JP4619108B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP4619108B2
JP4619108B2 JP2004372111A JP2004372111A JP4619108B2 JP 4619108 B2 JP4619108 B2 JP 4619108B2 JP 2004372111 A JP2004372111 A JP 2004372111A JP 2004372111 A JP2004372111 A JP 2004372111A JP 4619108 B2 JP4619108 B2 JP 4619108B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
rth
retardation
cellulose acylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004372111A
Other languages
English (en)
Other versions
JP2006178226A (ja
Inventor
光芳 市橋
元 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004372111A priority Critical patent/JP4619108B2/ja
Priority to US11/793,056 priority patent/US7505101B2/en
Priority to PCT/JP2005/024167 priority patent/WO2006068311A1/en
Priority to KR1020077016590A priority patent/KR101249641B1/ko
Priority to CN200580044274A priority patent/CN100578319C/zh
Priority to TW094145724A priority patent/TWI370932B/zh
Publication of JP2006178226A publication Critical patent/JP2006178226A/ja
Application granted granted Critical
Publication of JP4619108B2 publication Critical patent/JP4619108B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は液晶表示装置に有用なセルロースアシレートフィルムを用いた液晶表示装置に関し、強誘電性液晶表示装置、反強誘電性液晶表示装置および水平方向に配向したネマチック液晶に横方向の電界を印加することにより表示を行うインプレーンスイッチングモードの液晶表示装置に関する。
液晶表示装置としては、2枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶分子による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性分子がハイブリッド配向したフィルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、液晶性分子を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での諧調反転が抑えきれないという問題を生じていた。
かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるインプレーンスイッチング(IPS)モードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、TV用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった、黒表示時の対角位斜め入射方向での僅かな光漏れが表示品質の低下の原因として顕在化してきた。
この色調や黒表示の視野角を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSモードにおいても検討されている。例えば、傾斜時の液晶層のレターデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示または中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコティック液晶性化合物からなる光学補償フィルムを使用した方法(特許文献2、3、4参照)や、光学補償フィルムとして複屈折が正で光学軸がフィルムの面内にある膜と複屈折が正で光学軸がフィルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レターデーションが二分の一波長の二軸性の光学補償シートを使用する方法(特許文献6参照)、偏光板の保護膜として負のレターデーションを有する膜を使い、この表面に正のレターデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。
