JP4068486B2 - Electrode material for resistance welding and manufacturing method thereof - Google Patents

Electrode material for resistance welding and manufacturing method thereof Download PDF

Info

Publication number
JP4068486B2
JP4068486B2 JP2003070608A JP2003070608A JP4068486B2 JP 4068486 B2 JP4068486 B2 JP 4068486B2 JP 2003070608 A JP2003070608 A JP 2003070608A JP 2003070608 A JP2003070608 A JP 2003070608A JP 4068486 B2 JP4068486 B2 JP 4068486B2
Authority
JP
Japan
Prior art keywords
resistance welding
electrode material
ppm
potassium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003070608A
Other languages
Japanese (ja)
Other versions
JP2004277810A (en
Inventor
朋広 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP2003070608A priority Critical patent/JP4068486B2/en
Publication of JP2004277810A publication Critical patent/JP2004277810A/en
Application granted granted Critical
Publication of JP4068486B2 publication Critical patent/JP4068486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、抵抗溶接用電極材料に関し、特に、銅や銅合金の抵抗溶接に好適な抵抗溶接用電極材料に関する。
【0002】
【従来の技術】
一般に、抵抗溶接は、金属材料からなる被溶接材を重ね合わせ、その重ね合わせた部分を一対の抵抗溶接用電極で挾んで強く加圧しながら数千アンペアの大電流を流すことで、重ね合わせた被溶接材に流れる電流を通じて発生する電気抵抗熱を溶接熱源として利用し被溶接材間を溶接する方法である。この抵抗溶接方法の場合、溶接部の温度は接触抵抗による発生する熱と熱放散の差によって決定される。発熱量は電流値、通電時間、及び材料の比抵抗、また、熱放散量は溶接部材の容積、熱伝導率、比重、及び比熟などによって支配される。
【0003】
このため、比抵抗が小さく、熱伝導率が大きい銅や銅合金のような金属は、抵抗溶接法で溶接することが困難であった。
【0004】
しかしながら、近年では、銅と反応しないタングステン(W)やモリブデン(Mo)系の電極、特に、固有抵抗値が高く、耐熱性に優れ、硬度および強度が高いといった特長を有するタングステン系の材料が電極として注目され、銅のような抵抗溶接が困難とされる金属でも、比較的良好に溶接できることが知られている。
【0005】
しかしながら、タングステンといえども、銅や銅合金等のような固有抵抗値の低い金属を溶接する場合、僅かな使用回数、例えば、500〜600回で電極が変形したり、クラックやかけ等の損傷が生じたりし、使用できなくなっていた。そのため、その都度、頻繁に電極を交換する必要があるため生産性が悪く、製造コストが高くなる間題が生じていた。
【0006】
特許文献1では、電極の耐久性を高めるために、W焼結合金から繊維状の組織を有する電極材料を形成し、当該繊維状組織の端面(RD面:圧延方向に対して垂直な断面)でワークを挟圧する溶接面を構成することで解決されることが開示されている。
【0007】
【特許文献1】
特開2000−158178号公報
【0008】
【発明が解決しようとする課題】
抵抗溶接の場合、溶接条件にもよるが溶接部の温度は瞬間的に大凡1200〜1500℃の高温に達する。したがって、前記特許文献で開示された電極であっても、純タングステンの再結晶開始温度は約1100℃であるので、使用初期では比較的高強度で耐衝撃性に優れた繊維状組織を有した電極であるものの、繰返し使用するうちに電極が再結晶し粗大な等軸粒組織に変化し脆くなる問題があった。すなわち、再結晶によって電極に必要な強度、耐衝撃性が著しく低下し、電極が変形したり、クラックやかけ等の損傷が生じた。
【0009】
そこで、本発明の技術的課題は、更なる耐久性を向上できる抵抗溶接用電極、すなわち高強度で高靭性で高再結晶温度の抵抗溶接用電極材料とその製造方法とを提供することにある。
【0010】
【課題を解決するための手段】
上述したように、特許文献1においては、電極の耐久性を高めるために、上述のように電極を構成する組織の方向性に着目している。すなわち、繊維状組織の端面を溶接面とすることによって耐久性の向上を図っている。
【0011】
しかしながら、組織の方向性をいかに制御しようとも、使用中に材料が再結晶して脆くなるので、強度や耐衝撃性が著しく低下し電極が変形したり、クラックや欠け等の損傷が生じるという問題は残る。
【0012】
本発明では、電極の耐久性を高めるために電極の再結晶温度の向上を図った。すなわち、本発明者らは、再結晶温度を高めて繰返し使用による組織変化を極力少なくすることによって、再結晶による脆化を抑制でき、強度や耐衝撃性が著しく向上できることを見出し、本発明をなすに至ったものである。
【0013】
本発明によれば、タングステン合金からなる抵抗溶接用電極材料であって、組成が、カリウム10ppm以上200ppm以下で残部がタングステンと不可避的な不純物からなり、前記タングステン合金の金属組織が繊維状組織を備えてなることを特徴とする抵抗溶接用電極材料が得られる。
【0014】
また、本発明によれば、前記抵抗溶接用電極材料において、理論密度比が95%以上であることを特徴とする抵抗溶接用電極材料が得られる。
【0015】
また、本発明によれば、前記いずれか一つの抵抗溶接用電極材料を製造する方法であって、タングステン粉末とカリウムとを混合して混合粉末を作製する工程と、前記混合粉末をプレスしてプレス体を作製する工程と、前記プレス体を水素気流中1800〜2200℃で焼結して焼結体を作製する工程と、前記焼結体を1500〜1700℃で熱間圧延して圧延材料を作製する工程と、を備えることを特徴とする抵抗溶接用電極材料の製造方法が得られる
【0016】
さらに、本発明によれば、前記抵抗溶接用電極材料の製造方法において、前記熱間圧延の全圧延率が95%を超える加工であることを特徴とする抵抗溶接用電極材料の製造方法が得られる。
【0017】
一般に、純タングステンは約1100℃で再結晶開始するが、本発明において、再結晶開始温度を1200℃以上にすることによって、抵抗溶接用電極として使用した場合、寿命、即ち、使用回数が著しく向上できることを見出した。
【0018】
本発明において、再結晶温度の向上のための添加元素はカリウム(K)で、その量は材料の生産性もしくは加工歩留まり向上、リサイクルしやすさ等を考慮すると極力少なくすることが望ましい。
【0019】
本発明では、K量は、10ppm以上200ppm以下が良く、望ましくは、50〜100ppmである。その理由は、10ppm未満であると再結晶温度の向上は見られず、一方、200ppmを超えると素材の塑性加工が困難で製造歩留まりが悪いからである。
【0020】
また、本発明において、タングステン合金の理論密度比は、95%以上であることが好ましい。その理由は、95%未満だと再結晶温度が1200℃以上でも耐衝撃性、耐破壊性、耐磨耗性に欠けるためである。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0022】
(第1の実施の形態)
常法により平均粒径4μmのカリウム分散タングステン粉末を各種作製した。その粉末を冷間静水圧プレスにより、100〜200MPaで成形したのち、水素気流中1800〜2200℃で10〜30時間の焼結を行い、厚さ50mmの焼結体を作製した。
【0023】
得られた焼結体を1500〜1700℃で熱間圧延し、厚さ1mmの板材(全圧延率98%)とした。板材中のカリウム量は、5、10、30、55、72、103、147、200、220、250ppmであった。カリウム量が多いほど熱間圧延性が低下した。カリウム量100ppm程度までは割れもほとんどなく良好な板材が得られた。カリウム量100〜200ppm程度までは割れは発生し若干歩留まりが低下したが生産性に支障をきたすほどではなかった。なお、カリウム量が200ppmを超えると割れが多く発生し歩留まりの低下が著しかった。
【0024】
概略結果を下記表1中に示した。なお、カリウム量200ppm以下の板材の理論密度比は99%以上であった。
【0025】
得られた板材を水素中1000〜2000℃の温度で1時間加熱し、光学顕微鏡による組織観察を行い再結晶温度(再結晶開始温度)を調べた。その結果を下記表1に示す。カリウム量が多いほど再結晶温度は高く、カリウム量10ppm以上で純タングステン(5ppmのカリウム量)よりも100℃以上再結晶開始温度が増加した。
【0026】
さらに、引張試験および簡易衝撃試験を行い、引張強度および耐衝撃性を調べた。ここで、引張試験は加工材を室温および1200℃(抵抗溶接用電極材料として使用した場合に瞬間的に材料に負荷する温度を想定)で歪み速度6.7×10−4−1で行った。その結果、室温および1200℃いずれにおいても、カリウム量が多いほど引張強度は高かった。
【0027】
カリウム量10ppm以上の板材の室温および1200℃における引張強度は、それぞれ純タングステン(5ppmのカリウム量)の2.5倍以上および1.1倍以上で、カリウム量10ppm以上にすることによって強度を著しく向上することできた。
【0028】
一方、簡易衝撃試験は加工材および1200℃熱処理材(それぞれ抵抗溶接用電極材料として使用初期状態および繰返し使用した材料を想定)の試料に質量30gの鋼球を2mの高さから自由落下させ衝撃を加え、試料表面の破壊状態を目視観察して、亀裂なし(○)、亀裂あり(△)、割れ(×)に区別した。その結果を下記表1中に示す。
【0029】
下記表1に示すように、加工材の場合、純W(5ppmのカリウム量)は割れには至っていなかったが亀裂が確認された。カリウム量10ppm以上の材料には亀裂は見られなかった。1200℃熱処理材の場合、カリウム量10ppmの板材は若干亀裂は見られたものの、カリウム量10ppmを超えると亀裂は確認されなかった。カリウム量10ppmの板材の割れは熱処理温度(1200℃)が再結晶開始温度と同じで、一部の組織が再結晶したためと思われる。
【0030】
また、純タングステン(5ppmのカリウム量)は分断した。カリウム量10ppm以上にすることで強度だけでなく、耐衝撃性も著しく向上できた。
【0031】
下記表1の板材から電極形状(たとえば、厚さ1×幅20×長さ30mmの板材を作製した。直径0.5mmの銅線を5本重ね合わせ、この一対の電極材料(たとえば5×20mmの面)で挟み5kNで加圧し所定の電流(例えば、5000A)を流し寿命試験した。寿命は電極の変形やかけ等で判断した。その結果を下記表2に示す。
【0032】
下記表2に示すように、純タングステン(5ppmのカリウム量)の場合は、600回程度の溶接回数にすぎなかったが、再結晶開始温度を1200℃以上(10ppm以上のカリウム量)にすることで溶接回数3500以上と著しく寿命が伸びた。これは、再結晶開始温度を上昇させることで、室温特性(強度、耐衝撃性)だけでなく耐熱性も向上したためである。
【0033】
【表1】

Figure 0004068486
【0034】
【表2】
Figure 0004068486
【0035】
得られた板材の全圧延率は95〜97.5%で、板材中のカリウム量は、10、55、103、200ppmであった。この板材を第1の実施の形態と同様な寿命試験を行った。その結果を下記表3に示した。
【0036】
【表3】
Figure 0004068486
【0037】
【発明の効果】
以上説明したように、本発明によれば、電極の再結晶温度を向上させることによって耐熱性が向上するだけでなく、強度や耐衝撃性も著しく向上するので、銅や銅合金等のように固有抵抗値の低い母材を溶接する場合においても、変形、クラック、欠け等の損傷が生じにくくなり、繰返し使用することができるので、生産性が向上し、製造コストが低廉になるという顕著な効果を奏する抵抗溶接用電極材料とその製造方法とを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material for resistance welding, and more particularly to an electrode material for resistance welding suitable for resistance welding of copper or a copper alloy.
[0002]
[Prior art]
In general, resistance welding is performed by superimposing welded materials made of metal materials, and superposing the overlapped portions with a pair of resistance welding electrodes and applying a large current of several thousand amperes while pressing them strongly. In this method, electric resistance heat generated through a current flowing through the workpieces is used as a welding heat source to weld the workpieces. In the case of this resistance welding method, the temperature of the welded portion is determined by the difference between heat generated by contact resistance and heat dissipation. The amount of heat generation is governed by the current value, the energization time, and the specific resistance of the material, and the amount of heat dissipation is governed by the volume, thermal conductivity, specific gravity, and specific maturity of the welded member.
[0003]
For this reason, it has been difficult to weld metals such as copper and copper alloys having small specific resistance and large thermal conductivity by resistance welding.
[0004]
However, in recent years, tungsten (W) and molybdenum (Mo) -based electrodes that do not react with copper, in particular, tungsten-based materials having features such as high specific resistance, excellent heat resistance, and high hardness and strength. It is known that even metals that are difficult to resistance weld such as copper can be welded relatively well.
[0005]
However, even when tungsten is welded with a metal having a low specific resistance value such as copper or copper alloy, the electrode is deformed after a few uses, for example, 500 to 600 times, or damage such as cracks and cracks. Has occurred and has become unusable. For this reason, it is necessary to frequently replace the electrode each time, resulting in poor productivity and high production costs.
[0006]
In Patent Document 1, in order to increase the durability of the electrode, an electrode material having a fibrous structure is formed from a W sintered alloy, and the end surface of the fibrous structure (RD surface: a cross section perpendicular to the rolling direction). It is disclosed that the problem can be solved by configuring a welding surface for clamping the workpiece.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-158178
[Problems to be solved by the invention]
In the case of resistance welding, although depending on welding conditions, the temperature of the welded portion instantaneously reaches a high temperature of about 1200 to 1500 ° C. Therefore, even with the electrode disclosed in the above-mentioned patent document, since the recrystallization start temperature of pure tungsten is about 1100 ° C., it had a fibrous structure with relatively high strength and excellent impact resistance in the initial stage of use. Although it was an electrode, there was a problem that the electrode was recrystallized during repeated use and changed into a coarse equiaxed grain structure and became brittle. In other words, the strength and impact resistance required for the electrode were remarkably lowered by recrystallization, and the electrode was deformed and damaged such as cracks and cracks.
[0009]
Therefore, the technical problem of the present invention is to provide a resistance welding electrode capable of further improving durability, that is, a resistance welding electrode material having high strength, high toughness and high recrystallization temperature, and a method for producing the same. .
[0010]
[Means for Solving the Problems]
As described above, in Patent Document 1, attention is paid to the directionality of the tissue constituting the electrode as described above in order to increase the durability of the electrode. That is, durability is improved by using the end surface of the fibrous structure as a weld surface.
[0011]
However, no matter how the direction of the structure is controlled, the material recrystallizes and becomes brittle during use, so the strength and impact resistance are significantly reduced, and the electrode is deformed, and damage such as cracks and chipping occurs. Remains.
[0012]
In the present invention, the recrystallization temperature of the electrode is improved in order to increase the durability of the electrode. That is, the present inventors have found that by increasing the recrystallization temperature and minimizing the structural change due to repeated use, embrittlement due to recrystallization can be suppressed, and the strength and impact resistance can be significantly improved. It has been reached.
[0013]
According to the present invention, there is provided an electrode material for resistance welding made of a tungsten alloy, the composition of which is 10 ppm or more and 200 ppm or less of potassium, the balance being tungsten and unavoidable impurities , and the metal structure of the tungsten alloy is a fibrous structure. The electrode material for resistance welding characterized by comprising is obtained.
[0014]
Further, according to the present invention, there can be obtained a resistance welding electrode material characterized in that the theoretical density ratio is 95% or more in the resistance welding electrode material .
[0015]
Further, according to the present invention, there is provided a method for producing any one of the resistance welding electrode materials, the step of mixing a tungsten powder and potassium to produce a mixed powder, and pressing the mixed powder. A step of producing a pressed body, a step of sintering the pressed body at 1800 to 2200 ° C. in a hydrogen stream, and a hot rolling of the sintered body at 1500 to 1700 ° C. The process for producing the electrode material for resistance welding is provided .
[0016]
Furthermore, according to the present invention, in the method for manufacturing a resistance welding electrode material, there is obtained a method for manufacturing a resistance welding electrode material, characterized in that the total rolling rate of the hot rolling is greater than 95%. It is done.
[0017]
In general, pure tungsten starts to recrystallize at about 1100 ° C. However, in the present invention, when the recrystallization start temperature is set to 1200 ° C. or higher, when used as a resistance welding electrode, the life, that is, the number of times of use is significantly improved. I found out that I can do it.
[0018]
In the present invention, the additive element for improving the recrystallization temperature is potassium (K), and it is desirable to reduce the amount as much as possible in consideration of the productivity of the material, the improvement of the processing yield, the ease of recycling, and the like.
[0019]
In the present invention, the K content is preferably 10 ppm or more and 200 ppm or less, and preferably 50 to 100 ppm. The reason is that if it is less than 10 ppm, the recrystallization temperature is not improved, whereas if it exceeds 200 ppm, plastic working of the material is difficult and the production yield is poor.
[0020]
In the present invention, the theoretical density ratio of the tungsten alloy is preferably 95% or more. The reason is that when it is less than 95%, even if the recrystallization temperature is 1200 ° C. or higher, the impact resistance, fracture resistance, and wear resistance are insufficient.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0022]
(First embodiment)
Various potassium-dispersed tungsten powders having an average particle size of 4 μm were prepared by a conventional method. The powder was molded at 100 to 200 MPa by cold isostatic pressing, and then sintered at 1800 to 2200 ° C. for 10 to 30 hours in a hydrogen stream to prepare a sintered body having a thickness of 50 mm.
[0023]
The obtained sintered body was hot-rolled at 1500 to 1700 ° C. to obtain a plate material having a thickness of 1 mm (total rolling rate of 98%). The amount of potassium in the plate material was 5, 10, 30, 55, 72, 103, 147, 200, 220, 250 ppm. As the amount of potassium increased, the hot rolling property decreased. A good plate material with almost no cracks was obtained up to about 100 ppm of potassium. Cracking occurred up to a potassium content of about 100 to 200 ppm, and the yield was slightly reduced, but the productivity was not hindered. When the amount of potassium exceeded 200 ppm, many cracks occurred and the yield was significantly reduced.
[0024]
The summary results are shown in Table 1 below. The theoretical density ratio of the plate material having a potassium content of 200 ppm or less was 99% or more.
[0025]
The obtained plate was heated in hydrogen at a temperature of 1000 to 2000 ° C. for 1 hour, and the structure was observed with an optical microscope to examine the recrystallization temperature (recrystallization start temperature). The results are shown in Table 1 below. The higher the amount of potassium, the higher the recrystallization temperature. When the amount of potassium was 10 ppm or more, the recrystallization start temperature increased by 100 ° C. or more than that of pure tungsten (5 ppm of potassium).
[0026]
Furthermore, a tensile test and a simple impact test were conducted to examine the tensile strength and impact resistance. Here, the tensile test is performed at a strain rate of 6.7 × 10 −4 S −1 at room temperature and 1200 ° C. (assuming a temperature that is instantaneously applied to the material when used as an electrode material for resistance welding). It was. As a result, the tensile strength was higher as the amount of potassium was larger at both room temperature and 1200 ° C.
[0027]
The tensile strength at room temperature and 1200 ° C. of a plate material having a potassium amount of 10 ppm or more is 2.5 times or more and 1.1 times or more that of pure tungsten (5 ppm potassium amount), respectively, and the strength is remarkably increased by making the potassium amount 10 ppm or more. I was able to improve.
[0028]
On the other hand, in the simple impact test, a steel ball with a mass of 30 g is dropped freely from a height of 2 m onto a sample of a processed material and a 1200 ° C heat-treated material (assuming an initial use state and a material repeatedly used as a resistance welding electrode material, respectively). In addition, the fracture state of the sample surface was visually observed and distinguished from those without cracks (◯), with cracks (Δ), and cracks (x). The results are shown in Table 1 below.
[0029]
As shown in Table 1 below, in the case of the processed material, pure W (amount of potassium of 5 ppm) was not cracked, but cracking was confirmed. No crack was found in the material having a potassium content of 10 ppm or more. In the case of the heat treated material at 1200 ° C., cracks were slightly observed on the plate material having a potassium content of 10 ppm, but no crack was confirmed when the potassium content exceeded 10 ppm. The crack of the plate material with 10 ppm potassium is considered to be because the heat treatment temperature (1200 ° C.) is the same as the recrystallization start temperature and a part of the structure is recrystallized.
[0030]
Moreover, pure tungsten (5 ppm potassium amount) was divided. By making the potassium amount 10 ppm or more, not only the strength but also the impact resistance could be remarkably improved.
[0031]
An electrode shape (for example, a plate material having a thickness of 1 × width of 20 × length of 30 mm was produced from the plate material of Table 1 below. Five copper wires having a diameter of 0.5 mm were superposed and this pair of electrode materials (eg, 5 × 20 mm A life test was conducted by applying a predetermined current (for example, 5000 A) and pressurizing at a pressure of 5 kN, and the life was determined by electrode deformation, hooking, etc. The results are shown in Table 2 below.
[0032]
As shown in Table 2 below, in the case of pure tungsten (5 ppm potassium amount), the welding frequency was only about 600 times, but the recrystallization start temperature should be 1200 ° C. or higher (10 ppm or higher potassium amount). Thus, the number of weldings was 3500 or more, and the life was significantly increased. This is because not only room temperature characteristics (strength and impact resistance) but also heat resistance are improved by increasing the recrystallization start temperature.
[0033]
[Table 1]
Figure 0004068486
[0034]
[Table 2]
Figure 0004068486
[0035]
The total rolling rate of the obtained plate material was 95 to 97.5%, and the amount of potassium in the plate material was 10, 55, 103, and 200 ppm. The plate material was subjected to a life test similar to that of the first embodiment. The results are shown in Table 3 below.
[0036]
[Table 3]
Figure 0004068486
[0037]
【The invention's effect】
As described above, according to the present invention, not only the heat resistance is improved by increasing the recrystallization temperature of the electrode, but also the strength and impact resistance are remarkably improved. Even when welding a base material with a low specific resistance value, damage such as deformation, cracking and chipping is less likely to occur and it can be used repeatedly, so that productivity is improved and manufacturing costs are reduced. The electrode material for resistance welding which has an effect, and its manufacturing method can be provided.

Claims (4)

タングステン合金からなる抵抗溶接用電極材料であって、
組成が、カリウム10ppm以上200ppm以下で残部がタングステンと不可避的な不純物からなり、
前記タングステン合金の金属組織が繊維状組織を備えてなることを特徴とする抵抗溶接用電極材料。
An electrode material for resistance welding made of a tungsten alloy,
The composition is potassium 10 ppm or more and 200 ppm or less, and the balance consists of tungsten and inevitable impurities ,
An electrode material for resistance welding, wherein the metal structure of the tungsten alloy has a fibrous structure.
請求項1に記載の抵抗溶接用電極材料において、理論密度比が95%以上であることを特徴とする抵抗溶接用電極材料。  The electrode material for resistance welding according to claim 1, wherein the theoretical density ratio is 95% or more. 請求項1又は2に記載の抵抗溶接用電極材料を製造する方法であって、
タングステン粉末とカリウムとを混合して混合粉末を作製する工程と、
前記混合粉末をプレスしてプレス体を作製する工程と、
前記プレス体を水素気流中1800〜2200℃で焼結して焼結体を作製する工程と、
前記焼結体を1500〜1700℃で熱間圧延して圧延材料を作製する工程と、
を備えることを特徴とする抵抗溶接用電極材料の製造方法。
A method for producing the resistance welding electrode material according to claim 1 or 2,
A step of mixing tungsten powder and potassium to produce a mixed powder;
A step of pressing the mixed powder to produce a pressed body;
Sintering the pressed body in a hydrogen stream at 1800-2200 ° C. to produce a sintered body;
Hot rolling the sintered body at 1500-1700 ° C. to produce a rolled material;
A method for producing an electrode material for resistance welding, comprising:
請求項3に記載の抵抗溶接用電極材料の製造方法において、前記熱間圧延の全圧延率が95%を超える加工であることを特徴とする抵抗溶接用電極材料の製造方法。  4. The method for manufacturing a resistance welding electrode material according to claim 3, wherein the total rolling reduction of the hot rolling is a process exceeding 95%.
JP2003070608A 2003-03-14 2003-03-14 Electrode material for resistance welding and manufacturing method thereof Expired - Fee Related JP4068486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070608A JP4068486B2 (en) 2003-03-14 2003-03-14 Electrode material for resistance welding and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070608A JP4068486B2 (en) 2003-03-14 2003-03-14 Electrode material for resistance welding and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004277810A JP2004277810A (en) 2004-10-07
JP4068486B2 true JP4068486B2 (en) 2008-03-26

Family

ID=33287311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070608A Expired - Fee Related JP4068486B2 (en) 2003-03-14 2003-03-14 Electrode material for resistance welding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4068486B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060142A (en) * 2014-05-28 2014-09-24 张金水 Mo alloy spot welding head material
JP2016049562A (en) * 2014-09-02 2016-04-11 三菱マテリアル株式会社 Tungsten electrode material for resistance welding

Also Published As

Publication number Publication date
JP2004277810A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP6472834B2 (en) Method for forming sintered nickel-titanium-rare earth (Ni-Ti-RE) alloy
EP2027964B1 (en) Electrode for spot welding
JP6199897B2 (en) Powder mixture for producing nickel-titanium-rare earth metal (Ni-Ti-RE) sintered alloys
JP4916264B2 (en) Electrodes for fusing welding
JP5766833B2 (en) Medical needle
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
JP2005298931A (en) Copper alloy and its production method
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
JP5052796B2 (en) Method for producing Ni-based alloy wire or bar
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JP2005113180A (en) Copper alloy for electronic equipment, and its production method
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP5437669B2 (en) Hot and hot forging die
US20060115372A1 (en) Refractory metal annealing bands
JP2008012591A (en) Electrode for spot welding
EP3718665A1 (en) Conductive end member and manufacturing method therefor
JP2005081371A (en) Electrode material and its production method
JP7078070B2 (en) Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames
JP6193651B2 (en) Resistance welding electrode
JP2005288519A (en) Electrode material and its production method
JP2007167880A (en) Brazing filler metal and its production method
JP2007197793A (en) HIGH STRENGTH FREE-CUTTING Fe-Ni BASED ALLOY AND ITS PRODUCTION METHOD
JPH03229837A (en) Ti-base alloy for hot working tool and its manufacture
JPH0637700B2 (en) Method for producing copper alloy for resistance welding electrode
TWI608105B (en) Titanium for hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4068486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees