JPH02117780A - Electrode covered with ceramic particle dispersed metal and its manufacture - Google Patents

Electrode covered with ceramic particle dispersed metal and its manufacture

Info

Publication number
JPH02117780A
JPH02117780A JP27175688A JP27175688A JPH02117780A JP H02117780 A JPH02117780 A JP H02117780A JP 27175688 A JP27175688 A JP 27175688A JP 27175688 A JP27175688 A JP 27175688A JP H02117780 A JPH02117780 A JP H02117780A
Authority
JP
Japan
Prior art keywords
electrode
metal
dispersed
base material
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27175688A
Other languages
Japanese (ja)
Inventor
Kazuo Azuma
東 和男
Makoto Imagawa
誠 今川
Kazuo Hamashima
和雄 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Toyota Motor Corp filed Critical Asahi Glass Co Ltd
Priority to JP27175688A priority Critical patent/JPH02117780A/en
Publication of JPH02117780A publication Critical patent/JPH02117780A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably increase the electrode service life by forming a covering layer formed by dispersing >=1 kind of ceramics particles selected from an oxide, etc., in a metal layer consisting of >=1 kind selected from Co, etc., on the electrode base material surface. CONSTITUTION:The covering layer formed by dispersing >=1 kind of ceramic particles selected from the oxide, a nitride, a carbide and a boride in the metal layer consisting of >=1 kind selected from Co, Ni, Fe, Mo, Nb, Ti, Ta, W, V and Zr is formed on the electrode base material surface. Al2O3-dispersed electro-Co plating is carried out on the electrode base material surface made of a Cu-Al2O3 dispersion strengthening alloy to form the covering layer and then, it is heated for the prescribed time at the prescribed temperature and subjected to dispersion processing in an Ar atmosphere to form the title electrode. This electrode is provided with the covering layer 13 formed by dispersing uniformly the ceramics particles 13b consisting of Al2O3 in the metal layer 13a consisting of Co via a dispersed layer 12 on the electrode base material 11 surface. As a result of a continuous spot welding test, a remarkable increase of the number of spots of good service life is observed and the electrode life can be increased.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は1例えばスポット溶接電極材料、摺動電極材料
等に好適なセラミックス粒子分散金属被覆電極およびそ
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a ceramic particle-dispersed metal-coated electrode suitable for use as, for example, spot welding electrode material, sliding electrode material, etc., and a method for manufacturing the same.

「従来の技術」 電気スポット溶接において、従来の電極チップ1cu−
Cr電極、 Cu−A11a3電極)で亜鉛メッキ鋼板
を溶接すると、溶接時に発生する熱により溶接した亜鉛
と電極母材の銅とが反応して、電極先端部分が母材より
融点の低い銅−亜鉛合金となるため。
"Conventional technology" In electric spot welding, the conventional electrode tip 1cu-
When galvanized steel sheets are welded with a Cr electrode or a Cu-A11a3 electrode, the heat generated during welding causes the welded zinc to react with the copper of the electrode base material, causing the electrode tip to form a copper-zinc layer with a lower melting point than the base material. Because it becomes an alloy.

先端形状が変化しやすくなり、電極寿命が普通鋼板を溶
接した場合よりも著しく短くなることが知られている。
It is known that the tip shape changes easily and the electrode life is significantly shorter than when ordinary steel plates are welded.

また、亜鉛との反応を抑止する目的で電極チップ表面に
C01Ni、 Cr、TiNをコーティングした電極等
も提案されている(抵抗溶接委員会資料Rト337−8
61 、 Lかし、 Co、Ni、 (:rの比較的靭
性のある材料を被覆した電極の場合は、被覆層が短時間
に摩耗し、母材と亜鉛が反応する。一方、 TiNのよ
うな硬質の被覆層には亀裂が生じやすく、亜鉛が亀裂よ
り侵入して反応する。
In addition, electrodes whose electrode tips are coated with CO1Ni, Cr, or TiN have been proposed for the purpose of suppressing reactions with zinc (Resistance Welding Committee Material R-337-8).
In the case of electrodes coated with relatively tough materials such as 61, L, Co, Ni, (:r), the coating layer wears out in a short time and the base material and zinc react. The hard coating layer is prone to cracks, and zinc penetrates through the cracks and reacts.

一二のように、亜鉛メッキ鋼板のスポット溶接において
は、電極母材と亜鉛とが容易に反応し、電極寿命は著し
く短くなっていた。また、コーティング電極にしても、
耐摩耗性が乏しかったり、亀裂等が生じやすいなどの問
題点があり、電極寿命も通常のCu−Cr電極の1〜2
倍程度にとどまっていた。
As shown in No. 12, when spot welding galvanized steel sheets, the electrode base material and zinc easily react with each other, resulting in a significantly shortened electrode life. Also, even if it is a coated electrode,
There are problems such as poor wear resistance and easy cracking, and the electrode life is 1 to 2 times longer than that of ordinary Cu-Cr electrodes.
It stayed at about double that.

