JP4674071B2 - Gas purifier - Google Patents

Gas purifier Download PDF

Info

Publication number
JP4674071B2
JP4674071B2 JP2004284653A JP2004284653A JP4674071B2 JP 4674071 B2 JP4674071 B2 JP 4674071B2 JP 2004284653 A JP2004284653 A JP 2004284653A JP 2004284653 A JP2004284653 A JP 2004284653A JP 4674071 B2 JP4674071 B2 JP 4674071B2
Authority
JP
Japan
Prior art keywords
conductive
electric field
formaldehyde
carbon
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004284653A
Other languages
Japanese (ja)
Other versions
JP2006095429A (en
Inventor
淳 工藤
幹宏 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004284653A priority Critical patent/JP4674071B2/en
Publication of JP2006095429A publication Critical patent/JP2006095429A/en
Application granted granted Critical
Publication of JP4674071B2 publication Critical patent/JP4674071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気体清浄装置に関する。   The present invention relates to a gas cleaning device.

近年、住宅やオフィスビルディング、学校等における高気密化・高断熱化による自然換気回数の低下や、建築工法の変化による新建材等の多用が原因となって引き起こされるシックハウス、シックビルディング、化学物質過敏症などの健康障害が社会問題となっている。これらの健康障害は、室内の比較的低濃度の化学物質による汚染に起因している。これらの化学物質の中でも、合板に多用されている接着剤又はその他建築材料等から空気中に揮発するホルムアルデヒド、VOCは、たとえ低濃度でも毒性が高く、比較的影響が長く継続する。ホルムアルデヒド、VOCなどは刺激臭を有する無色の気体が多いが、皮膚や粘膜から体内に吸収されると身体のバランスを崩し、さまざまな体調不良の原因となることが知られている。   In recent years, sick houses, thick buildings, and chemical sensitivities caused by low natural ventilation due to high airtightness and high heat insulation in houses, office buildings, schools, etc., and heavy use of new building materials due to changes in construction methods. Health problems such as illness are social issues. These health disorders are due to contamination by indoor relatively low concentrations of chemicals. Among these chemical substances, formaldehyde and VOC that volatilize in the air from adhesives or other building materials frequently used for plywood are highly toxic even at low concentrations, and have a relatively long influence. Formaldehyde, VOC and the like are mostly colorless gases having an irritating odor. However, when absorbed into the body through the skin and mucous membranes, it is known that the body loses its balance and causes various physical conditions.

最近、これらの室内汚染物質を除去することを目的としたフィルターや空気清浄機などの気体清浄装置が提案されている。これらの気体清浄装置では、活性炭、多孔質セラミック、光触媒、プラズマ放電などを主なフィルター手段として用いることによりホルムアルデヒド、VOCなどを除去する構成を採用している。例えば、活性炭を主とする固体吸着剤では、造粒または破砕状に加工されフィルター形状に成形されたものがホルムアルデヒド、VOC等除去用フィルターとして空気清浄ユニットや空気清浄機などに搭載されている。   Recently, gas purifiers such as filters and air purifiers have been proposed for the purpose of removing these indoor pollutants. These gas cleaning apparatuses employ a configuration in which formaldehyde, VOC, and the like are removed by using activated carbon, porous ceramic, photocatalyst, plasma discharge, or the like as the main filter means. For example, in the case of a solid adsorbent mainly composed of activated carbon, a granulated or crushed shape and formed into a filter shape is mounted on an air cleaning unit or an air purifier as a filter for removing formaldehyde, VOC and the like.

ところが、従来の活性炭を採用したフィルターは、活性炭自体のホルムアルデヒド、VOCなどの吸着能力が小さく、たとえばホルムアルデヒドに対する十分な吸着性能を得るには、アミン化合物等を表面に形成し、吸着能力を高める必要があったのに加え、単位重量当たりの表面積が1000m2/gレベルと、他材料に比べて極めて大きいことを特徴として謳ってはいるものの、単位重量当たりに吸着できるホルムアルデヒドなどの重量は実効表面積に換算して高々その2〜3%程度、ホルムアルデヒドなどの重量にして10数mg以下であり、表面修飾に伴う表面不安定性や吸着容量の問題から、寿命は高々1〜3年程度と不十分であった。また、これらのフィルターはホルムアルデヒド、VOCなどをある程度吸着すると吸着サイトの飽和等に伴って、それ以上は吸着反応しなくなって寿命に達する問題があった。更に、飽和容量を超えた場合には吸着種の再放出なども問題となるなど、一定期間ごとにフィルター材料を交換する必要が生じていた。 However, a filter using conventional activated carbon has a small adsorption capacity of formaldehyde, VOC, etc. of the activated carbon itself. For example, to obtain sufficient adsorption performance for formaldehyde, it is necessary to form an amine compound on the surface and increase the adsorption capacity. In addition to that, the surface area per unit weight is 1000m 2 / g level, which is very large compared to other materials, but the weight of formaldehyde that can be adsorbed per unit weight is the effective surface area. It is about 2-3% at most in terms of weight, and the weight of formaldehyde and the like is less than 10 mg, and due to surface instability and adsorption capacity associated with surface modification, the lifetime is at most about 1 to 3 years. Met. In addition, when these filters adsorb formaldehyde, VOC and the like to some extent, there is a problem that the adsorption reaction does not occur any more and the lifetime is reached due to saturation of the adsorption site. Furthermore, when the saturation capacity is exceeded, the re-release of the adsorbed species becomes a problem, and it is necessary to replace the filter material at regular intervals.

また、これら従来の活性炭フィルターは形状が粒状もしくは粉状であり、吸着容量を増やし寿命を長くしようとすると、吸着材料の使用量を増やす必要があり、これに伴って圧力損失が大きくなるなどの問題があった。このため、フィルターや気体清浄装置のサイズが大きくなったり、フィルターに通風させるためのモーター音が大きくなったり消費電力が増大したりするという問題があった。一方では、活性炭の課題を解決する方法として光触媒やプラズマ放電が活用されるようになったが、これらの方法はフィルターを長寿命化し、圧損の問題を解決する上で有効な方法ではあるが、酸素を励起して用いるために人体に有害なオゾンなどの活性酸素が生じ、これを低減する必要があるのに加え、光触媒ではこれに用いる酸化チタン等を高密度で形成するのが難しく高効率化に課題があった。また、プラズマ放電を用いる方法では、反応種が必ずしも制御できず、オゾンなどの活性酸素以外にも人体に有害な反応種も生じる場合が見られるなど、それぞれに未解決な問題があった。   In addition, these conventional activated carbon filters are in the form of granules or powders, and it is necessary to increase the amount of adsorbent used to increase the adsorption capacity and extend the life, which increases the pressure loss. There was a problem. For this reason, there existed a problem that the size of a filter or a gas purifying apparatus will become large, the motor sound for ventilating a filter will become large, or power consumption will increase. On the other hand, photocatalyst and plasma discharge have come to be used as a method to solve the problem of activated carbon, but these methods are effective methods for extending the life of the filter and solving the problem of pressure loss. Active oxygen such as ozone harmful to the human body is generated because oxygen is excited and used. In addition, it is difficult to form titanium oxide used for this in high density with photocatalysts and high efficiency. There was a problem in conversion. In addition, in the method using plasma discharge, the reactive species cannot always be controlled, and there are cases in which reactive species harmful to the human body other than active oxygen such as ozone may be generated.

本発明は係る事情に鑑みてなされたものであり、ホルムアルデヒド、VOCなどの汚染分子を効率的に除去することができる気体清浄装置を提供するものである。   This invention is made | formed in view of the situation which concerns, and provides the gas purification apparatus which can remove pollutant molecules, such as formaldehyde and VOC efficiently.

本発明の気体清浄装置は、導電性基体上に複数の導電性繊維を設けたフィルターと、導電性基体に電圧を加えることによって導電性繊維の周囲に電界を形成する電界形成手段とを備えてなることを特徴とする。   The gas cleaning device of the present invention includes a filter in which a plurality of conductive fibers are provided on a conductive substrate, and an electric field forming unit that forms an electric field around the conductive fibers by applying a voltage to the conductive substrate. It is characterized by becoming.

本発明によれば、導電性繊維の周囲に形成された電界によって、その周囲に存在する気体分子に対して、気体分子の有する双極子モーメントの大きさに応じた引力を発生させ、双極子モーメントの大きな一部の気体のみを導電性繊維に吸着させる。この作用により、ホルムアルデヒドのような双極子モーメントの大きな分子が選択的に導電性繊維に吸着されることとなり、その結果、汚染分子を効率的に除去することができる気体清浄装置が提供される。   According to the present invention, the electric field formed around the conductive fiber generates an attractive force corresponding to the magnitude of the dipole moment of the gas molecule with respect to the gas molecule existing around the electric fiber, and the dipole moment Only a large part of the gas is adsorbed on the conductive fiber. By this action, a molecule having a large dipole moment such as formaldehyde is selectively adsorbed on the conductive fiber, and as a result, a gas purifier capable of efficiently removing the contaminating molecule is provided.

また、本発明によれば、活性炭のように、材料内部の微細孔まで吸着すべき気体をしみ込ませて固定する必要がないので、応答性のよいフィルター作用ができる。さらに本発明によれば、例えば従来の活性炭を用いたホルムアルデヒド、VOCなどの除去用フィルターを備える装置では、除去用フィルターの頻繁な廃棄が必要であり、除去材をウレタンフォームに添着したり、セルに入れたり、別途保持部材が必要であったが、本発明の気体清浄装置はそのような必要がなくなる。さらに、本発明をホルムアルデヒド、VOC等を検知する公知のセンサーと組み合わせることにより、空気中にホルムアルデヒド、VOC等を検知した時のみ、基体に電圧印加して装置を動作させることが可能であり、低消費電力化、長寿命化が可能で制御性の高い装置を構成することができる。   Further, according to the present invention, unlike activated carbon, it is not necessary to soak and fix the gas to be adsorbed up to the fine pores inside the material, so that a responsive filter action can be performed. Furthermore, according to the present invention, for example, in a device equipped with a conventional filter for removing formaldehyde, VOC, etc. using activated carbon, it is necessary to frequently dispose of the filter for removal. However, the gas cleaning device of the present invention does not need such a member. Furthermore, by combining the present invention with known sensors for detecting formaldehyde, VOC, etc., it is possible to operate the apparatus by applying a voltage to the substrate only when formaldehyde, VOC, etc. are detected in the air. A device with high controllability and power consumption and long life can be configured.

本発明の気体清浄装置は、導電性基体上に複数の導電性繊維を設けたフィルターと、導電性基体に電圧を加えることによって導電性繊維の周囲に電界を形成する電界形成手段とを備えてなることを特徴とする。   The gas cleaning device of the present invention includes a filter in which a plurality of conductive fibers are provided on a conductive substrate, and an electric field forming unit that forms an electric field around the conductive fibers by applying a voltage to the conductive substrate. It is characterized by becoming.

1.作用
本発明では、導電性繊維の周囲に空間的に変化する電界を存在せしめ、該電界が存在する領域を通過する気体分子がその影響を受けることを利用して、異なる分子間の分離を行なう。
1. Action In the present invention, a spatially changing electric field exists around the conductive fiber, and gas molecules passing through a region where the electric field exists are influenced by the influence, thereby separating different molecules. .

具体的には、電界中に置かれた分子は、その双極子モーメントp、分極率α、電界強度Fとすると、E=−pF−αF2/2の静電エネルギーを付与される。電界強度が場所によって変化する場合、静電エネルギーも場所によって変化し、その結果、電界中に存在する分子には静電エネルギーの位置微分に相当する力が働き、その影響が大きい場合には電界強度の強い導電性繊維表面に引き寄せられる。 Specifically, molecules placed in an electric field, the dipole moment p, polarizability alpha, when the electric field strength F, is given an electrostatic energy E = -pF-αF 2/2 . When the electric field strength varies depending on the location, the electrostatic energy also varies depending on the location. As a result, a force corresponding to the positional differentiation of the electrostatic energy acts on the molecules present in the electric field, and the electric field when the effect is large. It is attracted to the surface of strong conductive fibers.

特に、ホルムアルデヒドなどの分子は軌道電子の対称性が低い有極性分子であり大きな双極子モーメントを有するために、酸素や窒素など対称性の高い軌道電子を有し双極子モーメントを持たない無極性分子に比べて、その影響が非常に大きい。この結果、強い電界下においては導電性繊維に引き付けられ、電界吸着が起る。   In particular, since molecules such as formaldehyde are polar molecules with low orbital electron symmetry and large dipole moments, they are nonpolar molecules with highly orbital electrons such as oxygen and nitrogen and no dipole moment. The impact is very large. As a result, it is attracted to the conductive fiber under a strong electric field, and electric field adsorption occurs.

このような効果を利用することにより、酸素や窒素のような無極性分子と区別して、有極性分子を選択的に導電性繊維表面に吸着して分離することができる。   By utilizing such an effect, polar molecules can be selectively adsorbed on the surface of the conductive fiber and separated from nonpolar molecules such as oxygen and nitrogen.

無極性分子の方は、電界の影響で僅かな分極は経験するが、これに伴う静電エネルギーαF2/2は非常に弱く、電界が著しく強くない限り、電界の効果によって導電性繊維表面に固定されることは極めて少なく、フィルターの排気側に到達する。このような原理を用いて導電性繊維表面に固定される有極性分子はホルムアルデヒドに限られるものではなく、アセトアルデヒド、トルエン、キシレンのo−及びm−異性体、エチルベンゼン、ジクロルベンゼンのo−及びm−異性体、スチレン、ノナナール、クロルピリホス、ダイアジノン、フェノルカルブなど厚生労働省によって室内濃度の指針値が示されている気体などに適用できる。このような効果を利用するには有極性分子である必要があるが、その双極子モーメントは低いもの、例えばフィルターによる除去が望まれる一酸化炭素などでも電界強度を選べば効果を得ることができるため、これらに限られるものではない。 Those who nonpolar molecules, although slight polarization experience under the influence of an electric field, this electrostatic energy .alpha.F 2/2 is very weak with, as long as the electric field is not significantly stronger, the conductive fiber surface by the effect of the electric field It is rarely fixed and reaches the exhaust side of the filter. The polar molecule immobilized on the surface of the conductive fiber using such a principle is not limited to formaldehyde, but o- and m-isomers of acetaldehyde, toluene, xylene, o- and ethylbenzene, dichlorobenzene and The present invention can be applied to gases whose indoor concentration guideline values are indicated by the Ministry of Health, Labor and Welfare, such as m-isomer, styrene, nonanal, chlorpyrifos, diazinon, phenolcarb. To use this effect, it is necessary to be a polar molecule, but even if its dipole moment is low, such as carbon monoxide for which removal by a filter is desired, the effect can be obtained if the electric field strength is selected. Therefore, it is not limited to these.

2.導電性基体、導電性繊維
本発明の気体清浄装置は、導電性繊維の周囲に存在する電界を用いて分子間の分離を行うので、導電性繊維近傍に十分強い電界を発生させることが望ましい。導電性繊維には、従来の金属繊維や金属コートされたポリマー繊維などを用いることも出来るが、これらは通常数100μm程度の太さを有するため、強い電界を発生させるには数kVから数10kVといった高圧用電源が必要となる。家庭用電源などの比較的電圧の低い電源で強い電界を発生させるには、上記の繊維に比べて極めて細いカーボンファイバー、カーボンナノチューブ、カーボンナノワイヤーなどの炭素系繊維を使うことができ、また、金属ナノ繊維など炭素系繊維以外の繊維も用いることができる。カーボンファイバー、カーボンナノチューブ、カーボンナノワイヤーなどは、導電性基体上に化学気相成長法などで形成できる。その成長位置や成長密度を制御する必要がある場合には、Ni、Fe、Co等の金属微粒子を基体表面に予め分散させ、その触媒作用を利用することにより、これら微粒子上に該導電性繊維を高密度で形成できる。導電性基体としては、グラファイト、金属、又は、ガラスやセラミックスなど絶縁体表面上に予めAl、Ag等の金属薄膜などを設けて導電性を付与したものを用いてもよい。
2. Conductive substrate, conductive fiber Since the gas cleaning device of the present invention performs intermolecular separation using an electric field existing around the conductive fiber, it is desirable to generate a sufficiently strong electric field in the vicinity of the conductive fiber. As the conductive fiber, a conventional metal fiber or a metal-coated polymer fiber can be used, but these usually have a thickness of about several hundred μm, and therefore, several kV to several tens kV to generate a strong electric field. Such a high-voltage power supply is required. In order to generate a strong electric field with a relatively low voltage power source such as a household power source, carbon fibers such as carbon fibers, carbon nanotubes, and carbon nanowires that are extremely thin compared to the above fibers can be used. Fibers other than carbon-based fibers such as metal nanofibers can also be used. Carbon fibers, carbon nanotubes, carbon nanowires and the like can be formed on a conductive substrate by chemical vapor deposition or the like. When it is necessary to control the growth position and the growth density, metal particles such as Ni, Fe, and Co are dispersed in advance on the surface of the substrate, and the conductive fiber is used on the fine particles by utilizing the catalytic action. Can be formed at high density. As the conductive substrate, graphite, metal, or a material provided with conductivity by providing a metal thin film such as Al or Ag in advance on the surface of an insulator such as glass or ceramics may be used.

また、これら基体上に、まず、たとえば0.1ミクロン以上の太さの導電性カーボンファイバーなどからなる第1の導電性繊維を配置し、更に、その表面に触媒微粒子を上記と同様の方法で分散させた後、カーボンナノチューブ、カーボンナノワイヤーなどを形成してもよい。このような方法においてもカーボンナノチューブ、カーボンナノワイヤーなどの表面近傍に強い電界を生じさせることが可能であり、本発明による気体清浄装置を有効に構成することができる。たとえば0.1ミクロン以上の太さのカーボンファイバーは、CVD法などによるものを基体上に成長させてもよいし、また、例えば市販の活性炭シートなどに、導電性ペーストなどを用いて基体上に接着して被覆させたものを用いてもよい。この場合、平板又は円筒状などの基体表面にカーボンナノチューブ、カーボンナノワイヤーなどを形成するのに比べて、これらナノ繊維の成長に利用できる表面積が桁違いに大きくできるため、カーボンナノチューブ、カーボンナノワイヤーの成長により実現できる実効的な表面積もそれに比例して大きくできる。この結果、電界によって有極性分子を引き寄せる効果や、表面積が大きなカーボンナノチューブ、カーボンナノワイヤー構造に気体を接触させる効果により、活性炭のように大きな圧損を与えることなく、フィルター性能を大幅に向上させることができる。なお、第1の導電性繊維はその上に上記第2の導電性繊維を形成できればよく、その太さは0.1ミクロン以下でも構わない。このように、導電性繊維は、複数種の繊維を含むことが好ましく、その太さは、それぞれ異なっていることが好ましい。   Further, first conductive fibers made of conductive carbon fibers having a thickness of 0.1 microns or more, for example, are disposed on these substrates, and catalyst fine particles are further formed on the surfaces thereof in the same manner as described above. After the dispersion, carbon nanotubes, carbon nanowires and the like may be formed. Even in such a method, it is possible to generate a strong electric field near the surface of carbon nanotubes, carbon nanowires, etc., and the gas cleaning device according to the present invention can be effectively constructed. For example, a carbon fiber having a thickness of 0.1 micron or more may be grown on a substrate by a CVD method or the like, or on a substrate using a conductive paste or the like on a commercially available activated carbon sheet, for example. You may use what was adhere | attached and coat | covered. In this case, the surface area available for the growth of these nanofibers can be increased by orders of magnitude compared to the formation of carbon nanotubes, carbon nanowires, etc. on the surface of a substrate such as a flat plate or cylinder. The effective surface area that can be achieved by the growth of this can be increased proportionally. As a result, the filter performance can be greatly improved without causing a large pressure loss like activated carbon due to the effect of attracting polar molecules by an electric field and the effect of bringing gas into contact with carbon nanotubes and carbon nanowire structures with a large surface area. Can do. The first conductive fiber only needs to form the second conductive fiber on the first conductive fiber, and the thickness thereof may be 0.1 microns or less. Thus, it is preferable that a conductive fiber contains multiple types of fiber, and it is preferable that the thickness differs from each other.

また、導電性繊維を含む空間に強い電界を生じせしめるには、細い導電性繊維を用いることが望ましい。カーボンナノチューブやカーボンナノワイヤーを用いることにより、半径R0=5ナノメーター程度であって、導電性を有するものが容易に得られるが、これら細い導電性繊維を形成した導電性基体に、一例として電圧V=30Vを印加した場合、導電性繊維近傍にはおよそF=V/(RlnR/R0)の電界が得られる。但し、Rは繊維の中心軸から半径方向に計った距離を示す。この結果、導電性繊維表面ではF=2×107V/cmレベルの強い電界を発生させることができ、ホルムアルデヒドなど有極性分子は0.1eVレベルの静電エネルギーで導電性繊維表面に引き付けられる。 In order to generate a strong electric field in a space containing conductive fibers, it is desirable to use thin conductive fibers. By using carbon nanotubes or carbon nanowires, it is possible to easily obtain a conductive material having a radius R 0 = about 5 nanometers. When a voltage V = 30 V is applied, an electric field of approximately F = V / (RlnR / R 0 ) is obtained in the vicinity of the conductive fiber. However, R shows the distance measured to the radial direction from the central axis of the fiber. As a result, a strong electric field of F = 2 × 10 7 V / cm level can be generated on the surface of the conductive fiber, and polar molecules such as formaldehyde are attracted to the surface of the conductive fiber with an electrostatic energy of 0.1 eV level. .

導電性繊維の周囲に存在する電界を用いて有極性分子を導電性繊維表面に滞在せしめるには、電界によって付与される静電エネルギーは、フィルター使用温度における熱エネルギー(室温の場合は、約30meV)と比べ、少なくとも同等以上の大きさであることが望ましい。なお、有極性分子の双極子モーメントは分子によって異なり、例えば、一酸化炭素の双極子モーメントはホルムアルデヒドの約20分の1であるために、一酸化炭素の分離を行なうには、半径R0=5ナノメーター程度のカーボンナノチューブやカーボンナノワイヤーを用いる場合でも、少なくとも200V程度の電圧を印加する必要がある。これらの記述から明らかなように、本発明の導電性繊維は、太さが0.1ミクロン以下の繊維を含むことが望ましい。 In order to allow polar molecules to stay on the surface of the conductive fiber using the electric field existing around the conductive fiber, the electrostatic energy imparted by the electric field is equal to the thermal energy at the filter operating temperature (about 30 meV at room temperature). ) And at least equal to or larger than that. Note that the dipole moment of a polar molecule differs depending on the molecule. For example, the dipole moment of carbon monoxide is about 1/20 of that of formaldehyde. Therefore, in order to separate carbon monoxide, the radius R 0 = Even when carbon nanotubes or carbon nanowires of about 5 nanometers are used, it is necessary to apply a voltage of at least about 200V. As is clear from these descriptions, the conductive fiber of the present invention desirably includes a fiber having a thickness of 0.1 microns or less.

3.表面修飾
導電性繊維の周囲に存在する電界により導電性繊維に引き寄せられるホルムアルデヒドなどの分子の吸着性を促進するためには、導電性繊維に表面修飾を行ってもよい。たとえば、ホルムアルデヒドを炭素系導電性繊維表面に吸着させるには、シフ反応を促進するためにアミノ系材料等で表面修飾を施してもよい。炭素系導電性繊維表面をアミノ基で修飾するには、p−フタル酸エステル水溶液に浸漬して表面に−COOC64COOH基を形成したのち、−COOHを、SOCl2を用いて−Cl基に置換し、オクタデシルジアミンNH2(CH217NH2に浸漬することで−COOC64CONH(CH217NH2を固定する等の方法を用いることができる。
3. Surface Modification In order to promote the adsorptivity of molecules such as formaldehyde attracted to the conductive fiber by the electric field existing around the conductive fiber, the conductive fiber may be subjected to surface modification. For example, in order to adsorb formaldehyde on the surface of carbon-based conductive fibers, surface modification may be performed with an amino-based material or the like in order to promote a Schiff reaction. In order to modify the surface of the carbon-based conductive fiber with an amino group, after immersing in a p-phthalic acid ester aqueous solution to form a -COOC 6 H 4 COOH group on the surface, -COOH is converted into -Cl using SOCl 2. A method of fixing —COOC 6 H 4 CONH (CH 2 ) 17 NH 2 by substitution into a group and immersing in octadecyldiamine NH 2 (CH 2 ) 17 NH 2 can be used.

4.電界形成手段
これら導電性繊維の周囲に電界を形成するには、例えば、導電性繊維を形成した導電性基体を非接触で取り囲む外枠又は配管等と、導電性基体の間に電圧を印加すればよい。具体的には、外枠又は配管等は接地電位とし、導電性基体を正電位として用いることができる。また、導電性繊維と外枠又は配管等が電気的に接触し、直流放電等が発生するのを避けるために、これらが近接する配管内面にシリカ、アルミナなどの絶縁性薄膜を設けてもよい。上記のような方法で、導電性繊維の周囲に電界を形成する場合、導電性基体に印加する電圧を消失させることにより、フィルターの周囲の電界を一時的に消失させることができる。本発明の装置を長時間使用すると、導電性繊維の周りにホルムアルデヒド、VOC等の分子が多数付着してフィルター機能が低下する場合があるが、上記方法で導電性繊維の周囲の電界を一時的に消失させることによって、導電性繊維の周りに付着したホルムアルデヒド、VOC等の分子を容易に除去する(すなわち、導電性繊維から脱離させる)ことができる。すなわち、この場合、本発明の装置は、フィルターを再生させる機能を有する。
4). Electric field forming means In order to form an electric field around these conductive fibers, for example, a voltage is applied between an outer frame or piping surrounding the conductive substrate on which the conductive fibers are formed in a non-contact manner and the conductive substrate. That's fine. Specifically, the outer frame or the piping can be grounded and the conductive substrate can be used as a positive potential. Moreover, in order to avoid that a conductive fiber and an outer frame or piping etc. are in electrical contact and a direct current discharge or the like is generated, an insulating thin film such as silica or alumina may be provided on the inner surface of the piping in the vicinity thereof. . When an electric field is formed around the conductive fiber by the method described above, the electric field around the filter can be temporarily lost by eliminating the voltage applied to the conductive substrate. When the apparatus of the present invention is used for a long time, a large number of molecules such as formaldehyde and VOC may adhere around the conductive fiber and the filter function may be deteriorated. However, the electric field around the conductive fiber is temporarily changed by the above method. By disappearing, the molecules such as formaldehyde and VOC attached around the conductive fiber can be easily removed (that is, desorbed from the conductive fiber). That is, in this case, the device of the present invention has a function of regenerating the filter.

なお、ホルムアルデヒド、VOC等が導電性繊維表面との化学結合などの相互作用により静電エネルギーより大きなエネルギーで吸着された場合、例えば、導電性基体に印加する電圧を一層高めて電界強度を10の8乗V/cmオーダーとし、電子のトンネル効果を誘起せしめて、電界脱離を行うことによりフィルターの再生が可能である。   In addition, when formaldehyde, VOC, etc. are adsorbed with energy larger than electrostatic energy by interaction such as chemical bonding with the surface of the conductive fiber, for example, the voltage applied to the conductive substrate is further increased to increase the electric field strength to 10 Filter regeneration is possible by setting the power to the 8th power V / cm order, inducing the electron tunnel effect, and performing field desorption.

5.水分子の吸着、加熱手段
本発明の装置は、通常は、導電性繊維に水分子を吸着可能である。なぜなら、水分子は、有極性分子であり、また、導電性繊維と化学結合を形成して、導電性繊維表面に吸着されることがあるからである。
5. Water molecule adsorption and heating means The apparatus of the present invention is usually capable of adsorbing water molecules on conductive fibers. This is because the water molecule is a polar molecule and may be adsorbed on the surface of the conductive fiber by forming a chemical bond with the conductive fiber.

導電性繊維表面に吸着した水は、水酸基OH−、又はそこから正電圧が印加された導電性繊維に電子を引き抜かれたヒドロキシラジカルOH・の状態で存在する。その結果、ホルムアルデヒドが共存する場合にこれに作用し、酸化作用により蟻酸を生じる。蟻酸は最終的に二酸化炭素と水に分解するが、160℃以上に熱した蟻酸は二酸化炭素と水素に分解することがよく知られており、導電性繊維を当該温度以上に熱しておくことにより、ホルムアルデヒドの分解過程をより効率的に行なうことができる。導電性繊維を加熱するために、本発明の装置は、フィルター(又は導電性繊維)を加熱する加熱手段をさらに備えることが好ましい。   The water adsorbed on the surface of the conductive fiber exists in the state of hydroxyl radicals OH− or hydroxy radicals OH · from which electrons have been extracted from the conductive fibers to which a positive voltage is applied. As a result, when formaldehyde coexists, it acts on this, and formic acid is produced by the oxidizing action. Formic acid eventually decomposes into carbon dioxide and water, but it is well known that formic acid heated to 160 ° C or higher decomposes into carbon dioxide and hydrogen, and by heating the conductive fiber above that temperature In addition, the decomposition process of formaldehyde can be performed more efficiently. In order to heat the conductive fiber, the apparatus of the present invention preferably further includes a heating means for heating the filter (or conductive fiber).

これらの反応過程は、ホルムアルデヒド以外のVOCにも適用することができる。更に、これらの反応過程は、上述のホルムアルデヒドが二酸化炭素と水素に分解されるように、オゾンなどの活性酸素や有害なプラズマ反応で生成されるガスを発生させることがない点に特徴がある。   These reaction processes can also be applied to VOCs other than formaldehyde. Further, these reaction processes are characterized in that no active oxygen such as ozone or gas generated by harmful plasma reaction is generated so that the above-mentioned formaldehyde is decomposed into carbon dioxide and hydrogen.

6.触媒薄膜、触媒微粒子
導電性繊維は、触媒薄膜又は触媒微粒子を表面に備えることが好ましい。この場合、電界の効果で繊維表面に引き寄せられた有極性分子が、繊維表面に存在する触媒薄膜又は触媒微粒子と効果的に接触することができ、酸化・乖離等の作用を効率的に受けることができるからである。
6). Catalyst thin film, catalyst fine particles The conductive fiber preferably has a catalyst thin film or catalyst fine particles on the surface. In this case, polar molecules attracted to the fiber surface by the effect of the electric field can effectively come into contact with the catalyst thin film or catalyst fine particles existing on the fiber surface, and are efficiently subjected to actions such as oxidation and separation. Because you can.

触媒薄膜又は触媒微粒子は、金属(例えば、Pt、Pd、Co、Ni、Fe、Cr、Ag、Mn、Ru等)を含むことが好ましい。この場合、空気中の酸素などが触媒表面で活性化されて、導電性繊維に吸着されたホルムアルデヒド、VOCなどの有極性分子などの酸化を促進する。一例としてAgを用いた場合には、酸素との接触によりその表面に酸化銀が生じ、ホルムアルデヒドが電界吸着されると、強電界下でAgが還元される一方、ホルムアルデヒドは酸素と結合して、二酸化炭素と水に分解される。また、その他の金属性酸化触媒を用いた場合でも類似の反応過程によりホルムアルデヒドの分解に利用することができる。また、同様の反応過程は、ホルムアルデヒド以外のVOCにも適用することができる。導電性繊維近傍に有効に電界を生じせしめる細い導電性繊維として、半径R0=5ナノメーター程度のカーボンナノチューブやカーボンナノワイヤーを用いる場合、このようなナノサイズの細線の上に、Pt、Pd、Co、Ni、Fe、Cr、Ag、Mn、Ruなどの金属薄膜又は金属微粒子を設けるには、W.Q.Han and A.Zettl,Nano Letters, vol.3, 681-683, 2003などの文献に見られるように、電子ビーム蒸着法、無電解メッキ法、金属塩還元法などの方法を用いることができる。また、特開2004−74116号公報にはナノ細線に触媒微粒子を担持させた触媒体が開示されている。 The catalyst thin film or catalyst fine particles preferably contain a metal (for example, Pt, Pd, Co, Ni, Fe, Cr, Ag, Mn, Ru, etc.). In this case, oxygen in the air is activated on the catalyst surface and promotes oxidation of polar molecules such as formaldehyde and VOC adsorbed on the conductive fibers. When Ag is used as an example, silver oxide is generated on the surface by contact with oxygen, and when formaldehyde is electroadsorbed, Ag is reduced under a strong electric field, while formaldehyde is combined with oxygen, Decomposed into carbon dioxide and water. Even when other metallic oxidation catalysts are used, they can be used for decomposition of formaldehyde through a similar reaction process. The same reaction process can also be applied to VOCs other than formaldehyde. When carbon nanotubes or carbon nanowires having a radius R 0 = about 5 nanometers are used as thin conductive fibers that effectively generate an electric field in the vicinity of the conductive fibers, Pt, Pd are formed on such nano-sized thin wires. In order to provide a metal thin film or metal fine particles such as Co, Ni, Fe, Cr, Ag, Mn, and Ru, it can be found in documents such as WQ Han and A. Zetl, Nano Letters, vol. 3, 681-683, 2003. Thus, methods such as an electron beam evaporation method, an electroless plating method, and a metal salt reduction method can be used. JP-A-2004-74116 discloses a catalyst body in which catalyst fine particles are supported on nanowires.

また、触媒薄膜又は触媒微粒子は、酸化物(例えば、酸化チタン等の光触媒)を含むことが好ましい。この場合であっても、金属の場合と同様に触媒表面に電界が作用し電界吸着が誘起される。空気中の酸素などが触媒表面で活性化されて、導電性繊維上の触媒に吸着されたホルムアルデヒド、VOCなどの有極性分子などの酸化を促進するからである。   Moreover, it is preferable that the catalyst thin film or the catalyst fine particles include an oxide (for example, a photocatalyst such as titanium oxide). Even in this case, as in the case of metal, an electric field acts on the catalyst surface to induce electric field adsorption. This is because oxygen in the air is activated on the catalyst surface and promotes oxidation of polar molecules such as formaldehyde and VOC adsorbed on the catalyst on the conductive fiber.

光触媒材料である酸化チタンの薄膜又は微粒子は、TIPT(titanium tetra-isopropoxide)、TiCl4等を原料とするCVD法、ゾルゲル法、あるいは、酸化チタン蒸着源を用いた電子ビーム蒸着法、スパッター法等で形成できる。また、光触媒にN等他元素ドーピング、又は酸素欠損量制御などの方法により紫外線だけでなく可視光に対して有効に作用する光触媒を用いることもできる。 The titanium oxide thin film or fine particles, which are photocatalyst materials, are CVD, sol-gel, or electron beam evaporation using a titanium oxide evaporation source, sputtering, etc. using TIPT (titanium tetra-isopropoxide), TiCl 4 or the like as a raw material. Can be formed. In addition, a photocatalyst that effectively acts on not only ultraviolet rays but also visible light can be used as a photocatalyst by a method such as doping of other elements such as N or oxygen deficiency control.

1.構造
図1は、実施例1に係る本発明の気体清浄装置の構造を示す図である。本実施例において、符号1は導電性繊維4の下地となる基板、符号2は基板1上に必要に応じて設けられる導電層、符号3は導電性繊維の成長位置、成長密度などを制御するために必要に応じて設けられた微粒子触媒層、符号4は導電性繊維、符号5は導電性繊維4を形成した基板1を非接触で取り囲む外枠又は配管、符号6は導電性繊維と外枠又は配管5との電気的な接触やDC電界下での放電を防ぐために設けられた絶縁層、符号7は気体の導入側、符号7aは排気側を示す。また、符号13は基板1に電圧を印加するためのDC電源、符号14は接地電位を示す。
1. Structure FIG. 1 is a view showing the structure of the gas cleaning apparatus of the present invention according to the first embodiment. In this embodiment, reference numeral 1 is a substrate serving as a base for the conductive fibers 4, reference numeral 2 is a conductive layer provided on the substrate 1 as necessary, and reference numeral 3 controls the growth position and growth density of the conductive fibers. For this purpose, a fine particle catalyst layer provided as necessary, reference numeral 4 is conductive fibers, reference numeral 5 is an outer frame or piping surrounding the substrate 1 on which the conductive fibers 4 are formed in a non-contact manner, and reference numeral 6 is an outer periphery of the conductive fibers. An insulating layer provided to prevent electrical contact with the frame or the pipe 5 or discharge under a DC electric field, reference numeral 7 denotes a gas introduction side, and reference numeral 7a denotes an exhaust side. Reference numeral 13 denotes a DC power source for applying a voltage to the substrate 1, and reference numeral 14 denotes a ground potential.

2.製造方法
まず、基板1としては半径3mm、長さ3cmの円筒形状のグラファイトを用いた。基板1上に、日本ペイント製のNiコロイドペーストを、アセトン溶媒を用いて超音波洗浄装置により展開し、粒径3〜5nmのNi微粒子が1cm2当たり約1010個程度分散された表面を形成した。その後、この基板1をマイクロ波プラズマCVD装置の真空チャンバーに導入、1×10-5Paまで排気し、さらに600℃で10分間熱処理を行った。その後、基板温度を600℃に維持し、チャンバーの真空度を15Torr程度になるように圧力コントロールバルブを調整しながら、マスフローコントロールを通じてH2ガスを流量80sccmで導入し、5分程度の表面クリーニングを行った。次に、H2ガスを流量80sccm、およびCH4ガスを流量20sccm、トータル圧力15Torrの条件の下に導入し、更にバイアス電圧100Vを印加して、電力500W、周波数2.45GHzの高周波プラズマ励起により、カーボンナノワイヤーを気相成長させた。成長したカーボンナノワイヤーは、平均的な寸法は半径約6nm、長さ約30ミクロンで、電子線回折評価によれば多層カーボンナノチューブと非晶質ファイバーが混在しており、ほぼ触媒微粒子の密度に相当する数のこれらカーボンナノワイヤーが形成された。カーボンナノワイヤーを全面に成長させた基板1の任意の2点にテスターのプローブを当てたところ、MΩオーダーの抵抗を示し、形成されたカーボンナノワイヤーは導電性を有していた。また、成長前後の重量の比較から、形成されたカーボンナノワイヤーの重量は0.8mgであった。
2. Manufacturing Method First, as the substrate 1, cylindrical graphite having a radius of 3 mm and a length of 3 cm was used. On a substrate 1, Ni colloid paste made by Nippon Paint is developed with an ultrasonic solvent using an acetone solvent to form a surface in which about 10 10 Ni particles having a particle size of 3 to 5 nm are dispersed per cm 2. did. Thereafter, the substrate 1 was introduced into a vacuum chamber of a microwave plasma CVD apparatus, evacuated to 1 × 10 −5 Pa, and further subjected to heat treatment at 600 ° C. for 10 minutes. Thereafter, while maintaining the substrate temperature at 600 ° C. and adjusting the pressure control valve so that the vacuum degree of the chamber is about 15 Torr, H 2 gas is introduced at a flow rate of 80 sccm through mass flow control, and surface cleaning is performed for about 5 minutes. went. Next, H 2 gas is introduced at a flow rate of 80 sccm, CH 4 gas is introduced at a flow rate of 20 sccm, and a total pressure of 15 Torr, and a bias voltage of 100 V is applied, and high-frequency plasma excitation with a power of 500 W and a frequency of 2.45 GHz is performed. Carbon nanowires were vapor grown. The grown carbon nanowires have an average size of about 6 nm in radius and about 30 microns in length. According to electron diffraction analysis, multi-walled carbon nanotubes and amorphous fibers are mixed, and the density of catalyst fine particles is almost the same. A corresponding number of these carbon nanowires were formed. When a tester probe was applied to any two points on the substrate 1 on which the carbon nanowires were grown on the entire surface, the resistance was in the order of MΩ, and the formed carbon nanowires had conductivity. Moreover, from the comparison of the weight before and behind growth, the weight of the formed carbon nanowire was 0.8 mg.

更に、カーボンナノワイヤーを成長させた基板1を真空チャンバーから取り出した後、ステンレス製の外枠又は配管5を同心円状に配置した。外枠又は配管の基板1を被う部分の内半径は4.5mmであり、導電性繊維との電気的な接触やDC放電を避けるために、基板1と対向する部分には約1ミクロン厚のアルミナ皮膜を施した。   Further, after the substrate 1 on which the carbon nanowires were grown was taken out from the vacuum chamber, a stainless outer frame or pipe 5 was arranged concentrically. The inner radius of the portion of the outer frame or piping that covers the substrate 1 is 4.5 mm, and the portion facing the substrate 1 is about 1 micron thick in order to avoid electrical contact with the conductive fibers and DC discharge. The alumina film was applied.

3.フィルター動作の評価
配管のガス導入側7からホルムアルデヒド8を0.1ppm、酸素9、及び図1には示さないが窒素を含むドライエアーを1cc/minの流量で供給し、基板1にはDC電源13により正電圧を印加し、外枠又は配管5は接地電位14としてフィルター動作を評価した。排気側7aにおいて気体を10分間捕集管に捕集し液体クロマトグラフィーを用いた公知の方法によりホルムアルデヒド濃度を測定したところ、表1に示す結果が得られた。
3. Evaluation of filter operation From the gas introduction side 7 of the piping, formaldehyde 8 is supplied at 0.1 ppm, oxygen 9 and dry air containing nitrogen (not shown in FIG. 1) at a flow rate of 1 cc / min. A positive voltage was applied at 13 and the outer frame or pipe 5 was evaluated as a ground potential 14 to evaluate the filter operation. When the gas was collected in a collecting tube for 10 minutes on the exhaust side 7a and the formaldehyde concentration was measured by a known method using liquid chromatography, the results shown in Table 1 were obtained.

Figure 0004674071
Figure 0004674071

基板1とこれと対抗する導電性の外枠又は配管4の間に電圧を印加することにより、カーボンナノワイヤー近傍に強い電界が誘起され、ホルムアルデヒド8が引き寄せられて静電吸着し、酸素9及び窒素は補足されることなくフィルターを通過し、排気側のホルムアルデヒドが減少することが観測された。ホルムアルデヒドが減少する度合いは、印加する電圧に敏感に依存し、表1に示すように、10Vに比べて30Vではより大きな減少が見られた。しかし、本実施例はホルムアルデヒドの分解機能を持たないため、30Vの電圧を印加したまま10時間使用を継続した後は、カーボンナノワイヤー表面がホルムアルデヒドによって飽和する程度にまで覆われて吸着・脱離反応が熱的な平衡に達した結果、排気側のホルムアルデヒド濃度は再び増加する傾向を示した。また、本発明の気体清浄装置のフィルターは、静電的な作用を用いているため、電界を除去すれば静電吸着された分子の脱離が起り、導電性繊維表面は清浄さを回復できるため、セルフクリーニング機能を有する。本実施例では、電界を除去した時、脱離の影響で排気側のホルムアルデヒドは増加したが、セルフクリーニングが行われた結果、30Vを再度印加した時には、最初の電圧印加直後と同様のホルムアルデヒドの減少が見られ、セルフリフレッシュ効果が確認できた。 By applying a voltage between the substrate 1 and the conductive outer frame or pipe 4 that opposes the substrate 1, a strong electric field is induced in the vicinity of the carbon nanowire, the formaldehyde 8 is attracted and electrostatically adsorbed, and oxygen 9 and It was observed that nitrogen passed through the filter without being captured and formaldehyde on the exhaust side was reduced. The degree to which formaldehyde decreases depends sensitively on the applied voltage, and as shown in Table 1, a larger decrease was observed at 30 V compared to 10 V. However, since this example does not have a formaldehyde decomposition function, the carbon nanowire surface is covered to the extent that it is saturated with formaldehyde after being used for 10 hours while a voltage of 30 V is applied. As a result of the reaction reaching thermal equilibrium, the formaldehyde concentration on the exhaust side tended to increase again. In addition, since the filter of the gas cleaning device of the present invention uses an electrostatic action, desorption of electrostatically adsorbed molecules occurs when the electric field is removed, and the conductive fiber surface can be restored to cleanliness. Therefore, it has a self-cleaning function. In this example, when the electric field was removed, the formaldehyde on the exhaust side increased due to the effect of desorption, but as a result of self-cleaning, when 30 V was applied again, the same formaldehyde as that immediately after the first voltage application A decrease was observed, confirming the self-refresh effect.

本実施例では比較的低い電圧で強い電界を発生できるカーボンナノワイヤーを利用したが、導電性繊維はこれに限られるものではない。太い導電性繊維を用いる場合には、その太さに比例した電圧を供給できる電源装置を用いればよい。   In this embodiment, carbon nanowires that can generate a strong electric field at a relatively low voltage are used, but the conductive fibers are not limited to this. When a thick conductive fiber is used, a power supply device that can supply a voltage proportional to the thickness may be used.

図2は、実施例2に係る本発明の気体清浄装置の構成を示す図である。本実施例の気体清浄装置の構造と製造方法は実施例1と同様である。実施例1との違いは、導入ガスが飽和濃度に対して10%の水分子10を含むこと、フィルターを200℃に昇温して使用している点である。なお、実施例2の装置は、フィルターを加熱するヒーターなどの加熱手段を備えている。表2は、実施例1と同様な方法で行なったフィルター動作の評価の結果を示す。   FIG. 2 is a diagram illustrating a configuration of the gas cleaning device according to the second embodiment of the present invention. The structure and manufacturing method of the gas cleaning device of the present embodiment are the same as those of the first embodiment. The difference from Example 1 is that the introduced gas contains 10% of water molecules 10 with respect to the saturation concentration, and the filter is heated to 200 ° C. and used. In addition, the apparatus of Example 2 is provided with heating means such as a heater for heating the filter. Table 2 shows the results of evaluation of the filter operation performed by the same method as in Example 1.

Figure 0004674071
Figure 0004674071

本実施例では水分子が多量に存在するが有極性分子であるため、その一部はホルムアルデヒド8と同様に導電性繊維表面に捕捉され、残りは補足されずに酸素分子9などとともに排気側7aに達する。強電界下において、導電性繊維表面に電界吸着した水は、水酸基OH−、又はヒドロキシラジカルOH・の状態でホルムアルデヒドに作用し、ホルムアルデヒドを酸化する作用により蟻酸を生じる。発生した蟻酸は強電界の効果とともに、フィルターを200℃に昇温したことによる効果により二酸化炭素11と水素12に分解する。本実施例においては、導電性繊維表面におけるホルムアルデヒドは、酸化反応により分解が進むため吸着サイトが飽和することはなく、長時間経過後も初期の性能を維持できた。
また、本実施例でのフィルター動作の評価において、排気側に市販の半導体薄膜式オゾンセンサー、測定レンジ0.10〜100ppm、を配置し、30分放置後オゾン発生の有無を評価したところ、検出限界以下であった。
In this embodiment, a large amount of water molecules are present but are polar molecules. Therefore, a part of them are captured on the surface of the conductive fiber in the same manner as formaldehyde 8, and the remainder is not supplemented with oxygen molecules 9 and the like on the exhaust side 7a. To reach. Under strong electric field, water that is electroadsorbed on the surface of the conductive fiber acts on formaldehyde in the state of hydroxyl OH- or hydroxy radical OH., And formic acid is generated by the action of oxidizing formaldehyde. The generated formic acid is decomposed into carbon dioxide 11 and hydrogen 12 by the effect of heating the filter to 200 ° C. along with the effect of a strong electric field. In this example, formaldehyde on the surface of the conductive fiber was decomposed by the oxidation reaction, so that the adsorption site was not saturated and the initial performance could be maintained even after a long time.
In addition, in the evaluation of the filter operation in this example, a commercially available semiconductor thin film type ozone sensor, a measurement range of 0.10 to 100 ppm, was arranged on the exhaust side, and the presence or absence of ozone generation was evaluated after being left for 30 minutes. It was below the limit.

図3は、実施例3に係る本発明の気体清浄装置の構成を示す図である。本実施例の気体清浄装置の構造と製造方法は実施例1とほとんど同様であるが、導電性繊維がその表面に金属からなる酸化触媒としてAgの微粒子4aを担持して構成されている点が異なっている。酸化触媒の微粒子は、Agを公知の方法により無電解メッキして形成した。すなわち、カーボンナノワイヤーを全面に成長させた基板1を実施例1と同様な方法で形成したのち、湿度30%以上を含む大気圧下で、Xe2誘電体バリア放電エキシマーランプ装置を用い、中心波長146nmの紫外線を放射照度10mW/cm2で10分間照射し、カーボンナノワイヤーの表面処理を行った。該基板は赤外吸収法による−OH、=C=O振動ピークの増加が見られ、表面が活性化していることが確認された。 FIG. 3 is a diagram illustrating the configuration of the gas cleaning device according to the third embodiment of the present invention. The structure and the manufacturing method of the gas cleaning device of this example are almost the same as those of Example 1, except that the conductive fiber is configured to carry Ag fine particles 4a as an oxidation catalyst made of metal on its surface. Is different. The fine particles of the oxidation catalyst were formed by electroless plating of Ag by a known method. That is, after the substrate 1 on which carbon nanowires are grown on the entire surface is formed by the same method as in Example 1, the Xe 2 dielectric barrier discharge excimer lamp device is used at atmospheric pressure including 30% or more of humidity. Irradiation with ultraviolet rays having a wavelength of 146 nm was performed at an irradiance of 10 mW / cm 2 for 10 minutes to perform surface treatment of the carbon nanowires. The substrate showed an increase in —OH, ═C═O vibration peak by the infrared absorption method, and it was confirmed that the surface was activated.

表面処理したカーボンナノワイヤー上へのAg微粒子の形成は公知の方法により行なった。すなわち、硝酸銀3.5gに純水を60cc加え、さらに沈殿が消えるまでアンモニア水を加えた第1液、苛性カリ2.5gに純水60ccを加えた第2液、ぶどう糖54.5gを純水1リッターに溶かし、硝酸0.5cc加えて煮沸し、冷却後エタノール54ccを加えた第3液を用意した。次に、第1液に第2液を加えたのち、アンモニア水を液が透明になるまで液化したのち、硝酸銀を10mg含む水溶液10ccを加え、基板1を10秒間浸漬して、Ag微粒子を形成した。カーボンナノワイヤー上に形成されたAg粒子は、カーボンナノワイヤーをほぼ全面的に被うように形成され、その平均半径は約8nmであった。表3は、実施例1と同様な方法で行なったフィルター動作の評価の結果を示す。   Formation of Ag fine particles on the surface-treated carbon nanowires was performed by a known method. That is, 60 cc of pure water was added to 3.5 g of silver nitrate, and ammonia water was further added until the precipitate disappeared, the second liquid in which 60 cc of pure water was added to 2.5 g of caustic potash, and 54.5 g of glucose was added to pure water 1 A third liquid was prepared by dissolving in a liter, boiling 0.5 cc of nitric acid, and adding 54 cc of ethanol after cooling. Next, after adding the second liquid to the first liquid, ammonia water is liquefied until the liquid becomes transparent, 10 cc of an aqueous solution containing 10 mg of silver nitrate is added, and the substrate 1 is immersed for 10 seconds to form Ag fine particles. did. The Ag particles formed on the carbon nanowires were formed so as to cover the carbon nanowires almost entirely, and the average radius thereof was about 8 nm. Table 3 shows the results of the evaluation of the filter operation performed by the same method as in Example 1.

Figure 0004674071
Figure 0004674071

実施例1と同様に、電圧30Vを印加した場合、Ag微粒子で被われたカーボンナノワイヤーには有極性分子のホルムアルデヒド8が電界吸着されるが、熱的なエネルギーと付加的な小さな静電エネルギーをもった酸素9も、その存在量が多いために頻繁に到来し、酸化触媒との作用によりホルムアルデヒドの酸化による反応が促進され、最終的に二酸化炭素11と水10に分解される。分解反応を促進するために、実施例2と同様にフィルター温度を200℃程度に昇温しておいてもよい。本実施例においても、ホルムアルデヒドは酸化分解されるため、長時間使用後も吸着能力の低下が生じていない。また、本実施例においても、排気側でオゾンは検出されなかった。   As in Example 1, when a voltage of 30 V is applied, formaldehyde 8 as a polar molecule is electroadsorbed on carbon nanowires covered with Ag fine particles. However, thermal energy and additional small electrostatic energy are applied. Oxygen 9 having a large amount of oxygen 9 frequently arrives, and the reaction with the oxidation of formaldehyde is promoted by the action of the oxidation catalyst, and is finally decomposed into carbon dioxide 11 and water 10. In order to accelerate the decomposition reaction, the filter temperature may be raised to about 200 ° C. as in Example 2. Also in this example, since formaldehyde is oxidatively decomposed, the adsorption capacity does not decrease even after long-term use. Also in this example, ozone was not detected on the exhaust side.

なお、カーボンナノワイヤー上への半径10nm程度のAg微粒子の形成は、以下に述べる気相成長法でも可能であった。すなわち、上流に蒸発部、下流に反応部を有する石英製反応管の反応部側に基板1を配置し、あらかじめAr流量2リットル/minを流しながら、蒸発部と反応部をそれぞれ、1000℃と600℃に加熱した。次に、市販のAgCl原料を搭載した石英ボートを該蒸発部側に挿入すると微粒子が煤状に発生し、反応部に到達するのが観察された。なお、AgClの搭載量は反応部において得られるAgの実効的な蒸着厚が10nmとなるように設定した。AgClの蒸発が終了したのち、H2ガス2リットル/minのガス流に切り替え、反応部を700℃に加熱することにより、粒径10nm程度のAg微粒子が得られた。 The formation of Ag fine particles having a radius of about 10 nm on the carbon nanowires was also possible by the vapor phase growth method described below. That is, the substrate 1 is disposed on the reaction part side of a quartz reaction tube having an evaporation part upstream and a reaction part downstream, and the evaporation part and the reaction part are respectively set to 1000 ° C. while flowing an Ar flow rate of 2 liters / min. Heated to 600 ° C. Next, it was observed that when a quartz boat loaded with a commercially available AgCl raw material was inserted into the evaporation section, fine particles were generated in a bowl shape and reached the reaction section. The loading amount of AgCl was set so that the effective deposition thickness of Ag obtained in the reaction part was 10 nm. After the evaporation of AgCl was completed, the gas flow was switched to 2 liters / min of H 2 gas, and the reaction part was heated to 700 ° C., thereby obtaining Ag fine particles having a particle size of about 10 nm.

実施例4に係る本発明の気体清浄装置の構成を図3により説明する。本実施例の気体清浄装置の構造と製造方法は実施例1とほとんど同様であるが、導電性繊維がその表面に金属からなる酸化触媒としてPtの微粒子を担持して構成されており、かつ導入ガスがホルムアルデヒド8を0.1ppm、酸素9、図3には示さないが窒素、同じく図には示さないがトルエン0.2ppm、及び一酸化炭素を0.1ppm含む点、更に、フィルター動作の評価実験において基板1を300℃に設定した点が異なっている。カーボンナノワイヤーを全面に成長させた基板1の形成、および紫外線照射による表面処理は実施例1と同様に行った。酸化触媒の微粒子は、Ptを公知の方法により金属塩を還元する方法で形成した。濃度5mMのNa2PtCl4溶液500ccと同量のエタノールを加えた処理液に表面処理後の基板1を3分間浸漬したのち、エタノール水で洗浄し、更に窒素ガス中で乾燥し500℃で熱処理することにより、Pt微粒子を形成した。カーボンナノワイヤー上に形成されたPt微粒子は、カーボンナノワイヤーをほぼ全面的に被うように形成され、その平均半径は約4nmであった。表4は、実施例1と同様な方法で行なったフィルター動作の評価の結果を示す。但し、双極子モーメントの小さい一酸化炭素も対象となるため、印加電圧は200Vに高めた。また、トルエン、及び一酸化炭素の濃度はガスクロマトグラフィー法で評価した。 The configuration of the gas cleaning apparatus of the present invention according to Example 4 will be described with reference to FIG. The structure and manufacturing method of the gas cleaning device of this example are almost the same as those of Example 1, but the conductive fiber is configured to carry fine particles of Pt as an oxidation catalyst made of metal on its surface and introduced. Gas contains 0.1 ppm formaldehyde 8 and oxygen 9, nitrogen not shown in FIG. 3, nitrogen not shown in the figure but toluene 0.2 ppm, and carbon monoxide 0.1 ppm, and further evaluation of filter operation The difference is that the substrate 1 is set to 300 ° C. in the experiment. Formation of the substrate 1 on which carbon nanowires were grown on the entire surface and surface treatment by ultraviolet irradiation were performed in the same manner as in Example 1. The fine particles of the oxidation catalyst were formed by a method of reducing Pt with a metal salt by a known method. The substrate 1 after the surface treatment is immersed for 3 minutes in a treatment solution to which 500 cc of an Na 2 PtCl 4 solution having a concentration of 5 mM is added, then washed with ethanol water, dried in nitrogen gas, and heat treated at 500 ° C. As a result, fine Pt particles were formed. The Pt fine particles formed on the carbon nanowires were formed so as to cover the carbon nanowires almost entirely, and the average radius was about 4 nm. Table 4 shows the results of the evaluation of the filter operation performed by the same method as in Example 1. However, since carbon monoxide having a small dipole moment is also targeted, the applied voltage was increased to 200V. The concentrations of toluene and carbon monoxide were evaluated by gas chromatography.

Figure 0004674071
Figure 0004674071

電圧200Vを印加した場合、Pt微粒子で被われたカーボンナノワイヤーには有極性分子のホルムアルデヒド8、トルエン、及び一酸化炭素が電界吸着されるが、熱的なエネルギーと付加的な小さな静電エネルギーをもった酸素9も、その存在量が多いために頻繁に到来し、酸化触媒との作用によりホルムアルデヒド、トルエン、及び一酸化炭素の酸化による反応が促進され、最終的に二酸化炭素11と水10に分解される。フィルター温度を300℃程度に昇温しているために、分解反応が促進される。本実施例の構成により、ホルムアルデヒド、トルエンに加え、その他のVOC、COなども分離が可能であった。本実施例においても、ホルムアルデヒド、およびVOCは酸化分解され、また一酸化炭素は二酸化炭素に酸化されるため、長時間使用後も吸着能力の低下が生じていない。また、本実施例においても、排気側でオゾンは検出されなかった。   When a voltage of 200 V is applied, the carbon nanowires covered with Pt fine particles are electroadsorbed with polar molecules such as formaldehyde 8, toluene, and carbon monoxide. Thermal energy and additional small electrostatic energy Oxygen 9 having a high concentration of oxygen 9 frequently arrives, and the reaction with the oxidation catalyst promotes the reaction by oxidation of formaldehyde, toluene, and carbon monoxide, and finally carbon dioxide 11 and water 10 Is broken down into Since the filter temperature is raised to about 300 ° C., the decomposition reaction is accelerated. According to the configuration of this example, in addition to formaldehyde and toluene, other VOCs, CO, and the like could be separated. Also in this example, since formaldehyde and VOC are oxidatively decomposed and carbon monoxide is oxidized to carbon dioxide, the adsorption capacity does not decrease even after long-term use. Also in this example, ozone was not detected on the exhaust side.

実施例5に係る本発明の気体清浄装置の構成は図3と同様である。本実施例の気体清浄装置の構造と製造方法は実施例1とほとんど同様であるが、導電性繊維がその表面に実施例3、4とは違った酸化触媒として酸化物微粒子を担持して構成されている点が異なっている。本実施例では光触媒であるアナターゼ型酸化チタンをカーボンナノワイヤーの上に公知のCVD方法により形成した。   The configuration of the gas cleaning apparatus of the present invention according to Example 5 is the same as that shown in FIG. The structure and manufacturing method of the gas cleaning device of this example are almost the same as those of Example 1, except that conductive fibers carry oxide fine particles on the surface as an oxidation catalyst different from those of Examples 3 and 4. Is different. In this example, anatase-type titanium oxide as a photocatalyst was formed on a carbon nanowire by a known CVD method.

すなわち、カーボンナノワイヤーを全面に成長させた基板1を実施例1と同様な方法で形成したのち、実施例3と同様に、大気圧下で紫外線を照射し、カーボンナノワイヤーの表面処理を行った。その後、該基板をCVDチャンバーに導入し真空に排気したのち、流量100cc/minの窒素ガスを流しながら、300℃に昇温し10分間熱処理を行なった。CVD原料にはTTIP(titanium tetra−isopropoxide)を用いた。TTIP容器を80℃に加熱し、キャリアーガスとして用いる流量100cc/minの窒素ガスをバブリングさせることにより原料をCVDチャンバーに導入し、室温で5分間のCVD成長を行った。その後、雰囲気を大気圧のドライエアーに切り替え、500℃で15分間の焼成を行った。カーボンナノワイヤー上に形成された酸化チタン微粒子は、カーボンナノワイヤーをほぼ全面的に被うように形成され、その平均半径は約6nmであった。表5は、実施例1と同様な方法で行なったフィルター動作の評価の結果を示す。本実施例においては、形成された酸化チタン微粒子の光触媒効果を見るために、フィルターの外枠又は配管に図3には示さないが、紫外線を外部から導入するための石英窓を設けた。紫外線光源はPhilips製,8WのUV蛍光管を用い、波長356nm、照射量100mW/cm2の紫外光を、光導入窓から照射した。 That is, after the substrate 1 on which carbon nanowires are grown on the entire surface is formed by the same method as in Example 1, the surface treatment of the carbon nanowire is performed by irradiating ultraviolet rays under atmospheric pressure as in Example 3. It was. Thereafter, the substrate was introduced into a CVD chamber and evacuated to a vacuum, and then heated to 300 ° C. and subjected to heat treatment for 10 minutes while flowing nitrogen gas at a flow rate of 100 cc / min. TTIP (titanium tetra-isopropoxide) was used as a CVD raw material. The TTIP container was heated to 80 ° C., and nitrogen gas with a flow rate of 100 cc / min used as a carrier gas was bubbled to introduce the raw material into the CVD chamber, and CVD growth was performed at room temperature for 5 minutes. Thereafter, the atmosphere was switched to dry air at atmospheric pressure, and baking was performed at 500 ° C. for 15 minutes. The titanium oxide fine particles formed on the carbon nanowires were formed so as to cover the carbon nanowires almost entirely, and the average radius was about 6 nm. Table 5 shows the results of the evaluation of the filter operation performed by the same method as in Example 1. In this example, in order to see the photocatalytic effect of the formed titanium oxide fine particles, a quartz window for introducing ultraviolet rays from the outside was provided in the outer frame or pipe of the filter, although not shown in FIG. The ultraviolet light source used was a Philips 8 W UV fluorescent tube, and ultraviolet light having a wavelength of 356 nm and an irradiation amount of 100 mW / cm 2 was irradiated from the light introduction window.

Figure 0004674071
Figure 0004674071

実施例1と同様に、電圧30Vを印加した場合、酸化チタン微粒子で被われたカーボンナノワイヤーには有極性分子のホルムアルデヒド8が電界吸着されるが、熱的なエネルギーと付加的な小さな静電エネルギーをもった酸素9も、その存在量が多いために、これに頻繁に到来し、紫外線照射下では光触媒との作用によりホルムアルデヒドの酸化による反応が促進され、最終的に二酸化炭素11と水10に分解される。分解反応を促進するために、実施例と同様にフィルター温度を200℃程度に昇温しておいてもよい。本実施例ではホルムアルデヒドは酸化分解されるため、長時間使用後も吸着能力の低下が生じていない。   As in Example 1, when a voltage of 30 V is applied, formaldehyde 8 as a polar molecule is electroadsorbed on carbon nanowires covered with titanium oxide fine particles, but thermal energy and additional small electrostatics are applied. Oxygen 9 with energy is frequently present because of its abundance, and under ultraviolet irradiation, the reaction by formaldehyde oxidation is promoted by the action of the photocatalyst, and finally carbon dioxide 11 and water 10 Is broken down into In order to promote the decomposition reaction, the filter temperature may be raised to about 200 ° C. as in the embodiment. In this example, since formaldehyde is oxidatively decomposed, the adsorption capacity does not decrease even after long-term use.

なお、カーボンファイバー上への酸化チタン微粒子の形成はゾルゲル法によっても可能である。すなわち、TTIP1mL、硝酸0.5mL、純水0.1mL量、イソプロパノール32.7mLからなる溶液を窒素雰囲気中で2時間攪拌後、しばらく放置したのち、基板1を浸漬し、およそ0.5mm/secの速度で溶液から取り出し、その後、大気中で400℃・2時間程度焼成する方法によっても形成できる。   The formation of titanium oxide fine particles on the carbon fiber can also be performed by a sol-gel method. That is, a solution consisting of 1 mL of TTIP, 0.5 mL of nitric acid, 0.1 mL of pure water, and 32.7 mL of isopropanol was stirred in a nitrogen atmosphere for 2 hours and then left standing for a while, and then the substrate 1 was immersed, and about 0.5 mm / sec. It can be formed by a method of removing from the solution at a rate of, and then baking in the atmosphere at 400 ° C. for about 2 hours.

図4は、実施例6に係る本発明の気体清浄装置の構成を示す図である。本実施例の気体清浄装置の構造と製造方法は実施例2とほとんど同様であるが、以下の点が異なっている。すなわち、第1の導電性繊維として予め、導電性を有する太さ60ミクロンの活性炭繊維12を不織布状にした厚さ約1mmの市販シートを基板1上にAgペーストなどを用いて接着・乾燥させた後、実施例1と同様な方法で、日本ペイント製のNiコロイドペーストを、アセトン溶媒を用いて展開し、粒径3〜5nmのNi微粒子が高密度で分散された活性炭繊維表面を形成した。その後、実施例1で示したプラズマCVD法によりカーボンナノワイヤー4を形成した。本実施例でのフィルター動作の評価は、導入ガスに飽和濃度に対して10%の水分子10を含ませ、かつフィルターを200℃に昇温して使用するなど、実施例2と同様な方法で行なった。フィルター動作の評価の結果を表6に示す。   FIG. 4 is a diagram illustrating the configuration of the gas cleaning device according to the sixth embodiment of the present invention. The structure and manufacturing method of the gas cleaning device of this example are almost the same as those of Example 2, but the following points are different. That is, as a first conductive fiber, a commercially available sheet having a thickness of about 1 mm in which conductive carbon fiber 12 having a thickness of 60 microns is made into a nonwoven fabric is bonded and dried on the substrate 1 using Ag paste or the like. Then, in the same manner as in Example 1, Ni colloid paste made by Nippon Paint was developed using an acetone solvent to form an activated carbon fiber surface in which Ni fine particles having a particle diameter of 3 to 5 nm were dispersed at high density. . Thereafter, carbon nanowires 4 were formed by the plasma CVD method shown in Example 1. Evaluation of the filter operation in the present example is the same method as in Example 2 in which the introduced gas contains 10% of water molecules 10 with respect to the saturated concentration and the filter is heated to 200 ° C. It was done in. Table 6 shows the results of the filter operation evaluation.

Figure 0004674071
Figure 0004674071

本実施例では、実施例2と同様に、水分子が多量に存在するが有極性分子であるため、その一部はホルムアルデヒド8と同様に、図4の水分子10のように導電性繊維表面に捕捉され、残りは補足されずに水分子10のように、酸素分子9などとともに排気側に達する。強電界下において、導電性繊維表面に電界吸着した水分子10は、水酸基OH−、又はヒドロキシラジカルOH・の状態でホルムアルデヒドに作用し、ホルムアルデヒドを酸化する作用により蟻酸を生じる。発生した蟻酸は200℃のフィルター温度により二酸化炭素11と水素12に分解する。本実施例においては、導電性繊維表面におけるホルムアルデヒドは、分解が進むため吸着サイトが飽和することはなく、長時間経過後も初期の性能を維持できた。本実施例は、カーボンナノワイヤーの比表面積が遥かに大きいため、実施例2に比べて高いフィルター能力が得られる。また、本実施例においても、排気側でオゾンは検出されなかった。   In this example, as in Example 2, a large amount of water molecules are present but polar molecules. Therefore, a part of the surface of the conductive fiber is similar to formaldehyde 8 as in the case of water molecule 10 in FIG. The remaining amount is not supplemented and reaches the exhaust side together with oxygen molecules 9 and the like like water molecules 10. Under a strong electric field, the water molecules 10 that are electroadsorbed on the surface of the conductive fiber act on formaldehyde in the state of hydroxyl OH- or hydroxy radical OH., And formic acid is generated by the action of oxidizing formaldehyde. The generated formic acid is decomposed into carbon dioxide 11 and hydrogen 12 by a filter temperature of 200 ° C. In this example, the formaldehyde on the surface of the conductive fiber did not saturate because the decomposition progressed, and the initial performance could be maintained even after a long time. Since the specific surface area of the carbon nanowire is much larger in this example, a higher filter capability can be obtained than in Example 2. Also in this example, ozone was not detected on the exhaust side.

なお、以上の実施例では、主にホルムアルデヒド、トルエン等の減少を液体クロマトグラフィー、ガスクロマトグラフィーで調べているが、他のVOCについてもガスクロマトグラフィー等公知の方法でフィルター性能を検証することができる。また、フィルター反応に伴って発生する二酸化炭素については、試験ガスとしてホルムアルデヒドを含む高純度ドライエアーと質量分析などの方法を組み合わせることにより反応を検証できることは言うまでもない。   In the above examples, the decrease in formaldehyde, toluene and the like is mainly examined by liquid chromatography and gas chromatography, but the filter performance of other VOCs can be verified by a known method such as gas chromatography. it can. Needless to say, for carbon dioxide generated in association with the filter reaction, the reaction can be verified by combining high purity dry air containing formaldehyde as a test gas with a method such as mass spectrometry.

また、上記の実施例では基板として単純な円筒構造を用いているが、本発明はこれに限定されるものではない。例えば、数μm〜数100μm径の微小な円筒状空洞が多数、平行に配列されたハニカム構造体の空洞内面にカーボンファイバー、カーボンナノチューブ、カーボンナノワイヤー、又は種々の材質又はサイズの金属ワイヤーなどを形成し、電圧を印加することにより、本発明の導電性繊維を含む空間に存在する電界を用いるフィルターを構成することができる。   In the above embodiment, a simple cylindrical structure is used as the substrate, but the present invention is not limited to this. For example, carbon fibers, carbon nanotubes, carbon nanowires, or metal wires of various materials or sizes are provided on the inner surface of a honeycomb structure in which a large number of minute cylindrical cavities having a diameter of several μm to several 100 μm are arranged in parallel. By forming and applying a voltage, a filter using an electric field existing in a space containing the conductive fiber of the present invention can be configured.

更に、本発明の気体清浄装置は、kVといった高い電圧を必要とせず、また、基板の選択によりフレキシブルな形状を取ることができ、また圧損が少ない特徴がある。更に、ホルムアルデヒドなどの除去性能に優れ、長寿命の使用が可能であり、空気清浄機、エアコンなどに有効に適用できる性能を有している。   Furthermore, the gas cleaning device of the present invention does not require a high voltage such as kV, and has a characteristic that it can take a flexible shape by selecting a substrate and has little pressure loss. Furthermore, it has excellent performance for removing formaldehyde and the like, can be used for a long life, and can be effectively applied to an air purifier, an air conditioner, and the like.

本発明の実施例1の気体清浄装置の構成を示す。The structure of the gas cleaning apparatus of Example 1 of this invention is shown. 本発明の実施例2の気体清浄装置の構成を示す。The structure of the gas cleaning apparatus of Example 2 of this invention is shown. 本発明の実施例3、4、5の気体清浄装置の構成を示す。The structure of the gas purifier of Example 3, 4, 5 of this invention is shown. 本発明の実施例6の気体清浄装置の構成を示す。The structure of the gas purification apparatus of Example 6 of this invention is shown.

符号の説明Explanation of symbols

1.基板
2.導電性薄膜
3.触媒微粒子
4.導電性ナノワイヤー又はナノチューブ
5.フィルターの外枠又は配管
6.絶縁層
7.ガス導入側
7a.ガス排気側
8.酸素分子
9.ホルムアルデヒド分子
10.水分子
11.二酸化炭素
12.水素
13.DC電源
14.接地電位
1. Substrate 2. 2. Conductive thin film Catalyst fine particles4. 4. Conductive nanowires or nanotubes 5. Filter outer frame or piping Insulating layer 7. Gas introduction side 7a. 7. Gas exhaust side Oxygen molecule 9. Formaldehyde molecule10. Water molecule11. Carbon dioxide12. Hydrogen 13. DC power supply 14. Ground potential

Claims (9)

導電性基体上に複数の導電性繊維を設けたフィルターと、前記導電性基体に電圧を加えることによって前記導電性繊維の周囲に電界を形成する電界形成手段とを備え、
前記導電性繊維は、前記導電性基体上に気相成長させたカーボンナノチューブまたはカーボンナノワイヤーであることを特徴とする気体清浄装置。
A filter provided with a plurality of conductive fibers on a conductive substrate, and an electric field forming means for forming an electric field around the conductive fiber by applying a voltage to the conductive substrate,
The gas cleaning device, wherein the conductive fibers are carbon nanotubes or carbon nanowires grown in a vapor phase on the conductive substrate.
前記導電性基体は、活性炭繊維を不織布状にしたシートである請求項1に記載の装置。 The apparatus according to claim 1, wherein the conductive substrate is a sheet in which activated carbon fibers are formed into a nonwoven fabric. 前記電界形成手段は、前記フィルターの周囲の電界を一時的に消失させる機能を有する請求項1または2に記載の装置。 The apparatus according to claim 1, wherein the electric field forming unit has a function of temporarily eliminating an electric field around the filter. 前記フィルターを再生させる機能を有する請求項1〜3のいずれか1つに記載の装置。 The apparatus according to claim 1, which has a function of regenerating the filter. 前記導電性繊維は、水分子を吸着可能である請求項1〜のいずれか1つに記載の装置。 The conductive fibers, according to any one of claims 1-4 water molecules can be adsorbed. 前記フィルターを加熱する加熱手段をさらに備える請求項1〜のいずれか1つに記載の装置。 The apparatus according to any one of claims 1 to 5 , further comprising heating means for heating the filter. 前記導電性繊維は、触媒薄膜又は触媒微粒子を表面に備えることを特徴とする請求項1〜のいずれか1つに記載の装置。 The conductive fibers, according to any one of claims 1-6, characterized in that it comprises a catalyst thin film or fine catalyst particles on the surface. 前記触媒薄膜又は前記触媒微粒子は、金属を含むことを特徴とする請求項に記載の装置。 The apparatus according to claim 7 , wherein the catalyst thin film or the catalyst fine particles contain a metal. 前記触媒薄膜又は前記触媒微粒子は、酸化物を含むことを特徴とする請求項に記載の装置。 The apparatus according to claim 7 , wherein the catalyst thin film or the catalyst fine particles include an oxide.
JP2004284653A 2004-09-29 2004-09-29 Gas purifier Expired - Fee Related JP4674071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284653A JP4674071B2 (en) 2004-09-29 2004-09-29 Gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284653A JP4674071B2 (en) 2004-09-29 2004-09-29 Gas purifier

Publications (2)

Publication Number Publication Date
JP2006095429A JP2006095429A (en) 2006-04-13
JP4674071B2 true JP4674071B2 (en) 2011-04-20

Family

ID=36235750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284653A Expired - Fee Related JP4674071B2 (en) 2004-09-29 2004-09-29 Gas purifier

Country Status (1)

Country Link
JP (1) JP4674071B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459013B2 (en) * 2004-11-19 2008-12-02 International Business Machines Corporation Chemical and particulate filters containing chemically modified carbon nanotube structures
JP4528192B2 (en) * 2005-04-26 2010-08-18 シャープ株式会社 Filter, manufacturing method thereof, air cleaning device
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
EP2385016B1 (en) 2006-05-19 2018-08-08 Massachusetts Institute of Technology Continuous process for the production of nanostructures
JP2009282455A (en) 2008-05-26 2009-12-03 Sharp Corp Volatile chemical substance collecting device and electronic apparatus
KR101527102B1 (en) * 2010-11-26 2015-06-10 (주)바이오니아 Device for eliminating harmful substance
ES2663666T3 (en) 2013-02-28 2018-04-16 N12 Technologies, Inc. Nanostructure film cartridge based dispensing
WO2016037150A1 (en) * 2014-09-05 2016-03-10 Imagine Tf, Llc Microstructure separation filters
CN107106979B (en) * 2014-12-24 2021-05-07 皇家飞利浦有限公司 Novel thermal catalytic oxidation material for air purification and device thereof
WO2017154990A1 (en) * 2016-03-09 2017-09-14 国立大学法人名古屋大学 Sample capture device, analysis apparatus including sample capture device, and method for producing sample capture device
EP3463826B1 (en) 2016-05-31 2023-07-05 Massachusetts Institute of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US20190085138A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
KR102197144B1 (en) * 2019-03-29 2021-01-05 유한회사 더프라임솔루션 System of arcing prevention for Non-Thermal Plasma device of particulate matter reduction in exhaust gas
CN113440989B (en) * 2021-08-11 2023-04-28 河南三棵树新材料科技有限公司 Dielectric barrier discharge reactor for purifying pollutants in situ by carbon nano tube and application

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300661A (en) * 1991-03-28 1992-10-23 Nissan Motor Co Ltd Apparatus for treating fine particles in exhaust gas
JPH05293403A (en) * 1992-04-17 1993-11-09 Hideo Yoshikawa Method and apparatus for removing fine particles
JPH11216327A (en) * 1998-02-02 1999-08-10 Mitsubishi Electric Corp Air filter unit
JPH11314049A (en) * 1998-05-06 1999-11-16 Comfort:Kk Electric dust collection air cleaning system
JP2000024545A (en) * 1998-07-14 2000-01-25 Matsushita Electric Ind Co Ltd Removing apparatus
JP2001076975A (en) * 1999-09-07 2001-03-23 Asahi Glass Co Ltd Electric double-layer capacitor
JP2001324422A (en) * 2000-05-12 2001-11-22 Natl Inst Of Advanced Industrial Science & Technology Meti Pm-sampling measuring device using metal mesh filter and voltage impression
JP2002173308A (en) * 2000-12-04 2002-06-21 Mitsubishi Chemicals Corp Carbon nano-tube
JP2002173373A (en) * 2000-12-07 2002-06-21 Toshiba Corp Aluminum nitride sintered compact, method of producing the same and electronic component using the same
JP2002346334A (en) * 2001-05-22 2002-12-03 Daikin Ind Ltd Gas cleaning apparatus by plasma
JP2004089986A (en) * 2002-05-31 2004-03-25 Filterwerk Mann & Hummel Gmbh Filter element for separating liquid especially from gas stream
JP2004148304A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Dioxins removing filter, and method of removing dioxins and device for treating exhaust gas using the filter

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300661A (en) * 1991-03-28 1992-10-23 Nissan Motor Co Ltd Apparatus for treating fine particles in exhaust gas
JPH05293403A (en) * 1992-04-17 1993-11-09 Hideo Yoshikawa Method and apparatus for removing fine particles
JPH11216327A (en) * 1998-02-02 1999-08-10 Mitsubishi Electric Corp Air filter unit
JPH11314049A (en) * 1998-05-06 1999-11-16 Comfort:Kk Electric dust collection air cleaning system
JP2000024545A (en) * 1998-07-14 2000-01-25 Matsushita Electric Ind Co Ltd Removing apparatus
JP2001076975A (en) * 1999-09-07 2001-03-23 Asahi Glass Co Ltd Electric double-layer capacitor
JP2001324422A (en) * 2000-05-12 2001-11-22 Natl Inst Of Advanced Industrial Science & Technology Meti Pm-sampling measuring device using metal mesh filter and voltage impression
JP2002173308A (en) * 2000-12-04 2002-06-21 Mitsubishi Chemicals Corp Carbon nano-tube
JP2002173373A (en) * 2000-12-07 2002-06-21 Toshiba Corp Aluminum nitride sintered compact, method of producing the same and electronic component using the same
JP2002346334A (en) * 2001-05-22 2002-12-03 Daikin Ind Ltd Gas cleaning apparatus by plasma
JP2004089986A (en) * 2002-05-31 2004-03-25 Filterwerk Mann & Hummel Gmbh Filter element for separating liquid especially from gas stream
JP2004148304A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Dioxins removing filter, and method of removing dioxins and device for treating exhaust gas using the filter

Also Published As

Publication number Publication date
JP2006095429A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4674071B2 (en) Gas purifier
US7074260B2 (en) Filter using carbon nanotube
Li et al. Nanomaterials for airborne virus inactivation: a short review
KR20190016447A (en) Method of manufacturing photocatalyst for air cleaning and photocatalytic filter for air cleaning
CN115419974B (en) Air purifying and sterilizing method
JP3710323B2 (en) Deodorizing device
WO2021130388A1 (en) Method for manufacturing a photocatalytic device, photocatalytic device, photocatalytic composition and gas depolluting apparatus
JP2002524168A (en) Air purifier
JP4528192B2 (en) Filter, manufacturing method thereof, air cleaning device
RU104866U1 (en) PHOTOCATALYTIC AIR CLEANING DEVICE
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light
CN108654614A (en) A kind of composite catalyst of purifying indoor formaldehyde and preparation method thereof
JP4001599B2 (en) Adsorbent, air cleaning device and concentration sensor
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP3689754B2 (en) Photocatalyst material and air purification film
Samantara et al. Functionalized graphene nanocomposites in air filtration applications
JP4049774B2 (en) Porous filter, method for producing porous filter, air cleaning device and air cleaning method
JP2003299965A (en) Photocatalyst material and production method of the same
JP4826789B2 (en) Catalyst production method and catalyst body
JP4514644B2 (en) Gas cleaning method and cleaning apparatus
WO2020216368A1 (en) Apparatus and method for treating vocs gas
JP2000225321A (en) Catalyst for deodorization and deodorization apparatus using same catalyst
JP2006055512A (en) Air cleaner
WO2002101800A1 (en) Semiconductor manufacturing method and apparatus
JP4846245B2 (en) Air purifier and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees