JP2004338993A - Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster - Google Patents

Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster Download PDF

Info

Publication number
JP2004338993A
JP2004338993A JP2003136751A JP2003136751A JP2004338993A JP 2004338993 A JP2004338993 A JP 2004338993A JP 2003136751 A JP2003136751 A JP 2003136751A JP 2003136751 A JP2003136751 A JP 2003136751A JP 2004338993 A JP2004338993 A JP 2004338993A
Authority
JP
Japan
Prior art keywords
boron nitride
cluster
nitride cluster
boron
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003136751A
Other languages
Japanese (ja)
Inventor
Takeo Oku
健夫 奥
Kazuto Narita
一人 成田
Atsushi Nishiwaki
篤史 西脇
Hisato Tokoro
久人 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003136751A priority Critical patent/JP2004338993A/en
Publication of JP2004338993A publication Critical patent/JP2004338993A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology of refining and separating only a boron nitride cluster from the reaction product obtained by an arc melt method. <P>SOLUTION: In a synthetic method of a boron nitride nano-substance, where the substance is obtained by arc melting a powder of boron nitride or a mixed powder containing boron in an atmosphere containing nitrogen gas, this method uses at least a polar organic solvent selected from the group consisting of an electrophilic reagent and a nucleophilic reagent to dissolve the synthesized boron nitride powder and then to refine and separate the boron nitride cluster. The boron nitride cluster solution which is prepared by dissolving a boron nitride cluster in a polar organic solvent, shows in a mass spectrometer analysis a peak intensity of not lower than 10 counts when it is measured with a drawing voltage of 20 kV, in linear flight mode, and by positive ion detection. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
電子デバイス用材料、ガス貯蔵材料、超硬材料等に用いられる窒化ほう素クラスターに関する。
【0002】
【従来の技術】
フラーレン(C60、C70など)、カーボンナノチューブで代表される炭素ナノ材料と同様、窒化ほう素ナノ材料は電子デバイスやガス貯蔵、あるいは高強度材料への応用が期待されており、研究開発が活発化しつつある。窒化ほう素は炭素ナノ材料と類似のナノ構造を有することが知られており、窒化ほう素ナノチューブや窒化ほう素フラーレン(以下、炭素系のフラーレンと区別するため「クラスター」と呼ぶ)を構成する。窒化ほう素クラスターの製造方法としては例えばホウ酸と尿素の混合物を電子線照射する(非特許文献1)、ほう素系混合粉末を窒素雰囲気下でアーク溶解する(非特許文献2)などが報告されている。
窒化ほう素クラスターのTEM観察は報告されており(非特許文献3、4)、ケージ状であることが知られている。
【0003】
【非特許文献1】
D. Golberg, Y. Bando, O. Stephan and K. Kurashima,“Octahedral boron nitride fullerenes formed by electron beam irradiation”, Appl. Phys. Lett. 73 (1998) 2441−2443.(米国)
【非特許文献2】
T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara and K. Suganuma,“Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials”, Mater. Sci. Eng. B74 (2000) 206−217.(オランダ)
【非特許文献3】
T. Oku, M. Kuno, H. Kitahara and I. Narita,“Formation, atomic structures and properties of boron nitride and carbon nanocages fullerene materials”, Int. J. Inorg. Mater. 3 (2001) 597−612.(オランダ)
【非特許文献4】
T. Oku, M. Kuno and I. Narita,“High−resolution electron microscopy and electronic structures of endohedral La@B3636 clusters”, Diamond and Related Mater. 11 (2002) 940−944.(オランダ)
【0004】
【発明が解決しようとする課題】
しかしながら、窒化ほう素クラスターの検出には電子顕微鏡で直接観察する例がいくつかあるのみで(非特許文献1,2)、マクロ的に検出することができなかった。また、窒化ほう素クラスターを大量に得るために上述のアーク溶解の処理回数を増やす手法が考えられるが、アーク溶解法で得られる生成物は窒化ほう素クラスター以外に未反応生成物などの不純物を含有している、という問題があった。そして処理回数を増やすと、不純物が増大してしまう。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明者らはアーク溶解法で得た反応生成物から窒化ほう素クラスターだけを精製分離する手法を見出した。すなわち、ほう素系化合物粉末またはほう素を含む混合粉末を用いて、通常の合金溶解装置であるアーク溶解炉に窒素ガスを導入してアーク溶解し、回収した粉末を求電子試薬、求核試薬の少なくとも一つから選択される極性有機溶媒中に溶解させる手法である。この時、未反応生成物などの不純物は沈殿し、窒化ほう素クラスターのみが溶解するため、沈殿物を除去することによって窒化ほう素クラスターのみを精製分離することができる。上記手法で分離した窒化ほう素クラスターを質量分析によって(BN)(nは12以上)に相当するピークを検出することができ、窒化ほう素クラスターのマクロ的検出が可能である。
【0006】
(1)本発明の窒化ほう素クラスターの製造方法は、ほう素系化合物粉末またはほう素を含む混合粉末を窒素ガスを含む雰囲気下でアーク溶解させることによって得られる窒化ほう素ナノ物質の合成方法において、合成した窒化ほう素粉末を求電子試薬、求核試薬の少なくとも一つから選択される極性有機溶媒中に溶解させた後、精製分離する。
【0007】
(2) 本発明の窒化ほう素クラスター溶液は、上記(1)に記載の極性有機溶媒に窒化ほう素クラスターを溶解させた窒化ほう素クラスター溶液であって、質量分析において10カウント以上のピーク強度が得られることを特徴とする。
【0008】
(3) 本発明の窒化ほう素クラスターは、形状がケージ状であって、基本組成が(BN)(nは12以上)で表現されることを特徴とし、上記(1)の製造方法で得られる。
【0009】
(4) 本発明の窒化ほう素クラスターは、上記(3)に記載の窒化ほう素クラスターであって、遷移金属の少なくとも一つの原子を1個以上内包していることを特徴とする。
【0010】
(5) 本発明の他の窒化ほう素クラスター溶液は、基本組成が(BN)(nは12以上)で表現される窒化ほう素クラスターを極性有機溶媒に溶解させた窒化ほう素クラスター溶液であって、質量分析において、質量数が400〜600、若しくは800〜1200の少なくとも一方の範囲内で100カウント以上のピーク強度が得られることを特徴とする。本発明の製造方法により、不純物の混入が抑制され、高い精製が達成されている。従って、極性有機溶媒中に分散された窒化ほう素クラスターの質量数−Intensityの分布において、測定条件を引き出し電圧20kV、Linear飛行モード、正イオン検出とした時、100カウント以上というピーク強度を達成する。特に質量数が400〜600、若しくは800〜1200の少なくとも一方の範囲内で100カウント以上のピーク強度を有する高精製の窒化ほう素クラスター溶液であることが望ましい。
【0011】
【発明の実施の形態】
第一に窒化ほう素クラスターの製造方法について説明する。図1はアーク溶解法の模式図である。ほう素系化合物粉末またはほう素を含む混合粉末を原料粉として銅ハース状に設置しておき、NとArの混合雰囲気下でタングステン(W)電極からハース上の原料粉に向けてアーク放電させる。W電極に流す電圧・電流は例えば60V・200Aとするがこれに限定されない。アーク放電後の粉末には窒化ほう素クラスターの他に未反応生成物やケージ状でない窒化ほう素などの不純物が含まれている。そこで窒化ほう素クラスターのみを精製分離する手法を次に説明する。
【0012】
アーク放電後の粉末を求電子試薬、求核試薬の少なくとも一つから選択される極性有機溶媒中に溶解させる。極性有機溶媒としてはピリジン、ピロールなどのベンゼノイド芳香族のCH基を1つ以上の窒素、酸素、硫黄原子で置き換えた6員環および5員環構造を持つ複素環化合物が挙げられるが、必ずしもこれらに限定されない。上記極性有機溶媒にはケージ状の窒化ほう素クラスターのみが溶解し、未反応生成物などの副生成物は全て沈殿してしまう。沈殿物を除去した上記溶解溶液を乾燥させることにより、窒化ほう素クラスター粉末を得ることが出来る。
【0013】
上記極性有機溶媒が窒化ほう素クラスターを溶解する理由を述べる。窒化ほう素クラスターは、N原子(原子番号7)がB原子(原子番号5)よりも電子求引性を有するために、N原子位置に部分的陰電荷(B原子位置には部分的陽電荷)を持つ極性クラスター分子となっている。そのため、窒化ほう素クラスターのN原子位置に求電子(置換・付加)反応する求電子試薬、またはB原子位置に求核(置換・付加)反応する求核試薬、から成る極性有機溶剤は窒化ほう素クラスターを溶解させることができる。極性有機溶剤としては特に窒化ほう素クラスターの部分電荷に近い陰電荷または陽電荷を持つものが好ましい。窒化ほう素クラスターのN原子位置に求電子反応する代表としてピリジン(CN)が挙げられる。ベンゼン構造のCH基の一つをN原子で置き換えられたピリジンでは、N原子の電子求引性のために芳香族環がわずかに陽電荷を帯びている。この陽電荷部分が、窒化ほう素クラスターのN原子位置にひきつけられ、溶剤として働く。同様に、窒化ほう素クラスターのB原子位置に求核反応する代表としてピロールが挙げられる。5員環化合物であるピロール(CNH)は、ヘテロ原子であるN原子のもつ電子対がすべての環原子上に非局在化している。すなわち、負電荷を環炭素上に置いている。この陰電荷部分が、窒化ほう素クラスターのB原子位置にひきつけられ、溶剤として働く。
【0014】
上記手法によって得た窒化ほう素クラスター溶液をサンプル溶液として質量分析すると窒化ほう素クラスター(BN)が10カウント以上検出される。特に質量数が400〜600、800〜1200では100カウント以上が得られる。ここで質量分析とは、レーザーを試料に当ててイオン化し電圧を印加し加速すると、質量数・分子量の小さいものほどイオン検出器まで飛行していく時間が短くなる原理を利用し、質量数が決定できる方法である。
【0015】
第二に上記手法で得られる窒化ほう素クラスターについて説明する。本発明の窒化ほう素クラスターは形状がケージ状であって、基本組成が(BN)(nは12以上)で表現されることを特徴とする。さらに遷移金属から選ばれる少なくとも一つの原子を1個以上内包していることを特徴とする。
【0016】
上述の窒化ほう素クラスターの精製分離を実施することにより質量分析が可能となり、基本組成が(BN)(nは12以上)であること、金属を内包していること、を確認することができる。さらに原料粉末に遷移金属粉末単体またはほう素化合物粉末として混入させておけば、上記手法で精製分離した窒化ほう素クラスターの一部または全部は遷移金属から選ばれる少なくとも一つの原子を1個以上内包していることを特徴とする。内包する原子としては例えば、Mg、K、Fe、Cu、Zn、Ge、Y、Pd、Ag、Cd、Pt、Hgなどの遷移金属が挙げられるがこれに限定されず、H、B、C、O、S、Seなどの非金属元素も内包され得る。上記元素を内包することにより例えば窒化ほう素クラスター自体のエネルギーギャップを調整することが可能となり、電子閉じ込めなどのナノエレクトロ二クスデバイスに適用し得る。
【0017】
図2は、窒化ほう素クラスターの一例を示す模式図である。図2中の左側の立体的な原子構造はB3636の窒化ほう素クラスターであり、ケージ状の構造である。図2中の右側の立体的な原子構造は、Y@B3636の窒化ほう素クラスターであり、Y原子を内包している。
【0018】
【実施例】
以下、実施例により本発明を説明する。ただし、これら実施例により本発明が必ずしも限定されるものではない。
(実施例1)
YB粉末4gをアーク溶解炉内の銅製ハースに設置し、アルゴンと窒素の混合ガス雰囲気中(Ar−50%N、0.05MPa)で200V・125Aの条件でアーク溶解を行なった。アーク溶解炉を開けると上記混合粉末は黒色から灰白色に変色していた。この粉末50mgをピリジン液に溶解させ、超音波洗浄器で15秒間撹拌した後、上澄みだけを回収したサンプル溶液(懸濁状態)2マイクロリットル(2μl)をサンプルプレート上に搭載し、島津製作所AXIMA−CFRにてMALDO−TOFMS分析(質量分析)を行なった。分析は引き出し電圧20kV、Linear飛行モード、正イオン検出の条件とした。
【0019】
分析結果を図3のグラフに示す。グラフの縦軸のIntensity(A.U.)はスペクトル強度(相対強度)であり、横軸は質量数を示す。より詳細には、横軸はクラスターの質量数/電荷(1)に相当し、m/zとも表される。ピリジンのみのバックグラウンド(図3中、下のグラフに相当)と、ピリジンに溶解させたサンプル(図3中、上のグラフに相当)の質量分析を行った結果、特に質量数が400〜600、800〜1200ではスペクトル強度が100カウント以上得られ、(BN) (n=12以上)クラスター及びYを内包したY@(BN) クラスターを検出した。質量分析に用いなかったサンプル溶液を乾燥させた結果、窒化ほう素クラスター及びY内包窒化ほう素クラスターから成る白色粉末が得られた。
【0020】
【発明の効果】
本発明の製法を用いることにより、アーク溶解法で得た反応生成物から窒化ほう素クラスターを不純物を抑制して精製分離することができる。
【図面の簡単な説明】
【図1】アーク溶解法の模式図である。
【図2】窒化ほう素クラスターの一例を示す模式図である。
【図3】窒化ほう素クラスター溶液の質量分析に係るグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a boron nitride cluster used for a material for electronic devices, a gas storage material, a super hard material, and the like.
[0002]
[Prior art]
Boron nitride nanomaterials, like carbon nanomaterials represented by fullerenes (C 60 , C 70, etc.) and carbon nanotubes, are expected to be applied to electronic devices, gas storage, or high-strength materials. It is becoming active. Boron nitride is known to have a nanostructure similar to carbon nanomaterials, and forms boron nitride nanotubes and boron nitride fullerenes (hereinafter referred to as "clusters" to distinguish them from carbon-based fullerenes). . As a method for producing a boron nitride cluster, for example, a mixture of boric acid and urea is irradiated with an electron beam (Non-Patent Document 1), and a boron-based mixed powder is arc-melted under a nitrogen atmosphere (Non-Patent Document 2). Have been.
TEM observations of boron nitride clusters have been reported (Non-patent Documents 3 and 4) and are known to be cage-shaped.
[0003]
[Non-patent document 1]
D. Golberg, Y .; Bando, O .; Stephan and K.S. Kurashima, "Octahedral boron nitride fullerenes formed by electron beam irradiation", Appl. Phys. Lett. 73 (1998) 2441-2443. (USA)
[Non-patent document 2]
T. Oku, T .; Hirano, M .; Kuno, T .; Kusunose, K .; Niihara and K.S. Suganuma, "Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials", Mater. Sci. Eng. B74 (2000) 206-217. (Netherlands)
[Non-Patent Document 3]
T. Oku, M .; Kuno, H .; Kitahara and I. Narita, "Formation, atomic structures and properties of boron nitride and carbon nanocages fullerene materials", Int. J. Inorg. Mater. 3 (2001) 597-612. (Netherlands)
[Non-patent document 4]
T. Oku, M .; Kuno and I. Narita, "High-resolution electromicroscopy and electronic structures of endohedral La @ B 36 N 36 clusters", Diamond and Rated. 11 (2002) 940-944. (Netherlands)
[0004]
[Problems to be solved by the invention]
However, there are only a few examples of direct observation with an electron microscope for the detection of boron nitride clusters (Non-Patent Documents 1 and 2), and macroscopic detection was not possible. In addition, in order to obtain a large amount of boron nitride clusters, it is conceivable to increase the number of times of the above-described arc melting process.However, products obtained by the arc melting method include impurities such as unreacted products other than boron nitride clusters. There was a problem of containing. When the number of times of processing is increased, impurities increase.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have found a method for purifying and separating only boron nitride clusters from a reaction product obtained by an arc melting method. That is, using a boron-based compound powder or a mixed powder containing boron, nitrogen gas is introduced into an arc melting furnace, which is a usual alloy melting apparatus, to perform arc melting, and the recovered powder is used as an electrophilic reagent and a nucleophilic reagent. This is a method of dissolving in a polar organic solvent selected from at least one of the following. At this time, impurities such as unreacted products precipitate and only the boron nitride cluster dissolves. Therefore, only the boron nitride cluster can be purified and separated by removing the precipitate. A peak corresponding to (BN) n (n is 12 or more) can be detected from the boron nitride cluster separated by the above method by mass spectrometry, and the boron nitride cluster can be macroscopically detected.
[0006]
(1) A method for producing a boron nitride cluster according to the present invention is a method for synthesizing a boron nitride nanomaterial obtained by arc-melting a boron-based compound powder or a mixed powder containing boron in an atmosphere containing nitrogen gas. , The synthesized boron nitride powder is dissolved in a polar organic solvent selected from at least one of an electrophile and a nucleophile, and then purified and separated.
[0007]
(2) The boron nitride cluster solution of the present invention is a boron nitride cluster solution obtained by dissolving the boron nitride cluster in the polar organic solvent described in (1) above, and has a peak intensity of 10 counts or more in mass spectrometry. Is obtained.
[0008]
(3) The boron nitride cluster of the present invention has a cage-like shape, and has a basic composition represented by (BN) n (n is 12 or more). can get.
[0009]
(4) The boron nitride cluster according to the present invention is the boron nitride cluster according to the above (3), characterized in that it contains at least one transition metal atom.
[0010]
(5) Another boron nitride cluster solution of the present invention is a boron nitride cluster solution obtained by dissolving a boron nitride cluster represented by a basic composition of (BN) n (n is 12 or more) in a polar organic solvent. In the mass spectrometry, a peak intensity of 100 counts or more is obtained in at least one of the mass numbers of 400 to 600 or 800 to 1200. According to the production method of the present invention, contamination of impurities is suppressed, and high purification is achieved. Therefore, in the distribution of the mass number -Intensity of the boron nitride cluster dispersed in the polar organic solvent, a peak intensity of 100 counts or more is achieved when the measurement conditions are the extraction voltage of 20 kV, the linear flight mode, and the positive ion detection. . In particular, a highly purified boron nitride cluster solution having a peak intensity of 100 counts or more in at least one of the range of 400 to 600 or 800 to 1200 is desirable.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a method for producing a boron nitride cluster will be described. FIG. 1 is a schematic diagram of the arc melting method. A boron-based compound powder or a mixed powder containing boron is placed in the form of a copper hearth as a raw material powder, and an arc discharge is directed from the tungsten (W) electrode toward the raw material powder on the hearth in a mixed atmosphere of N 2 and Ar. Let it. The voltage / current applied to the W electrode is, for example, 60 V / 200 A, but is not limited thereto. The powder after the arc discharge contains impurities such as unreacted products and non-cage boron nitride in addition to the boron nitride cluster. Therefore, a method of purifying and separating only the boron nitride cluster will be described below.
[0012]
The powder after the arc discharge is dissolved in a polar organic solvent selected from at least one of an electrophile and a nucleophile. Examples of the polar organic solvent include a heterocyclic compound having a 6-membered ring and a 5-membered ring structure in which a benzenoid aromatic CH group such as pyridine and pyrrole is replaced with one or more nitrogen, oxygen, and sulfur atoms. It is not limited to. Only cage-like boron nitride clusters are dissolved in the polar organic solvent, and all by-products such as unreacted products are precipitated. By drying the solution from which the precipitate has been removed, a boron nitride cluster powder can be obtained.
[0013]
The reason why the polar organic solvent dissolves the boron nitride cluster will be described. The boron nitride cluster has a partial negative charge at the N atom position (a partial positive charge at the B atom position) because the N atom (atomic number 7) has an electron withdrawing property more than the B atom (atomic number 5). ) Is a polar cluster molecule. Therefore, a polar organic solvent composed of an electrophile that undergoes an electrophilic (substitution / addition) reaction at the N atom position of the boron nitride cluster or a nucleophilic reagent that undergoes a nucleophilic (substitution / addition) reaction at the B atom position is formed by boron nitride Element clusters can be dissolved. As the polar organic solvent, those having a negative charge or a positive charge close to the partial charge of the boron nitride cluster are particularly preferable. Pyridine (C 5 H 5 N) is a representative example of the electrophilic reaction at the N atom position of the boron nitride cluster. In pyridine in which one of the CH groups in the benzene structure is replaced with an N atom, the aromatic ring is slightly positively charged because of the electron withdrawing property of the N atom. This positively charged portion is attracted to the N atom position of the boron nitride cluster and acts as a solvent. Similarly, a typical example of a nucleophilic reaction at the B atom position of the boron nitride cluster is pyrrole. In pyrrole (C 4 H 4 NH), which is a 5-membered ring compound, an electron pair of a heteroatom N atom is delocalized on all ring atoms. That is, a negative charge is placed on the ring carbon. This negatively charged portion is attracted to the B atom position of the boron nitride cluster and acts as a solvent.
[0014]
When the boron nitride cluster solution obtained by the above method is used as a sample solution for mass spectrometry, boron nitride clusters (BN) n are detected by 10 counts or more. Particularly, when the mass number is 400 to 600 or 800 to 1200, 100 or more counts can be obtained. Here, mass analysis is based on the principle that when a laser is applied to a sample to ionize it and apply a voltage to accelerate it, the smaller the mass number and molecular weight, the shorter the time it takes to fly to the ion detector. It is a method that can be determined.
[0015]
Second, the boron nitride cluster obtained by the above method will be described. The boron nitride cluster of the present invention is characterized in that the shape is a cage shape and the basic composition is represented by (BN) n (n is 12 or more). Further, it is characterized in that it contains at least one atom selected from transition metals.
[0016]
By performing the above-mentioned purification and separation of the boron nitride cluster, mass spectrometry becomes possible, and it can be confirmed that the basic composition is (BN) n (n is 12 or more) and that the metal is included. it can. Furthermore, if the raw material powder is mixed as a transition metal powder alone or as a boron compound powder, part or all of the boron nitride clusters purified and separated by the above-described method include at least one atom selected from transition metals. It is characterized by doing. Examples of the contained atoms include, but are not limited to, transition metals such as Mg, K, Fe, Cu, Zn, Ge, Y, Pd, Ag, Cd, Pt, and Hg. Non-metallic elements such as O, S, and Se can also be included. By including the above elements, for example, the energy gap of the boron nitride cluster itself can be adjusted, and the invention can be applied to a nanoelectronic device such as electron confinement.
[0017]
FIG. 2 is a schematic diagram illustrating an example of a boron nitride cluster. The three-dimensional atomic structure on the left side in FIG. 2 is a boron nitride cluster of B 36 N 36 , which is a cage-like structure. The three-dimensional atomic structure on the right side in FIG. 2 is a boron nitride cluster of Y @ B 36 N 36 , and contains Y atoms.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not necessarily limited by these examples.
(Example 1)
4 g of YB 6 powder was placed on a copper hearth in an arc melting furnace, and arc melting was performed in a mixed gas atmosphere of argon and nitrogen (Ar-50% N 2 , 0.05 MPa) under the conditions of 200 V and 125 A. When the arc melting furnace was opened, the mixed powder was discolored from black to off-white. After dissolving 50 mg of this powder in a pyridine solution and stirring for 15 seconds with an ultrasonic cleaner, 2 microliters (2 μl) of a sample solution (suspended state) in which only the supernatant was recovered was mounted on a sample plate, and AXIMA manufactured by Shimadzu Corporation -MALDO-TOFMS analysis (mass spectrometry) was performed with -CFR. The analysis was performed under the conditions of an extraction voltage of 20 kV, a linear flight mode, and positive ion detection.
[0019]
The analysis results are shown in the graph of FIG. Intensity (AU) on the vertical axis of the graph is the spectral intensity (relative intensity), and the horizontal axis is the mass number. More specifically, the horizontal axis corresponds to the mass number / charge (1) of the cluster and is also expressed as m / z. As a result of mass analysis of the background of pyridine alone (corresponding to the lower graph in FIG. 3) and the sample dissolved in pyridine (corresponding to the upper graph of FIG. 3), the mass number was particularly 400 to 600. , 800 to 1200, a spectrum intensity of 100 counts or more was obtained, and (BN) n (n = 12 or more) clusters and Y @ (BN) n clusters containing Y were detected. As a result of drying the sample solution not used for mass spectrometry, a white powder composed of boron nitride clusters and Y-containing boron nitride clusters was obtained.
[0020]
【The invention's effect】
By using the production method of the present invention, boron nitride clusters can be purified and separated from the reaction product obtained by the arc melting method while suppressing impurities.
[Brief description of the drawings]
FIG. 1 is a schematic view of an arc melting method.
FIG. 2 is a schematic diagram illustrating an example of a boron nitride cluster.
FIG. 3 is a graph related to mass spectrometry of a boron nitride cluster solution.

Claims (5)

ほう素系化合物粉末またはほう素を含む混合粉末を窒素ガスを含む雰囲気下でアーク溶解させることによって得られる窒化ほう素ナノ物質の合成方法において、合成した窒化ほう素粉末を求電子試薬、求核試薬の少なくとも一つから選択される極性有機溶媒中に溶解させた後、精製分離する、窒化ほう素クラスターの製造方法。In a method for synthesizing a boron nitride nanomaterial obtained by arc-melting a boron-based compound powder or a mixed powder containing boron in an atmosphere containing nitrogen gas, the synthesized boron nitride powder is used as an electrophile, a nucleophile. A method for producing a boron nitride cluster, comprising dissolving in a polar organic solvent selected from at least one of reagents, followed by purification and separation. 請求項1に記載の極性有機溶媒に窒化ほう素クラスターを溶解させた窒化ほう素クラスター溶液であって、質量分析において10カウント以上のピーク強度が得られることを特徴とする、窒化ほう素クラスター溶液。A boron nitride cluster solution obtained by dissolving a boron nitride cluster in the polar organic solvent according to claim 1, wherein a peak intensity of 10 counts or more is obtained in mass spectrometry. . 形状がケージ状であって、基本組成が(BN)(nは12以上)で表現されることを特徴とする、請求項1の製造方法で得られる窒化ほう素クラスター。The boron nitride cluster obtained by the manufacturing method according to claim 1, wherein the shape is a cage shape, and a basic composition is represented by (BN) n (n is 12 or more). 請求項3に記載の窒化ほう素クラスターであって、遷移金属の少なくとも一つの原子を1個以上内包していることを特徴とする、窒化ほう素クラスター。4. The boron nitride cluster according to claim 3, wherein the boron nitride cluster contains at least one atom of a transition metal. 基本組成が(BN)(nは12以上)で表現される窒化ほう素クラスターを極性有機溶媒に溶解させた窒化ほう素クラスター溶液であって、
質量分析において、質量数が400〜600、若しくは800〜1200の少なくとも一方の範囲内で100カウント以上のピーク強度が得られることを特徴とする、窒化ほう素クラスター溶液。
A boron nitride cluster solution in which a boron nitride cluster represented by a basic composition represented by (BN) n (n is 12 or more) is dissolved in a polar organic solvent,
In the mass spectrometry, a peak intensity of 100 or more counts is obtained in at least one of the mass numbers of 400 to 600 or 800 to 1200. A boron nitride cluster solution.
JP2003136751A 2003-05-15 2003-05-15 Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster Pending JP2004338993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136751A JP2004338993A (en) 2003-05-15 2003-05-15 Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136751A JP2004338993A (en) 2003-05-15 2003-05-15 Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster

Publications (1)

Publication Number Publication Date
JP2004338993A true JP2004338993A (en) 2004-12-02

Family

ID=33526587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136751A Pending JP2004338993A (en) 2003-05-15 2003-05-15 Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster

Country Status (1)

Country Link
JP (1) JP2004338993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230830A (en) * 2006-03-01 2007-09-13 National Institute For Materials Science Boron nitride nanotube dispersion and method for producing the same, and method for refining boron nitride nanotube
KR101193818B1 (en) * 2011-08-31 2012-10-23 한국기계연구원 Method for fabricating amorphous boron powder by plasma arc discharge
CN108043345A (en) * 2017-12-29 2018-05-18 苏州大学 Arc discharge device and the method that boron nitride nano-tube is prepared using the device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230830A (en) * 2006-03-01 2007-09-13 National Institute For Materials Science Boron nitride nanotube dispersion and method for producing the same, and method for refining boron nitride nanotube
JP4670100B2 (en) * 2006-03-01 2011-04-13 独立行政法人物質・材料研究機構 Method for purifying boron nitride nanotubes
KR101193818B1 (en) * 2011-08-31 2012-10-23 한국기계연구원 Method for fabricating amorphous boron powder by plasma arc discharge
CN108043345A (en) * 2017-12-29 2018-05-18 苏州大学 Arc discharge device and the method that boron nitride nano-tube is prepared using the device

Similar Documents

Publication Publication Date Title
Oku et al. Formation and structure of B24N24 clusters
Oku et al. Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation
Zhu et al. Preparation of silver nanorods by electrochemical methods
Shinohara et al. Formation and extraction of very large all-carbon fullerenes
Liu et al. Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables
Schwandt et al. High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis
Oku et al. Formation and atomic structures of BnNn (n= 24–60) clusters studied by mass spectrometry, high-resolution electron microscopy and molecular orbital calculations
KR101173847B1 (en) Nanoparticle fabricated by using carbon nanotubes and fabrication method thereof
Ke et al. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials
KR20080039467A (en) Stable atomic quantum cluster, production method thereof and use of same
Kaur et al. Room temperature growth and field emission characteristics of CuO nanostructures
Omurzak et al. Synthesis method of nanomaterials by pulsed plasma in liquid
Oku et al. Formation and structures of B36N36 and Y@ B36N36 clusters studied by high-resolution electron microscopy and mass spectrometry
JP5990565B2 (en) Method for producing silver nanofilament
Li et al. Preparation of metallic single-wall carbon nanotubes
Pak et al. Synthesis of transition metal carbides and high-entropy carbide TiZrNbHfTaC5 in self-shielding DC arc discharge plasma
Zhang et al. One step synthesis and characterization of CdS nanorod/graphene nanosheet composite
Santra et al. Root-growth of boron nitride nanotubes: experiments and ab initio simulations
Keller et al. Electron-induced damage of biotin studied in the gas phase and in the condensed phase at a single-molecule level
JP2013141631A (en) Method for extracting/separating semiconductor monolayer carbon nanotube
JP2004338993A (en) Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster
Gupta et al. Self-catalytic synthesis, structure and properties of ultra-fine luminescent ZnO nanostructures for field emission applications
Oku et al. Formation and structure of B28N28 clusters studied by mass spectrometry and molecular orbital calculation
Oku et al. Formation and structure of Ag, Ge and SiC nanoparticles encapsulated in boron nitride and carbon nanocapsules
US8124044B2 (en) Carbon nanotubes, a method of preparing the same and an element using the same