JP4681814B2 - 全反射蛍光顕微鏡 - Google Patents

全反射蛍光顕微鏡 Download PDF

Info

Publication number
JP4681814B2
JP4681814B2 JP2004028026A JP2004028026A JP4681814B2 JP 4681814 B2 JP4681814 B2 JP 4681814B2 JP 2004028026 A JP2004028026 A JP 2004028026A JP 2004028026 A JP2004028026 A JP 2004028026A JP 4681814 B2 JP4681814 B2 JP 4681814B2
Authority
JP
Japan
Prior art keywords
light
total reflection
illumination
optical system
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004028026A
Other languages
English (en)
Other versions
JP2005221627A (ja
Inventor
剛 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004028026A priority Critical patent/JP4681814B2/ja
Publication of JP2005221627A publication Critical patent/JP2005221627A/ja
Application granted granted Critical
Publication of JP4681814B2 publication Critical patent/JP4681814B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Led Device Packages (AREA)

Description

本発明は、全反射照明により発生するエバネッセント光を用いて蛍光観察を行なう全反射蛍光顕微鏡に関するものである。
最近、生体細胞の機能解析が盛んに行われるようになっているが、これら細胞の機能解析の中で、特に、細胞膜の機能を観察するものとして、細胞膜およびその近傍からの全反射蛍光画像を取得する全反射蛍光顕微鏡(TIRFM:Total Internal Reflection Fluorescence Microscopy)が注目されている。
この全反射蛍光顕微鏡は、スライドーガラスと標本の境界面で照明光を全反射させた時に、標本側に数100nm以下のわずかな範囲に浸み出すエバネッセント光と呼ばれる光を利用して蛍光物質を励起する方法で、スライドーガラス近傍のわずかな範囲の蛍光だけが観察されるので、バックグランドが非常に暗く、コントラストの高い蛍光観察や微弱な蛍光の観察が可能である。
ところで、このような全反射蛍光顕微鏡を用いた生物研究の現場においては、境界面近傍のより浅い面内をコントラスト良く観察したい場合も有れば、或る程度の深さまで照明光を届かせて広範囲の観察をしたい場合も有る。このため、観察対象に応じてエバネッセント光の浸み出し深さが変えられるようになっているのが望ましい。
境界面からのエバネッセント光の浸み出し深さは、非特許文献1において開示されており、以下の公式が成り立つことが知られている。
d=λ/4π(n sinθ −n 1/2 (1)
ここで、d:エバネッセント光の浸み出し深さ、λ:光の波長、n:入射側屈折率、θ:入射角、n:出射側屈折率、
従って、上式から明らかなように、全反射照明角度の境界面に対する照明光の入射角、すなわち境界面の垂線に対する照明光の傾射角が大きい程、エバネッセント光の浸み出し深さは浅くなる。
このような考え方を利用したものとして、特許文献1に開示されるように全反射照明が可能な開口数を有する対物レンズを用い、照明光を対物レンズ側へ反射するミラーを移動させることにより、対物レンズヘの入射位置を対物レンズの光軸から離れる方向へ移動させて、対物レンズから出射するレーザ光線の角度を変化させものや、特許文献2に開示されるように透過照明用コンデンサの先玉レンズの側面からレーザ光線を入射することで全反射照明を可能とし、境界面と観察光軸の交点を中心としてエバネッセント投光管を回転させることでレーザ光線の角度を変化させるようにしたものがある。