しかし、提案された方式の多くは、液晶セル中の液晶の複屈折の異方性を打ち消して視野角を改善する方式であるために、直交偏光板を斜めから見た場合の偏光軸交差角度の直交からのズレに基づく光漏れを十分に解決できないという問題がある。
また、この光漏れを補償できるとされる方式でも、液晶セルを問題なく完全に光学的に補償することは非常に難しい。この主な原因は偏光板の保護膜の光学異方性であり、これを含めた光学補償を行うためには、位相差膜の異方性を極端に大きくしたり更なる光学異方性層を付加する必要があった。
保護膜の位相差値を小さくする方法として、ノルボルネン系樹脂を含有するフィルムやイミド基を有する樹脂とフェニル基、ニトリル基を有する樹脂を含有するフィルムを保護膜に使用する試みがある(特許文献8、9参照)。しかし、これら合成樹脂は一般に疎水的であり、偏光膜との接着に問題があり剥離しやすい。また、偏光膜の両側に保護膜を積層する工程において偏光膜からの水分の透過が期待できないため内部に水分が残存し、偏光性能の劣化をもたらす問題点があった。
特開平9−80424号公報 特開平10−54982号公報 特開平11−202323号公報 特開平9−292522号公報 特開平11−133408号公報 特開平11−305217号公報 特開平10−307291号公報 特開2004−4641号公報 特開2004−4642号公報
本発明の課題は、簡易な構成で、表示品位のみならず、視野角が著しく改善されたIPS型液晶表示装置を提供することである。
前記課題を解決するための手段は以下の通りである。すなわち本発明は、
(1)少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層および該液晶層を挟持する一対の基板からなる液晶セルと、第2偏光膜とがこの順序で配置され、黒表示時に前記液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
前記第1位相差領域の面内レターデーション(Re)が70nm〜330nmであり、前記面内レターデーション(Re)と、前記第1位相差領域の厚み方向のレターデーション(Rth)を用いてNz=Rth/Re+0.5で定義される第1位相差領域のNz値が0を超え0.5未満であり、 前記第2位相差領域の面内のレターデーションが50nm以下であり、かつ、光学軸が前記第2位相差領域の面内に含まれておらず、前記第2位相差領域の厚み方向の位相差レターデーションが10nm〜140nmであり、前記第1位相差領域の遅相軸が、前記第1偏光膜の透過軸に直交、かつ、前記第1偏光膜の透過軸が、黒表示時の液晶分子の遅相軸方向に平行であり、前記第1偏光膜および第2偏光膜は、それぞれ、少なくとも前記液晶層に近い側の面に保護膜を有し(但し、該保護膜は、他の膜と兼ねる構成であってもよい)、該保護膜が下記式(I)および(II)を満たすセルロースアシレートフィルムである液晶表示装置。
(I)0≦Re(630)≦10、かつ、|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35
(式(I)、(II)中、Re(λ)は波長λnmにおける面内レターデーション(nm)を表し、Rth(λ)は波長λnmにおける膜厚方向のレターデーション(nm)を表す。)
(2)少なくとも、第1偏光膜と、第2位相差領域と、第1位相差領域と、液晶層および該液晶層を挟持する一対の基板からなる液晶セルと、第2偏光膜とがこの順序で配置され、黒表示時に前記液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
前記第1位相差領域の面内レターデーション(Re)が80nm〜230nmであり、前記面内レターデーション(Re)と、前記第1位相差領域の厚み方向のレターデーション(Rth)を用いてNz=Rth/Re+0.5で定義される第1位相差領域のNz値が0を超え0.4未満であり、 前記第2位相差領域の面内のレターデーションが50nm以下であり、かつ、光学軸が前記第2位相差領域の面内に含まれておらず、第2位相差領域の厚み方向のレターデーションが20nm〜120nmであり、前記第1位相差領域の遅相軸が、第1偏光膜の透過軸に平行、かつ、前記第1偏光膜の透過軸が、黒表示時の液晶分子の遅相軸方向に平行であり、前記第1偏光膜および第2偏光膜は、それぞれ、少なくとも前記液晶層に近い側の面に保護膜を有し(但し、該保護膜は、他の膜と兼ねる構成であってもよい)、該保護膜が下記式(I)および(II)を満たすセルロースアシレートフィルムである液晶表示装置。
(I)0≦Re(630)≦10、かつ、|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35
(式(I)、(II)中、Re(λ)は波長λnmにおける面内レターデーション(nm)を表し、Rth(λ)は波長λnmにおける膜厚方向のレターデーション(nm)を表す。)
(3)前記セルロースアシレートフィルムが該セルロースアシレートフィルムの膜厚方向のRthを低下させる化合物を、下記式(III)、(IV)を満たすような範囲で少なくとも1種含有する、(1)または(2)に記載の液晶表示装置。
