JP4683890B2 - Mg component-containing Zn-based alloy plated steel plate spot welding electrode - Google Patents

Mg component-containing Zn-based alloy plated steel plate spot welding electrode Download PDF

Info

Publication number
JP4683890B2
JP4683890B2 JP2004282463A JP2004282463A JP4683890B2 JP 4683890 B2 JP4683890 B2 JP 4683890B2 JP 2004282463 A JP2004282463 A JP 2004282463A JP 2004282463 A JP2004282463 A JP 2004282463A JP 4683890 B2 JP4683890 B2 JP 4683890B2
Authority
JP
Japan
Prior art keywords
electrode
alloy
plated steel
welding
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004282463A
Other languages
Japanese (ja)
Other versions
JP2006095549A (en
Inventor
淳 黒部
博 朝田
茂雄 松原
修一 寺本
信悟 向江
茂也 坂口
松尾  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd, Nippon Steel Nisshin Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2004282463A priority Critical patent/JP4683890B2/en
Priority to PCT/JP2005/012281 priority patent/WO2006004073A1/en
Publication of JP2006095549A publication Critical patent/JP2006095549A/en
Application granted granted Critical
Publication of JP4683890B2 publication Critical patent/JP4683890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Mg成分を含有するZn系合金めっきを施しためっき鋼板をスポット溶接する際に用いる電極に関する。   The present invention relates to an electrode used when spot-welding a plated steel sheet on which a Zn-based alloy plating containing an Mg component is applied.

従来から、自動車や家電製品等の組立てラインにおいては、抵抗溶接法の中でも作業効率の高いスポット溶接法が多用されている。そして、大量生産ラインでは、連続的にスポット溶接が実施されている。このため、スポット溶接用の電極は、高熱,高負荷を繰り返し受ける状況下にあり変形しやすいので、その素材としては変形に耐え得るものでなければならない。しかも、抵抗溶接用電極の本来の必要条件である、高電気伝導度,高熱伝導性及び高強度,高耐摩耗性を備えていることが要求される。このような背景のもと、スポット溶接用電極としてはCu−Cr、Cu−Cr−Zr等のCu合金や、Al23等の硬質物質を分散させたCu材が用いられている。熱伝導特性や強度、コスト等の総合的な観点から、Cu−Cr合金が用いられる場合が多い。 2. Description of the Related Art Conventionally, spot welding methods with high work efficiency are frequently used among resistance welding methods in assembly lines for automobiles, home appliances, and the like. In a mass production line, spot welding is continuously performed. For this reason, the electrode for spot welding is subject to repeated high heat and high load, and is easily deformed. Therefore, the material of the electrode must be able to withstand deformation. Moreover, it is required to have high electrical conductivity, high thermal conductivity, high strength, and high wear resistance, which are the essential requirements for resistance welding electrodes. Against this background, Cu alloys in which a Cu alloy such as Cu—Cr or Cu—Cr—Zr or a hard material such as Al 2 O 3 is dispersed are used as the spot welding electrode. Cu-Cr alloys are often used from a comprehensive viewpoint such as heat conduction characteristics, strength, and cost.

また一方で、耐久性向上のために自動車や家電製品等の素材として、ZnめっきまたはZn合金めっきが施されためっき鋼板が多く使用されるようになっている。これらのめっき鋼板をスポット溶接する際には、冷延鋼板をスポット溶接する際と比較して、大電流を流すことになるため、電極先端部がさらに過酷な条件下におかれることになる。溶接中の電極先端では、めっき層の成分であるZnやAl、或いはめっき鋼板の母材成分であるFeと電極の主成分であるCuとが合金化反応を起こし、Cu−ZnやCu−Zn−Al−Fe等の金属間化合物を形成してしまう。これらの金属間化合物は非常に脆いため、溶接時の加圧で剥離してしまい、結果として電極先端径が拡大して電流密度が低下することになる。このように、めっき鋼板の溶接では、普通鋼やステンレス鋼などの冷延鋼板を溶接する場合と比較すると、電極寿命が短いという欠点がある。
そこで、電極の高寿命化を狙って、電極本体をW−Mo合金、或いは各種ドープ剤を添加したW−Mo合金材料で構成したものや、電極先端中央部に埋め込んだ材料とその周囲の材料とが異なる二重構造の電極等が提案されている。
On the other hand, in order to improve durability, plated steel sheets on which Zn plating or Zn alloy plating has been applied are often used as materials for automobiles, home appliances, and the like. When spot-welding these plated steel sheets, a larger current flows than when spot-welding cold-rolled steel sheets, so that the electrode tip is placed under more severe conditions. At the electrode tip during welding, Zn or Al, which is a component of the plating layer, or Fe, which is the base material component of the plated steel sheet, and Cu, which is the main component of the electrode, cause an alloying reaction, and Cu—Zn or Cu—Zn. -Intermetallic compounds such as Al-Fe are formed. Since these intermetallic compounds are very brittle, they are peeled off by pressurization during welding, and as a result, the electrode tip diameter is enlarged and the current density is lowered. As described above, the welding of the plated steel sheet has a drawback that the electrode life is short as compared with the case of welding a cold-rolled steel sheet such as plain steel or stainless steel.
Therefore, with the aim of extending the life of the electrode, the electrode body is made of a W-Mo alloy or a W-Mo alloy material with various dopants added, and the material embedded in the center of the electrode tip and the surrounding material A double-structured electrode and the like different from the above have been proposed.

W−Mo合金材料からなる電極としては、例えば特許文献1に、酸化物,窒化物,金属単体,炭化物,ホウ化物の形態で、Kを10〜100ppm含有させたW−Mo合金を用いたものが、また特許文献2に、酸化物,窒化物,金属単体,炭化物,ホウ化物の形態で、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Yの希土類元素を10〜100ppm含有させたW−Mo合金を用いたものが提案されている。   As an electrode made of a W-Mo alloy material, for example, Patent Document 1 uses a W-Mo alloy containing 10 to 100 ppm of K in the form of oxide, nitride, simple metal, carbide or boride. However, in Patent Document 2, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm in the form of oxide, nitride, simple metal, carbide, boride. , Yb, Y using a W-Mo alloy containing 10 to 100 ppm of rare earth elements has been proposed.

二重構造の電極としては、例えば、特許文献3に、高強度高導電性のCu合金からなる電極本体の被溶接材に当接する当接面に、その20〜70%の面積領域を占めるように、前記被溶接材と合金化し難い、或いは溶着し難い、例えばAl23分散Cu合金等の金属を埋設したものが提案されている。
また、特許文献4には、高電気伝導材であるCuもしくはCu−Cr合金によって形成された外周部と、セラミックス等の非電気伝導材によって形成された中央部とからなる二重構造のものが提案されている。
さらに、特許文献5には、電極本体が被溶接材に当接する面に、電気伝導度及び熱伝導度に優れ、しかもCu若しくはCu合金からなる電極本体よりも高強度の、例えばWやMoからなる芯材を、当接面の5〜20%の面積を占めるように埋設したものが提案されている。
さらにまた、特許文献6には、W,Mo又はこれらの合金の焼結体からなるチップ主体を、保持リングに嵌着した電極チップを備えたものが提案されている。
特開平10−291078号公報 特開平10−314957号公報 特公昭63−33949号公報 特開昭64−62287号公報 特開平4−4984号公報 特公昭59−41838号公報
As a double-structured electrode, for example, Patent Document 3 occupies an area of 20 to 70% of the contact surface of the electrode main body made of a high-strength, high-conductivity Cu alloy that contacts the workpiece. Furthermore, it has been proposed to embed a metal such as an Al 2 O 3 dispersed Cu alloy which is difficult to alloy with or weld to the material to be welded.
Patent Document 4 discloses a double structure composed of an outer peripheral portion formed of Cu or a Cu—Cr alloy, which is a high electrical conductive material, and a central portion formed of a non-electric conductive material such as ceramics. Proposed.
Further, in Patent Document 5, the surface of the electrode body that comes into contact with the material to be welded is excellent in electrical conductivity and thermal conductivity, and has higher strength than the electrode body made of Cu or Cu alloy, for example, from W or Mo. A material in which the core material is embedded so as to occupy an area of 5 to 20% of the contact surface has been proposed.
Furthermore, Patent Document 6 proposes an electrode chip including a chip main body made of a sintered body of W, Mo or an alloy thereof and fitted to a holding ring.
Japanese Patent Laid-Open No. 10-291078 JP 10-314957 A Japanese Patent Publication No. 63-33949 JP-A 64-62287 Japanese Patent Laid-Open No. 4-4984 Japanese Patent Publication No.59-41838

近年、耐食性を高め、耐久性を向上させるために、Zn系めっき鋼板として、Mg成分を含むZn−Al−Mg系合金めっきを施したものが多用されるようになった。
Zn−Al−Mg系合金めっき鋼板のスポット溶接を行う際、特許文献1,2で提案されたようなWやMoからなる電極や、WとMoとの合金材料からなる電極を用いても、めっき金属との合金化反応を比較的抑制でき、効率良く溶接できる。
しかしながら、電極寿命を極力延ばしたいという願望のもとでは、WやMo、或いはW−Mo合金材料で構成した電極でも、Zn−Al−Mg系合金めっき鋼板のスポット溶接を行う際には、必ずしも十分な電極寿命は得られない。
WやMo基の金属・合金も、CuないしCu合金と比べるとめっき金属との合金化反応性は低いが、皆無ではない。特にめっき合金中に含まれているMg成分との反応性については検討の余地がある。また、WやMo基の金属・合金は硬質であるが故に、加圧時の衝撃でクラックの発生等、破損しやすい欠点も有している。このために、WやMoからなる電極や、WとMoとの合金材料からなる電極の改良の余地があると言える。
In recent years, in order to enhance corrosion resistance and improve durability, a Zn-plated steel sheet that has been subjected to Zn-Al-Mg-based alloy plating containing an Mg component has been frequently used.
When performing spot welding of a Zn—Al—Mg alloy-plated steel sheet, even if an electrode made of W or Mo as proposed in Patent Documents 1 and 2 or an electrode made of an alloy material of W and Mo is used, The alloying reaction with the plating metal can be relatively suppressed and welding can be performed efficiently.
However, under the desire to extend the electrode life as much as possible, even when an electrode made of W, Mo, or a W—Mo alloy material is used for spot welding of a Zn—Al—Mg alloy plated steel sheet, it is not always necessary. A sufficient electrode life cannot be obtained.
W and Mo-based metals / alloys also have low alloying reactivity with plating metal compared to Cu or Cu alloys, but it is not completely absent. In particular, there is room for studying the reactivity with the Mg component contained in the plating alloy. In addition, since W and Mo-based metals and alloys are hard, they also have drawbacks such as the occurrence of cracks due to impact during pressurization, and the like. For this reason, it can be said that there is room for improvement of an electrode made of W or Mo or an electrode made of an alloy material of W and Mo.

また、特許文献3のように、芯材にもCu合金を用いたものにあっては、めっき金属との合金化は避け難い。また、特許文献5のように、芯材として単にWやMo基の金属・合金を用いたものにあっても、特許文献1,2で問題になるような点は解消されない。
さらに、特許文献4で提案された電極のように脆いセラミックスを芯材として用いたものは、電極加圧時の割れにより剥離しやすくなり、ナゲット形成が不安定となる。
Further, as in Patent Document 3, in the case where the core material uses a Cu alloy, it is difficult to avoid alloying with the plating metal. Further, even if the core material is simply made of W or Mo-based metal / alloy as in Patent Document 5, the points that cause problems in Patent Documents 1 and 2 are not solved.
Further, a material using brittle ceramics as a core material like the electrode proposed in Patent Document 4 is easily peeled off by cracking when the electrode is pressed, and the nugget formation becomes unstable.

さらにまた、特許文献6で提案された電極では、保持リングに、強度と靭性の高い例えば析出硬化型のステンレス鋼が用いられており、保持リング部の電気伝導性が良くない。また、芯材自体の問題点も解消できない。しかも電極そのものの製造コストが高くなっている。
本発明は、このような問題を解消すべく案出されたものであり、Mg成分を含有するZn合金めっきを施しためっき鋼板を大電流下でスポット溶接にする際にあっても、めっき金属との溶着・合金化を抑え、亀裂の発生を防止して長寿命化を可能としたスポット溶接用電極を安価に提供することを目的とする。
Furthermore, in the electrode proposed in Patent Document 6, for example, precipitation hardening stainless steel having high strength and toughness is used for the retaining ring, and the electrical conductivity of the retaining ring portion is not good. In addition, the problems of the core material itself cannot be solved. In addition, the manufacturing cost of the electrode itself is high.
The present invention has been devised to solve such problems, and even when a plated steel sheet plated with a Zn alloy containing an Mg component is spot welded under a large current, the plated metal It is an object of the present invention to provide an inexpensive spot welding electrode that suppresses welding / alloying and prevents the occurrence of cracks and extends the service life.

本発明のMg成分含有Zn合金めっき鋼板スポット溶接用電極は、その目的を達成するため、Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれた少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させたW又はMo若しくはそれらを基材とする合金の焼結体で構成されていることを特徴とする。
Cu又はCu合金からなる電極本体の被溶接材に当接する当接面に、W又はMo若しくはそれらを基材とする焼結体からなる芯材を埋設した電極であって、前記芯材が、Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれた少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させたW又はMo若しくはそれらを基材とする合金の焼結体で構成されていることを特徴とする。
In order to achieve the object, the Mg component-containing Zn alloy-plated steel sheet spot welding electrode of the present invention has at least one kind of fine particles selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce. It is characterized by being comprised by the sintered compact of W or Mo which disperse | distributed in the ratio of 0.5-10 volume%, or the alloy which uses those as a base material.
An electrode in which a core material made of a sintered body based on W or Mo or a base material thereof is embedded in a contact surface of the electrode main body made of Cu or Cu alloy, which is in contact with the workpiece, and the core material is W or Mo in which at least one kind of fine particles selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce are dispersed at a ratio of 0.5 to 10% by volume, or a base material thereof. It is characterized by comprising a sintered body of an alloy.

本発明は、W又はMo若しくはそれらを基材とする合金の焼結体で構成されたスポット溶接用電極にあって、当該W,Mo系焼結体として、Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれる少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させたものを用いることにより、Mg成分を含有したZn合金めっき鋼板をスポット溶接しても、めっき金属との溶着・合金化を抑制し、かつ溶接時の加圧による亀裂発生を抑制して、スポット溶接用電極としても寿命を長くすることができる。
上記微粒子を含有するW又はMo若しくはそれらを基材とする合金の焼結体を、Cu又はCu合金からなる電極本体の被溶接材に当接する当接面に芯材を埋設した二重構造電極の、前記芯材材料として用いるときも同様に、めっき金属との溶着・合金化を抑制し、かつ溶接時の加圧による亀裂発生を抑制して、スポット溶接用電極としても寿命を長くすることができる。
このため、最近多用されているMg成分を含有したZn合金めっき鋼板を生産性良くスポット溶接することが可能になる。
The present invention is an electrode for spot welding composed of a sintered body of W or Mo or an alloy based on them, and as the W, Mo-based sintered body , Be, Mg, Ca, Sr, Ti , Zr, Y, Ce, and at least one kind of fine particles dispersed in a proportion of 0.5 to 10% by volume, spot-welded Zn alloy plated steel sheet containing Mg component However, welding and alloying with the plating metal can be suppressed, and cracking due to pressurization during welding can be suppressed, and the life of the electrode for spot welding can be extended.
A double structure electrode in which a sintered body of W or Mo containing the fine particles or an alloy based on them is embedded in a contact surface of the electrode main body made of Cu or Cu alloy in contact with the welded material. Similarly, when used as the core material, the welding and alloying with the plating metal are suppressed, and cracking due to pressurization during welding is suppressed, thereby extending the life of the electrode for spot welding. Can do.
For this reason, it is possible to spot weld a Zn alloy plated steel sheet containing a Mg component that has been frequently used recently with high productivity.

本発明者等は、前述した従来技術の有する欠点を解消するために、Mg成分を含有したZn合金めっき鋼板をスポット溶接する際に用いる電極の寿命向上策について、材質或いは形状の面から種々の実験・検討を重ねてきた。
本発明者等は、まず、電極素材として用いるWやMo基の金属・合金の特性の向上策について検討した。W,Mo系の金属・合金はCuないしCu合金と比べるとめっき金属との反応性は低いが、大気雰囲気下では皆無ではなく、溶着しやすいという欠点がある。また、W,Mo系の金属・合金は硬質であるが故に、加圧時の衝撃でクラックの発生等、破損しやすい欠点も有している。
そこで、電極素材として用いるW又はMo若しくはそれらを基材とする合金の焼結体も、めっき金属との溶着を抑制し、かつ加圧時のクラック発生を抑制できるように改良したものを用いると寿命が延びることが予測される。
In order to eliminate the above-mentioned drawbacks of the prior art, the present inventors have various methods for improving the life of electrodes used when spot-welding Zn alloy plated steel sheets containing Mg components in terms of material or shape. I have been experimenting and studying.
The present inventors first examined measures for improving the characteristics of W- or Mo-based metals and alloys used as electrode materials. W and Mo-based metals / alloys are less reactive with the plating metal than Cu or Cu alloys, but have the disadvantage that they are not completely present in the atmosphere and are easily welded. In addition, since W and Mo-based metals and alloys are hard, they also have drawbacks such as the occurrence of cracks due to impact during pressurization, and the like.
Therefore, when W or Mo used as an electrode material or a sintered body of an alloy based on them is used to improve welding so as to suppress welding with a plating metal and to suppress generation of cracks during pressurization. Life expectancy is expected to be extended.

ところで、めっき金属にMg成分が含まれているときに電極とめっき金属が溶着しやすい理由として、めっき金属中のMg成分が酸化されやすいために、抵抗溶接中に形成されたMgOが電極先端部に堆積することが挙げられる。電極先端部に堆積したMgOは、電極とめっき鋼板間の抵抗を高くして当該部分の温度を高め、さらにMgOの生成・堆積を助長することになる。そして、電極とめっき鋼板間の抵抗が高くなりすぎると、通電した電流が電極とめっき鋼板間で消費されるために、被溶接材であるめっき鋼板間でのナゲット形成に寄与し難くなり、結果的に良好なスポット溶接部が得難くなる。   By the way, the reason why the electrode and the plated metal are likely to be welded when the plated metal contains the Mg component is that the Mg component in the plated metal is easily oxidized, so the MgO formed during resistance welding is It can be mentioned that it is deposited on. MgO deposited on the tip of the electrode increases the resistance between the electrode and the plated steel sheet to increase the temperature of the part, and further promotes the generation and deposition of MgO. And, if the resistance between the electrode and the plated steel sheet becomes too high, since the energized current is consumed between the electrode and the plated steel sheet, it becomes difficult to contribute to the formation of the nugget between the plated steel sheets that are to be welded. Therefore, it is difficult to obtain a good spot weld.

改良手段としては、電極基材のW又はMo若しくはそれらを基材とする合金の焼結体中にBe,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれる少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させることが有効であることを確認した。
電極基材に金属酸化物の微粒子を分散させた場合、電極とめっき金属とが反応し難くなり、溶着が起こり難くなると考えられるが、より確実に溶着を抑制するためには、電極に分散させる金属酸化物とめっき層に含まれる金属の双方の物性に着目する必要がある。
As an improvement means, at least one or more selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce in a sintered body of W or Mo of an electrode substrate or an alloy based on them. It was confirmed that it was effective to disperse the fine particles at a ratio of 0.5 to 10% by volume.
When metal oxide fine particles are dispersed in the electrode base material, it is considered that the electrode and the plating metal are less likely to react with each other and welding is unlikely to occur. However, in order to suppress the welding more reliably, the electrode is dispersed in the electrode. It is necessary to pay attention to the physical properties of both the metal oxide and the metal contained in the plating layer.

上記金属の酸化物は、標準生成自由エネルギーがMgOの標準生成自由エネルギーよりも低いか或いは同等であるので、Mg成分を含有するZn系合金めっき鋼板をスポット溶接する際、溶融ないし半溶融状態のめっき層中に含まれるMgが上記金属酸化物の還元によって酸化することはなくなる。MgOの生成・堆積が抑制されるので、W又はMo若しくはそれらを基材とする合金からなる電極とめっき金属との濡れ性を阻害する効果が向上し、めっき金属の溶着をより確実に抑制できることになる。
さらに、W又はMo若しくはそれらを基材とする合金の焼結体中に分散させた酸化物微粒子は、電極が衝撃を受けた際の転位の伝播をピン止めする作用を発揮し、結果的に耐衝撃性に優れ、クラックの発生等を抑制することができる。さらにまた、これらの酸化物は融点が高いために、WやMo中に分散させても焼結体の強度が維持でき、電極の長寿命化には好適である。
The metal oxide has a standard free energy of formation lower than or equal to the standard free energy of MgO, so when spot welding a Zn-based alloy plated steel sheet containing the Mg component, it is in a molten or semi-molten state. Mg contained in the plating layer is not oxidized by the reduction of the metal oxide. Since the production and deposition of MgO are suppressed, the effect of inhibiting the wettability between the electrode made of W or Mo or an alloy based thereon and the plating metal is improved, and the welding of the plating metal can be more reliably suppressed. become.
Furthermore, the oxide fine particles dispersed in the sintered body of W or Mo or an alloy based on them exhibit the effect of pinning the propagation of dislocations when the electrode is impacted, resulting in It is excellent in impact resistance and can suppress the occurrence of cracks. Furthermore, since these oxides have a high melting point, the strength of the sintered body can be maintained even when dispersed in W or Mo, which is suitable for extending the life of the electrode.

上記酸化物微粒子の配合割合は0.5〜10体積%にすることが好ましい。上記作用を効果的に発揮させるためには0.5体積%以上分散させることが好ましい。また10体積%を超えて多量に含有させると、W又はMo若しくはそれらを基材とする合金の焼結体の電気伝導度が低くなりすぎ、抵抗溶接中に電極先端の温度が高くなりすぎて、却って溶着を起こしやすくなる。また、酸化物微粒子を多量に含有させると、焼結体が脆くなり、後述のスエージング加工等、所望形状への加工が困難になる。好ましい配合割合は、0.8〜3体積%である。
また、Ce23等、含有させる酸化物微粒子の粒径は、0.5〜10μm程度が好ましい。10μmを超えるほどに大きな粒子を分散させると、熱膨張率の差によって破壊の起点になりやすい。
The mixing ratio of the oxide fine particles is preferably 0.5 to 10% by volume. In order to effectively exhibit the above action, it is preferable to disperse 0.5% by volume or more. If it is contained in a large amount exceeding 10% by volume , the electrical conductivity of the sintered body of W or Mo or an alloy based on them becomes too low, and the temperature at the electrode tip becomes too high during resistance welding. On the contrary, it becomes easy to cause welding. In addition, when a large amount of oxide fine particles is contained, the sintered body becomes brittle, and processing into a desired shape such as swaging processing described later becomes difficult. A preferable mixing ratio is 0.8 to 3% by volume.
Further, the particle diameter of the oxide fine particles to be contained such as Ce 2 O 3 is preferably about 0.5 to 10 μm. When particles larger than 10 μm are dispersed, it tends to become a starting point of destruction due to a difference in thermal expansion coefficient.

なお、スポット溶接用電極として使用されるWやMoは、それぞれの金属単独で用いられてもよいし、例えば互いに5〜95質量%の割合の合金として用いられても良いことは言うまでもない。
さらに、電極等に用いられるWやMoの通電焼結体にあっては、10〜200ppm程度のK(カリウム)を、酸化物,窒化物,金属K,炭化物或いは硼化物の形態でドープされたものが多用されている。本明細書中に記載のWやMo、或いはW−Mo系合金は上記ドープタングステンをも包含していることも言うまでもない。
In addition, it cannot be overemphasized that W and Mo used as an electrode for spot welding may be used individually by each metal, for example, may be used as an alloy of the ratio of 5-95 mass%, for example.
Furthermore, in the electric current sintered body of W or Mo used for electrodes or the like, about 10 to 200 ppm of K (potassium) is doped in the form of oxide, nitride, metal K, carbide or boride. Things are used a lot. Needless to say, the W, Mo, or W-Mo alloy described in the present specification also includes the doped tungsten.

本発明者等はまた、前記特許文献5で提案されている、Cu又はCu合金からなる電極本体が被溶接材に当接する面に、電気伝導度及び熱伝導度に優れ高強度のWやMoからなる芯材を埋設した二重構造の電極に着目し、その電極を構成する各材質を種々に変更して、Mg成分を含有したZn合金めっき鋼板のスポット溶接を実施して、電極寿命を調査した。
その結果、電極本体にCu又はCu合金を用い、芯材に上記Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれる少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させたW又はMo若しくはそれらを基材とする合金の焼結体を用いた場合、電極自体に当該W−Mo系合金の焼結体を用いた場合と同様に、芯材のMg含有めっき金属との耐溶着性を向上させるとともに、溶接時に電極の亀裂発生を抑制し、電極が長寿命化できることを確認した。
The inventors of the present invention have also proposed W or Mo having excellent electrical conductivity and thermal conductivity on the surface of the electrode body made of Cu or Cu alloy, which is proposed in Patent Document 5, which is in contact with the workpiece. Focusing on the electrode of the double structure in which the core material made of is embedded, various materials constituting the electrode are changed, and spot welding of the Zn alloy-plated steel sheet containing the Mg component is carried out to increase the electrode life. investigated.
As a result, Cu or Cu alloy is used for the electrode body, and 0.5 to 10 volumes of at least one kind of fine particles selected from the oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce are used for the core material. % W, or Mo or dispersed at a ratio in the case where they were a sintered body of an alloy with the substrate, as in the case of using a sintered body of the W-Mo-based alloy in the electrode itself, core member In addition to improving the welding resistance with the Mg-containing plated metal, it was confirmed that cracking of the electrode was suppressed during welding, and that the electrode could have a long life.

従来から、例えば図1に示すような、芯材3を周囲材2に埋め込んだ二重構造の埋め込み型電極1は電極寿命が長いとされているが、その理由は、溶接打点を重ねても埋め込んだ芯材により一定面積の通電路が確保され、それによって安定したナゲットの形成ができる点にある。そのため、芯材の材質としては、WやMoのように硬質で、めっき金属と溶着し難いものが好ましいことになっている。
そこで、芯材として、Mgを含むめっき金属に対する耐溶着性に優れる前記酸化物微粉末含有のW又はMo若しくはそれらを基材とする合金の焼結体を用い、電極本体である周囲材を純Cuとした電極を使用してスポット溶接するとき、従来の単なるW系やMo系合金の焼結体を用いた電極を使用してスポット溶接したときよりも、電極先端部へのMgOの堆積が抑制され、長期間にわたっても安定したスポット溶接部が得られることを確認した。
Conventionally, for example, as shown in FIG. 1, a double-structured embedded electrode 1 in which a core material 3 is embedded in a surrounding material 2 has a long electrode life. The embedded core material secures a current-carrying path with a certain area, thereby forming a stable nugget. Therefore, the core material is preferably a hard material such as W or Mo and difficult to weld to the plated metal.
Therefore, as a core material, a sintered body of W or Mo containing the above-mentioned fine oxide powder, which is excellent in resistance to welding to a plated metal containing Mg, or an alloy based on them is used, and a surrounding material as an electrode body is pure. When spot welding is performed using an electrode made of Cu, MgO is deposited on the tip of the electrode more than when spot welding is performed using an electrode using a sintered body of a conventional W-based or Mo-based alloy. It was confirmed that a spot weld that was suppressed and stable over a long period of time was obtained.

上述しているように、芯材であるW又はMo若しくはそれらを基材とする合金の焼結体の特性を改良しても、芯材の周囲を取り囲むCu材が、スポット溶接時に被溶接材であるMg成分含有Zn合金めっき鋼板に当接すると、めっき金属、特に含有MgとCu材との合金化反応が起こって、結果的に電極寿命を短くすることになる。したがって、周囲材であるCu材が被溶接めっき鋼板に直接当接しないような電極先端形状にすることが好ましい。このためには、研削により所定形状のコーナーRを付した電極にあっては、被溶接材との当接面が全て芯材のW又はMo若しくはそれらを基材とする合金の焼結体で占めるように、芯材として、当接面よりも直径の太い棒体を用いることが好ましい。 As described above, even if the characteristics of the sintered body of the core material W or Mo or an alloy based on them are improved, the Cu material surrounding the core material is the material to be welded during spot welding. When contacting with the Mg component-containing Zn alloy-plated steel sheet, an alloying reaction between the plated metal, particularly the contained Mg and the Cu material occurs, and as a result, the electrode life is shortened. Therefore, it is preferable to make the electrode tip shape such that the Cu material as the surrounding material does not directly contact the welded plated steel plate. For this purpose, in an electrode with a corner R having a predetermined shape by grinding, the contact surface with the material to be welded is all W or Mo of the core material or a sintered body of an alloy based on them. In order to occupy, it is preferable to use a rod having a diameter larger than that of the contact surface as the core material.

ただし、図1中、直径bで示す芯材の断面積と直径aで示す当接面の面積との面積比率(芯材/当接面)が300%を超えるような大きな径の芯材3を用いると、周囲材2による芯材の冷却作用が非常に小さくなり、芯材表面にめっき金属が多く堆積して電極と被溶接材との電気抵抗が高くなりすぎてナゲットが形成しにくくなる。逆に、しかし、当接面の面積の7割を下回るほどに小さい芯材径にすると、めっき金属と接触する周囲材の面積が大きくなり、周囲材とめっき金属との合金化による変形が拡径を起こすまでになり、電極全体としてその先端部形状を変形させることになる。
したがって、芯材/当接面の面積比率として表示したとき、その比率は70〜300%程度とすることが好ましい。なお、好ましい範囲は、100〜200%である。
However, in FIG. 1, the core material 3 has a large diameter such that the area ratio (core material / contact surface) of the cross-sectional area of the core material indicated by the diameter b and the area of the contact surface indicated by the diameter a exceeds 300%. Is used, the cooling action of the core material by the surrounding material 2 becomes very small, a large amount of plating metal is deposited on the surface of the core material, and the electrical resistance between the electrode and the material to be welded becomes too high, making it difficult to form a nugget. . On the other hand, however, if the core material diameter is so small that it is less than 70% of the area of the contact surface, the area of the surrounding material that comes into contact with the plated metal increases, and deformation due to alloying between the surrounding material and the plated metal increases. Until the diameter is raised, the tip shape of the electrode as a whole is deformed.
Therefore, when expressed as an area ratio of the core material / contact surface, the ratio is preferably about 70 to 300%. In addition, a preferable range is 100 to 200%.

ところで、一般的に、W又はMo若しくはそれらを基材とする合金は焼結法により製造される。本発明で電極本体或いは二重構造電極の芯材として用いられるW又はMo若しくはそれらを基材とする合金も通常通り焼結法で製造される。
上記Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれる少なくとも一種以上の微粒子とW及び/又はMoからなる酸化物粉末を混合し、円柱状にプレス成形した後、還元雰囲気で通電焼結を行う。その後、得られた焼結体にスエージング加工やセンターレス研磨等を施して所望の径の棒体を得た後、適当に切断する。原料として、酸化物粉末に代えて金属W及び/又は金属Moの粉末を用い、酸化物微粒子を加えてそのまま成形してもよい。
得られた丸棒状焼結体の先端に研削加工を施して、R形,DR形,CF形等、所望の先端部形状に整える。
By the way, generally W or Mo or an alloy based on them is manufactured by a sintering method. In the present invention, W or Mo used as the core material of the electrode body or the double structure electrode or an alloy based on them is also produced by a sintering method as usual.
After mixing at least one kind of fine particles selected from the oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce and an oxide powder made of W and / or Mo, press-molded into a cylindrical shape, Conduct current sintering in a reducing atmosphere. Thereafter, the obtained sintered body is subjected to swaging processing, centerless polishing, or the like to obtain a rod body having a desired diameter, and then appropriately cut. Instead of the oxide powder, a powder of metal W and / or metal Mo may be used as a raw material, and oxide fine particles may be added and molded as it is.
Grinding is performed on the tip of the obtained round bar-shaped sintered body to prepare a desired tip portion shape such as R shape, DR shape, or CF shape.

二重構造電極の場合、電極本体である周囲材のCu又はCu合金にも、通常のものが使用される。市販の純Cu、或いはCu−Cr合金,Cu−Cr−Zr合金等が使用される。さらには、Al23等の微粒子を分散させた分散強化Cu合金でも良い。
芯材をCu材からなる周囲材に埋め込む態様も、従来法をそのまま適用できる。穿った孔に芯材を圧入しても良いし、ロウ材を介して挿し込んでも良い。或いは焼き嵌めを行なっても良いし、芯材をCu材で鋳包んだ後冷間鍛造を施しても良い。芯材と周囲材が密に接合されていれば、電気伝導,熱伝導の点で問題になることはない。
二重構造の電極構造体を形成した後、先端に研削加工を施して、R形,DR形,CF形等、所望の先端部形状に整える。
In the case of a dual structure electrode, a normal one is also used as the surrounding material Cu or Cu alloy as the electrode body. Commercially available pure Cu, Cu—Cr alloy, Cu—Cr—Zr alloy or the like is used. Furthermore, a dispersion strengthened Cu alloy in which fine particles such as Al 2 O 3 are dispersed may be used.
The conventional method can be applied as it is to the embodiment in which the core material is embedded in the surrounding material made of the Cu material. A core material may be press-fitted into the bored hole, or may be inserted through a brazing material. Alternatively, shrink fitting may be performed, or cold forging may be performed after casting the core material with a Cu material. If the core material and the surrounding material are closely joined, there is no problem in terms of electrical conduction and heat conduction.
After forming the double-structured electrode structure, the tip is ground and adjusted to a desired tip shape such as an R shape, DR shape, or CF shape.

実施例1:
Zn−6%Al−3%Mg合金めっきを片面当り30g/m2で施した板厚0.7mmの2枚のZn−Al−Mgめっき鋼板を、先端直径が6mm,全体直径が16mmのDR型で、先端直径6mmの部分に曲率半径40mmの円弧と他の部分に曲率半径8mmの円弧を付与した電極であって、純度99.95%のW粉末に種々の配合割合で粒径0.5μmのCe23粉末を分散させた混合粉末を仮成形後、通電焼結した後にスエージング加工とセンターレス研磨を行ったW材からなる電極を上下に用い、表1に示す条件で連続打点の溶接を行った。そして、形成されたナゲット径を測定し、ナゲット径が4√t=3.35(tは板厚)を下回るものを溶接不良として、電極寿命を求めた。
その結果を表2に示す。
Example 1:
Two Zn-Al-Mg plated steel sheets with a thickness of 0.7 mm, plated with Zn-6% Al-3% Mg alloy at 30 g / m 2 per side, DR with a tip diameter of 6 mm and an overall diameter of 16 mm This is an electrode in which an arc having a radius of curvature of 40 mm is applied to a portion having a tip diameter of 6 mm and an arc having a radius of curvature of 8 mm to the other portion. A mixture powder in which 5 μm of Ce 2 O 3 powder is dispersed is temporarily molded, then subjected to continuous sintering under the conditions shown in Table 1, using electrodes made of W material subjected to swaging and centerless polishing after electric sintering. Spot welding was performed. Then, the formed nugget diameter was measured, and the electrode life was determined by assuming that the nugget diameter was less than 4√t = 3.35 (t is the plate thickness) as poor welding.
The results are shown in Table 2.

Figure 0004683890
Figure 0004683890

Figure 0004683890
Figure 0004683890

表2に示す結果からもわかるように、W材にCe23の微粒子を0.5〜10体積%の割合で分散させた電極を用いた場合、比較的に長い電極寿命を得ることができている。また電極断面を観察してもMgOの堆積が非常に少ない状態であった。W材中に分散させたCe23の微粒子がめっき金属との濡れを抑制したためと考えられる。
一方、微粒子を11体積%の割合で分散させたW材の場合には、電極寿命が低下し、電極断面を観察するとMgOが比較的多く堆積している状態であった。W材に分散させた微粒子の割合が大きすぎたために、W材自身の電気抵抗が上昇して電極とめっき鋼板間の発熱量が多くなり、微粒子分散による濡れ抑制作用が低減したためと考えられる。
また微粒子の分散割合が0.2体積%のW材の場合にも、電極寿命が比較的短く、電極断面を観察するとMgOが比較的多く堆積している状態であった。W材に分散させた微粒子が少ないために、濡れ抑制作用を発揮できずに電極とめっき金属が濡れやすかったためと考えられる。
As can be seen from the results shown in Table 2, when an electrode in which Ce 2 O 3 fine particles are dispersed in a W material at a ratio of 0.5 to 10% by volume is used, a relatively long electrode life can be obtained. is made of. Further, even when the electrode cross section was observed, the MgO deposition was very small. This is presumably because the Ce 2 O 3 fine particles dispersed in the W material suppressed wetting with the plated metal.
On the other hand, in the case of the W material in which fine particles are dispersed at a ratio of 11% by volume, the electrode life is reduced, and when the electrode cross section is observed, a relatively large amount of MgO is deposited. It is considered that because the proportion of the fine particles dispersed in the W material was too large, the electrical resistance of the W material itself increased, the amount of heat generated between the electrode and the plated steel plate increased, and the wetting suppression effect due to the fine particle dispersion was reduced.
In the case of a W material having a fine particle dispersion ratio of 0.2% by volume, the electrode life was relatively short, and when the electrode cross section was observed, a relatively large amount of MgO was deposited. This is considered to be because the electrode and the plated metal were easily wetted because the wettability was not exhibited because the fine particles dispersed in the W material were small.

W材にCe23の微粒子を0.5〜10体積%の割合で分散させた電極では、MgOの堆積が比較的少なく、MgOによる電極とめっき鋼板との間の抵抗の上昇を抑制することができるために、めっき金属との溶着が発生し難い状態であった。
これに対して、Ce23微粒子の分散割合が多すぎたものや少なすぎたW材からなる電極では、MgOの堆積が比較的多く、このMgOによって電極とめっき鋼板間の抵抗が上昇してめっき金属との溶着が起こりやすい状態であった。また、W材が一部剥離・脱落していた。
In an electrode in which Ce 2 O 3 fine particles are dispersed in a ratio of 0.5 to 10% by volume in a W material, deposition of MgO is relatively small, and an increase in resistance between the electrode and the plated steel sheet due to MgO is suppressed. Therefore, welding with the plating metal is difficult to occur.
In contrast, in the case of an electrode made of a W material in which the dispersion ratio of Ce 2 O 3 fine particles is too large or too small, MgO is relatively deposited, and this MgO increases the resistance between the electrode and the plated steel sheet. As a result, welding with the plated metal was likely to occur. In addition, the W material was partially peeled off.

実施例2:
W材に分散させる微粒子として、Ce23の代わりにCaOを用いた以外は実施例1と全く同じ条件で同じめっき鋼板を連続打点溶接し、電極寿命を調査した。
その結果を表3に示す。
Example 2:
The same plated steel sheet was continuously spot welded under exactly the same conditions as in Example 1 except that CaO was used instead of Ce 2 O 3 as fine particles dispersed in the W material, and the electrode life was investigated.
The results are shown in Table 3.

Figure 0004683890
Figure 0004683890

表2,3に示された結果を比較すると、表3の結果、すなわち、Ce23を分散させたものよりもCaOを分散させたものの方が電極寿命は向上している。
Ce23と比べてCaOの方が標準生成自由エネルギーが低いために、めっき金属との濡れ性をより大きく阻害することができ、電極寿命の延びに繋がったものと思われる。また、電極断面を観察すると、CaOを分散させたものの方が電極先端の堆積物は少ない状態であった。
Comparing the results shown in Tables 2 and 3, the electrode life is improved in the results in Table 3, that is, in the case where CaO is dispersed than in the case where Ce 2 O 3 is dispersed.
Since CaO has a lower standard free energy of formation than Ce 2 O 3 , the wettability with the plating metal can be greatly inhibited, which seems to have led to an increase in electrode life. Further, when the electrode cross section was observed, the amount of deposits at the tip of the electrode was smaller in the case where CaO was dispersed.

実施例3:
先端直径が6mm,全体直径が16mmのDR型で、先端直径6mmの部分に曲率半径40mmの円弧と他の部分に曲率半径8mmの円弧を付与した電極であって、芯材として、W粉末に種々の配合割合で粒径0.5μmのCe23粉末を分散させた径6mmの焼結・鍛造品を、純Cuからなる周囲材に埋め込んだ電極を上下に用いる点以外は実施例1と全く同じ条件で、同じめっき鋼板を連続打点溶接した。なお、芯材として径6mmの円筒体を用いているので、本実施例では芯材/当接面の面積比率は100%となっている。
そして、実施例1と同じ評価方法で電極寿命を求めた。
その結果を表4に示す。
Example 3:
It is a DR type with a tip diameter of 6 mm and an overall diameter of 16 mm, an electrode having a tip radius of 6 mm and an arc with a radius of curvature of 40 mm and the other portion with a radius of curvature of 8 mm. Example 1 except that sintered and forged products having a diameter of 6 mm in which Ce 2 O 3 powder having a particle diameter of 0.5 μm is dispersed at various blending ratios and embedded in surrounding materials made of pure Cu are used up and down. The same plated steel sheet was subjected to continuous spot welding under exactly the same conditions. Since a cylindrical body having a diameter of 6 mm is used as the core material, the area ratio of the core material / contact surface is 100% in this embodiment.
And the electrode lifetime was calculated | required with the same evaluation method as Example 1. FIG.
The results are shown in Table 4.

Figure 0004683890
Figure 0004683890

表4に示す結果からもわかるように、一定通電路を確保した二重構造の埋め込み型電極では、Ce23微粒子の分散量が11体積%以上になると、分散量が少ないものと比べて寿命に達するまでの打点数が少なくなっている。Ce23微粒子の分散量が多すぎると芯材の材質が脆くなって、連続打点中に割れが生じ、安定してナゲットが形成し難くなったものと思われる。
Ce23微粒子の分散量が11体積%未満のものにあっては10000打点以上の電極寿命が得られている。Ce23微粒子の分散量が0.5体積%に満たない電極にあっても、面積比効果によって電極寿命が延びたものと思われる。しかしながら、電極断面を観察してみると、Ce23微粒子の分散量が0.5体積%に満たない電極では、その先端に、0.5体積%以上のものと比較して比較的多いMgOが堆積していた。このMgOは当然ながらナゲットの形成状況に影響を与える。したがって、正常なナゲットを長期間にわたって安定的に形成するためには、Ce23微粒子の分散量が0.5〜10体積%にすることが有効であることがわかる。
As can be seen from the results shown in Table 4, in the double-structured embedded electrode in which a constant current path is ensured, when the dispersion amount of the Ce 2 O 3 fine particles is 11% by volume or more, the dispersion amount is small. The number of hits until the end of the service life is reduced. If the amount of the Ce 2 O 3 fine particles dispersed is too large, the core material becomes brittle, cracks are generated in the continuous hitting points, and it seems that it is difficult to stably form the nugget.
In the case where the dispersion amount of the Ce 2 O 3 fine particles is less than 11% by volume, an electrode lifetime of 10,000 or more is obtained. Even in an electrode in which the dispersion amount of Ce 2 O 3 fine particles is less than 0.5% by volume, it is considered that the electrode life is extended by the area ratio effect. However, when the cross section of the electrode is observed, in the electrode in which the dispersion amount of the Ce 2 O 3 fine particles is less than 0.5% by volume, it is relatively large at the tip of the electrode compared to the one having 0.5% by volume or more. MgO was deposited. This MgO naturally affects the nugget formation status. Therefore, it can be seen that in order to stably form a normal nugget over a long period of time, it is effective to set the dispersion amount of the Ce 2 O 3 fine particles to 0.5 to 10% by volume.

二重構造の埋め込み型電極の構造を模式的に説明する図A diagram schematically illustrating the structure of a double-structured embedded electrode

Claims (2)

Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれた少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させたW又はMo若しくはそれらを基材とする合金の焼結体で構成されていることを特徴とするMg成分含有Zn系合金めっき鋼板スポット溶接用電極。 W or Mo in which at least one kind of fine particles selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce are dispersed at a ratio of 0.5 to 10% by volume, or a base material thereof. An electrode for spot welding of an Mg component-containing Zn-based alloy-plated steel sheet, characterized by comprising a sintered body of an alloy. Cu又はCu合金からなる電極本体の被溶接材に当接する当接面に、W又はMo若しくはそれらを基材とする合金の焼結体からなる芯材を埋設した電極であって、前記芯材が、Be,Mg,Ca,Sr,Ti,Zr,Y,Ceの酸化物から選ばれた少なくとも一種以上の微粒子を0.5〜10体積%の割合で分散させたW又はMo若しくはそれらを基材とする合金の焼結体で構成されていることを特徴とするMg成分含有Zn系合金めっき鋼板スポット溶接用電極。 An electrode in which a core material made of a sintered body of W or Mo or an alloy based on them is embedded in a contact surface of the electrode main body made of Cu or Cu alloy, which is in contact with the work piece, However, W or Mo in which at least one kind of fine particles selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce are dispersed at a ratio of 0.5 to 10% by volume, or based on them. An electrode for spot welding of an Mg component-containing Zn-based alloy-plated steel sheet , comprising a sintered body of an alloy as a material.
JP2004282463A 2004-06-30 2004-09-28 Mg component-containing Zn-based alloy plated steel plate spot welding electrode Active JP4683890B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004282463A JP4683890B2 (en) 2004-09-28 2004-09-28 Mg component-containing Zn-based alloy plated steel plate spot welding electrode
PCT/JP2005/012281 WO2006004073A1 (en) 2004-06-30 2005-06-28 Electrode for spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282463A JP4683890B2 (en) 2004-09-28 2004-09-28 Mg component-containing Zn-based alloy plated steel plate spot welding electrode

Publications (2)

Publication Number Publication Date
JP2006095549A JP2006095549A (en) 2006-04-13
JP4683890B2 true JP4683890B2 (en) 2011-05-18

Family

ID=36235859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282463A Active JP4683890B2 (en) 2004-06-30 2004-09-28 Mg component-containing Zn-based alloy plated steel plate spot welding electrode

Country Status (1)

Country Link
JP (1) JP4683890B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961530B2 (en) * 2006-05-12 2012-06-27 日産自動車株式会社 Method of joining dissimilar metals by resistance spot welding
US8471169B2 (en) 2006-06-08 2013-06-25 Nippon Tungsten Co., Ltd. Electrode for spot welding
JP6519510B2 (en) * 2016-03-28 2019-05-29 マツダ株式会社 Method of manufacturing spot welds and manufacturing apparatus therefor
JP6406297B2 (en) * 2016-03-28 2018-10-17 マツダ株式会社 Method for manufacturing spot weldment and manufacturing apparatus therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941838B2 (en) * 1979-02-15 1984-10-09 富士重工業株式会社 Spot welding electrode
JPH02117780A (en) * 1988-10-27 1990-05-02 Asahi Glass Co Ltd Electrode covered with ceramic particle dispersed metal and its manufacture
JPH0324388U (en) * 1989-07-13 1991-03-13
JPH0439583U (en) * 1990-08-02 1992-04-03
JPH10291078A (en) * 1997-04-17 1998-11-04 Tokyo Tungsten Co Ltd Electrode for resistance welding, and its manufacture
JPH10314957A (en) * 1997-05-15 1998-12-02 Tokyo Tungsten Co Ltd Electrode for resistance welding and its manufacture
JP2000153371A (en) * 1998-11-18 2000-06-06 Sumitomo Wiring Syst Ltd Electrode for resistance welding, resistance welding equipment resistance welding method and production of electrode for resistance welding
JP2000158178A (en) * 1998-11-27 2000-06-13 Sumitomo Wiring Syst Ltd Method of manufacturing electrode for resistance welding, electrode for resistance welding, and resistance welding equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941838B2 (en) * 1979-02-15 1984-10-09 富士重工業株式会社 Spot welding electrode
JPH02117780A (en) * 1988-10-27 1990-05-02 Asahi Glass Co Ltd Electrode covered with ceramic particle dispersed metal and its manufacture
JPH0324388U (en) * 1989-07-13 1991-03-13
JPH0439583U (en) * 1990-08-02 1992-04-03
JPH10291078A (en) * 1997-04-17 1998-11-04 Tokyo Tungsten Co Ltd Electrode for resistance welding, and its manufacture
JPH10314957A (en) * 1997-05-15 1998-12-02 Tokyo Tungsten Co Ltd Electrode for resistance welding and its manufacture
JP2000153371A (en) * 1998-11-18 2000-06-06 Sumitomo Wiring Syst Ltd Electrode for resistance welding, resistance welding equipment resistance welding method and production of electrode for resistance welding
JP2000158178A (en) * 1998-11-27 2000-06-13 Sumitomo Wiring Syst Ltd Method of manufacturing electrode for resistance welding, electrode for resistance welding, and resistance welding equipment

Also Published As

Publication number Publication date
JP2006095549A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4683896B2 (en) Spot welding electrode
JP4916264B2 (en) Electrodes for fusing welding
EP2027964B1 (en) Electrode for spot welding
CN102392153B (en) Micromotor commutator electric contact material for raising wear resistance and arc erosion resistance
WO2006004073A1 (en) Electrode for spot welding
JP5083930B2 (en) Spot welding electrode
CN101345142A (en) Electrical contact material with Ti3SiC2 multi-layer compound structure and preparation technique
US20050092728A1 (en) Resistance welding electrode and associated manufacturing method
CN101345141A (en) Electrical contact material with Ti3SiC2 three-layer compound structure and preparation technique
JP4683890B2 (en) Mg component-containing Zn-based alloy plated steel plate spot welding electrode
WO2010117439A1 (en) Contact tip for an electrode of a resistance welder
JP2016078036A (en) Electrode for spot weld
JP5127299B2 (en) Spot welding electrode
JP2007237209A (en) Resistance welding method
JP3328799B2 (en) Electrode for resistance welding and method of manufacturing the same
JP2007260718A (en) Electrode for seam welding
JPH0976074A (en) Material for resistance welding electrode, composite electrode for resistance welding and its manufacture
JP4532146B2 (en) Resistance spot welding method for hot-dip galvanized steel sheet and non-plated steel sheet
JP3891098B2 (en) Spot-welding method and spot-welded joint of hot-dip galvanized steel sheet
JP6166893B2 (en) Tip of solder handling equipment
JPH10291078A (en) Electrode for resistance welding, and its manufacture
WO2004096468A1 (en) Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod
JPH034452Y2 (en)
JP5708105B2 (en) Rotation tool
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250