一方、このような全反射蛍光顕微鏡には、全反射照明光源として異なる波長のレーザ光源を用いた多波長全反射蛍光顕微鏡があり、一例として図4に示すものが知られている。図において、101は顕微鏡ステージで、このステージ101上には、観察用のスライドガラス102が載置され、このスライドガラス102上には、カバーガラス103に挟まれた標本104が載置されている。スライドガラス102の下方には、オイル105を介してコンデンサレンズ106が配置されている。コンデンサレンズ106の光軸上には、透過照明光源107が配置され、この透過照明光源107からの光をコレクタレンズ108を介してコンデンサレンズ106に導入し、標本104を透過照明できるようになっている。コンデンサレンズ106と透過照明光源107との間には、顕微鏡本体に固定されたベース109が配置されている。このベース109は、透過照明光源107の透過照明光路Tが通る孔部109aを有している。ベース109には、レーザ光を導入する複数(2本)のレーザ光導入管112が設けられている。これらレーザ光導入管112は、集光レンズ111を有するもので、透過照明光路Tを中心に点対称の位置に配置されている。レーザ光導入管112には、ミラーユニット110が配置されている。これらミラーユニット110は、反射ミラー110aを有したもので、レーザ光導入管112に対し透過照明光路Tと直交する方向に移動可能に支持され、マイクロメータ113の操作に応じたマイクロメータヘッド113aの直動動作により微量な移動量を得られるようになっている。
レーザ光導入管112には、光ファイバ114を介して、光源ユニット115が接続されている。光源ユニット115は、レーザ光導入管112ごとに波長の異なるレーザ光を発生するもので、AC電源用コンセント116、電源117、レーザ光源118、シャッタ119aを備えたインターロックボックス119、ACアダプタ120および光量調整用のNDスライダ121を有している。また、光源ユニット115は、電源117の投入によりレーザ光源118よりレーザ光を発生し、インターロックボックス119、NDスライダ121を介して光ファイバ114に出力し、レーザ光導入管112に導入して集光レンズ111により、反射ミラー110aを介してコンデンサレンズ106の前側焦点位置近傍に集光させるようにしている。この場合、マイクロメータ113を操作してミラーユニット110に対しレーザ光導入管112を微小に移動させることで、全反射照明に伴うエバネッセント光の染み出し深さを設定できるようになっている。また、これらの動作は、所望するレーザ光の波長に応じて光源ユニット115を選択することにより、各レーザ光導入管112ごとに個別に行なうことができる。
一方、ステージ101の上方には、対物レンズ122が配置され、対物レンズ122から出射した観察光路には、結像レンズ123とダイクロイックミラー124が配置されている。ダイクロイックミラー124の反射光路には、フィルタ125を介して第1の撮像素子126が配置され、また、透過光路には、フィルタ127を介して第2の撮像素子128が配置されている。これら第1の撮像素子126および第2の撮像素子128は、各光源ユニット115のレーザ光源118からレーザ光導入管112に導入されたレーザ光により各別に生成されるエバネッセント光より発生される蛍光を撮像する。
さらに、ステージ101上には、レーザ光の直接光が外部に漏れないようにステージボックス138が設けられている。このステージボックス138はステージ101に固定される固定カバー138aとオイル点着時や標本交換時に取外し可能なフタカバー138bから構成される。固定カバー138aには、スイッチ139とレバー140が設けられている。フタカバー138bにはピン141が設けられており、フタカバー138bを固定カバー138aに載せるとピン141がスイッチ139のレバー140を押した状態となって、ON状態となる。
スイッチ139には、ケーブル142を介してインターロックボックス119が接続されている。インターロックボックス119は、シャッタ119aの他に、不図示のシャッタ開閉動作用のモータ、バネ、モータ駆動用の駆動回路などを有するもので、オイル点着時や標本交換時に、フタカバー138bを開けるとスイッチ139がOFFとなって、OFF信号がケーブル142を通してインターロックボックス119に送られて、シャッタ119aを閉じる。一方、フタカバー138bを閉めるとスイッチ139がONになって、ON信号がケーブル142を通してインターロックボックス119に送られて、シャッタ119aが開き、レーザ光源118からのレーザ光が光ファイバ114を介してレーザ光導入管112に導入され、全反射照明が可能となる。
このように従来の多波長全反射蛍光顕微鏡では、複数のレーザ光導入管112を設けるようにしているが、顕微鏡自体の操作性、顕微鏡周りのスペース確保のため、レーザ光導入管112をなるべく小型化する必要があり、このため、レーザ光源118を始め、インターロックボックス119や照明光の光量調整のためのNDスライダ121を、レーザ光導入管112から離して配置し、顕微鏡本体から離れたところで操作するようになっている。
特開平9−459922号公報 特開2001−13413号公報 D.Axelrodの論文「Total Internal Reflection Fluorescence at Biological Surfaces」
ところが、このように構成した全反射蛍光顕微鏡は、全反射照明光源としてレーザ光源を用いられることで、レーザ光導入管112ごとに光ファイバ114を介して光源ユニット115として、AC電源用コンセント116、電源117、レーザ光源118、シャッタ119aを備えたインターロックボックス119、ACアダプタ120および光量調整用のNDスライダ121などが設けられるため、これらが複数波長分設けられるとなると、顕微鏡本体を含めたシステム全体が極めて大掛かりなものとなり、大きな占有スペースを必要とし、価格的にも高価なものとなる。
また、全反射照明光源として、波長の異なる複数のレーザ光源118を用いた場合、仮に、これらのレーザ光源118を同期させてON/OFFしようとしても、各レーザ光源118のON/OFFをインターロックボックス119のシャッタ119aの開閉動作により行なっているため、高速なON/OFF操作ができないばかりか、シャッタ119aの動作のばらつきなどに精度のよい切り替え動作もが難しい。また、各波長のレーザ光の調光についてもNDスライダ121を操作するようになるので、速やかな対応が難しい。
本発明は上記事情に鑑みてなされたもので、小型で価格的にも安価にでき、さらに操作性に優れた全反射照明光源を有する全反射蛍光顕微鏡を提供することを目的とする。
発明の全反射蛍光顕微鏡は、光源からの照明光を標本に向けて出射するコンデンサレンズを有する第1の照明光学系と、前記標本に対して前記照明光学系と反対側に配置され、前記標本から発せられた観察光を集光する対物レンズを有する観察光学系とを備えた全反射蛍光顕微鏡本体と、前記全反射蛍光顕微鏡本体に設けられ、所定波長の光を発生する発光ダイオードと、該発光ダイオードからの光を標本に対し前記第1の照明光学系の前記コンデンサレンズの内部を通して全反射照明角度で入射させるための複数の発光ダイオードを有する複数の投光管と、前記投光管の発光ダイオードに接続され、少なくとも前記発光ダイオードのオンオフを制御可能にした制御手段とを具備しいる。
たとえば、前記複数の発光ダイオードは、それぞれ波長の異なる光を発する
あるいは、前記複数の発光ダイオードは、それぞれ同一波長の光を発する
記複数の投光管は、前記コンデンサレンズの光軸と直交する方向に移動可能に設けられ、前記標本に対し入射される全反射照明角度を調整可能となっている。
記複数の投光管は、前記発光ダイオードからの光を標本に対し全反射照明角度で入射させる集光光学系を有するものと、前記発光ダイオードからの光を前記標本に対し全反射照明角度から外して入射させる集光光学系を有するものを備えいる。
本発明によれば、全反射照明用光源として発光ダイオードを用い、この発光ダイオードに接続された制御手段により発光ダイオードのオンオフを制御するようにしたので、全反射照明光源を大幅に小型化できるとともに、価格的にも安価にできる。また、発光ダイオードのオンオフを高速で行なうことができ、さらに、波長の異なる発光ダイオードの切り替えも精度よく行なうことができるので、操作性に優れた全反射照明用光源を実現できる。
以下、本発明の実施の形態を図面に従い説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態にかかるコンデサ型全反射照明装置を有する全反射蛍光顕微鏡の概略構成を示している。図1において、1は顕微鏡ステージで、このステージ1上には、観察用のスライドガラス2が載置されている。このスライドガラス2上には、カバーガラス3に挟まれた標本4が載置されている。スライドガラス2の下方には、イマージョンオイル5を介してコンデンサレンズ6が配置されている。この場合、コンデンサレンズ6の開口数は、標本4の屈折率よりも大きくなるように設計されている。すなわち、イマージョンオイル5およびスライドガラス2の屈折率をn、標本4の屈折率をnとした場合、次の関係が成り立つようになってい。
sinθ>n (2)
ここで、sinθは、コンデンサレンズ6からイマージョンオイル5及びスライドガラス2を通して入射できる最大入射角に相当する。また、(2)式はスライドガラス2と標本4の境界面における光の屈折を示す既知の屈折の法則と等価であり、スライドガラス2からsinθの角度で入射した光は境界面で全反射することを示している。一般に生物細胞の屈折率は1.37〜1.38程度であるため、コンデンサレンズ6の開口数は、これより大きい値、具体的には1.65〜1.45程度を有するものとする。
コンデンサレンズ6の光軸上には、透過照明光源7が配置され、この透過照明光源7からの光をコレクタレンズ8を介してコンデンサレンズ6に導入し、標本4を透過照明できるようにもしている。
コンデンサレンズ6と透過照明光源7との間には、全反射蛍光顕微鏡本体(不図示)に固定されたベース9が配置されている。このベース9は、透過照明光源7からの透過照明光路Tが通る孔部9aを有している。ベース9には、複数(2本)の投光管11が設けられている。
これら投光管11は、発光ダイオード(以下、LEDと称する。)12を有するとともに、このLED12から発する光の光路上には、後述する反射ミラー10aなどと集光光学系を構成する集光レンズ13が配置されている。また、これら投光管11は、透過照明光路Tを中心に点対称の位置に配置されている。この場合、これらの投光管11に設けられるLED12は、異なる波長の光を発生するものが用いられ、ここでは、一方の投光管11のLED12から発光される光の波長をλL1、他方の投光管11のLED12から発光される光の波長をλL2としている。
投光管11には、ミラーユニット10が設けられている。ミラーユニット10は、反射ミラー10aを有したもので、投光管11に対し透過照明光路Tと直交する方向に移動可能に支持され、マイクロメータ14での操作に応じたマイクロメータヘッド14aの直動動作により微量な移動量を得られるようになっている。この場合、マイクロメータ14は、投光管11側に取付けられ、常時、ばね16の引張り力によりマイクロメータヘッド14a先端がミラーユニット10に当接するようにしている。そして、マイクロメータ14を操作してマイクロメータヘッド14aを透過照明光路Tから離れる方向に移動させることにより、ミラーユニット10をばね16による引張り方向に移動させるようにしている。
この状態で、LED12から発せられる発散光は、集光レンズ13により収束光に変換され、反射ミラー10aを介してコンデンサレンズ6の前側焦点位置近傍に集光され、標本4に対し全反射照明角度で入射されるようになっている。
投光管11には、ケーブル17を介して後述の操作部20とともに制御手段を構成するLED駆動ユニット18が接続されている。LED駆動ユニット18には、AC電源用コンセント19および操作部20が接続されている。LED駆動ユニット18は、LED12の電源をON/OFFするスイッチ回路18aとLED12に供給する電流を制御する電流制御回路18bを有している。操作部20は、各種の操作スイッチを有するもので、検鏡者のスイッチ操作によりLED12のON/OFF信号をスイッチ回路18aに出力したり、LED12の出射パワーの調整のための制御信号を電流制御回路18bに出力するように有している。
一方、ステージ1の上方には、対物レンズ22が配置され、対物レンズ22から出射した観察光路には、結像レンズ23とダイクロイックミラー24が配置されている。ダイクロイックミラー24は、図2(a)に示すように波長λを基準に短波長側(ここでは、一方の投光管11のLED12から発光される光の波長λL1)を反射し、長波長側(ここでは、他方の投光管11のLED12から発光される光の波長をλL2)を透過する特性を持つものである。ダイクロイックミラー24の反射光路上には、第1の吸収フィルタ25が配置され、その延長上で結像レンズ23の焦点位置には、第1の撮像素子26が配置されている。第1の吸収フィルタ25は、図2(b)に示すように、一方の投光管11のLED12から発光される光の波長λL1のみを透過するバンドパスフィルタが用いられる。また、ダイクロイックミラー24の透過光路には、第2の吸収フィルタ27が配置され、その延長上の結像レンズ23の焦点位置には、第2の撮像素子28が配置されている。第2の吸収フィルタ27は、図2(c)に示すように、他方の投光管11のLED12から発光される光の波長λL2のみを透過するバンドパスフィルタが用いられる。
さらに、ステージ1上には、レーザ光の直接光が外部に漏れないようにステージボックス30が設けられている。このステージボックス30はステージ1に固定される固定カバー31とオイル点着時や標本交換時に取外し可能なフタカバー32から構成される。固定カバー31には、スイッチ33とレバー34が設けられている。フタカバー32には固定金具351にピン35が設けられており、フタカバー32を固定カバー31に載せるとピン35がスイッチ33のレバー34を押した状態となるようにしている。
スイッチ33には、ケーブル36を介してLED駆動ユニット18が接続されている。LED駆動ユニット18は、オイル点着時や標本交換時に、フタカバー32を開けるとスイッチ33がOFFとなって、OFF信号がケーブル36を通して与えられると、スイッチ回路18aによりLED12の電源を強制的にOFFし、一方、フタカバー32を閉めるとスイッチ33がONになって、ON信号がケーブル36を通して与えられると、スイッチ回路18aによりLED12の電源をONし、LED12から発せられる光により全反射照明を可能としている。
次に、このように構成した第1の実施の形態の作用について述べる。
いま、操作部20の指示によりLED駆動ユニット18より一方の投光管11のLED12がONされると、LED12より発振された波長λL1の発散光の光が出力される。
このLED12は、集光レンズ13を通って収束光に変換され、反射ミラー10aにより透過照明光路Tの外側近傍の位置でコンデンサレンズ6側に反射し、コンデンサレンズ6の前側焦点位置で集光される。また、コンデンサレンズ6を通った光は、斜め方向に進む平行光線として出射され、イマージョンオイル5とスライドガラス2を通って標本4との境界面に入射する。
ここで、標本4に対する全反射照明角度の境界面への入射角θL1が全反射の臨界角より大きければ、光ビームは境界面で全反射し、標本4側にエバネッセント光が浸み出す。これにより、標本4中に存在する特定の蛍光物質は、波長λL1のエバネッセント光により励起され、蛍光の最大輝度波長が第1の吸収フィルタ25の透過波長帯に含まれるような蛍光を発する。この蛍光は、カバーガラス3を通って対物レンズ22に入り、観察光路中のダイクロイックミラー24および第1の吸収フィルタ25を通って第1の撮像素子26で撮像される。
この状態で、マイクロメータ14を操作すると、このときの操作に応じて直動されるマイクロメータヘッド14aの移動量が微量に調整される。すると、投光管11に対してミラーユニット10は、透過照明光路Tより離れた方向に移動し、このミラーユニット10の移動により、反射ミラー10aで反射した光のコンデンサレンズ6への入射位置が移動し、コンデンサレンズ6からの出射角度、つまりスライドガラス2と標本4との境界面への入射角θL1が変化する。
こうすることで、既に述べたように、全反射照明におけるエバネッセント光の浸み出し深さは、境界面への光の入射角によって変わるので、マイクロメータ14を操作してミラーユニット10とともに反射ミラー10aを所望する位置に移動させることで、エバネッセント光の浸み出し深さdL1を任意に変化させることができる。
一方、操作部20の指示により、他方の投光管11のLED12をONした場合についても同様で、この場合、LED12より発振した波長λL2の光が集光レンズ13を通って、反射ミラー10aで反射し、コンデンサレンズ6の前側焦点位置で集光し、イマージョンオイル5とスライドガラス2を通って標本4との境界面に入射する。ここでも、境界面への入射角θL2が全反射の臨界角より大きければ、光ビームは境界面で全反射し、標本4側にエバネッセント光が浸み出す。また、投光管11に設けたマイクロメータ14を操作し、スライドガラス2と標本4との境界面への入射角θL2を変えることで、エバネッセント光の浸み出し深さdL2を任意に変化させることができる。
また、標本4中に存在する特定の蛍光物質は、波長λL2のエバネッセント光により励起され、蛍光の最大輝度波長が第2の吸収フィルタ27の透過波長帯に含まれるような蛍光を発する。この蛍光は、カバーガラス3を通って対物レンズ22に入り、観察光路中のダイクロイックミラー24および第2の吸収フィルタ27を通って第2の撮像素子28で撮像される。
この場合、操作部20のON/OF操作によりLED駆動ユニット18のスイッチ回路18aを駆動すると、このときのスイッチ操作に応じてスイッチ回路18aよりケーブル17を介してLED12に送られる駆動電流がON/OFFされ、LED12のON/OFFが制御される。また、操作部20のスイッチ操作によりLED駆動ユニット18の電流制御回路18bを制御し、ケーブル17を介してLED12の駆動電流を可変することにより、LED12からの出射パワーを調整することもできる。
次に、インタロック機能について述べる。
この場合、オイル点着や標本交換時にフタカバー32を取り外すと、スイッチ33は、レバー34を押圧しているピン35が除去されてOFFし、このOFF信号がケーブル36を通して、LED駆動ユニット18に転送される。LED駆動ユニット18は、このときのOFF信号に応じてスイッチ回路18aよりケーブル17を介してLED12へ供給される駆動電流を遮断し、LED12を直ちにOFFさせる。一方、フタカバー32を装着すると、スイッチ33は、レバー34がピン35に押圧されてONし、このON信号がケーブル36を通してLED駆動ユニット18に転送される。すると、LED駆動ユニット18は、このときのON信号に応じてスイッチ回路18aよりケーブル17を介して駆動電流を出力し、LED12をONさせる。
従って、このようにすれば、全反射照明用光源としてLED12が用いられ、このLED12に接続されたLED駆動ユニット18により操作部20での操作によりLED12のオンオフを制御を始め、調光を制御できるので、従来のレーザ光導入管ごとに光ファイバを介してレーザ光源、シャッタなどを備えたインターロックボックスやNDスライダを設けたものと比べ、全反射照明光源を大幅に小型化できるとともに、価格的にも安価にできる。また、LED12のオンオフを高速で行なうことができ、さらに、波長の異なるLED12の切り替えも精度よく行なうことができるので、操作性に優れた全反射照明用光源を実現できる。
(第2の実施の形態)
次に、第2の実施の形態について説明する。
図3は、本発明の第2の実施にかかる全反射蛍光顕微鏡の要部の概略構成を示すもので、図1と同一部分には、同符号を付している。
この場合、コンデンサレンズ6と透過照明光源7との間には、顕微鏡本体(不図示)に固定されたベース41が配置されている。このベース41には、複数(2個)の投光管保持部41aが設けられている。これら投光管保持部41aは、透過照明光路Tを中心に点対称の位置に配置されている。
投光管保持部41aには、投光管42が設けられている。投光管42は、LED43を有するとともに、このLED43から発する光の光路上に集光レンズ44および反射ミラー45が配置されている。また、投光管42は、投光管保持部41aに対し透過照明光路Tと直交する方向に移動可能に支持され、マイクロメータ46の操作に応じたマイクロメータヘッド46aの直動動作により微量な移動量を得られるようになっている。この場合、マイクロメータ46は、投光管保持部41aに設けられ、常時、ばね47の引張り力によりマイクロメータヘッド46a先端が投光管42に当接するようにしている。そして、マイクロメータ46を操作してマイクロメータヘッド46aを透過照明光路Tから離れる方向に移動させることにより、投光管42全体をばね47による引張り方向に移動させるようにしている。この状態で、LED43から発せられる発散光は、集光レンズ44により収束光に変換され、反射ミラー45を介してコンデンサレンズ6の前側焦点位置近傍に集光される。なお、この場合も、各投光管42に設けられるLED43は、異なる波長の光を発生するものが用いられる。
このようにすれば、投光管保持部41aに対してLED43、集光レンズ44、反射ミラー45を一体に設けた投光管42を透過照明光路Tと直交する方向に直動させるようにしたので、全反射照明の入射角の位置(例えばNA1.38〜NA1.65)によって、集光レンズ44からコンデンサレンズ6の前側焦点位置までの光路長を変化しないようにできる。つまり、全反射照明の入射角の位置を変化させた場合も、集光レンズ44からコンデンサレンズ6の前側焦点位置までの光路長を一定に保持することができるので、安定した全反射照明を実現することができる。
(第3の実施の形態)
次に、第3の実施の形態について説明する。
ここで、第3の実施の形態に適用される全反射蛍光顕微鏡の概略構成については、図1と同様なので、同図を援用するものとする。
この場合、2本の投光管11のLED12は、同一の波長λを発光するものが用いられる。また、各投光管11に対応するミラーユニット10の反射ミラー10aは、透過照明光路Tからの距離が常に等しくなるように位置調整されている。
このようにすれば、2本の投光管11のLED12より同一の波長λの光が発せられ、これら同一の波長λの光により全反射照明を行なうことができるので、全反射照明の明るさを1本の投光管11の場合に比べて、2倍にすることができ、また、この2倍の明るさの範囲で調光が可能な全反射照明を実現することもできる。
(第4の実施の形態)
次に、第4の実施の形態について説明する。
ここで、第4の実施の形態に適用される全反射蛍光顕微鏡の概略構成については、図1と同様なので、同図を援用するものとする。
この場合、2本の投光管11のうち、一方の投光管11は、全反射照明範囲での調整が可能となっており、他方の投光管11は、反射ミラー10aを反射した照明光が臨界角より小さくなるように、ミラーユニット10を透過照明光路Tに近付けた位置で固定されている。
このようにすれば、一方の投光管11による照明では、全反射照明となるのに対し、他方の投光管11による照明では、全反射照明とならず、落射蛍光照明となる。これにより、操作部20からの指示によりLED駆動ユニット18より一方の投光管11のLED12のみをONすれば、全反射照明を行なうことができ、また、LED駆動ユニット18より他方の投光管11のLED12のみをONすれば、通常の落射蛍光照明を行なうことができる。これにより、操作部20での操作により、全反射照明と落射照明を高速で切換えることができる。
なお、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。例えば、上述した実施の形態では、正立顕微鏡について述べたが、構成を上下反転して、倒立顕微鏡において構成することも可能である。
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
本発明の第1の実施の形態にかかる全反射蛍光顕微鏡の概略構成を示す図。 第1の実施の形態に用いられるダイクロイックミラーの特性を示す図。 本発明の第2の実施の形態にかかる全反射蛍光顕微鏡の概略構成を示す図。 従来の全反射蛍光顕微鏡の一例の概略構成を示す図。
符号の説明
1…ステージ、2…スライドガラス、3…カバーガラス
4…標本、5…イマージョンオイル
6…コンデンサレンズ、7…透過照明光源
8…コレクタレンズ、9…ベース、9a…孔部
10…ミラーユニット、10a…反射ミラー
11…投光管、12…LED、13…集光レンズ
14…マイクロメータ、14a…マイクロメータヘッド
16…ばね、17…ケーブル、18…LED駆動ユニット
18a…スイッチ回路、18b…電流制御回路
19…AC電源用コンセント、20…操作部
22…対物レンズ、23…結像レンズ、24…ダイクロイックミラー
25…第1の吸収フィルタ、26…第1の撮像素子
27…第2の吸収フィルタ、28…第2の撮像素子
30…ステージボックス、31…固定カバー、32…フタカバー
33…スイッチ、34…レバー、35…ピン
36…ケーブル、41…ベース、41a…投光管保持部
42…投光管、43…LED、44…集光レンズ
45…反射ミラー、46…マイクロメータ、46a…マイクロメータヘッド
47…ばね

Claims (7)

  1. 光源からの照明光を標本に向けて出射するコンデンサレンズを有する第1の照明光学系と、前記標本に対して前記照明光学系と反対側に配置され、前記標本から発せられた観察光を集光する対物レンズを有する観察光学系とを備えた全反射蛍光顕微鏡本体と、
    前記全反射蛍光顕微鏡本体に設けられ、所定波長の光を発生する発光ダイオードと、該発光ダイオードからの光を標本に対し前記第1の照明光学系の前記コンデンサレンズの内部を通して全反射照明角度で入射させるための複数の発光ダイオードを有する複数の投光管と、
    前記投光管の発光ダイオードに接続され、少なくとも前記発光ダイオードのオンオフを制御可能にした制御手段と
    を具備し
    前記複数の投光管は、前記コンデンサレンズの光軸と直交する方向に移動可能に設けられ、前記標本に対し入射される全反射照明角度を調整可能とすることを特徴とする全反射蛍光顕微鏡。
  2. 前記複数の発光ダイオードは、それぞれ波長の異なる光を発することを特徴とする請求項1記載の全反射蛍光顕微鏡。
  3. 前記複数の発光ダイオードは、同一波長の光を発することを特徴とする請求項1記載の全反射蛍光顕微鏡。
  4. 前記複数の投光管は、前記発光ダイオードからの光を標本に対し全反射照明角度で入射させる集光光学系を有するものと、前記発光ダイオードからの光を前記標本に対し全反射照明角度から外して入射させる集光光学系を有するものを備えたことを特徴とする請求項2または3記載の全反射蛍光顕微鏡。
  5. 光源からの照明光を標本に向けて出射するコンデンサレンズを有する第1の照明光学系と、前記標本に対して前記照明光学系と反対側に配置され、前記標本から発せられた観察光を集光する対物レンズを有する観察光学系とを備えた全反射蛍光顕微鏡本体と、
    前記全反射蛍光顕微鏡本体に設けられ、所定波長の光を発生する発光ダイオードと、該発光ダイオードからの光を標本に対し前記第1の照明光学系の前記コンデンサレンズの内部を通して全反射照明角度で入射させるための複数の発光ダイオードを有する複数の投光管と、
    前記投光管の発光ダイオードに接続され、少なくとも前記発光ダイオードのオンオフを制御可能にした制御手段と
    を具備し
    前記複数の投光管は、前記コンデンサレンズの光軸と直交する方向に移動可能に設けられ、前記標本に対し入射される全反射照明角度を調整可能とするとともに、前記発光ダイオードからの光を標本に対し全反射照明角度で入射させる集光光学系を有するものと、前記発光ダイオードからの光を前記標本に対し全反射照明角度から外して入射させる集光光学系を有するものを備えていることを特徴とする全反射蛍光顕微鏡。
  6. 前記複数の発光ダイオードは、それぞれ波長の異なる光を発することを特徴とする請求項記載の全反射蛍光顕微鏡。
  7. 前記複数の発光ダイオードは、同一波長の光を発することを特徴とする請求項記載の全反射蛍光顕微鏡。
JP2004028026A 2004-02-04 2004-02-04 全反射蛍光顕微鏡 Expired - Fee Related JP4681814B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028026A JP4681814B2 (ja) 2004-02-04 2004-02-04 全反射蛍光顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028026A JP4681814B2 (ja) 2004-02-04 2004-02-04 全反射蛍光顕微鏡

Publications (2)

Publication Number Publication Date
JP2005221627A JP2005221627A (ja) 2005-08-18
JP4681814B2 true JP4681814B2 (ja) 2011-05-11

Family

ID=34997329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028026A Expired - Fee Related JP4681814B2 (ja) 2004-02-04 2004-02-04 全反射蛍光顕微鏡

Country Status (1)

Country Link
JP (1) JP4681814B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225218A (ja) * 2007-03-14 2008-09-25 Hamamatsu Univ School Of Medicine 対物レンズユニット
SG11201700021SA (en) * 2014-07-09 2017-01-27 Ntp Nano Tech Projects S R L Laser optical coupling for nanoparticles detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125609A (ja) * 1990-09-18 1992-04-27 Satoshi Kawada 光学顕微鏡
JPH09159922A (ja) * 1995-12-13 1997-06-20 Kagaku Gijutsu Shinko Jigyodan 光照射切り替え方法
JP2001013413A (ja) * 1999-07-02 2001-01-19 Nikon Corp 顕微鏡
JP2001188174A (ja) * 2000-01-04 2001-07-10 Masatoshi Kitahara 集光照明装置
JP2003140052A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 顕微鏡の全反射照明装置
JP2003177325A (ja) * 2001-12-07 2003-06-27 Olympus Optical Co Ltd 全反射蛍光顕微鏡
JP2003207717A (ja) * 2002-01-10 2003-07-25 Olympus Optical Co Ltd 顕微鏡システム
JP2003279860A (ja) * 2002-03-26 2003-10-02 Nikon Corp 顕微鏡、および、照明切替装置
JP2004021222A (ja) * 2002-06-20 2004-01-22 Nikon Corp 顕微鏡標本の照明方法とこれを用いた照明装置を有する顕微鏡

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125609A (ja) * 1990-09-18 1992-04-27 Satoshi Kawada 光学顕微鏡
JPH09159922A (ja) * 1995-12-13 1997-06-20 Kagaku Gijutsu Shinko Jigyodan 光照射切り替え方法
JP2001013413A (ja) * 1999-07-02 2001-01-19 Nikon Corp 顕微鏡
JP2001188174A (ja) * 2000-01-04 2001-07-10 Masatoshi Kitahara 集光照明装置
JP2003140052A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 顕微鏡の全反射照明装置
JP2003177325A (ja) * 2001-12-07 2003-06-27 Olympus Optical Co Ltd 全反射蛍光顕微鏡
JP2003207717A (ja) * 2002-01-10 2003-07-25 Olympus Optical Co Ltd 顕微鏡システム
JP2003279860A (ja) * 2002-03-26 2003-10-02 Nikon Corp 顕微鏡、および、照明切替装置
JP2004021222A (ja) * 2002-06-20 2004-01-22 Nikon Corp 顕微鏡標本の照明方法とこれを用いた照明装置を有する顕微鏡

Also Published As

Publication number Publication date
JP2005221627A (ja) 2005-08-18

Similar Documents

Publication Publication Date Title
US7245426B2 (en) Total internal reflection illumination apparatus and microscope using this total internal reflection illumination apparatus
EP1857853B1 (en) Illuminating device
JP4815349B2 (ja) 蛍光相関分光装置
JP2001272606A (ja) 照明光学系及び照明光学系を備えた顕微鏡
JP2005345716A (ja) 顕微鏡
US7385758B2 (en) Total internal reflection fluorescence microscope
JP2005321453A (ja) 顕微鏡用蛍光照明装置
US7170676B2 (en) Illumination switching apparatus and method
US20040246573A1 (en) Total reflection fluorescent microscope
JP4854880B2 (ja) レーザー顕微鏡
JP2006522948A (ja) 顕微鏡配列
JP5463671B2 (ja) 焦点検出装置、顕微鏡
JP2005055895A (ja) ラスタ顕微鏡
JP2002048978A (ja) 対物レンズユニット、対物レンズユニットを有する光学装置及びその光学装置を用いた観察方法
JP4128387B2 (ja) 顕微鏡装置
JP4683853B2 (ja) 全反射蛍光顕微鏡
JP4681814B2 (ja) 全反射蛍光顕微鏡
JP4722464B2 (ja) 全反射蛍光照明装置
JP4563699B2 (ja) 照明切換装置
JP3995458B2 (ja) 全反射蛍光顕微鏡
JP5307868B2 (ja) 全反射型顕微鏡
JP4707089B2 (ja) 薄層斜光照明装置および顕微鏡
JP2006038947A (ja) 顕微鏡用光源装置および蛍光顕微鏡
JP2005140925A (ja) 顕微鏡
JP2005121822A (ja) 顕微鏡システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

R151 Written notification of patent or utility model registration

Ref document number: 4681814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees