及び/または1,4−ブタンスルトンを含んだ二次電池が開示されている。ここで、1,3−プロパンスルトンや1,4−ブタンスルトンは、炭素材料表面での不働態皮膜形成に寄与し、天然黒鉛や人造黒鉛などの活性で高結晶化した炭素材料を不働態皮膜で被覆し、電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考えられている。   Further, in Patent Document 6, the negative electrode is made of a material containing graphite, the electrolytic solution is mainly composed of cyclic carbonate and chain carbonate, and 0.1 to 4% by weight of 1,3 in the electrolytic solution. Secondary batteries containing propane sultone and / or 1,4-butane sultone are disclosed. Here, 1,3-propane sultone or 1,4-butane sultone contributes to the formation of a passive film on the surface of the carbon material, and the active and highly crystallized carbon material such as natural graphite or artificial graphite is a passive film. It is considered that the coating has an effect of suppressing the decomposition of the electrolyte without impairing the normal reaction of the battery.

特許文献7では芳香族化合物を電解液溶媒に添加することによって、電解液溶媒の酸化を防ぐことで二次電池の長期にわたる充放電を繰り返した際の容量劣化を抑制している。これは、前記芳香族化合物を優先的に酸化分解させることにより、溶媒の分解を防ぐ技術である。しかしながら、この添加剤を用いた場合、正極表面が被覆されないためにサイクル特性の改善効果は十分とはいえなかった。   In Patent Document 7, by adding an aromatic compound to the electrolyte solvent, the deterioration of the capacity when the secondary battery is repeatedly charged and discharged over a long period of time is suppressed by preventing oxidation of the electrolyte solvent. This is a technique for preventing the decomposition of the solvent by preferentially oxidatively decomposing the aromatic compound. However, when this additive is used, the positive electrode surface is not covered, and thus the effect of improving the cycle characteristics is not sufficient.

特許文献8では電解液中に窒素含有不飽和環状化合物を添加することによって高電圧正極を用いた場合のサイクル特性を向上させる技術が記載されている。しかしながら窒素含有不飽和環状化合物は負極の充放電効率を向上させるものの、正極の充放電効率を向上させるものではなかった。
特開平7−302617号公報 特開平8−250108号公報 特開平11−288706号公報 特開平5−234583号公報 特開平5−275077号公報 特開2000−3724号公報 特開2003−7334号公報 特開2003−115324号公報
Patent Document 8 describes a technique for improving cycle characteristics when a high-voltage positive electrode is used by adding a nitrogen-containing unsaturated cyclic compound to an electrolytic solution. However, although the nitrogen-containing unsaturated cyclic compound improves the charge / discharge efficiency of the negative electrode, it does not improve the charge / discharge efficiency of the positive electrode.
JP-A-7-302617 JP-A-8-250108 Japanese Patent Laid-Open No. 11-288706 Japanese Patent Laid-Open No. 5-234583 JP-A-5-275077 JP 2000-3724 A JP 2003-7334 A JP 2003-115324 A

しかしながら上記従来技術は、次のような共通する課題を有していた。   However, the above prior art has the following common problems.

電極表面に生成する表面膜は、その性質によって充放電効率、サイクル寿命、安全性に深く関わっているが、その膜の制御を長期にわたって行える手法はまだ存在していない。例えば、リチウムやその合金からなる層の上にリチウムハロゲン化物またはガラス状酸化物からなる表面膜を形成した場合、初期使用時にはデントライトの抑制効果が一定程度得られるものの、繰り返し使用していると、表面膜が劣化して保護膜としての機能が低下する。これは、リチウムやその合金からなる層は、リチウムを吸蔵・放出することにより体積変化する一方、その上部に位置するリチウムハロゲン化物等からなる被膜は体積変化がほとんどないため、これらの層およびこれらの界面に内部応力が発生することが原因と考えられる。このような内部応力が発生することにより、特にリチウムハロゲン化物等からなる表面膜の一部が破損し、デンドライトの抑制機能が低下するものと考えられる。   The surface film generated on the electrode surface is deeply related to charge / discharge efficiency, cycle life, and safety depending on its properties, but there is no method for controlling the film for a long time. For example, when a surface film made of lithium halide or glassy oxide is formed on a layer made of lithium or an alloy thereof, although a certain degree of dentite suppression effect can be obtained during initial use, The surface film is deteriorated and the function as a protective film is lowered. This is because a layer made of lithium or an alloy thereof changes in volume by occlusion / release of lithium, whereas a film made of lithium halide or the like located on the upper side hardly changes in volume. This is thought to be due to the generation of internal stress at the interface. By generating such internal stress, it is considered that a part of the surface film made of lithium halide or the like is particularly damaged, and the dendrite suppressing function is lowered.

黒鉛等の炭素材料に関しては、溶媒分子またはアニオンの分解による電荷が不可逆容量成分として現れ、初回充放電効率の低下を導く。また、このとき生じた膜の組成、結晶状態、安定性等がその後の効率、サイクル寿命に大きな影響を及ぼす。   For carbon materials such as graphite, charges due to decomposition of solvent molecules or anions appear as irreversible capacity components, leading to a decrease in initial charge / discharge efficiency. Further, the composition, crystal state, stability, etc. of the film produced at this time have a great influence on the subsequent efficiency and cycle life.

正極にリチウム含有遷移金属複合酸化物を用いた4.5V以上の高電圧の二次電池の場合には、正極上で溶媒分子の分解などが生じ、サイクル寿命の低下を招いている。   In the case of a secondary battery having a high voltage of 4.5 V or higher using a lithium-containing transition metal composite oxide for the positive electrode, solvent molecules are decomposed on the positive electrode, leading to a reduction in cycle life.

このように、二次電池用電極に皮膜を形成して、充放電効率、サイクル寿命の改善などを図った研究が行われているが、未だ十分な電池特性が得られていない。   As described above, studies have been made to improve the charge / discharge efficiency and cycle life by forming a film on the electrode for the secondary battery, but sufficient battery characteristics have not been obtained yet.

本発明によれば、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体から選択される少なくとも一種類の非プロトン性溶媒と、下記式のいずれか1式で表されるビニルジスルホン化合物とを含み、
前記ビニルジスルホン化合物の含有量が、電解液全体に対し0.01乃至10質量%であることを特徴とするリチウム二次電池用電解液、が提供される。

Figure 0004701601
According to the present invention, at least one kind selected from cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and fluorinated derivatives thereof. and protic solvents, and divinyl sulfone compounds represented by any one formula of formula seen including,
An electrolytic solution for a lithium secondary battery is provided, wherein the content of the vinyl disulfone compound is 0.01 to 10% by mass with respect to the entire electrolytic solution.
Figure 0004701601

本発明によれば、正極、負極および電解液を備え、電解液が上述の記載のリチウム二次電池用電解液であるリチウム二次電池、が提供される。 According to the present invention, there is provided a lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein the electrolytic solution is the above-described electrolytic solution for a lithium secondary battery.

本発明によれば、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エ−テル類およびそれらのフッ化誘導体から選択される少なくとも一種類の非プロトン性溶媒と、下記一般式(1)又は(2)で示されるビニルジスルホン化合物とを含むことを特徴とするリチウム二次電池用電解液、が提供される。

Figure 0004701601
(ここで、R 1 、R 2 はそれぞれ独立して炭素数1〜4のアルコキシ基、置換または無置換のフェニル基、アルキルオキシル基、アミノ基、ハロゲン原子から選ばれる。R 、R はそれぞれ独立して、水素原子、炭素数1〜4のアルキル基から選ばれる。また、R とR は互いに結合して環構造を形成しても良い。)
Figure 0004701601
(ここで、X 及びX は同一でも異なっていてもよく、メチレン基、酸素原子、−NH−基の中から選ばれる結合基である。Yは炭素数1〜5のアルキレン基、カルボニル基、スルホニル基を表す。R 、R は、それぞれ独立して、水素原子、炭素数1〜4のアルキル基から選ばれる。)
本発明によれば、上記構成の電解液を用いるため、リチウム二次電池の充放電効率が顕著に改善され、良好なサイクル特性が得られる。このような効果が得られる理由については必ずしも明らかではないが、上記電解液が正極表面に保護膜を形成する作用を有することによるものと推察される。 According to the present invention, at least one selected from cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives. The electrolyte solution for lithium secondary batteries characterized by including the aprotic solvent of this, and the vinyl disulfone compound shown by the following general formula (1) or (2) is provided.
Figure 0004701601
(Here, R 1 and R 2 are each independently selected from an alkoxy group having 1 to 4 carbon atoms, a substituted or unsubstituted phenyl group, an alkyloxyl group, an amino group, and a halogen atom. R 3 and R 4 are Each is independently selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms, and R 1 and R 2 may be bonded to each other to form a ring structure.)
Figure 0004701601
(Wherein X 1 and X 2 may be the same or different and are a linking group selected from a methylene group, an oxygen atom, and an —NH— group. Y is an alkylene group having 1 to 5 carbon atoms, carbonyl Group represents a sulfonyl group, and R 5 and R 6 are each independently selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms.)
According to the present invention, since the electrolytic solution having the above configuration is used, the charge / discharge efficiency of the lithium secondary battery is remarkably improved, and good cycle characteristics are obtained. The reason why such an effect is obtained is not necessarily clear, but it is presumed that the electrolytic solution has a function of forming a protective film on the surface of the positive electrode.

本発明によれば、非プロトン性溶媒と、ビニルジスルホン化合物とを含むリチウム二次電池用電解液としているため、優れたエネルギー密度、起電力等の特性を有するとともに、サイクル寿命、安全性に優れたリチウム二次電池を実現することができる。 According to the present invention, since it is an electrolyte for a lithium secondary battery containing an aprotic solvent and a vinyl disulfone compound, it has excellent characteristics such as energy density and electromotive force, and is excellent in cycle life and safety. A lithium secondary battery can be realized.

本発明におけるビニルジスルホン化合物としては、下記一般式(1)で表される化合物を用いることができる。

Figure 0004701601
As the vinyl disulfone compound in the present invention, a compound represented by the following general formula (1) can be used.
Figure 0004701601

また、上記一般式(1)の化合物として、以下のような環状化合物を用いることもできる。

Figure 0004701601
(ここで、X及びXは同一でも異なっていてもよく、メチレン基、酸素原子、−NH−基の中から選ばれる結合基である。Yは炭素数1〜5のアルキレン基、カルボニル基、スルホニル基を表す。R、Rは、それぞれ独立して、水素原子、炭素数1〜4のアルキル基から選ばれる。) Moreover, the following cyclic compounds can also be used as a compound of the said General formula (1).
Figure 0004701601
(Wherein X 1 and X 2 may be the same or different and are a linking group selected from a methylene group, an oxygen atom, and an —NH— group. Y is an alkylene group having 1 to 5 carbon atoms, carbonyl Group represents a sulfonyl group, and R 5 and R 6 are each independently selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms.)

一般式(1)で表されるビニルジスルホン化合物の代表例を表1に例示するが、これらに限定されるものではない。   Although the representative example of the vinyl disulfone compound represented by General formula (1) is illustrated in Table 1, it is not limited to these.

Figure 0004701601
Figure 0004701601

一般式(1)で表されるビニルジスルホン化合物は、例えばG. Schroeter, Lieb. Ann. Der Chemie, 418, pp161-257(1919).、Chem. Inz. Chem., Vol.16, pp171-178(1986).などを参照して製造することが出来る。   Vinyl disulfone compounds represented by the general formula (1) include, for example, G. Schroeter, Lieb. Ann. Der Chemie, 418, pp161-257 (1919)., Chem. Inz. Chem., Vol.16, pp171-178. (1986).

本発明における電解液は、非プロトン性溶媒に対し電解質塩としてリチウム塩を溶解した電解液に、少なくとも一般式(1)で表される化合物が含まれる態様とすることが好ましい。   The electrolytic solution in the present invention is preferably an embodiment in which at least a compound represented by the general formula (1) is contained in an electrolytic solution in which a lithium salt is dissolved as an electrolyte salt in an aprotic solvent.

さらに、一般式(1)の化合物を含む上記電解液に前記電解液中に、一般式(1)とは異なるスルホン化合物をさらに添加することが有効である。こうしたスルホン化合物としては、1,3−プロパンスルトン、1,4−ブタンスルトン、スルホラン、アルカンスルホン酸無水物、環状ジスルホン酸エステル化合物、γ−スルトン化合物、スルホレン化合物のうち少なくとも一種を含むものとすることができる。また、ビニレンカーボネート化合物を添加することも有効である。   Furthermore, it is effective to further add a sulfone compound different from the general formula (1) to the electrolytic solution containing the compound of the general formula (1). Such a sulfone compound may include at least one of 1,3-propane sultone, 1,4-butane sultone, sulfolane, alkanesulfonic acid anhydride, cyclic disulfonic acid ester compound, γ-sultone compound, and sulfolene compound. . It is also effective to add a vinylene carbonate compound.

一般式(1)に示す化合物の含有量は、電解液全体に対し、好ましくは0.01%以上、より好ましくは0.05%以上とする。こうすることにより、負極表面における皮膜形成作用が充分に得られる。また上限については、好ましくは10質量%以下、より好ましくは5質量%以下とする。こうすることにより、溶解性が向上するとともに電解液の粘性を低減でき、優れた電池性能が得られる。さらに別なスルホン化合物を溶解させる場合、電解液全体に含まれるスルホン化合物は0.01〜10質量%が好ましい。こうすることによって、電解液の粘性を低く維持しつつサイクル特性等の電池性能を向上させる効果が充分に得られる。   The content of the compound represented by the general formula (1) is preferably 0.01% or more, more preferably 0.05% or more, with respect to the entire electrolyte solution. By doing so, a film forming action on the negative electrode surface can be sufficiently obtained. The upper limit is preferably 10% by mass or less, more preferably 5% by mass or less. By doing so, the solubility is improved and the viscosity of the electrolytic solution can be reduced, and excellent battery performance can be obtained. When another sulfone compound is dissolved, the sulfone compound contained in the entire electrolyte solution is preferably 0.01 to 10% by mass. By doing so, the effect of improving battery performance such as cycle characteristics can be sufficiently obtained while maintaining the viscosity of the electrolyte solution low.

さらに本発明によれば、前記電解液中にビニレンカーボネートまたはその誘導体を添加または混合することでさらにサイクル特性の改善を図ることができる。前記ビニレンカーボネートまたはその誘導体を添加剤として使用する場合には、電解液中に0.01〜10質量%含有させるとよい。また、溶媒として用いる場合には1〜5質量%含ませるとよい。   Further, according to the present invention, the cycle characteristics can be further improved by adding or mixing vinylene carbonate or a derivative thereof into the electrolytic solution. In the case where the vinylene carbonate or a derivative thereof is used as an additive, 0.01 to 10% by mass is preferably contained in the electrolytic solution. Moreover, when using as a solvent, it is good to contain 1-5 mass%.

非プロトン性溶媒が、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体から選択される少なくとも一種類の有機溶媒を含むものとすることができる。   The aprotic solvent is at least one organic selected from cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives. It may contain a solvent.

リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlClLiN(C2k+1SOLiN(C2k+1SO)(C2m+1SO)(k,mは独立して1あるいは2を示す。)から選択される少なくとも1種類のリチウム塩を含むものとすることができる。

The lithium salt, Li PF 6, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, Li N (C k F 2k + 1 SO 2) 2, Li N (C k F 2k + 1 SO 2) (C m F 2m + 1 SO 2 ) (k and m independently represent 1 or 2), and may contain at least one lithium salt.

本発明の電解液は、一般式(1)で表される化合物を電解液にあらかじめ添加・溶解することによりもたらされる。   The electrolytic solution of the present invention is brought about by adding and dissolving the compound represented by the general formula (1) in the electrolytic solution in advance.

この電解液にさらにスルホン化合物あるいはビニレンカーボネート化合物を加えてもよい。こうすることにより、サイクル特性等の電池性能をさらに安定的に向上させることが可能となる。   A sulfone compound or a vinylene carbonate compound may be further added to the electrolytic solution. By doing so, battery performance such as cycle characteristics can be more stably improved.

本発明に係る二次電池は、たとえば以下のようにして作製することができる。まず、リチウムを活物質とする負極と正極とをセパレータを隔てて組み合わせ、電池外装体に挿入する。次いで上記一般式(1)で表される化合物を含む電解液を含浸させ、電池外装体を封止することにより二次電池を得ることができる。   The secondary battery according to the present invention can be manufactured, for example, as follows. First, a negative electrode using lithium as an active material and a positive electrode are combined with a separator interposed therebetween and inserted into a battery outer package. Next, a secondary battery can be obtained by impregnating an electrolytic solution containing the compound represented by the general formula (1) and sealing the battery outer package.

図1に本発明に係る二次電池の一例について概略構造を示す。正極集電体11と、リチウムイオンを吸蔵、放出し得る酸化物またはイオウ化合物、導電性高分子、安定化ラジカル化合物のいずれかまたは混合物からなる正極活物質を含有する層12と、リチウムイオンを吸蔵、放出する炭素材料または酸化物、リチウムと合金を形成する金属、リチウム金属自身のいずれかもしくはこれらの混合物からなる負極活物質を含有する層13と、負極集電体14と、電解液15、およびこれを含む多孔質セパレータ16から構成されている。ここで、一般式(1)で表されるビニルジスルホン化合物は電解質としてリチウム塩を含んでいる電解液15に含まれる。   FIG. 1 shows a schematic structure of an example of a secondary battery according to the present invention. A positive electrode current collector 11, a layer 12 containing a positive electrode active material made of an oxide or a sulfur compound, a conductive polymer, a stabilized radical compound or a mixture capable of inserting and extracting lithium ions; and a lithium ion A layer 13 containing a negative electrode active material made of any one of a carbon material or an oxide to be occluded and released, a metal that forms an alloy with lithium, lithium metal itself, or a mixture thereof, a negative electrode current collector 14, and an electrolytic solution 15 , And a porous separator 16 including the same. Here, the vinyl disulfone compound represented by the general formula (1) is contained in the electrolytic solution 15 containing a lithium salt as an electrolyte.

本発明における非プロトン性溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種または二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。リチウム塩としては、リチウムイミド塩、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbFなどがあげられる。 Examples of the aprotic solvent in the present invention include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and γ-lactones such as γ-butyrolactone, , 2-Ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, aceto Toamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl A mixture of one or more aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester The lithium salt dissolved in these organic solvents is dissolved. The lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 , and the like.

本発明においては、上記非プロトン性溶媒に一般式(1)で表される化合物を溶解させることが好ましい。   In the present invention, it is preferable to dissolve the compound represented by the general formula (1) in the aprotic solvent.

本発明に係る負極は、リチウム金属、リチウム合金または炭素材料や酸化物等のリチウムを吸蔵、放出できる材料により構成されている。   The negative electrode according to the present invention is made of a lithium metal, a lithium alloy, or a material that can occlude and release lithium, such as a carbon material or an oxide.

この炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、カーボンナノホーンなど、あるいはこれらの複合物を用いることができる。   As the carbon material, graphite that occludes lithium, amorphous carbon, diamond-like carbon, carbon nanotube, carbon nanohorn, or a composite thereof can be used.

また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、リン酸、ホウ酸のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。成膜方法としては、蒸着法、CVD法、スパッタリング法などの方法を用いることができる。   Further, as the oxide, any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid, boric acid, or a composite thereof may be used, and it is particularly preferable to include silicon oxide. . The structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects. As a film forming method, a vapor deposition method, a CVD method, a sputtering method, or the like can be used.

リチウム合金とは、リチウムおよびリチウムと合金形成可能な金属により構成される。例えばAl、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属乃至リチウム合金としては、特にアモルファス状合金が好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。   The lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium. For example, it is composed of a binary or ternary or higher alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium. As the lithium metal or lithium alloy, an amorphous alloy is particularly preferable. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.

リチウム金属またはリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾルーゲル方式、などの適宜な方式で形成することができる。   Lithium metal or lithium alloy is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc. Can do.

本発明において、正極活物質としては、LiZO(ただしZは、少なくとも1種の遷移金属を表す。)である複合酸化物、例えば、LiCoO、LiNiO、LiMn、LiMnO、LiNiCr1−d(ここで、0<b<1、0<d<1である。)、または有機イオウ化合物、導電性高分子、有機ラジカル化合物などを用いることができる。また、金属リチウム対極電位で4.5V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えば一般式Li(AMn2−x)O (ここで、0<x<2、0<a<1.2である。Aは、Ni、Co、Fe、Ti、CrおよびCuよりなる群から選ばれる少なくとも一種である。)で表される化合物とすることができる。 In the present invention, as the positive electrode active material, a composite oxide which is Li b ZO 2 (where Z represents at least one transition metal), for example, Li b CoO 2 , Li b NiO 2 , Li b Mn 2 O 4 , Li b MnO 3 , Li b Ni d Cr 1-d O 2 (where 0 <b <1, 0 <d <1), or organic sulfur compound, conductive polymer, organic A radical compound or the like can be used. Alternatively, a lithium-containing composite oxide having a plateau at 4.5 V or more at the metal lithium counter electrode potential can be used. Examples of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide. The lithium-containing composite oxide is, for example, the general formula Li a (A x Mn 2−x ) O 4 (where 0 <x <2, 0 <a <1.2. A is Ni, Co, Fe , At least one selected from the group consisting of Ti, Cr and Cu.).

本発明における正極は、これらの活物質を、カーボンブラック等の導電性物質、ポリビニリデンフルオライド(PVDF)等の結着剤とともにN−メチル−2−ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の基体上に塗布するなどの方法により得ることができる。   In the positive electrode according to the present invention, these active materials are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF). It can be obtained by a method such as coating on a substrate such as an aluminum foil.

本発明に係るリチウム二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、セパレータを介して積層、あるいは積層したものを捲回した後に、電池缶に収容したり、合成樹脂と金属箔との積層体からなる可撓性フィルム等によって封口することによって電池を製造することができる。なお、セパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムが用いられる。   The lithium secondary battery according to the present invention includes a negative electrode and a positive electrode laminated in a dry air or inert gas atmosphere via a separator, or wound in a battery can, A battery can be manufactured by sealing with a flexible film made of a laminate with a metal foil. In addition, as a separator, porous films, such as polyolefin, such as a polypropylene and polyethylene, a fluororesin, are used.

本発明に係る二次電池の形状としては、特に制限はないが、例えば、円筒型、角型、コイン型、ラミネート型などがあげられる。   The shape of the secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, and a laminate shape.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、ことわりがないかぎり、電解液中のビニルジスルホン化合物の含有量(質量%)は非プロトン性溶媒に対する量である。   Hereinafter, the present invention will be described in more detail based on examples. Unless otherwise specified, the content (% by mass) of the vinyl disulfone compound in the electrolytic solution is an amount with respect to the aprotic solvent.

(実施例1)
(電池の作製)
正極集電体11に20μmのアルミニウム箔、正極12中の正極活物質にLiMn、負極13に負極集電体14の10μmの銅箔上に蒸着した20μmのリチウム金属、電解質溶液15は、溶媒としてECとDEC混合溶媒(体積比:30/70)を用い、この溶媒中に1mol/LのLiPFを溶解させた。添加剤として、上記混合溶媒に対し0.5質量%の化合物No.1を加え溶解した。そして、負極と正極とをポリエチレンからなるセパレータ16を介して積層し、コイン型二次電池を作製した。
(Example 1)
(Production of battery)
The positive electrode current collector 11 is 20 μm aluminum foil, the positive electrode active material in the positive electrode 12 is LiMn 2 O 4 , the negative electrode 13 is deposited on the 10 μm copper foil of the negative electrode current collector 14, and the electrolyte solution 15 is EC and DEC mixed solvent (volume ratio: 30/70) was used as a solvent, and 1 mol / L LiPF 6 was dissolved in this solvent. As an additive, 0.5% by mass of Compound No. 1 was added and dissolved in the mixed solvent. And the negative electrode and the positive electrode were laminated | stacked through the separator 16 which consists of polyethylene, and the coin-type secondary battery was produced.

(充放電サイクル試験)
温度20℃において、充電レート0.05C、放電レート0.1C、充電終止電圧4.2V、放電終止電圧3.0V、リチウム金属負極の利用率(放電深度)は33%とした。容量維持率(%)は100サイクル後の放電容量(mAh)を、10サイクル目の放電容量(mAh)で割った値である。サイクル試験で得られた結果を下記表2に示す。
(Charge / discharge cycle test)
At a temperature of 20 ° C., the charge rate was 0.05 C, the discharge rate was 0.1 C, the charge end voltage was 4.2 V, the discharge end voltage was 3.0 V, and the utilization factor (discharge depth) of the lithium metal negative electrode was 33%. The capacity retention rate (%) is a value obtained by dividing the discharge capacity (mAh) after 100 cycles by the discharge capacity (mAh) at the 10th cycle. The results obtained in the cycle test are shown in Table 2 below.

Figure 0004701601
Figure 0004701601

(実施例2)
実施例1に示した添加剤の代わりに、化合物No.6を用いて電池を構成した。これ以外は、実施例1と同様にして電池を作製し評価した。実施例1と同様にサイクル特性を調べた結果を表2に示す。
(Example 2)
A battery was constructed using Compound No. 6 instead of the additive shown in Example 1. Except for this, a battery was prepared and evaluated in the same manner as in Example 1. The results of examining the cycle characteristics in the same manner as in Example 1 are shown in Table 2.

(比較例1)
電解液中に、式(1)で表される化合物を添加しないこと以外、実施例1と同様の電池を作製し、実施例1と同様にサイクル特性を調べた結果を表2に示す。
(Comparative Example 1)
A battery similar to that of Example 1 was prepared except that the compound represented by formula (1) was not added to the electrolytic solution, and the cycle characteristics were examined in the same manner as in Example 1. Table 2 shows the results.

実施例1および2における容量維持率は、比較例1のそれよりも大きく上回っている。これは、負極表面と電解質との界面に存在する表面膜の安定化と、その膜の高いイオン伝導性によって、不可逆反応が抑制されたためなどと考えられる。   The capacity retention ratios in Examples 1 and 2 are much higher than those in Comparative Example 1. This is presumably because the irreversible reaction was suppressed by the stabilization of the surface film present at the interface between the negative electrode surface and the electrolyte and the high ionic conductivity of the film.

(実施例3)
負極活物質として黒鉛材料で構成すること以外、実施例1と同様の電池を作製し、実施例1と同様にサイクル特性(但し300サイクルまで測定した)を調べた結果を表3に示す。本実施例に示した電池について、サイクル後の負極表面をX線光電子分光法(XPS)とエネルギー分散型X線分析(EDX)を用いて調べたところ、LiF、LiCO3の存在が示された。また、XPS分析で硫黄スペクトルのピーク分割を行った結果、164eV付近にピークを有する物質が存在することを確認した。添加剤の入っていない系や他の添加剤を用いた系では164eV付近にピークを有する物質は存在しておらず、ビニルジスルホン特有の皮膜が形成されたものと考えられる。
(Example 3)
Table 3 shows the results of producing a battery similar to that in Example 1 except that the negative electrode active material is composed of a graphite material, and examining cycle characteristics (measured up to 300 cycles) in the same manner as in Example 1. Regarding the battery shown in this example, the negative electrode surface after cycling was examined using X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX), and the presence of LiF and LiCO3 was shown. Further, as a result of performing peak splitting of the sulfur spectrum by XPS analysis, it was confirmed that a substance having a peak in the vicinity of 164 eV was present. In the system containing no additive or the system using other additives, there is no substance having a peak near 164 eV, and it is considered that a film unique to vinyl disulfone was formed.

(実施例4)
電解質溶媒をECとDEC混合溶媒(体積比:30/70)に代えてPCとECとDEC混合溶媒(体積比:20/20/60)を用い、負極活物質として非晶質炭素を用いること以外、実施例1と同様に電池を作製し、実施例1と同様にサイクル特性(但し300サイクルまで測定した)を調べた結果を表2に示す。本実施例に示した電池について、サイクル後の負極表面をX線光電子分光法(XPS)とエネルギー分散型X線分析(EDX)を用いて調べたところ、LiF,LiCO3などの存在が示された。また、XPS分析で硫黄スペクトルのピーク分割を行った結果、164eV付近にピークを有する物質が存在することを確認した。添加剤の入っていない系や他の添加剤を用いた系では164eV付近にピークを有する物質は存在しておらず、本発明のビニルジスルホン特有の皮膜が形成されたものと考えられる。
Example 4
The electrolyte solvent is replaced with EC and DEC mixed solvent (volume ratio: 30/70), and PC, EC and DEC mixed solvent (volume ratio: 20/20/60) is used, and amorphous carbon is used as the negative electrode active material. Except for the above, a battery was produced in the same manner as in Example 1, and the cycle characteristics (however, measured up to 300 cycles) were examined in the same manner as in Example 1. Table 2 shows the results. For the battery shown in this example, the negative electrode surface after cycling was examined using X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX), and the presence of LiF, LiCO3, etc. was shown. . Further, as a result of performing peak splitting of the sulfur spectrum by XPS analysis, it was confirmed that a substance having a peak in the vicinity of 164 eV was present. In the system containing no additive or the system using other additives, there is no substance having a peak in the vicinity of 164 eV, and it is considered that the film unique to vinyl disulfone of the present invention was formed.

(比較例2)
添加剤を加えないこと以外は実施例3と同様にして比較例3の電池を作製した。当該電池について実施例1と同様の評価を行った。
(Comparative Example 2)
A battery of Comparative Example 3 was produced in the same manner as Example 3 except that no additive was added. The battery was evaluated in the same manner as in Example 1.

(比較例3)
添加剤を加えないこと以外は実施例4と同様にして比較例3の電池を作製した。当該電池について実施例1と同様の評価を行った。
(Comparative Example 3)
A battery of Comparative Example 3 was produced in the same manner as Example 4 except that no additive was added. The battery was evaluated in the same manner as in Example 1.

表3に結果を示した。比較例と比較すると、添加剤として一般式(1)で示される化合物を用いることにより、比較例と比べて高い容量維持率が得られた。この結果から、黒鉛、非晶質炭素のいずれかを負極活物質として用いた場合にも、実施例1と同様の効果が得られることが明らかになった。   Table 3 shows the results. Compared with the comparative example, by using the compound represented by the general formula (1) as an additive, a high capacity retention rate was obtained as compared with the comparative example. From this result, it was revealed that the same effect as in Example 1 can be obtained when either graphite or amorphous carbon is used as the negative electrode active material.

Figure 0004701601
Figure 0004701601

(実施例5)
(電池の作製)
本実施例の電池の作製について説明する。正極集電体に20μmのアルミニウム箔、正極中の正極活物質にLiMn、負極中の負極活物質に、負極集電体の10μmの銅箔上に蒸着した20μmのリチウム金属、電解質溶液は、溶媒としてECとDEC混合溶媒(体積比:30/70)を用い、支持電解質として1mol/LのLiPFを用いた。添加剤として、電解液中に0.5質量%の割合で化合物No.1を用いた。さらに、1,3−プロパンスルトン(以下、1,3−PSと略記)を電解液中に1質量%含ませ、本実施例6の電解液を作製した。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、二次電池を作製した。
(Example 5)
(Production of battery)
The production of the battery of this example will be described. Aluminum foil 20 [mu] m to the cathode current collector, the positive electrode active material LiMn 2 O 4, the negative electrode active material, 20 [mu] m metal lithium was deposited onto a copper foil of 10μm of the negative electrode current collector, an electrolyte solution in the negative electrode in the positive electrode Used a solvent mixture of EC and DEC (volume ratio: 30/70) as a solvent, and 1 mol / L LiPF 6 as a supporting electrolyte. As an additive, Compound No. 1 was used in an amount of 0.5% by mass in the electrolytic solution. Furthermore, 1% by mass of 1,3-propane sultone (hereinafter abbreviated as 1,3-PS) was contained in the electrolytic solution to prepare an electrolytic solution of Example 6. And the negative electrode and the positive electrode were laminated | stacked through the separator which consists of polyethylene, and the secondary battery was produced.

(充放電サイクル試験)
実施例1に記載の方法と同様にして測定を実施した。得られた結果を下記表4に示す。
(Charge / discharge cycle test)
Measurements were carried out in the same manner as described in Example 1. The results obtained are shown in Table 4 below.

Figure 0004701601
Figure 0004701601

(実施例6)
実施例4の電解液に1質量%の1,3−PSを加える以外は、実施例4と同様にして電池を作製し評価した。実施例4と同様にサイクル特性を調べた結果を表4に示す。
(Example 6)
A battery was prepared and evaluated in the same manner as in Example 4 except that 1% by mass of 1,3-PS was added to the electrolytic solution of Example 4. The results of examining the cycle characteristics in the same manner as in Example 4 are shown in Table 4.

実施例5および実施例6におけるサイクル試験後の容量維持率は、それぞれ実施例1あるいは実施例4に比較して上回っている。これは、1,3−PSの添加により電極表面と電解質との界面に存在する皮膜の安定化と、その膜の高いイオン伝導性によって、不可逆反応が抑制されたためと考えられる。   The capacity retention ratios after the cycle test in Example 5 and Example 6 are higher than those in Example 1 or Example 4, respectively. This is probably because the addition of 1,3-PS suppressed the irreversible reaction due to the stabilization of the film present at the interface between the electrode surface and the electrolyte and the high ionic conductivity of the film.

(実施例7)
本実施例では、添加剤として一般式(1)で表される化合物、1,3−PS、さらにビニレンカーボネート(VC)を含有させた電解液を適用する。正極集電体に20μmのアルミニウム箔、正極中の正極活物質にLiMn、負極中の負極活物質に、負極集電体の10μmの銅箔上に蒸着した20μmのリチウム金属、電解質溶液は、溶媒としてECとDEC混合溶媒(体積比:30/70)を用い、この溶媒中に1molL−1のLiPFを溶解させた。添加剤として、一般式(1)で表される化合物を電解液全体に対し0.5質量%加えた。次に1,3−PSとVCを電解液中にそれぞれ1質量%加え、本実施例の電解液を作製した。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、二次電池を作製した。
(Example 7)
In this embodiment, an electrolytic solution containing a compound represented by the general formula (1), 1,3-PS, and further vinylene carbonate (VC) is used as an additive. Aluminum foil 20 [mu] m to the cathode current collector, the positive electrode active material LiMn 2 O 4, the negative electrode active material, 20 [mu] m metal lithium was deposited onto a copper foil of 10μm of the negative electrode current collector, an electrolyte solution in the negative electrode in the positive electrode Used a mixed solvent of EC and DEC (volume ratio: 30/70) as a solvent, and 1 mol L −1 LiPF 6 was dissolved in this solvent. As an additive, 0.5% by mass of the compound represented by the general formula (1) was added to the entire electrolytic solution. Next, 1% by mass of 1,3-PS and VC was added to the electrolyte solution to prepare the electrolyte solution of this example. And the negative electrode and the positive electrode were laminated | stacked through the separator which consists of polyethylene, and the secondary battery was produced.

(充放電サイクル試験)
実施例1に記載の方法と同様にして測定を実施した。得られた結果を下記表5に示す。
(Charge / discharge cycle test)
Measurements were carried out in the same manner as described in Example 1. The obtained results are shown in Table 5 below.

実施例7に示した電池は、実施例6と比較して、サイクル試験後の容量維持率がさらに向上していること、すなわち一般式(1)で表される化合物と一般式(1)とは異なるスルホン化合物とが含まれる電解液にVCをさらに添加することでサイクル特性が改善していることが確認された。   The battery shown in Example 7 is further improved in capacity retention after the cycle test as compared with Example 6, that is, the compound represented by the general formula (1) and the general formula (1) It was confirmed that the cycle characteristics were improved by further adding VC to the electrolyte containing different sulfone compounds.

Figure 0004701601
Figure 0004701601

(実施例8〜10)
添加剤である化合物の濃度を変える以外は実施例4と全く同様にして電池を作製、評価した。実施例4と同様にサイクル特性を調べた結果を表6に示す。
表6から式(1)で表される化合物濃度0.1〜5質量%で効果があることが分かる。
(Examples 8 to 10)
A battery was prepared and evaluated in exactly the same manner as in Example 4 except that the concentration of the additive compound was changed. The results of examining the cycle characteristics in the same manner as in Example 4 are shown in Table 6.
From Table 6, it can be seen that the compound concentration represented by the formula (1) is effective at 0.1 to 5% by mass.

Figure 0004701601
Figure 0004701601

(実施例11)
本実施例では、一般式(1)に示す添加剤として化合物No.6を用い、正極活物質として4.5V以上の電圧を得ることが出来る複合酸化物(LiNi0.5Mn1.35Ti0.15O4)を用いる以外、実施例7と同様の電池を作成し実験を行った。
(Example 11)
In this example, compound No. 1 was used as an additive represented by the general formula (1). No. 6 was used, and a battery similar to that of Example 7 was prepared and tested except that a composite oxide (LiNi 0.5 Mn 1.35 Ti 0.15 O 4 ) capable of obtaining a voltage of 4.5 V or higher was used as the positive electrode active material. .

(比較例4)
実施例11において、化合物No.6の添加剤を入れない以外は、実施例11と同様の実験を行った。
(Comparative Example 4)
In Example 11, compound no. The same experiment as in Example 11 was performed except that 6 additive was not added.

実施例11に示した電池は、比較例4と比較して、サイクル試験後の容量維持率が向上していること、すなわち正極活物質として4.5V以上の電圧を得ることが出来る複合酸化物(LiNi0.5Mn1.35Ti0.15O4)を用いた場合、一般式(1)で表される化合物が含まれる電解液用いることでサイクル特性が改善していることが確認された。正極表面のXPS分析で硫黄スペクトルのピーク分割を行った結果、164eV付近にピークを有する物質が存在することを確認した。化合物No.6の入っていない比較例4では確認されなかったので、本発明のビニルジスルホン特有の皮膜が正極上に形成されたと考えられる。 The battery shown in Example 11 has an improved capacity retention rate after the cycle test as compared with Comparative Example 4, that is, a composite oxide capable of obtaining a voltage of 4.5 V or more as a positive electrode active material. When (LiNi 0.5 Mn 1.35 Ti 0.15 O 4 ) was used, it was confirmed that the cycle characteristics were improved by using an electrolytic solution containing the compound represented by the general formula (1). As a result of peak splitting of the sulfur spectrum by XPS analysis of the positive electrode surface, it was confirmed that a substance having a peak in the vicinity of 164 eV was present. Compound No. Since it was not confirmed in Comparative Example 4 where 6 was not contained, it is considered that a film unique to vinyl disulfone of the present invention was formed on the positive electrode.

Figure 0004701601
Figure 0004701601

本発明に係る二次電池の概略構成図である。It is a schematic block diagram of the secondary battery which concerns on this invention.

符号の説明Explanation of symbols

11 正極集電体
12 正極活物質を含有する層
13 負極活物質を含有する層
14 負極集電体
15 非水電解質溶液
16 多孔質セパレータ
DESCRIPTION OF SYMBOLS 11 Positive electrode collector 12 Layer containing positive electrode active material 13 Layer containing negative electrode active material 14 Negative electrode collector 15 Nonaqueous electrolyte solution 16 Porous separator

Claims (8)

環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体から選択される少なくとも一種類の非プロトン性溶媒と、下記式のいずれか1式で表されるビニルジスルホン化合物とを含み、
前記ビニルジスルホン化合物の含有量が、電解液全体に対し0.01乃至10質量%であることを特徴とするリチウム二次電池用電解液。
Figure 0004701601
Cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, .gamma.-lactones, and at least one aprotic solvent cyclic ethers are selected from linear ethers and their fluoride derivatives, the following look containing a divinyl sulfone compound represented by any one formula of formula,
Content of the said vinyl disulfone compound is 0.01 thru | or 10 mass% with respect to the whole electrolyte solution, The electrolyte solution for lithium secondary batteries characterized by the above-mentioned.
Figure 0004701601
請求項1に記載のリチウム二次電池用電解液において、さらに、1,3−プロパンスルトン、1,4−ブタンスルトン、スルホラン、アルカンスルホン酸無水物、環状ジスルホン酸エステル化合物、γ−スルトン化合物、スルホレン化合物のうち少なくとも一種を電解液全体に対し0.01乃至10質量%含むことを特徴とするリチウム二次電池用電解液。 The electrolyte solution for a lithium secondary battery according to claim 1, further comprising 1,3-propane sultone, 1,4-butane sultone, sulfolane, alkanesulfonic acid anhydride, cyclic disulfonic acid ester compound, γ-sultone compound, sulfolene An electrolyte for a lithium secondary battery, comprising 0.01 to 10% by mass of at least one compound among the total electrolyte. 請求項1または2に記載のリチウム二次電池用電解液において、
電解液中に0.01乃至10質量%のビニレンカーボネートまたはその誘導体を含むことを特徴とするリチウム二次電池用電解液。
In the electrolyte solution for lithium secondary batteries according to claim 1 or 2,
An electrolytic solution for a lithium secondary battery comprising 0.01 to 10% by mass of vinylene carbonate or a derivative thereof in the electrolytic solution.
請求項1乃至いずれか1項に記載のリチウム二次電池用電解液において、
前記リチウム二次電池用電解液は、電解質塩としてLiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlClLiN(C2k+1SOLiN(C2k+1SO)(C2m+1SO)(k,mは独立して1あるいは2を示す。)から選択される少なくとも一種類のリチウム塩を溶解したことを特徴とするリチウム二次電池用電解液。
In electrolyte for lithium secondary batteries according to any one of claims 1 to 3,
It said electrolyte for lithium secondary batteries is, Li PF 6, LiBF 4 as an electrolyte salt, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, Li N (C k F 2k + 1 SO 2) 2, Li N (C k F 2k + 1 SO 2) (C m F 2m + 1 SO 2) (k, m is a lithium secondary battery, characterized by dissolving at least one kind of lithium salt selected from the.) showing a 1 or 2 independently Electrolytic solution.
正極、負極および電解液を備え、前記電解液が請求項1乃至いずれか1項に記載のリチウム二次電池用電解液であることを特徴とするリチウム二次電池。 Positive, negative and an electrolyte wherein the lithium secondary battery, wherein the electrolyte is a lithium secondary battery electrolyte according to any one of claims 1 to 4. 請求項に記載のリチウム二次電池において、前記正極が、リチウムを吸蔵、放出できるリチウム含有複合酸化物からなることを特徴とするリチウム二次電池。 In the lithium secondary battery of claim 5, wherein the positive electrode, it absorbs lithium, lithium secondary battery, characterized by comprising a lithium-containing composite oxide capable of releasing. 環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エ−テル類およびそれらのフッ化誘導体から選択される少なくとも一種類の非プロトン性溶媒と、下記一般式(1)又は(2)で示されるビニルジスルホン化合物とを含むことを特徴とするリチウム二次電池用電解液。
Figure 0004701601
(ここで、R1、R2はそれぞれ独立して炭素数1〜4のアルコキシ基、置換または無置換のフェニル基、アルキルオキシル基、アミノ基、ハロゲン原子から選ばれる。R、Rはそれぞれ独立して、水素原子、炭素数1〜4のアルキル基から選ばれる。また、RとRは互いに結合して環構造を形成しても良い。)
Figure 0004701601
(ここで、X及びXは同一でも異なっていてもよく、メチレン基、酸素原子、−NH−基の中から選ばれる結合基である。Yは炭素数1〜5のアルキレン基、カルボニル基、スルホニル基を表す。R、Rは、それぞれ独立して、水素原子、炭素数1〜4のアルキル基から選ばれる。)
At least one aprotic solvent selected from cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives ; And an electrolytic solution for a lithium secondary battery comprising a vinyl disulfone compound represented by the following general formula (1) or (2) .
Figure 0004701601
(Here, R 1 and R 2 are each independently selected from an alkoxy group having 1 to 4 carbon atoms, a substituted or unsubstituted phenyl group, an alkyloxyl group, an amino group, and a halogen atom. R 3 and R 4 are Each is independently selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms, and R 1 and R 2 may be bonded to each other to form a ring structure.)
Figure 0004701601
(Wherein X 1 and X 2 may be the same or different and are a linking group selected from a methylene group, an oxygen atom, and an —NH— group. Y is an alkylene group having 1 to 5 carbon atoms, carbonyl Group represents a sulfonyl group, and R 5 and R 6 are each independently selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms.)
請求項に記載のリチウム二次電池用電解液において、
前記ビニルジスルホン化合物の含有量が、電解液全体に対し0.01乃至10質量%であることを特徴とするリチウム二次電池用電解液。
In the electrolyte solution for lithium secondary batteries according to claim 7 ,
Content of the said vinyl disulfone compound is 0.01 thru | or 10 mass% with respect to the whole electrolyte solution, The electrolyte solution for lithium secondary batteries characterized by the above-mentioned.
JP2003369360A 2003-10-29 2003-10-29 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same Expired - Lifetime JP4701601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369360A JP4701601B2 (en) 2003-10-29 2003-10-29 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369360A JP4701601B2 (en) 2003-10-29 2003-10-29 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005135701A JP2005135701A (en) 2005-05-26
JP4701601B2 true JP4701601B2 (en) 2011-06-15

Family

ID=34646747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369360A Expired - Lifetime JP4701601B2 (en) 2003-10-29 2003-10-29 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4701601B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317390B2 (en) * 2006-02-09 2013-10-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4329806B2 (en) 2006-10-13 2009-09-09 ソニー株式会社 Secondary battery
US9509015B2 (en) 2007-07-09 2016-11-29 Sony Corporation Battery
US8197964B2 (en) 2007-07-09 2012-06-12 Sony Corporation Battery
JP5399556B2 (en) * 2010-04-26 2014-01-29 三井化学株式会社 Nonaqueous electrolyte containing cyclic sulfone compound and lithium secondary battery
US9306238B2 (en) 2011-10-11 2016-04-05 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN103843187B (en) 2011-12-07 2017-10-24 株式会社杰士汤浅国际 The manufacture method of rechargeable nonaqueous electrolytic battery and rechargeable nonaqueous electrolytic battery
JP6065379B2 (en) 2012-02-28 2017-01-25 ソニー株式会社 Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2014013948A1 (en) * 2012-07-18 2014-01-23 株式会社村田製作所 Secondary battery
JP5800443B2 (en) * 2012-11-09 2015-10-28 株式会社村田製作所 Secondary battery and secondary battery charging / discharging method
WO2022038113A1 (en) * 2020-08-21 2022-02-24 Akzo Nobel Coatings International B.V. Vinyl disulfone compound, polymer obtainable by copolymerizing such compound, aqueous polymer dispersion and coating composition comprising such polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043895A (en) * 1999-05-24 2001-02-16 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using same
JP2002500678A (en) * 1997-12-01 2002-01-08 アセップ・インク Perfluorinated sulfone salts and their use as ionic conductive materials
JP2002508576A (en) * 1998-03-24 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Electrolyte containing mixed fluorocarbon / hydrocarbon imide salt and methide salt
JP2002158035A (en) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2002329528A (en) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
JP2003197194A (en) * 2001-10-18 2003-07-11 Nec Corp Electrode material for nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500678A (en) * 1997-12-01 2002-01-08 アセップ・インク Perfluorinated sulfone salts and their use as ionic conductive materials
JP2002508576A (en) * 1998-03-24 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Electrolyte containing mixed fluorocarbon / hydrocarbon imide salt and methide salt
JP2001043895A (en) * 1999-05-24 2001-02-16 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using same
JP2002158035A (en) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2002329528A (en) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
JP2003197194A (en) * 2001-10-18 2003-07-11 Nec Corp Electrode material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005135701A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4725728B2 (en) Secondary battery
JP5169400B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4379567B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4876409B2 (en) Secondary battery electrolyte and secondary battery using the same
JPWO2005057714A1 (en) Secondary battery electrolyte and secondary battery using the same
JP4465968B2 (en) Secondary battery electrolyte and secondary battery using the same
US7662519B2 (en) Non-aqueous electrolyte secondary battery
JP5305446B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4618399B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4345641B2 (en) Secondary battery
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JP4345642B2 (en) Secondary battery
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JP5012767B2 (en) Secondary battery
JP2006351332A (en) Charge and discharge method of non-aqueous electrolyte secondary battery
JP4968615B2 (en) Secondary battery electrolyte and secondary battery
JP5300054B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4304570B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4701601B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4288400B2 (en) Method for producing secondary battery electrolyte, secondary battery electrolyte, secondary battery production method, and secondary battery
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4525018B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4355947B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term