[発明が解決しようとする課題J 本発明は、上記従来技術の問題点に鑑みてなされたもの
であり、その目的は、スポット溶接電極、摺動電極等の
電極、特には亜鉛メッキ鋼板のスポット溶接電極に用い
たときに、電極寿命を飛躍的に高めることができるよう
にしたセラミックス粒子分散金属被覆電極およびその製
造法を提供することにある。
[Problems to be Solved by the Invention J The present invention has been made in view of the problems of the prior art described above, and its purpose is to weld electrodes such as spot welding electrodes and sliding electrodes, particularly spot welding electrodes on galvanized steel sheets. An object of the present invention is to provide a ceramic particle-dispersed metal-coated electrode that can dramatically increase the life of the electrode when used as a welding electrode, and a method for manufacturing the same.

[課題を解決するための手段」 上記目的を達成するため1本発明によるセラミックス粒
子分散金属被覆電極は、Co、Ni、 Fe。
[Means for Solving the Problems] To achieve the above object, a ceramic particle-dispersed metal-coated electrode according to the present invention comprises Co, Ni, and Fe.

Mo、Nb、 Ti、 Ta、 W、 VおよびZ「か
ら選ばれた少なくとも一種以上からなる金属層中に、酸
化物、窒化物、炭化物および硼化物から選ばれた少なく
とも一種以上のセラミックス粒子が分散してなる被覆層
が、電極基材表面に形成されていることを特徴とする。
Ceramic particles of at least one type selected from oxide, nitride, carbide, and boride are dispersed in a metal layer consisting of at least one type selected from Mo, Nb, Ti, Ta, W, V, and Z. A coating layer formed of the following is formed on the surface of the electrode base material.

また、本発明によるセラミックス粒子分散金属VL醪電
極の製造法は、酸化物、窒化物、炭化物および硼化物か
ら選ばれた少なくとも一種以上のセラミックス粒子を、
Go、 Ni、 Fe、 No、Nb、 Ti、Ta、
 W、 Vおよび2「から選ばれた少なくとも一種以上
の金属のメッキ液中に分散させて、電極基材表面に電気
メッキまたは無電解メッキを施し、前記金属層中に前記
セラミック粒子が分散した被覆層を前記電極基材表面に
形成する工程と、前記被覆層が形成された前記電極基材
表面を熱処理して、前記被覆層中の金属と前記電極基材
中の金属とを相互拡散させた拡散層を形成する工程とを
含むことを特徴とする。
In addition, the method for manufacturing a ceramic particle-dispersed metal VL electrode according to the present invention includes ceramic particles of at least one type selected from oxides, nitrides, carbides, and borides.
Go, Ni, Fe, No, Nb, Ti, Ta,
A coating in which at least one metal selected from W, V, and 2 is dispersed in a plating solution, electroplated or electroless plated on the surface of an electrode base material, and the ceramic particles are dispersed in the metal layer. a step of forming a layer on the surface of the electrode base material, and heat treating the surface of the electrode base material on which the coating layer is formed to interdiffuse the metal in the coating layer and the metal in the electrode base material. The method is characterized in that it includes a step of forming a diffusion layer.

以下1本発明について好ましい態様を挙げながらより詳
細に説明する。
Hereinafter, one aspect of the present invention will be explained in more detail while citing preferred embodiments.

電極基材としては、特に限定されないが、 Cuまたは
Cu合金が好ましく使用される。この中でも。
The electrode base material is not particularly limited, but Cu or a Cu alloy is preferably used. Among these.

前記拡散層を形成する際の熱処理において硬度低下が少
ない材質が好ましく1例えばCu−Aln(in系。
It is preferable to use a material whose hardness decreases little during heat treatment when forming the diffusion layer 1, for example, Cu-Aln (in type).

Cu−TiB□系等の分散強化型Cu合金が好ましく使
用される。また、 Cu−Cr 、 Cu−Cr−Zr
、 Cu−Zr 、 Cu−Be、 Cu−Ti等の析
出硬化型Cu合金なども、後から時効処理などを行なえ
ば好ましく使用できる。
Dispersion-strengthened Cu alloys such as Cu-TiB□ are preferably used. Also, Cu-Cr, Cu-Cr-Zr
Precipitation hardening type Cu alloys such as , Cu-Zr, Cu-Be, and Cu-Ti can also be preferably used if they are subjected to aging treatment afterwards.

被覆層の金属層としては、 Go、Ni、 Fe、 M
o。
The metal layer of the coating layer includes Go, Ni, Fe, M
o.

Nb、 Ti、 Ta、 W、 VおよびZrから選ば
れた少なくとも一種以上からなるものが使用される。こ
れらの金属は、電気メッキまたは無電解メッキが可能で
融点が高い、この中でも、特にCo、 Ni、 Crは
A material consisting of at least one selected from Nb, Ti, Ta, W, V and Zr is used. These metals can be electroplated or electroless plated and have high melting points, especially Co, Ni, and Cr.

電気メッキ法により短時間で所望の厚膜が形成できるの
で望ましい。
Electroplating is desirable because it allows a desired thick film to be formed in a short time.

被覆層の金属層中に分散させるセラミックス粒子として
は、酸化物、窒化物、炭化物および硼化物から選ばれた
少なくとも−#!以上のものが使用される。窒化物とし
てはTiN、 Tag、 ZrN、 NbN、Si2N
4などが挙げられ、fill化物としてはA1m0n、
Zr0t、 TjOt、 Yx03などが挙げられ、硼
化物トシテは丁jBx、 ZrBz、 TaBn、 N
bBg、 18.14oB、CrBなどが挙げられ、炭
化物としては肛、 TiC,VC,NbC,・MoxC
,MoCなどが挙げられる。この中でも、 TiN、Z
rN、 5isN4などの窒化物、Al*Os 、 Z
rO,、Ties。
The ceramic particles to be dispersed in the metal layer of the coating layer are at least -#! selected from oxides, nitrides, carbides, and borides. The above are used. Nitrides include TiN, Tag, ZrN, NbN, Si2N
4, etc., and filled compounds include A1m0n,
Examples include Zr0t, TjOt, Yx03, etc., and boride compounds include DjBx, ZrBz, TaBn, N
Examples include bBg, 18.14oB, CrB, etc., and carbides include TiC, VC, NbC, and MoxC.
, MoC, etc. Among these, TiN, Z
Nitride such as rN, 5isN4, Al*Os, Z
rO,, Ties.

Ylo、などの酸化物、TiBm、 ZrBa、MoB
などの硼化物、 Ticなとの炭化物が特に好ましい、
これらのセラミックス粒子は、高硬度、耐Zn性がよい
、比較的軽量、被覆層の金属と反応し難いなどの長所を
有している。
Oxides such as Ylo, TiBm, ZrBa, MoB
Borides such as Tic and carbides are particularly preferred.
These ceramic particles have advantages such as high hardness, good Zn resistance, relatively light weight, and difficulty in reacting with the metal of the coating layer.

セラミックス粒子の粒径は、o、 oos〜lOμm程
度か好ましく、0.01〜5μm程度がさらに好ましい
The particle size of the ceramic particles is preferably about 0.00 to 10 μm, more preferably about 0.01 to 5 μm.

被覆層中に分散させるセラミックス粒子の総量は、被覆
層全体の0.1〜20体積%が適当であり。
The total amount of ceramic particles dispersed in the coating layer is suitably 0.1 to 20% by volume of the entire coating layer.

0.2〜lO体積%がより好ましく、O,S〜5体積%
がさらに好ましい、上記範囲とすることにより。
More preferably 0.2 to 10% by volume, O,S to 5% by volume
is more preferably within the above range.

より優れた耐摩耗性、耐溶着性を付与することができる
It can provide better wear resistance and welding resistance.

金属層中にセラミックス粒子を分散させてなる被覆層の
厚みは、1〜300μmが適当であり、3〜50μmが
より好ましく、5〜50μmがさらに好ましい、上記範
囲とすることにより、電気抵抗や密着強度などからより
有利となる。
The thickness of the coating layer formed by dispersing ceramic particles in the metal layer is suitably 1 to 300 μm, more preferably 3 to 50 μm, and even more preferably 5 to 50 μm. It is more advantageous in terms of strength.

また1本発明の好ましい態様においては、被覆層と電極
基材との界面に、被覆層中の金属と電極基材中の金属と
が相互拡散してなる拡散層が形成される。この拡散層の
厚みは、0.1〜20μmとされることが好ましい。
Furthermore, in a preferred embodiment of the present invention, a diffusion layer is formed at the interface between the coating layer and the electrode base material by mutual diffusion of the metal in the coating layer and the metal in the electrode base material. The thickness of this diffusion layer is preferably 0.1 to 20 μm.

本発明の製造法においては、前記セラミックス粒子を前
記金属のメッキ液中に分散させて、電極基材表面に電気
メッキまたは無電解メッキを施し、金属層中にセラミッ
ク粒子が分散した被覆層を電極基材表面に形成する0例
えばセラミックス粒子を金属のメッキ液中に分散させ、
スターラ撹拌または空気撹拌等により攪拌しながら、陰
極電流密度2〜IOA/da” 、メッキ時間lO分か
ら2時間位で電気メッキすることにより、金属層中にセ
ラミックス粒子が分散した5〜200μm厚さの被覆層
を形成することができる。
In the manufacturing method of the present invention, the ceramic particles are dispersed in the metal plating solution, electroplating or electroless plating is applied to the surface of the electrode base material, and the coating layer in which the ceramic particles are dispersed in the metal layer is applied to the electrode. For example, ceramic particles to be formed on the surface of the base material are dispersed in a metal plating solution,
By electroplating at a cathode current density of 2 to IOA/da and a plating time of 10 minutes to 2 hours while stirring with a stirrer or air agitation, a metal layer with a thickness of 5 to 200 μm in which ceramic particles are dispersed is formed. A covering layer can be formed.

さらに1本発明の好ましい態様において、被覆層と電極
基材との界面に、被覆層中の金属と電極基材中の金属と
が相互拡散してなる拡散層を形成するには、上記被覆層
を形成した後、熱処理を行なう、この熱処理は、650
〜900℃で30分〜2時間程度行なうことが好ましい
Furthermore, in a preferred embodiment of the present invention, in order to form a diffusion layer formed by interdiffusion of the metal in the coating layer and the metal in the electrode base material at the interface between the coating layer and the electrode base material, the above-mentioned coating layer After forming, heat treatment is performed.
It is preferable to carry out the heating at ~900°C for about 30 minutes to 2 hours.

本発明によるセラミックス粒子分散金属被覆電極は1例
えばスポット溶接電極、摺動電極などとして利用できる
が、特にスボ・ント溶接電極として好適であり、さらに
はZnメッキ鋼板のスポット溶接電極として好適である
The ceramic particle-dispersed metal-coated electrode according to the present invention can be used, for example, as a spot welding electrode, a sliding electrode, etc., and is particularly suitable as a spot welding electrode for spot welding of Zn-plated steel sheets.

「作用」 セラミックス粒子は、硬度や融点が高く、Znとの反応
性も少ない、したがって、被覆層中のセラミックス粒子
は、金属の摩耗や溶着を防ぎ、Znとの反応をおさえる
働きをする。一方、被覆層中の金属層は、被覆層に導電
性を付与すると共に、柔軟性に富むので被覆層に亀裂等
が発生することを防止する働きをする。このように、セ
ラミックス粒子と金属層が協同して、電極寿命を飛躍的
に高めることができる。
"Function" Ceramic particles have high hardness and melting point, and have little reactivity with Zn. Therefore, the ceramic particles in the coating layer function to prevent metal wear and welding and to suppress reaction with Zn. On the other hand, the metal layer in the coating layer not only imparts conductivity to the coating layer, but also has high flexibility, so it functions to prevent cracks from occurring in the coating layer. In this way, the ceramic particles and the metal layer work together to dramatically increase the life of the electrode.

また、本発明の好ましい態様において、被覆層と電極基
材との界面に、被覆層中の金属と電極基材中の金属とが
相互拡散してなる拡散層を形成した場合には、電極基材
と被覆層との密着性が良好となり、電極基材表面から被
覆層が剥落することがより確実に防止される。このため
、電極寿命をより一層高めることができる。
Further, in a preferred embodiment of the present invention, when a diffusion layer is formed at the interface between the coating layer and the electrode base material by mutual diffusion of the metal in the coating layer and the metal in the electrode base material, the electrode base material The adhesion between the material and the coating layer is improved, and peeling of the coating layer from the surface of the electrode base material is more reliably prevented. Therefore, the life of the electrode can be further increased.

「実施例」 実施例l Cu−2wt%A1□03分散強化型合金からなる電極
基材表面に、A1.01分分散電気Coメッキ施して約
lOμmの厚さの被覆層を形成した後、アルゴン雰囲気
中で700℃で1時間加熱して拡散処理を施し電極を作
成した。第1図はこの電極の拡大断面図である。すなわ
ち、この電極は、電極基材11表面に拡散層!2を介し
て被覆層I3が形成されている。破開13は、 Coか
らなる金属層13a中にAl−0sからなるセラミック
ス粒子13bが均一に分散してできている。また、拡散
層12は、金属層13aのCOと電極基材11のCu−
2wt%A1.Osとが相互に固溶した層からなり、厚
さは約1〜2μmであった。電極基材11の硬度(ビッ
カース硬度)は、H,l50kg/■■露であった。
"Example" Example 1 The surface of an electrode base material made of Cu-2wt%A1□03 dispersion-strengthened alloy was subjected to dispersion electrolytic Co plating for A1.01 minutes to form a coating layer with a thickness of about 10 μm, and then argon plating was applied. An electrode was prepared by heating at 700° C. for 1 hour in an atmosphere to perform a diffusion treatment. FIG. 1 is an enlarged sectional view of this electrode. In other words, this electrode has a diffusion layer on the surface of the electrode base material 11! A covering layer I3 is formed through 2. The rupture 13 is formed by uniformly dispersing ceramic particles 13b made of Al-0s in a metal layer 13a made of Co. Further, the diffusion layer 12 is composed of CO in the metal layer 13a and Cu- in the electrode base material 11.
2wt%A1. It consisted of a layer in which Os and Os were mutually dissolved in solid solution, and the thickness was about 1 to 2 μm. The hardness (Vickers hardness) of the electrode base material 11 was H, 50 kg/■■ dew.

実施例2 Cu−2,6wt%Ties分散強化型合金からなる電
極基材表面に、 TiN分散電気Niメッキを施して約
20μmの厚さの被rfi層を形成した後、アルゴン雰
囲気中で700℃で1時間加熱して拡散処理を施し電極
を作成した。この電極は、電極基材表面に拡地層を介し
て被覆層が形成されている。被覆層は。
Example 2 After applying TiN dispersion electrolytic Ni plating to the surface of an electrode base material made of a Cu-2,6 wt% Ties dispersion strengthened alloy to form an RFI layer with a thickness of about 20 μm, it was heated at 700°C in an argon atmosphere. An electrode was prepared by heating for 1 hour and performing a diffusion treatment. In this electrode, a coating layer is formed on the surface of the electrode base material via a spreading layer. The coating layer is.

Ni層中にTiN粒子が均一に分散してできている。TiN particles are uniformly dispersed in the Ni layer.

拡散層は、Ni層と電極基材とが相互に固溶した層から
なり、厚さは約1〜2μmであった。電極基材の硬度(
ビッカース硬度)は、)1v145kg/lがであった
The diffusion layer consisted of a layer in which the Ni layer and the electrode base material were mutually dissolved in solid solution, and had a thickness of about 1 to 2 μm. Hardness of electrode base material (
Vickers hardness) was 1v145 kg/l.

実施例3 Cu−2wt%A1.O,分散強化型合金からなる電極
基材表面に、^1203分散電気分散電気Coメッキ約
10umの厚さの被覆層を形成した後、アルゴン雰囲気
中で800℃で1時間加熱して拡散処理を施し電極を作
成した。この電極は、電極基材表面に拡散層を介して被
覆層が形成されている。被覆層は、Cr層中にA1.0
.粒子が均一に分散してできている。拡散層は、Cr層
と電極基材とが相互に固溶した層からなっていた。電極
基材の硬度(ビッカース硬度)は、 Hv150kg/
as”であった。
Example 3 Cu-2wt%A1. After forming a coating layer with a thickness of about 10 um using ^1203 dispersion electrodispersion electrolytic Co plating on the surface of the electrode base material made of O, dispersion-strengthened alloy, it was heated at 800°C for 1 hour in an argon atmosphere to undergo a diffusion treatment. An electrode was created. In this electrode, a coating layer is formed on the surface of the electrode base material with a diffusion layer interposed therebetween. The coating layer has A1.0 in the Cr layer.
.. Made of uniformly dispersed particles. The diffusion layer consisted of a layer in which a Cr layer and an electrode base material were mutually dissolved in solid solution. The hardness (Vickers hardness) of the electrode base material is Hv150kg/
It was "as".

実施例4 Cu−0,4wt%Cr−0,3wt%Z「析出強化型
合金からなる電極基材表面に、TiO*分散電気Goメ
ッキを施して約20umの厚さの被覆層を形成した後、
アルゴン雰囲気中で950℃で1時間加熱して拡散処理
を施し、水冷した後、再び450℃で2時間加熱して電
極を作成した。この電極は、電極基材表面に拡散層を介
して被覆層が形成されている。被覆層は、Co層中にT
ies粒子が均一に分散してできている。拡散層は、C
o層と電極基材とが相互に固溶した層からなり、厚さは
約2〜3μmであった。電極基材の硬度(ビッカース硬
度)は、Hv135kg/w+m”であった。
Example 4 Cu-0,4 wt% Cr-0,3 wt% Z "After applying TiO* dispersion electroplating with Go to the surface of an electrode base material made of a precipitation-strengthened alloy to form a coating layer with a thickness of about 20 um. ,
Diffusion treatment was performed by heating at 950° C. for 1 hour in an argon atmosphere, cooling with water, and heating again at 450° C. for 2 hours to create an electrode. In this electrode, a coating layer is formed on the surface of the electrode base material with a diffusion layer interposed therebetween. The coating layer includes T in the Co layer.
It is made of uniformly dispersed ies particles. The diffusion layer is C
It consisted of a layer in which the o layer and the electrode base material were mutually dissolved in solid solution, and the thickness was about 2 to 3 μm. The hardness (Vickers hardness) of the electrode base material was Hv135 kg/w+m''.

実施例5 実施例1のA1□01分散電気GoメッキをZrO□分
散電気Coメッキに変えて同様にして電極を作成した。
Example 5 An electrode was produced in the same manner as in Example 1, except that the A1□01 dispersion electroplating with Go was replaced with ZrO□ dispersion electroplating with Co.

実施例6 実施例2のTiN分散電気NiメッキをTiC分故分電
電気Niメッキえて同様にして電極を作成した。
Example 6 An electrode was produced in the same manner as in Example 2 except that the TiN dispersion electrolytic Ni plating was replaced with TiC dispersion electrolytic Ni plating.

実施例7 実施例4のTiO□分散電気GoメッキをTiN分敢電
気C「メッキに変えて同様にして電極を作成した。
Example 7 An electrode was prepared in the same manner as in Example 4, except that the TiO□ dispersion electroplating with Go was replaced with TiN dispersion electroplating.

実施例8 実施例1のAIJs分散電分散電気CキメッキB−分散
電気Niメッキに変えて同様にして電極を作成した。
Example 8 An electrode was prepared in the same manner as in Example 1 except that the AIJs dispersion electrolysis C plating B-dispersion electrolysis Ni plating was used.

実施例9 実施例!のAll0.分散電気CoメッキをCrB分散
電気Niメッキに変えて同様にして電極を作成した。
Example 9 Example! All0. Electrodes were created in the same manner except that the dispersion electrolytic Co plating was changed to CrB dispersion electrolytic Ni plating.

実施例1〇 一実施例2のTtN分散電気NiメッキをMoB分散電
気Coメッキに変えて同様にして電極を作成した。
Example 1〇-An electrode was prepared in the same manner as in Example 2 except that the TtN dispersed electrolytic Ni plating was replaced with MoB dispersed electrolytic Co plating.

比較例l Cu−0,6wt%Crからなる電極を作成した。Comparative example l An electrode made of Cu-0.6wt%Cr was created.

比較例2 Cu−2wt%A1ヨ0.からなる電極を作成した。Comparative example 2 Cu-2wt%A1yo0. An electrode consisting of

比較例3 Cu−1et%AItoz分散強化型合金からなる電極
基材表面に、電気COメッキを施して約lOμmの厚さ
のGo層を形成して電極を作成した。
Comparative Example 3 An electrode was prepared by applying electrolytic CO plating to the surface of an electrode base material made of a Cu-1et%AItoz dispersion-strengthened alloy to form a Go layer with a thickness of about 10 μm.

比較例4 Cu−1wL%^1□03分散強化型合金からなる電極
基材表面に、電気Niメッキを施して約10umの厚さ
のNi層を形成して電極を作成した。
Comparative Example 4 An electrode was prepared by electrolytic Ni plating on the surface of an electrode base material made of a Cu-1wL%^1□03 dispersion-strengthened alloy to form a Ni layer with a thickness of about 10 um.

試験例 これらの電極の寿命を調べるため、連続スポット溶接試
験を実施した。試験は、定置式の定格容量25KVAの
溶接機を用い、溶接電流10500A、加圧力250k
g 、溶接時間12サイクル、20打点/分で。
Test Example To investigate the lifespan of these electrodes, a continuous spot welding test was conducted. The test was conducted using a stationary welding machine with a rated capacity of 25KVA, a welding current of 10,500A, and a pressure of 250K.
g, welding time 12 cycles, 20 dots/min.

板厚08−  の溶融亜鉛メッキ鋼板(両面メッキ、目
付量45g/■1−片面)と板厚0.8m腸の5PC2
8Gを20枚ずつの交互に溶接を行なった。電橋寿命は
、ナゲツト径が4Jt (t:板厚)以下になった最初
の打点数を電極寿命とした。テストピースは、δO打点
ごとに調べた。この結果を次表に示す。
Hot-dip galvanized steel sheet with a plate thickness of 08-mm (both sides plated, basis weight 45g/■1-single side) and 5PC2 with a plate thickness of 0.8m
20 pieces of 8G were alternately welded. For the bridge life, the first number of dots at which the nugget diameter became 4 Jt (t: plate thickness) or less was defined as the electrode life. The test piece was examined at each δO dot. The results are shown in the table below.

(以下、余白) 表(連続スポット溶接試験の結果) [発明の効果] 以上説明したように1本発明によれば、被覆層中のセラ
ミックス粒子が、金属の摩耗や溶着を防ぎ、Znとの反
応をおさえる働きをし、被覆層中の金属層が、その柔軟
性により被覆層に亀裂等が発生することを防止するので
、これらが協同して電極寿命を飛躍的に高めることがで
きる。また、被覆層と電極基材との界面に拡散層を形成
することにより、被覆層と電極基材との密着性を向上さ
せて電極寿命をさらに高めることができる。そして、耐
亜鉛性、耐摩耗性、耐溶着性に優れているので、特にス
ポット溶接に対して好適であり、他への応用も可能であ
り、その実用的価値は多大である。
(Hereinafter, blank space) Table (Results of continuous spot welding test) [Effects of the invention] As explained above, according to the present invention, ceramic particles in the coating layer prevent metal wear and welding, and bond with Zn. The metal layer in the coating layer works to suppress reactions, and its flexibility prevents cracks from occurring in the coating layer, so these factors work together to dramatically increase the life of the electrode. Furthermore, by forming a diffusion layer at the interface between the covering layer and the electrode base material, the adhesion between the covering layer and the electrode base material can be improved and the life of the electrode can be further increased. Since it has excellent zinc resistance, abrasion resistance, and welding resistance, it is particularly suitable for spot welding, and can be applied to other applications, so it has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるセラミックス粒子分散金属被覆電
極を模式的に示す部分断面図である。 図中、 11は電極基材、 12は拡散層、13は被覆
層、 13aは金属層、13bはセラミックス粒子であ
る。
FIG. 1 is a partial sectional view schematically showing a ceramic particle-dispersed metal-coated electrode according to the present invention. In the figure, 11 is an electrode base material, 12 is a diffusion layer, 13 is a coating layer, 13a is a metal layer, and 13b is a ceramic particle.

Claims (12)

【特許請求の範囲】[Claims] (1)Co、Ni、Fe、Mo、Nb、Ti、Ta、W
、VおよびZrから選ばれた少なくとも一種以上からな
る金属層中に、酸化物、窒化物、炭化物および硼化物か
ら選ばれた少なくとも一種以上のセラミックス粒子が分
散してなる被覆層が、電極基材表面に形成されているこ
とを特徴とするセラミックス粒子分散金属被覆電極。
(1) Co, Ni, Fe, Mo, Nb, Ti, Ta, W
, V, and Zr, in which ceramic particles of at least one kind selected from oxides, nitrides, carbides, and borides are dispersed. A metal-coated electrode with ceramic particles dispersed thereon.
(2)前記被覆層の厚みが1〜300μmである請求項
1記載のセラミックス粒子分散金属被覆電極。
(2) The ceramic particle-dispersed metal-coated electrode according to claim 1, wherein the coating layer has a thickness of 1 to 300 μm.
(3)前記被覆層と前記電極基材との界面に、前記被覆
層中の金属と前記電極基材中の金属とが相互拡散してな
る拡散層が形成されている請求項1または2記載のセラ
ミックス粒子分散金属被覆電極。
(3) A diffusion layer formed by mutual diffusion of the metal in the coating layer and the metal in the electrode base material is formed at the interface between the coating layer and the electrode base material. Ceramic particle-dispersed metal coated electrode.
(4)前記拡散層の厚みが0.1〜20μmである請求
項3記載のセラミックス粒子分散金属被覆電極。
(4) The ceramic particle-dispersed metal-coated electrode according to claim 3, wherein the thickness of the diffusion layer is 0.1 to 20 μm.
(5)前記被覆層中の金属層がCo、NiおよびCrか
ら選ばれた少なくとも一種からなる請求項1〜4のいず
れか1つに記載のセラミックス粒子分散金属被覆電極。
(5) The ceramic particle-dispersed metal-coated electrode according to any one of claims 1 to 4, wherein the metal layer in the coating layer is made of at least one selected from Co, Ni, and Cr.
(6)前記被覆層中に分散している前記セラミックス粒
子の総量が、前記被覆層全体の0.1〜20体積%であ
る請求項1〜5のいずれか1つに記載のセラミックス粒
子分散金属被覆電極。
(6) The ceramic particle-dispersed metal according to any one of claims 1 to 5, wherein the total amount of the ceramic particles dispersed in the coating layer is 0.1 to 20% by volume of the entire coating layer. Covered electrode.
(7)前記被覆層中に分散している前記セラミックス粒
子の総量が、前記被覆層全体の0.2〜10体積%であ
る請求項6記載のセラミックス粒子分散金属被覆電極。
(7) The ceramic particle-dispersed metal-coated electrode according to claim 6, wherein the total amount of the ceramic particles dispersed in the coating layer is 0.2 to 10% by volume of the entire coating layer.
(8)前記電極基材がCuまたはCu合金からなる請求
項1〜7のいずれか1つに記載のセラミックス粒子分散
金属被覆電極。
(8) The ceramic particle-dispersed metal-coated electrode according to any one of claims 1 to 7, wherein the electrode base material is made of Cu or a Cu alloy.
(9)スポット溶接電極として用いる請求項1〜8のい
ずれか1つに記載のセラミックス粒子分散金属被覆電極
(9) The ceramic particle-dispersed metal-coated electrode according to any one of claims 1 to 8, which is used as a spot welding electrode.
(10)Znメッキ鋼板のスポット溶接電極として用い
る請求項9記載のセラミックス粒子分散金属被覆電極。
(10) The ceramic particle-dispersed metal-coated electrode according to claim 9, which is used as a spot welding electrode for Zn-plated steel sheets.
(11)酸化物、窒化物、炭化物および硼化物から選ば
れた少なくとも一種以上のセラミックス粒子を、Co、
Ni、Fe、Mo、Ti、Ta、W、VおよびZrから
選ばれた少なくとも一種以上の金属のメッキ液中に分散
させて、電極基材表面に電気メッキまたは無電解メッキ
を施し、前記金属層中に前記セラミック粒子が分散した
被覆層を前記電極基材表面に形成する工程と、前記被覆
層が形成された前記電極基材表面を熱処理して、前記被
覆層中の金属と前記電極基材中の金属とを相互拡散させ
た拡散層を形成する工程とを含むことを特徴とするセラ
ミックス粒子分散金属被覆電極の製造法。
(11) Co,
At least one metal selected from Ni, Fe, Mo, Ti, Ta, W, V, and Zr is dispersed in a plating solution, and electroplated or electroless plating is applied to the surface of the electrode base material to form the metal layer. forming a coating layer in which the ceramic particles are dispersed on the surface of the electrode base material; and heat-treating the surface of the electrode base material on which the coating layer is formed to separate the metal in the coating layer and the electrode base material. 1. A method for producing a metal-coated electrode in which ceramic particles are dispersed, the method comprising the step of forming a diffusion layer in which metal therein is interdiffused.
(12)前記熱処理を650〜900℃で30分〜2時
間行なう請求項11記載のセラミックス粒子分散金属被
覆電極の製造法。
(12) The method for producing a ceramic particle-dispersed metal-coated electrode according to claim 11, wherein the heat treatment is performed at 650 to 900°C for 30 minutes to 2 hours.
JP27175688A 1988-10-27 1988-10-27 Electrode covered with ceramic particle dispersed metal and its manufacture Pending JPH02117780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27175688A JPH02117780A (en) 1988-10-27 1988-10-27 Electrode covered with ceramic particle dispersed metal and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27175688A JPH02117780A (en) 1988-10-27 1988-10-27 Electrode covered with ceramic particle dispersed metal and its manufacture

Publications (1)

Publication Number Publication Date
JPH02117780A true JPH02117780A (en) 1990-05-02

Family

ID=17504401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27175688A Pending JPH02117780A (en) 1988-10-27 1988-10-27 Electrode covered with ceramic particle dispersed metal and its manufacture

Country Status (1)

Country Link
JP (1) JPH02117780A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004073A1 (en) * 2004-06-30 2006-01-12 Nisshin Steel Co., Ltd. Electrode for spot welding
JP2006015349A (en) * 2004-06-30 2006-01-19 Nisshin Steel Co Ltd Spot welding electrode
JP2006095549A (en) * 2004-09-28 2006-04-13 Nisshin Steel Co Ltd ELECTRODE FOR SPOT WELDING OF STEEL PLATE PLATED WITH Mg COMPONENT-CONTAINING ZINC-BASED ALLOY
JP2006102775A (en) * 2004-10-05 2006-04-20 Nippon Tungsten Co Ltd Electrode for spot welding
JPWO2006057052A1 (en) * 2004-11-29 2008-06-05 三菱電機株式会社 Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
EP2027964A1 (en) * 2006-06-08 2009-02-25 Nippon Tungsten Co., Ltd. Electrode for spot welding
CN104831151A (en) * 2015-05-09 2015-08-12 芜湖鼎瀚再制造技术有限公司 Welding Co-Ti-Mo-W nano welding layer and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004073A1 (en) * 2004-06-30 2006-01-12 Nisshin Steel Co., Ltd. Electrode for spot welding
JP2006015349A (en) * 2004-06-30 2006-01-19 Nisshin Steel Co Ltd Spot welding electrode
JP2006095549A (en) * 2004-09-28 2006-04-13 Nisshin Steel Co Ltd ELECTRODE FOR SPOT WELDING OF STEEL PLATE PLATED WITH Mg COMPONENT-CONTAINING ZINC-BASED ALLOY
JP4683890B2 (en) * 2004-09-28 2011-05-18 日新製鋼株式会社 Mg component-containing Zn-based alloy plated steel plate spot welding electrode
JP2006102775A (en) * 2004-10-05 2006-04-20 Nippon Tungsten Co Ltd Electrode for spot welding
JP4683896B2 (en) * 2004-10-05 2011-05-18 日本タングステン株式会社 Spot welding electrode
JPWO2006057052A1 (en) * 2004-11-29 2008-06-05 三菱電機株式会社 Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
JP4575924B2 (en) * 2004-11-29 2010-11-04 三菱電機株式会社 Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
EP2027964A1 (en) * 2006-06-08 2009-02-25 Nippon Tungsten Co., Ltd. Electrode for spot welding
EP2027964A4 (en) * 2006-06-08 2010-04-28 Nippon Tungsten Electrode for spot welding
US8471169B2 (en) 2006-06-08 2013-06-25 Nippon Tungsten Co., Ltd. Electrode for spot welding
CN104831151A (en) * 2015-05-09 2015-08-12 芜湖鼎瀚再制造技术有限公司 Welding Co-Ti-Mo-W nano welding layer and preparation method thereof

Similar Documents

Publication Publication Date Title
Chen et al. Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JPH02117780A (en) Electrode covered with ceramic particle dispersed metal and its manufacture
CN110004372B (en) High-temperature-resistant, oxidation-resistant and wear-resistant metallurgical roller and preparation method thereof
JP5131077B2 (en) Spot welding method for Sn-based plated steel sheet
JPS60231597A (en) Material of electrode for welding
JPS60227998A (en) Electrode material for welding
JP2012045555A (en) Electrode for spot welding
JP3846960B2 (en) Welding torch member and manufacturing method thereof
JPH06179082A (en) Double action type resistance spot welding electrodes
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JP3651819B2 (en) Method for modifying copper or copper alloy surface
JPH01136960A (en) Cu-base material
JPH024983A (en) Galvanized sheet excellent in spot weldability
JPS63199892A (en) Conductive roll for electroplating
JPH06122076A (en) Cladding by welding method of oxide dispersion strengthened alloy
JPH04356375A (en) Electrode for spot welding
RU2304185C1 (en) Strengthening coating with reinforcing effect application method
JPS60231596A (en) Material of electrode for welding
JPS61186190A (en) Composite filter rod for building up by welding
JPH03151170A (en) Chuck for welding solder plating wire
JPH04356376A (en) Electrode for spot welding
Banai et al. Effect of composite coating using TIG cladding process: A review
JP2597105B2 (en) Copper member surface hardening method
JPH03238193A (en) Hard facing method to aluminum alloy base material