JP4634881B2 - 光走査装置・画像形成装置 - Google Patents

光走査装置・画像形成装置 Download PDF

Info

Publication number
JP4634881B2
JP4634881B2 JP2005206021A JP2005206021A JP4634881B2 JP 4634881 B2 JP4634881 B2 JP 4634881B2 JP 2005206021 A JP2005206021 A JP 2005206021A JP 2005206021 A JP2005206021 A JP 2005206021A JP 4634881 B2 JP4634881 B2 JP 4634881B2
Authority
JP
Japan
Prior art keywords
light
optical scanning
scanning device
light source
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005206021A
Other languages
English (en)
Other versions
JP2007025165A (ja
Inventor
善紀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005206021A priority Critical patent/JP4634881B2/ja
Publication of JP2007025165A publication Critical patent/JP2007025165A/ja
Application granted granted Critical
Publication of JP4634881B2 publication Critical patent/JP4634881B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、光源からの光束により被走査面を走査する光走査装置、該光走査装置を有する複写機、プリンタ、ファクシミリ、プロッタ等の画像形成装置に関する。
レーザプリンタ、デジタル複写機、普通紙ファックス等で用いられる電子写真画像形成装置において、カラー化、高速化が進み、感光体を複数(通常は4つ)有するタンデム対応の画像形成装置が普及してきている。
カラーの電子写真画像形成装置としては、感光体を1つのみ有し、色の数だけ感光体を回転するという方式もあるが、4色、1ドラムだと4回転する必要があり、生産性に劣る。
タンデム方式の場合、どうしても光源数が増えてしまい、それに伴い部品点数の増加、複数光源間の波長差に起因する色ずれ、コストアップが生じてしまう。
また、書込ユニットの故障の原因として半導体レーザの劣化が挙げられている。光源数が多くなると、故障の確率が増え、リサイクル性が劣化する。
特開2002−23085号公報には、ピラミダルミラー又は平板ミラーを用いて、共通の光源からのビームが異なる被走査面を走査する構成が開示されている。この場合、光源数は低減できるが、偏向ミラーの面数は最大2面までになり、高速化に対し問題がある。
特開2001−83452号公報には、走査幅の増大を得るべく、2段のポリゴンミラーが偏向回転面内において角度差を有する構成が開示されている。
特開2005−92129号公報には、1つの光源によるビームを分割し、分割されたビームを異なる被走査面上に導くという新たな方式が提案されている。
特開2002−23085号公報 特開2001−83452号公報 特開2005−92129号公報
特許文献3に開示された方式によれば、光源数を減らしながらも、高速な画像出力が可能になる。
しかしながら、回転多面鏡で反射したビームが光源に戻ってしまい、ビーム出力がばらつく等の問題が発生していた。
本発明は、光源数を減らすことによる部品点数の低減、低コスト化、ユニット全体の故障率の低減に寄与できるとともに、高速な画像出力を可能にでき、且つ、光源への戻り光を低減して良好な画像出力を可能にする光走査装置、該光走査装置を有する画像形成装置の提供を、その目的とする。
上記目的を達成するために、請求項1に記載の発明では、変調駆動される光源と、複数の段の多面反射鏡を有し、共通の回転軸を有する偏向手段と、共通の光源からのビームを分割し、分割されたビームを前記偏向手段の異なる段の多面反射鏡に入射させる光束分割手段と、前記偏向手段により走査されたビームを被走査面に導く走査光学系と、前記偏向手段により走査されたビームを検出する受光手段と、を有し、共通の光源から分割したビームが異なる被走査面を走査するようにした光走査装置において、前記異なる段の多面反射鏡は互いに回転方向の角度がずれており、前記異なる段のいずれか一方のビームが有効範囲を走査する間、前記異なる段の他方のビームは走査に用いられず、前記他方のビームが前記多面反射鏡の回転軸に垂直な面である主走査断面において入射角0度で前記多面反射鏡で反射される際、前記多面反射鏡で反射されるビームは、前記多面反射鏡への入射光束に対し、主走査方向のビーム幅が狭くなるとを特徴とする
請求項2に記載の発明では、請求項1に記載の光走査装置において、前記光束分割手段に入射する光ビームが前記光束分割手段で反射されて前記光源に戻らないように、前記光束分割手段を入射ビームに対して傾けていることを特徴とする。
請求項3に記載の発明では、請求項2に記載の光走査装置において、前記光束分割手段はハーフミラープリズムからなることを特徴とする。
請求項4に記載の発明では、請求項1乃至3のうちの何れかに記載の光走査装置において、前記多面反射鏡に入射するビーム及び前記多面反射鏡のコート条件について、有効走査範囲における前記多面反射鏡の反射率を垂直入射時の反射率より大きくなるように設定したことを特徴とする。
請求項5に記載の発明では、請求項1乃至3のうちの何れかに記載の光走査装置において、前記光束分割手段と前記偏向手段の間に1/4波長板が配備され、前記光束分割手段は偏光ビームスプリッタであることを特徴とする。
請求項6に記載の発明では、請求項1乃至3のうちの何れかに記載の光走査装置において、前記光源から出射するビームは直線偏光であり、前記光源と前記偏向手段の間に1/4波長板が配備され、且つ、前記光源と前記1/4波長板の間に偏光フィルタが配備されていることを特徴とする。
請求項7に記載の発明では、請求項1に記載の光走査装置において、前記多面反射鏡に入射するビームは、前記多面反射鏡の法線に対して、副走査方向に傾いていることを特徴とする
請求項8に記載の発明では、請求項1乃至7のうちの何れかに記載の光走査装置において、前記光源と前記偏向手段の間に少なくとも1つの透過光学素子が配備され、上記透過光学素子の少なくとも1つは、下記の何れかの条件を満たすことを特徴とする。
(1)少なくとも1方の面に透過率を減少させるコーティングが施されている
(2)少なくとも1方の面はコーティングが施されていない
請求項9に記載の発明では、光走査装置と、複数の像担持体を有する多色対応の画像形成装置において、前記光走査装置は、請求項1乃至8のうちの何れかに記載のものであることを特徴とする。
本発明によれば、光源数を減らしながらも、高速な画像出力を可能にできるとともに、部品点数の低減、低コスト化が実現できる。
また、光走査装置ユニット全体の故障率を低減でき、リサイクル性を向上させることができる。
また、共通の光源からのビームを分割しているので、異なる感光体面を走査するビーム間の品質の差異を低減でき、高画質化を実現できる。その際、光源への戻り光が発生せず、良好な画像出力が可能になる。
以下、本発明の第1の実施形態を図1乃至図10に基づいて説明する。まず、図1に基づいて本実施形態における光走査装置20の構成の概要を説明する。図1において、符号1、1’は光源としての半導体レーザを、2は半導体レーザの支持ベースを、3、3’はカップリングレンズを、4は光束分割手段としてのハーフミラープリズムを、5a、5bはシリンドリカルレンズを、6は防音ガラスを、7は、多面反射鏡としての上段ポリゴンミラー7aと、同じく多面反射鏡としての下段ポリゴンミラー7bからなる偏向手段を、8a、8bは走査光学系としての走査レンズ1を、9は走査光学系としてのミラーを、10a、10bは走査光学系としての走査レンズ2を、12K、12Cは被走査面としての感光体を、25は開口絞りをそれぞれ示している。
図1では2つの感光体に対応する構成のみ示しているが、実際には偏向手段7を挟んで、図示された光学系と同様の光学系を配備することにより、4つの感光体を走査するようになっている。
半導体レーザ1、1’から出射した発散光束はカップリングレンズ3、3’により、弱い収束光束、又は平行光束、又は弱い発散光束に変換される。カップリングレンズ3、3’を出たビームは被走査面上でのビーム径を安定させるための開口絞り25を通過し、ハーフミラープリズム4に入射する。
ハーフミラープリズム4に入射した共通の光源からのビームは上下段に分割され、ハーフミラープリズム4を出射するビームは全部で4本のビームとなる。
図2はハーフミラープリズム4の副走査断面図を示す。符号4aがハーフミラーを示し、透過光と反射光を1:1の割合で分離する。また、符号4bは全反射面を示し、方向を変換する機能を有する。
ここでは、ハーフミラープリズム4を用いているが、単体のハーフミラーと通常のミラーを用いて同様の系を構成してもよい。また、ハーフミラーの分離の割合は1:1である必要はなく、他の光学系の条件に合わせて設定してももちろん構わない。
ハーフミラープリズム4を出射したビームは上下段それぞれに配備されるシリンドリカルレンズ5a、5bにより、偏向反射面の近傍にて主走査方向に長い線像に変換される。ここで、偏向手段7は上下段にそれぞれポリゴンミラー7a、7bが配置され、互いに回転方向に角度(φ)ずれている。ここでは4面のポリゴンミラーをφ=45degずらしている。なお、上下段のポリゴンミラー7a、7bは一体的に形成されてもよく、別体として組み付けてもよい。
図3(a)に示すように、共通の光源からの上段のビームB1が感光体面(被走査面)を走査しているときは下段のビームB2は被走査面上にビームが到達しないようにし、望ましくは遮光部材13により遮光するようにする。
図3(b)に示すように、共通の光源からの下段のビームB2が上段とは異なる感光体面(被走査面)を走査しているときは上段のビームB1は被走査面に到達しないようにする。
さらに、半導体レーザの変調駆動も上段と下段でタイミングをずらし、上段に対応する感光体を走査するときは、上段に対応する色(例えばブラック)の画像情報に基づき、光源(半導体レーザ)の変調駆動を行い、下段に対応する感光体を走査するときは下段に対応する色(例えばマゼンタ)の画像情報に基づき、光源の変調駆動を行う。
図4は共通の光源によりブラックとマゼンタの露光を行い、且つ、有効走査領域において、それぞれ、全点灯する場合のタイムチャートである。実線がブラックに相当する部分、点線がマゼンタに相当する部分を示す。
ブラック、マゼンタにおける書き出しのタイミングは、有効走査幅外に配備される図示しない同期受光手段で走査ビームを検知することにより決定される。なお、同期受光手段としては、通常はフォトダイオードが用いられる。
図4ではブラックとマゼンタの領域での光量を同じに設定しているが、実際には光学素子(ハーフミラープリズム4等)の透過率、反射率が相対的に違うため、光源の光量を同じにしてしまうと、感光体に到達するビームの光量が異なってしまう。
そこで、図5に示すように、異なる感光体面を走査するときに互いの設定光量を異ならせることにより、異なる感光体面上に到達するビーム光量を等しくできる。
図6、図7に基づいて本実施形態を詳細に説明する。但し、図7は比較例である。
図6、図7において、上段のポリゴンミラー7aにより、有効範囲内をビームB1で走査する間に分割されたもう一方のビームが下段のポリゴンミラー7bにより反射されて光源に戻っている(ハッチングで表示したビームB2’)。
図7(比較例)では、ポリゴンミラーの内接円半径が大きく、ポリゴンミラーへ入射する主走査方向のビーム幅ω1’に対し、下段のポリゴンミラーで光源に向かって反射される主走査方向のビームの幅ω2’が変わっていない。この場合、光源に戻るビームB2’の光量が大きくなってしまい、以下の問題が生じる。
(1)光源(半導体レーザ)に戻り光が戻ってしまい、光源の出力がばらつき、濃度むらが発生する。
(2)光源で再度反射されたビームが感光体に到達する。
これらの問題を解決するためには、光源への戻り光の光量を少しでも低減する必要がある。本実施形態では、図6に示すように、ポリゴンミラーへ入射する主走査方向のビーム幅ω1に対し、下段のポリゴンミラー7bで光源に向かって反射される主走査方向のビーム幅ω2の幅が狭くなるように、ポリゴンミラーの内接円半径及び、ビームの入射位置を設定している。これにより、上記(1)、(2)の問題を大幅に改善できる。
本実施形態における光学系の実施データを以下に示す。
・光源波長:655nm
・カップリングレンズ焦点距離:15mm
・カップリング作用:コリメート作用
・ポリゴンミラー
偏向反射面数:4
内接円半径:7mm
で、上下段の角度差φは45(deg)=45×π/180(rad)
・反射鏡への平均入射角
α=28.225(deg)=π×28.225/180(rad)
・また、光束分割手段と偏向手段の間に焦点距離110mmのシリンドリカルレンズが配備されており、反射鏡近傍にて主走査方向に長い線像を形成している。
偏向手段以降のレンズデータを以下に示す。
走査レンズ1の第1面及び走査レンズ2の両面は式(1)、(2)で表現される。
・主走査非円弧式
主走査面内における面形状は非円弧形状をなしており、光軸における主走査面内の近軸曲率半径をRm、光軸からの主走査方向の距離をY、円錐常数をK、高次の係数をA1、A2、A3、A4、A5、A6、・・・とするとき光軸方向のデプスをXとして次の多項式で表している。
X=(Y/Rm)/[1+√{1−(1+K)(Y/Rm)}+A1・
Y+A2・Y+A3・Y+A4・Y+A5・Y+A6・Y+・・ (1)
ここで奇数次のA1、A3、A5・・・をゼロ以外の数値を代入した場合、主走査方向に非対称形状を有する。
実施例1、2、3ともに偶数次のみを用いており、主走査方向に対称系である。
・副走査曲率式
副走査曲率が主走査方向に応じて変化する式を(2)で示す。
Cs(Y)=1/Rs(0)+B1・Y+B2・Y+B3・Y+B4・
+B5・Y+・・ (2)
ここでYの奇数乗係数のAs1、As3、As5・・・がゼロ以外の数値を代入した場合、副走査の曲率半径が主走査方向に非対称となる。
また、走査レンズ1の第2面は回転対称非球面であり、以下の式で表現される。
・回転対称非球面
光軸における近軸曲率半径をR、光軸からの主走査方向の距離をY、円錐常数をK、高次の係数をA1、A2、A3、A4、A5、A6、・・・とするとき光軸方向のデプスをXとして次の多項式で表している。
X=(Y/R)/[1+√{1−(1+K)(Y/Rm)}+A1・Y
+A2・Y+A3・Y+A4・Y+A5・Y+A6・Y+・・
(3)
走査レンズ1第1面の形状
Rm=−279.9、Rs=−61.
K −2.900000E+01
A4 1.755765E−07
A6 −5.491789E−11
A8 1.087700E−14
A10 −3.183245E−19
A12 −2.635276E−24

B1 −2.066347E−06
B2 5.727737E−06
B3 3.152201E−08
B4 2.280241E−09
B5 −3.729852E−11
B6 −3.283274E−12
B7 1.765590E−14
B8 1.372995E−15
B9 −2.889722E−18
B10 −1.984531E−19

走査レンズ1第2面の形状
R=−83.6
K −0.549157
A4 2.748446E−07
A6 −4.502346E−12
A8 −7.366455E−15
A10 1.803003E−18
A12 2.727900E−23

走査レンズ2第1面の形状
Rm=6950 、Rs= 110.9
K 0.000000+00
A4 1.549648E−08
A6 1.292741E−14
A8 −8.811446E−18
A10 −9.182312E−22
B1 −9.593510E−07
B2 −2.135322E−07
B3 −8.079549E−12
B4 2.390609E−12
B5 2.881396E−14
B6 3.693775E−15
B7 −3.258754E−18
B8 1.814487E−20
B9 8.722085E−23
B10 −1.340807E−23

走査レンズ2第2面の形状
Rm=766 、Rs=−68.22
K 0.000000+00
A4 −1.150396E−07
A6 1.096926E−11
A8 −6.542135E−16
A10 1.984381E−20
A12 −2.411512E−25
B2 3.644079E−07
B4 −4.847051E−13
B6 −1.666159E−16
B8 4.534859E−19
B10 −2.819319E−23

使用波長における走査レンズの屈折率は全て1.52724である。
以下に光学配置を示す。
偏向面から走査レンズ1第1面までの距離d1:64mm
走査レンズ1の中心肉厚d2:22.6mm
走査レンズ1第2面から走査レンズ2第1面までの距離d3:75.9mm
走査レンズ2の中心肉厚d4:4.9mm
走査レンズ2第2面から被走査面までの距離d5:158.7mm
なお、屈折率1.514、厚さ1.9mmの防音ガラス6と防塵ガラスが配置されており、防音ガラス6は偏向回転面内において主走査方向に平行な方向に対し10deg傾いている。
防塵ガラスについては図示されていないが、走査レンズ2と被走査面の間に配備されている。
図8に、光源1、1’の収差図(左:像面湾曲(点線が主走査像面湾曲、実線が副走査像面湾曲)、右:等速特性(点線がfθ特性、実線がリニアリティ))を示す。図から明らかなようにいずれも良好に補正されている。
カップリングレンズ3、3’とシリンドリカルレンズ5、5’の間に主走査幅:7mm、副走査幅:2.14mmのアパーチャを配備している。
入射ビームの主光線と、光源側にビームが反射されるときのポリゴンミラーとの交点は、走査光学系の光軸方向については被走査面側に7.74mm、走査光学系の光軸方向に垂直な方向については光源側に3.27mmずらしている。このとき、入射ビームの主走査幅ω1:7mmに対し、反射ビームの主走査幅ω2:は5.35mmとなり、光源に戻るビームの光量が低減でき、これにより、光源(半導体レーザ)への戻り光による光源の出力のばらつき、及び、光源で再度反射されたビームの影響を低減できる。
図1、2に示すように、光束分割手段としてハーフミラープリズム4を用いており、これにより簡単な構成で光束を分割でき、光源数を減らしながらも、高速な画像出力が可能になる。
このとき、図2に示すように、ハーフミラープリズム4への入射ビームがその入射面又は出射面に対し垂直に入射した場合、光源側に戻ると前述した光源の出力ばらつきやゴースト光が発生する。
これを解決するために、本実施形態では、図9に示すように、光束分割手段(ハーフミラープリズム4)への入射ビームに対し、光束分割手段を角度θ傾けて、光源側に戻り光が戻らないように設定している。具体的には、光束分割手段の入射面、出射面に対し入射ビームが垂直にならないようにする。これにより、光源への戻り光を低減でき、前述の不具合を解決できる。
図10に基づいて、上述した光走査装置を用いたタンデム型の多色画像形成装置を説明する。
多色画像形成装置は、転写ベルト11の移動方向に沿って並置された4つの感光体12Y、12M、12C、12Kを有している。イエロー画像形成用の感光体12Yの周りには、その矢印で示す回転方向において順に、帯電器13Y、現像器14Y、転写手段15Y、クリーニング手段16Yが配置されている。他の色についても同様の構成を有しており、色別の欧文字(M:マゼンタ、C:シアン、K:ブラック)を付して区別し、説明は省略する。
帯電器13は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。帯電器13と現像器14の間において感光体表面に光走査装置20によりビームが照射され、感光体12に静電潜像が形成されるようになっている。
そして、静電潜像に基づき、現像器14により感光体面上にトナー像が形成される。転写手段15により、転写ベルト11で搬送される記録媒体(転写紙)に各色の転写トナー像が順次転写され、最終的に定着手段17により重ね合わせ画像が転写紙に定着される。
図11に基づいて第2の実施形態を説明する。なお、上記実施形態と同一部分は同一符号で示し、特に必要がない限り既にした構成上及び機能上の説明は省略して要部のみ説明する(以下の他の実施形態において同じ)。
光源への戻り光による画像への影響をできるだけ低減するためには、被走査面に向かうビームの光量に対して、光源側に戻るビームの光量をできるだけ低減してやる必要がある。
そのためには、多面反射鏡に入射するビーム及び多面反射鏡のコート条件について、有効走査範囲における多面反射鏡の反射率を垂直入射時の反射率より大きくなるように設定する必要がある。具体的には多面反射鏡への入射ビームをS偏光としてやればよい。
図11は、横軸にポリゴンミラーへの入射角、縦軸にポリゴンミラー(アルミ基板にSIO単層(膜厚:λ/2))からの反射率を示したグラフである。ポリゴンミラーに対しS偏光を入射することにより、入射角が大きくなるにつれて、反射率を大きくすることができる。
すなわち、ポリゴンミラーに対し、S偏光を入射することにより、被走査面に向かうビームの光量は大きく、光源側に戻るビームの光量は小さく設定することができる。
図12に基づいて第3の実施形態を説明する。
本実施形態では、光束分割手段として偏光ビームスプリッタ40を用い、光束分割手段40と偏向手段7との間に1/4波長板18を配置している。
偏光ビームスプリッタ40において、40aはP偏光を透過し、S偏光を反射する偏光面である。今、偏光面40aに対してP偏光成分とS偏光成分が1:1となるビームを光束分割手段に入射させると、λ/4板18を1回通過すると偏光方向が45deg回転するので、ポリゴンミラーで反射された戻り光が再度偏光面40aに到達するときには偏光方向がそれぞれ90deg回転し、いずれも光源側には戻らないようにすることができる。
なお、光束分割手段4への入射ビームを偏光面40aに対してP偏光成分とS偏光成分が1:1となるようにするためには、光源である半導体レーザの活性層(活性層と偏光方向は平行)を光軸回りに副走査方向に対し45deg傾けるか、半導体レーザの活性層を副走査方向と平行にし、光源と光束分割手段の間に1/2波長版を挿入してもよい。
図13に基づいて第4の実施形態を説明する。
光源から出射したビームは副走査方向に直線偏光となっており、その直線偏光と平行な方向にのみビームを通過させる偏光フィルタ19を配備し、さらにそのビーム進行方向下流に、1/4波長板18を挿入する。
ポリゴンミラーで反射された戻り光の偏光方向は副走査方向に直交するため、偏光フィルタ19を通過しない。従って、光源側にポリゴンミラーで反射されたビームが戻ることは無い。当然、このときは光束分割手段はハーフミラープリズム4である。
図14に基づいて第5の実施形態を説明する。
多面反射鏡7a、7bに入射するビームは、多面反射鏡7a、7bの法線に対して、副走査方向に傾いている。このような構成により、ポリゴンミラー7a、7bで反射されたビームがポリゴンミラーに戻らないようにすることができる。
更に、図9で示した構成を採ることにより、光源側への戻り光を一層低減できる。
次に、第6の実施形態を説明する。
通常、カップリングレンズ3、3’やシリンドリカルレンズ5、5’には防反射膜をコーティングし、透過率を向上させているが、逆に透過率を低減させることにより、光源への戻り光を低減できる。
例えば、カップリングレンズ3、3’もシリンドリカルレンズ5、5’もコート無しにすることにより、透過率が97%から90%程度に減少する。これにより戻り光を低減できる。
図1に記載の複数の光源1、1’から出射した複数ビームは異なる2つの感光体にそれぞれ、1度の走査で2つの走査線を形成する。このとき、画素密度に応じて、走査線の副走査方向のピッチを調整する必要がある。ピッチ調整の方法としてよく用いられる方法としては、光源ユニット(半導体レーザ1、1’、支持ベース2、カップリングレンズ3、3’を1つのユニットとする)を主走査方向及び副走査方向に垂直な軸を中心に回転させる方法があるが、この場合、ある感光体においては、所望のピッチとすることができるが、もう一方の感光体については光束分割手段(光束分割素子)以降の光学素子の形状誤差、取り付け誤差等によりピッチ誤差が生じる。
この不具合を解決するためには光束分割手段と偏向手段の間に副走査方向のピッチを調整する手段を配備する必要がある。
その1例を図15及び図16に示す。シリンドリカルレンズ5は中間的な部材32を介して光走査装置のハウジング33に装着される。中間的な部材32は三角柱の形状を有し、シリンドリカルレンズ5に当接する平面部32aと、該平面部32aに直交し、ハウジング33に当接する平面部32bを有している。
シリンドリカルレンズ5は、中間的な部材32に長手方向の一端部を片持ち方式で固定されるが、中間的な部材32の平面部32aに対して、固定される前の状態において、副走査方向(矢印D1方向)の配置調整、主走査方向(矢印D2方向)の配置調整、光軸に平行な軸回り(矢印D3方向)の偏心調整が可能である。
換言すれば、中間的な部材32は、シリンドリカルレンズ5の光軸に垂直な平面である平面部32aを有しており、これにより、シリンドリカルレンズ5の光軸回りの偏心方向の調整及び光軸と垂直な方向の調整が可能となる。
図16に示すように、中間的な部材32は、ハウジング33の固定用凸部34の上面に対して、固定される前の状態において、光軸方向(矢印D4方向)の配置調整、主走査方向(矢印D2方向)の配置調整、副走査方向に平行な軸回り(矢印D5方向)の偏心調整が可能である。中間的な部材32は透明な材料(例えばプラスチック材料)で形成されている。
したがって、中間的な部材32に対してシリンドリカルレンズ5の調整可能な方向は2つ以上あり、ハウジング33に対して中間的な部材32の調整可能な方向は2つ以上ある。
また、ハウジング33に対して中間的な部材32が調整可能な方向の少なくとも1つと、中間的な部材32に対してシリンドリカルレンズ5の調整可能な方向の少なくとも1つが異なっている。
このような支持構成とすることで、複数の光学特性(ビームウエスト径太り、ビームウエスト位置ずれ低減、ビームスポット位置ずれ低減)を同時に確保でき、且つ、シリンドリカルレンズ5を光軸に平行な回りに偏心調整可能とすることで、副走査方向の走査線間隔を最適に設定できる。
図16において、符号36、37は接着剤の塗布面(固定面又は固着面)を示す。
実際の調整方法を、図16に基づいて説明する。シリンドリカルレンズ5を図示しない治具で保持しておき、調整すべき方向(ここでは光軸方向位置、光軸に平行な軸回りの偏心、副走査方向の位置)にシリンドリカルレンズ5を移動する。
その後、紫外線硬化樹脂を塗布面36に塗布した中間的な部材32をシリンドリカルレンズ5の平面部5a及び紫外線硬化樹脂を塗布面37に塗布したハウジング33の該塗布面37に押し当て(仮固定)、紫外線を照射してシリンドリカルレンズ5及び中間的な部材32を固定する。
中間的な部材32は透明材料で形成されているので、紫外線照射の自由度が大きく容易であり、固定が迅速且つむら無く行える。
上記例では、1つの中間的な部材32に対してシリンドリカルレンズ5を片持ち方式で固定する構成としたが、複数の中間的な部材32に対してシリンドリカルレンズ5を固定してもよい。この例を図17及び図18に示す。
図17に示すように、シリンドリカルレンズ5を通過する光ビームを挟んで互いに逆側に位置するように、換言すれば、シリンドリカルレンズ5の主走査方向と副走査方向のうち外形形状の寸法が長い方の方向(ここでは副走査方向)に間隔をおいて2つの中間的な部材32が配置されており、各々の平面部32aにシリンドリカルレンズ5の各端部が固定されている。
一方の中間的な部材32はハウジング33の凸部34の上面に固定され、他方の中間的な部材32は凸部35の上面に固定される。
固定は、上記例と同様に、シリンドリカルレンズ5を位置決めした後、中間的な部材32を当接させて紫外線を照射する。
このような固定(支持)構成とすることにより、例えば、ハウジング33と中間的な部材(ここでは合成樹脂)32の線膨張係数が異なるとき、温度上昇が発生しても光軸に対して光学素子(シリンドリカルレンズ5)の対称部位に応力が発生するので、温度変動による光学素子の姿勢変化は小さくなる。
また、シリンドリカルレンズ5の主走査方向と副走査方向のうち外形形状の寸法が長い方の方向に間隔をおいて2つの中間的な部材32を配置する構成をとることにより、配置誤差に対する許容度が向上し、偏心誤差を低減できる。
上記各実施形態では、1つの感光体を走査するビームは2ビームとしているが、1つの感光体を走査するビームは1ビームとしてもよい。
本発明の第1の実施形態における光走査装置の一部省略の斜視図である。 光束分割手段の機能を示す図である。 共通の光源からの複数のビームの一方を抑制することを示す模式図である。 共通の光源により露光する方式の全点灯する場合のタイムチャートである。 色別に光源の光量を変えたタイムチャートである。 光源への戻り光を抑制することを示す模式図である。 比較例を示す図である。 各光源の収差を示す図である。 入射ビームに対し、光束分割手段を傾けた場合の機能を示す図である。 光走査装置を有するタンデム型の画像形成装置の概要正面図である。 第2の実施形態におけるポリゴンミラーからの反射率とポリゴンミラーへの入射角との関係を示すグラフである。 第3の実施形態における光束分割手段の部位のビーム分割機能を示す図である。 第4の実施形態における光束分割手段の部位のビーム分割機能を示す図である。 第5の実施形態における入射ビームと多面反射鏡との位置関係を示す図である。 光束分割手段と偏向手段との間における光学素子(シリンドリカルレンズ)の位置調整構成を示す図で、シリンドリカルレンズと中間的な部材との固定状態を示す斜視図である。 光束分割手段と偏向手段との間における光学素子(シリンドリカルレンズ)の位置調整構成を示す図で、ハウジングに対する中間的な部材の固定状態を示す斜視図である。 光束分割手段と偏向手段との間における光学素子(シリンドリカルレンズ)の位置調整構成の他例を示す図で、シリンドリカルレンズと中間的な部材との固定状態を示す斜視図である。 光束分割手段と偏向手段との間における光学素子(シリンドリカルレンズ)の位置調整構成の他例を示す図で、ハウジングに対する中間的な部材の固定状態を示す斜視図である。
符号の説明
1、1’ 光源としての半導体レーザ
7 偏向手段
4 光束分割手段としてのハーフミラープリズム
7a、7b 多面反射鏡
8 走査光学系としての走査レンズ1
10 走査光学系としての走査レンズ2
18 1/4波長板
19 偏光フィルタ
40 光束分割手段としての偏光ビームスプリッタ

Claims (9)

  1. 変調駆動される光源と、
    複数の段の多面反射鏡を有し、共通の回転軸を有する偏向手段と、
    共通の光源からのビームを分割し、分割されたビームを前記偏向手段の異なる段の多面反射鏡に入射させる光束分割手段と、
    前記偏向手段により走査されたビームを被走査面に導く走査光学系と、
    前記偏向手段により走査されたビームを検出する受光手段と、
    を有し、共通の光源から分割したビームが異なる被走査面を走査するようにした光走査装置において、
    前記異なる段の多面反射鏡は互いに回転方向の角度がずれており、前記異なる段のいずれか一方のビームが有効範囲を走査する間、前記異なる段の他方のビームは走査に用いられず、前記他方のビームが前記多面反射鏡の回転軸に垂直な面である主走査断面において入射角0度で前記多面反射鏡で反射される際、前記多面反射鏡で反射されるビームは、前記多面反射鏡への入射光束に対し、主走査方向のビーム幅が狭くなることを特徴とする光走査装置
  2. 請求項1に記載の光走査装置において、
    前記光束分割手段に入射する光ビームが前記光束分割手段で反射されて前記光源に戻らないように、前記光束分割手段を入射ビームに対して傾けていることを特徴とする光走査装置。
  3. 請求項2に記載の光走査装置において、
    前記光束分割手段はハーフミラープリズムからなることを特徴とする光走査装置。
  4. 請求項1乃至3のうちの何れかに記載の光走査装置において、
    前記多面反射鏡に入射するビーム及び前記多面反射鏡のコート条件について、有効走査範囲における前記多面反射鏡の反射率を垂直入射時の反射率より大きくなるように設定したことを特徴とする光走査装置。
  5. 請求項1乃至3のうちの何れかに記載の光走査装置において、
    前記光束分割手段と前記偏向手段の間に1/4波長板が配備され、前記光束分割手段は偏光ビームスプリッタであることを特徴とする光走査装置。
  6. 請求項1乃至3のうちの何れかに記載の光走査装置において、
    前記光源から出射するビームは直線偏光であり、前記光源と前記偏向手段の間に1/4波長板が配備され、且つ、前記光源と前記1/4波長板の間に偏光フィルタが配備されていることを特徴とする光走査装置。
  7. 請求項1に記載の光走査装置において、
    前記多面反射鏡に入射するビームは、前記多面反射鏡の法線に対して、副走査方向に傾いていることを特徴とする光走査装置
  8. 請求項1乃至7のうちの何れかに記載の光走査装置において、
    前記光源と前記偏向手段の間に少なくとも1つの透過光学素子が配備され、上記透過光学素子の少なくとも1つは、下記の何れかの条件を満たすことを特徴とする光走査装置。
    (1)少なくとも1方の面に透過率を減少させるコーティングが施されている
    (2)少なくとも1方の面はコーティングが施されていない
  9. 光走査装置と、複数の像担持体を有する多色対応の画像形成装置において、
    前記光走査装置は、請求項1乃至8のうちの何れかに記載のものであることを特徴とする画像形成装置。
JP2005206021A 2005-07-14 2005-07-14 光走査装置・画像形成装置 Active JP4634881B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206021A JP4634881B2 (ja) 2005-07-14 2005-07-14 光走査装置・画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206021A JP4634881B2 (ja) 2005-07-14 2005-07-14 光走査装置・画像形成装置

Publications (2)

Publication Number Publication Date
JP2007025165A JP2007025165A (ja) 2007-02-01
JP4634881B2 true JP4634881B2 (ja) 2011-02-16

Family

ID=37786030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206021A Active JP4634881B2 (ja) 2005-07-14 2005-07-14 光走査装置・画像形成装置

Country Status (1)

Country Link
JP (1) JP4634881B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097898B2 (en) 2011-07-11 2015-08-04 Ricoh Company, Limited Optical scanning apparatus and image forming apparatus including a multi-faceted mirror to deflect a light beam

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032158B2 (ja) * 2007-03-07 2012-09-26 株式会社リコー 光走査装置・画像形成装置
JP5309514B2 (ja) * 2007-09-21 2013-10-09 株式会社リコー 光走査装置、および画像形成装置
JP5078820B2 (ja) 2008-02-05 2012-11-21 株式会社リコー 光走査装置及び画像形成装置
JP5471999B2 (ja) * 2010-09-16 2014-04-16 株式会社リコー 光走査装置および画像形成装置
JP5754617B2 (ja) * 2011-01-12 2015-07-29 株式会社リコー 光走査装置及び画像形成装置
JP5849504B2 (ja) * 2011-08-03 2016-01-27 株式会社リコー 光走査装置及び画像形成装置
JP5900733B2 (ja) 2011-11-21 2016-04-06 株式会社リコー 光走査装置及び画像形成装置
JP5945933B2 (ja) * 2012-05-08 2016-07-05 株式会社リコー 光走査装置および画像形成装置
JP6075685B2 (ja) * 2013-02-19 2017-02-08 株式会社リコー 光走査装置および画像形成装置
JP6300063B2 (ja) * 2013-10-18 2018-03-28 株式会社リコー 光走査装置および画像形成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200318A (ja) * 1986-02-28 1987-09-04 Ricoh Co Ltd 半導体レ−ザ走査装置
JPH03221914A (ja) * 1990-01-29 1991-09-30 Ricoh Co Ltd 光書込み装置
JPH06214180A (ja) * 1992-12-10 1994-08-05 Xerox Corp 光学走査システム
JPH09218366A (ja) * 1996-02-14 1997-08-19 Fuji Xerox Co Ltd 光学走査装置
JPH11305155A (ja) * 1998-04-24 1999-11-05 Hitachi Koki Co Ltd 光走査装置
JP2001337285A (ja) * 2000-05-29 2001-12-07 Minolta Co Ltd 光走査装置
JP2003107398A (ja) * 2001-09-28 2003-04-09 Hitachi Electronics Eng Co Ltd 投光光学系装置及び微小突起物検査装置
JP2005092129A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 光走査装置および画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200318A (ja) * 1986-02-28 1987-09-04 Ricoh Co Ltd 半導体レ−ザ走査装置
JPH03221914A (ja) * 1990-01-29 1991-09-30 Ricoh Co Ltd 光書込み装置
JPH06214180A (ja) * 1992-12-10 1994-08-05 Xerox Corp 光学走査システム
JPH09218366A (ja) * 1996-02-14 1997-08-19 Fuji Xerox Co Ltd 光学走査装置
JPH11305155A (ja) * 1998-04-24 1999-11-05 Hitachi Koki Co Ltd 光走査装置
JP2001337285A (ja) * 2000-05-29 2001-12-07 Minolta Co Ltd 光走査装置
JP2003107398A (ja) * 2001-09-28 2003-04-09 Hitachi Electronics Eng Co Ltd 投光光学系装置及び微小突起物検査装置
JP2005092129A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 光走査装置および画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097898B2 (en) 2011-07-11 2015-08-04 Ricoh Company, Limited Optical scanning apparatus and image forming apparatus including a multi-faceted mirror to deflect a light beam

Also Published As

Publication number Publication date
JP2007025165A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4634881B2 (ja) 光走査装置・画像形成装置
JP4568633B2 (ja) 光走査装置、および画像形成装置
JP4842747B2 (ja) 光走査装置、画像形成装置およびカラー画像形成装置
JP4922118B2 (ja) 光走査装置及び画像形成装置
JP4340515B2 (ja) 光走査装置および画像形成装置
JP4976092B2 (ja) 光走査装置、およびそれを用いた画像形成装置
JP5050262B2 (ja) 画像形成装置
JP5034053B2 (ja) 光走査装置および画像形成装置
JP2007069572A (ja) 光走査装置・画像形成装置
JP5278253B2 (ja) 光走査装置及び画像形成装置
JP2004085969A (ja) 光走査装置および画像形成装置
JP2011191370A (ja) 光走査装置及び画像形成装置
KR101599887B1 (ko) 광주사 장치 및 이를 채용한 전자 사진 방식의 화상 형성 장치
JP4015249B2 (ja) マルチビーム露光装置
JP2007171626A (ja) 光走査装置・画像形成装置
US20100034563A1 (en) Optical scanning device and image forming apparatus
US8218217B2 (en) Light scanning device and thrust-direction force canceling method
JP5168753B2 (ja) 光走査装置および画像形成装置、並びにレンズ
JP2012150153A (ja) 光走査装置及び画像形成装置
JP2002023085A (ja) 光走査装置および画像形成装置
JP5511226B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP4880767B2 (ja) 光走査装置、および画像形成装置
JP5712709B2 (ja) 光走査装置及び画像形成装置
JP5610127B2 (ja) 光走査装置及び画像形成装置
KR100484199B1 (ko) 광주사 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R150 Certificate of patent or registration of utility model

Ref document number: 4634881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3