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
(式(III)および(IV)中、Rth(A)は、Rthを低下させる化合物をA%含有したセルロースアシレートフィルムのRth(nm)を表し、Rth(0)は、該セルロースアシレートフィルムであって、Rth(λ)を低下させる化合物を含有しないセルロースアシレートフィルムのRth(nm)を表し、Aは、セルロースアシレートフィルム原料ポリマーに対する、Rth(λ)を低下させる化合物の重量(%)を表す。)
(4)前記セルロースアシレートフィルムが、アシル置換度が2.85〜3.00のセルロースアシレートに、Rthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30重量%含む、(1)〜(3)のいずれかに記載の液晶表示装置。
(5)前記セルロースアシレートフィルムが、前記セルロースアシレートフィルムの|Rth(400)−Rth(700)|を低下させる化合物の少なくとも1種を、該セルロースアシレート固形分に対して0.01〜30重量%含む、(1)〜(4)のいずれかに記載の液晶表示装置。
(6)前記セルロースアシレートフィルムの膜厚が10〜120μmである、(1)〜(5)のいずれかに記載の液晶表示装置。
(7)前記セルロースアシレートフィルムが、Rthを低下させ、かつ、オクタノール−水分配係数(LogP値)が0〜7である化合物の少なくとも1種を、該セルロースアシレート固形分に対して0.01〜30重量%含む、該セルロースアシレート固形分に対して0.01〜30重量%含む、(1)〜(6)のいずれかに記載の液晶表示装置。
(8)前記Rthを低下させ、かつ、オクタノール−水分配係数(LogP値)が0〜7である化合物が、下記一般式(13)および/または一般式(18)で表される化合物である、(7)に記載の液晶表示装置。
Figure 0004619108
(一般式(13)中、R11はアルキル基またはアリール基を表し、R12およびR13は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。)
Figure 0004619108
(一般式(18)中、R14はアルキル基またはアリール基を表し、R15およびR16はそれぞれ独立に水素原子、アルキル基またはアリール基を表す。)
(9)前記セルロースアシレートフィルムは、波長380nmにおける分光透過率が45〜95%であり、かつ、波長350nmにおける分光透過率が10%以下である、(1)〜(8)のいずれかに記載の液晶表示装置。
(10)前記セルロースアシレートフィルムを、60℃、90%RHに240時間処理した後のセルロースアシレートフィルムのRthの変化量が15nm以下である、(1)〜(9)のいずれかに記載の液晶表示装置。
(11)前記セルロースアシレートフィルムを、80℃、240時間処理した後のセルロースアシレートフィルムのRthの変化量が15nm以下である、(1)〜(10)のいずれかに記載の液晶表示装置。
(12)前記セルロースアシレートフィルムは、フィルム面内の正面レターデーションが下記式を満たす、(1)〜(11)のいずれかに記載の液晶表示装置。
|Re(n)−Re(0)|/n≦1.0
(式中、Re(n)は、n(%)延伸したフィルムの面内正面レターデーション(nm)を表し、Re(0)は、延伸していないフィルムの面内正面レターデーション(nm)を表す。)
(13)前記セルロースアシレートフィルムは、該フィルム面内に、該フィルムを製造する機械の該フィルムの搬送方向(MD方向)に対して垂直な方向(TD方向)に遅相軸を有する、(1)〜(12)のいずれかに記載の液晶表示装置。
(14)前記セルロースアシレートフィルムの該フィルム面内において、遅相軸を有する方向に延伸すると正面レターデーションが小さくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションが大きくなることを特徴とする、(1)〜(13)のいずれかに記載の液晶表示装置。
(15)前記液晶セルの一対の基板のうち視認側と反対側の基板により近い位置に、前記第1位相差領域および前記第2位相差領域が配置されている、(1)〜(14)のいずれかに記載の液晶表示装置。
(16)前記液晶セルの一対の基板のうち視認側の基板により近い位置に、前記第1位相差領域および前記第2位相差領域が配置されている、(1)〜(14)のいずれかに記載の液晶表示装置。
発明の実施の形態
以下において、本発明の液晶表示装置の一実施形態およびその構成部材について順次説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において、Re、Rthは各々、波長550nmにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。ReはKOBRA 21ADH(王子計測機器(株)製)において波長550nmの光をフィルム法線方向に入射させて測定される。Rthは前記Re、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長550nmの光を入射させて測定したレターデーション、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長550nmの光を入射させて測定したレターデーションの計3つの方向で測定したレターデーションを基にKOBRA 21ADHが算出する。
ここで平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。
また、Rthの符号は面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して+20°傾斜した方向から波長550nmの光を入射させて測定したレターデーションがReを超える場合を正とし、Reを下回る場合を負とする。但し、|Rth/Re|が9以上の試料では、回転自由台座付きの偏光顕微鏡を用いて、面内の進相軸を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した状態で、偏光板の検板を用いて決定できる試料の遅相軸がフィルム平面に平行にある場合を正とし、また遅相軸がフィルムの厚み方向にある場合を負とする。
本明細書において、「平行」、「直交」とは、厳密な角度±10°未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±5°未満であることが好ましく、±2°未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらに屈折率および位相差の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。
本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板および液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」および「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」および「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。また、保護膜が他の膜を兼ねる構成であってもよいとは、例えば、該保護膜が、位相差領域を兼ねる構成であることをいう。
以下、図面を用いて本発明の実施の形態を詳細に説明する。図1は、本発明の液晶表示装置の画素領域例を示す模式図である。図2および図3は、本発明の液晶表示装置の一実施形態の模式図である。
[液晶表示装置]
図2に示す液晶表示装置は、偏光膜8、20と、第1位相差領域10と、第2位相差領域12と、一対の基板13、17およびこれに挟持される液晶層15からなる液晶セルとを有する。偏光膜8および20は、それぞれ保護膜7aと7bおよび19aと19bによって挟持されている。
図2の液晶表示装置では、液晶セルは、基板13および17と、これらに挟持される液晶層15からなる。液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは透過モードにおいて、ねじれ構造を持たないIPS型では0.2〜0.4μmの範囲が最適値となる。この範囲では白表示輝度が高く、黒表示輝度が小さいことから、明るくコントラストの高い表示装置が得られる。基板13および17の液晶層15に接触する表面には、配向膜(不図示)が形成されていて、液晶分子を基板の表面に対して略平行に配向させるとともに配向膜上に施されたラビング処理方向14および18等により、電圧無印加状態もしくは低印加状態における液晶分子配向方向が制御されていて、遅相軸16の方向が決定されている。なお、図2ではラビング方向が平行の状態を表しているが、反平行であっても良い。基板での配向方向が図の関係であれば、液晶配向制御に光配向膜やイオンビーム法を用いても良い。また、視野角を広げるためには、この配向膜での液晶のチルト角は低角度であることが好ましい。また、基板13または17の内面には、液晶分子に電圧印加可能な電極(図2中不図示)が形成されている。
図1に、液晶層15の1画素領域中の液晶分子の配向を模式的に示す。図1は、液晶層15の1画素に相当する程度の極めて小さい面積の領域中の液晶分子の配向を、基板13および17の内面に形成された配向膜のラビング方向4、および基板13および17の内面に形成された液晶分子に電圧印加可能な電極2および3とともに示した模式図である。電界効果型液晶として正の誘電異方性を有するネマチック液晶を用いてアクティブ駆動を行った場合の、電圧無印加状態若しくは低印加状態での液晶分子配向方向は5aおよび5bであり、この時に黒表示が得られる。電極2および3間に印加されると、電圧に応じて液晶分子は6aおよび6b方向へとその配向方向を変える。通常、この状態で明表示を行なう。
また、本発明に用いられる液晶セルはIPSモードに限定されることなく、黒表示時に液晶分子が前記一対の基板の表面に対して実質的に平行に配向する液晶表示装置であれば、いずれも好適に用いることができる。この例としては強誘電性液晶表示装置、反強誘電性液晶表示装置、ECB型液晶表示装置がある。
再び図2において、偏光膜8の透過軸9と、偏光膜20の透過軸21は直交して配置される。また、第1位相差領域10は、その遅相軸11が偏光膜8の透過軸9と直交に配置される。さらに、偏光膜8の透過軸9と、黒表示時の液晶層14中の液晶分子の遅相軸16とは平行であり、即ち、第1位相差領域10の遅相軸11と液晶黒表示時の液晶層14の遅相軸16とは直交である。本態様では、後述する特定の光学特性を示す第1位相差領域10を、この様に配置するとともに、後述する特定の光学特性を有する第2位相差領域を第1位相差領域10と液晶セルとの間に配置することで、液晶セルの視野角特性を改善している。
図2に示す液晶表示装置では、偏光膜8が2枚の保護膜7aおよび7bに挟持された構成を示しているが、保護膜7bはなくてもよい。但し、保護膜7bを配置しない場合は、第1位相差領域10は後述する特定の光学特性を有するとともに、偏光膜8を保護する機能も兼ね備えている必要がある。
保護膜7bをおよび液晶層15に近い側の保護膜19aとしては、後述するセルロールアシレートが好ましい。保護膜に用いられる光学異方性(Re、Rth)が小さいセルロースアシレートフィルムとしては、波長630nmにおける面内のレターデーションRe(630)が10nm以下(0≦Re(630)≦10)でかつ、膜厚方向のレターデーションRth(630)の絶対値が25nm以下(|Rth|≦25nm)である。好ましくは、0≦Re(630)≦5、かつ、|Rth|≦20nmであり、より好ましくは、0≦Re(630)≦2、かつ、|Rth|≦15nmである。
さらに、本発明で用いられる保護膜は、波長分散が小さいセルロースアシレートフィルムであり、|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35である。|Re(400)−Re(700)|≦5、かつ、|Rth(400)−Rth(700)|≦25が好ましく、|Re(400)−Re(700)|≦3、かつ、|Rth(400)−Rth(700)|≦15がより好ましい。
また、保護膜7bおよび保護膜19aは、10〜120μmであることが好ましく、30〜90μmであることがより好ましい。
図2の態様では、第1位相差領域10および第2位相差領域12は、液晶セルの位置を基準にして、液晶セルと視認側の偏光膜8との間に配置されていてもよいし、液晶セルと背面側の偏光膜20との間に配置されていてもよい。いずれの態様においても、第2位相差領域12が液晶セルにより近くなるように配置する。
本発明の他の実施形態を図3に示す。図3中、図2と同一の部材については同一の符号を付し、詳細な説明は省略する。図3に示す液晶表示装置では、第1位相差領域10と第2位相差領域12との位置が入れ替わり、第1位相差領域10が、第2位相差領域12と比較して偏光膜8からより遠い位置、即ち、より液晶セルに近い位置に配置される。また、図3に示す態様では、第1位相差領域10は、その遅相軸11が、偏光膜8の透過軸9と平行にして配置される。さらに、偏光膜8の透過軸9と、黒表示時の液晶層14中の液晶分子の遅相軸16とは平行であり、即ち、第1位相差領域10の遅相軸11と液晶黒表示時の液晶層14の遅相軸16とは平行である。本態様では、後述する特定の光学特性を示す第1位相差領域10をこの様に配置するとともに、後述する特定の光学特性を有する第2位相差領域を第1位相差領域10と偏光膜8との間に配置することで、液晶セルの視野角特性を改善している。
図3の液晶表示装置においても、上記と同様、保護膜7bはなくてもよい。但し、保護膜7bがない場合は、第2位相差領域12が、後述する特定の光学特性を有するとともに、偏光膜8を保護する機能も兼ね備えている必要がある。
保護膜7bや保護膜19aとしては、後述するセルロールアシレートが好ましい。保護膜に用いられる光学異方性(Re、Rth)が小さいセルロースアシレートフィルムとしては、波長630nmにおける面内のレターデーションRe(630)が10nm以下(0≦Re(630)≦10)でかつ、膜厚方向のレターデーションRth(630)の絶対値が25nm以下(|Rth|≦25nm)であることが好ましい。より好ましくは、0≦Re(630)≦5、かつ、|Rth|≦20nmであり、さらに好ましくは、0≦Re(630)≦2、かつ、|Rth|≦15nmである。
さらに、波長分散が小さいセルロースアシレートフィルムが好ましく、|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35であることがより好ましい。さらに好ましくは、|Re(400)−Re(700)|≦5かつ|Rth(400)−Rth(700)|≦25であり、最も好ましくは、|Re(400)−Re(700)|≦3かつ|Rth(400)−Rth(700)|≦15である。
また、保護膜7bおよび保護膜19aは、その厚みが薄い方が好ましく、具体的には80nm以下であることが好ましい。
なお、図3の態様では、第1位相差領域10および第2位相差領域12は、液晶セルの位置を基準にして、液晶セルと視認側の偏光膜8との間に配置されていてもよいし、液晶セルと背面側の偏光膜20との間に配置されていてもよい。いずれの態様においても、第1位相差領域10が液晶セルにより近くなるように配置する。
本発明の液晶表示装置は、図1〜図3に示す構成に限定されず、他の部材を含んでいてもよい。例えば、液晶層と偏光膜との間にカラーフィルターを配置してもよい。また、偏光膜の保護膜の表面に反射防止処理やハードコートを施してもよい。また、構成部材に導電性を付与したものを使用してもよい。また、透過型として使用する場合は、冷陰極、熱陰極蛍光管、発光ダイオード、フィールドエミッション素子またはエレクトロルミネッセント素子を光源とするバックライトを背面に配置することができる。この場合、バックライトの配置は図2および図3の上側であっても下側であっても良いが、不良品率がやや高い反射防止や帯電防止処理をした偏光板と組み合わせる必要性が低いため、図でバックライトを下にしたほうがより好ましい。また、液晶層とバックライトとの間に、反射型偏光板や拡散板、プリズムシートや導光板を配置することもできる。また、上述した様に、本発明の液晶表示装置は、反射型であってもよく、かかる場合は、偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を配置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。
本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、TFTやMIMのような3端子または2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるパッシブマトリックス液晶表示装置に適用した態様も有効である。
以下、本発明の液晶表示装置に使用可能な種々の部材の好ましい光学特性や部材に用いられる材料、その製造方法等について、詳細に説明する。
[第1位相差領域]
本発明の液晶表示装置の一態様では、第1位相差領域は、図2に示す様に、第2位相差領域と比較して液晶セルからより離れた位置に配置される。本態様においては、第1位相差領域は、面内のレターデーションが、70nm〜330nmである。斜め方向の光漏れを効果的に低減するためには、第1位相差領域のレターデーションは、90nm〜250nmであるのがより好ましく、110nm〜190nmであるのがさらに好ましい。また、面内レターデーション(Re)と、厚み方向のレターデーション(Rth)を用いて Nz=Rth/Re+0.5で定義されるNzが0を超え0.5未満で、斜め方向の光漏れを効果的に低減するためには、第1位相差領域のNzは、0.1〜0.35であるのがより好ましい。0.5を超えるとコントラストを向上させるために必要なレターデーションの値が大きくなり、きわめて高精度な偏光板との貼合精度が必要になり、さらに第2位相差領域に必要なレターデーションが大きくなり好ましくない。
なお、本態様の液晶表示装置では、第1位相差領域は、その遅相軸が、第1位相領域により近い位置に配置される偏光膜の透過軸および液晶層の黒表示時の遅相軸と直交にして配置される。
また、本発明の液晶表示装置の他の態様では、第1位相差領域は、図3に示す様に、第2位相差領域と比較して液晶セルからより近い位置に配置される。本態様においては、第1位相差領域は、面内レターデーションReが、80nm〜230nmである。斜め方向の光漏れを効果的に低減するためには、第1位相差領域のレターデーションは、100nm〜210nmであるのが好ましく、110nm〜190nmであるのがより好ましい。また、面内レターデーション(Re)と、厚み方向のレターデーション(Rth)を用いて Nz=Rth/Re+0.5で定義されるNzが0を超え0.4未満で、斜め方向の光漏れを効果的に低減するためには、第1位相差領域のNzは、0.1〜0.35であるのがより好ましい。0.4を超えるとコントラストを向上させるために必要なレターデーションの値が大きくなり、きわめて高精度な偏光板との貼合精度が必要になり、さらに第2位相差領域に必要なレターデーションが大きくなり好ましくない。
なお、本態様の液晶表示装置では、第1位相差領域は、その遅相軸が、第1位相領域により近い位置に配置される偏光膜の透過軸および液晶層の黒表示時の遅相軸と平行にして配置される。
本発明において、前記第1位相差領域は、前記光学特性を有する限り、その材料および形態については特に制限されない。例えば、複屈折ポリマーフィルムからなる位相差膜、透明支持体上に高分子化合物を塗布後に加熱した膜、および透明支持体上に低分子あるいは高分子液晶性化合物を塗布もしくは転写することによって形成された位相差層を有する位相差膜など、いずれも使用することができる。また、それぞれを積層して使用することもできる。
複屈折ポリマーフィルムとしては、複屈折特性の制御性や透明性、耐熱性に優れるもの、光弾性が小さいものが好ましい。この場合、用いる高分子材料としては均一な二軸配向が達成できる高分子であれば特に制限はないが、溶液流延法や押出し成形方式で製膜できるものが好ましく、ノルボルネン系高分子、ポリカーボネート系高分子、ポリアリレート系高分子、ポリエステル系高分子、ポリサルフォン等の芳香族系高分子、ポリプロピレン等のポリオレフィン、セルロースアシレート、または、それらポリマーの2種または3種以上を混合したポリマーなどがあげられる。
フィルムの二軸配向は、押出し成形方式や流延製膜方式等の適宜な方式で製造した当該フィルムを、例えばロールによる縦延伸方式、テンターによる横延伸方式や二軸延伸方式などにより、延伸処理することにより行うことができる。また、面方向に一軸または二軸に延伸し、厚さ方向にも延伸する方法等により厚さ方向の屈折率を制御することにより得られる。また高分子ポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理または/および収縮処理して配向させる方法等により得られる(例 特開平5−157911号公報、特開平11−125716号公報、特開2001−13324号公報)。前記のロールによる縦延伸方式では加熱ロールを用いる方法や雰囲気を加熱する方法、それらを併用する方法等の適宜な加熱方法を採ることができる。またテンターによる二軸延伸方式では全テンター方式による同時二軸延伸方法や、ロール・テンター法による逐次二軸延伸方法などの適宜な方法を採ることができる。
また、配向ムラや位相差ムラの少ないものが好ましい。その厚さは、位相差等により適宜に決定しうるが、一般的には薄型化の点より1〜300μmが好ましく、10〜200μmがより好ましく、20〜150μmがさらに好ましい。
液晶性ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどがあげられる。主鎖型の液晶性ポリマーの具体例としては、屈曲性を付与するスペーサ部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性ポリマー、ディスコティックポリマーやコレステリックポリマーなどがあげられる。側鎖型の液晶性ポリマーの具体例としては、ポリシロキサン、ポリアクリレート、ポリメタクリレートまたはポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスペーサ部を介してネマチック配向付与性のパラ置換環状化合物単位からなるメソゲン部を有するものなどがあげられる。これら液晶性ポリマーの配向フィルムは、たとえば、ガラス板上に形成したポリイミドやポリビニルアルコール等の薄膜の表面をラビング処理したもの、酸化珪素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して熱処理することにより、液晶ポリマーを配向させたもの、特に傾斜配向させたものが好ましい。
前記第1位相差膜と、偏光膜または該偏光膜の保護に積層する際は、偏光膜の吸収軸と第1位相差膜の遅相軸とを直交または平行となるように連続して貼り合わせて形成することが軸の貼合精度の点で好ましい。
[第2位相差領域]
本発明の液晶表示装置の一態様では、第2位相差領域は、図2に示す様に、第1位相差領域と比較して液晶セルからより近い位置に配置される。本態様においては、面内のレターデーションが、50nm以下であり、20nm以下であることが好ましい。また、第2位相差領域のる厚み方向のレターデーションは、10nm〜140nmであり、30nm〜130nmであるのが好ましく、60nm〜110nmであるのがさらに好ましい。
なお、本態様では、第2位相差領域の遅相軸の配置については特に限定されないが、第2位相差領域のReが20nmを超える場合は、第2位相差領域は、その遅相軸を、より近い位置に配置される偏光膜の透過軸と平行にして配置されるのが好ましい。そのように配置すると、例えば、第1位相差領域の厚みを薄くできる。また、本発明では、光学軸は、第2位相差領域の面内に含まれない構成となっている。
さらに詳細には、第1位相差領域のNz値を0.3以上0.4未満の場合には、第2位相差領域のRthは30nm〜100nmが好ましく、一方、第1位相差領域のNz値を、0を越え0.2以下の場合には、第2位相差領域のRthは80〜120nmが好ましい。第1位相差領域のNz値がその中間である0.2越え0.3未満の場合は、第2位相差領域のRthは50〜100nmが好ましい。但し、前記好ましい範囲は、本態様の液晶表示装置が、液晶セルと偏光膜との間に偏光膜を保護する少なくとも一枚の保護膜を有し、且つ該保護膜の厚み方向のレターデーションが40nm〜−100nmである場合の好ましい範囲である。
本発明の液晶表示装置の図3に示す他の態様では、第2位相差領域は、第1位相差領域と比較して液晶セルからより離れた位置に配置される。第2位相差領域は、面内のレターデーションが、50nm以下であり、20nm以下であることが好ましい。また、厚み方向のレターデーションは、20nm〜120nmであり、25nm〜100nmであるのが好ましく、30nm〜80nmであるのがより好ましい。
なお、本態様では、第2位相差領域の遅相軸の配置については特に限定されないが、第2位相差領域は、その遅相軸を、より近い位置に配置される偏光膜の透過軸と直交にして配置されるのが好ましい。そのように配置すると、例えば、第1位相差領域の厚みを薄くできる。また、本発明では、光学軸は、第2位相差領域の面内に含まれない構成となっている。
さらに詳細には、第1位相差領域のNz値を、例えば、0.3以上0.4未満の場合には、後述する第2位相差領域は30nm〜40nmが好ましく、一方、第1位相差領域のNz値が、0を越え0.2以下の場合には、第2位相差領域のレターデーションは70〜80nmが好ましい。第1位相差領域のNz値がその中間である0.2越え0.3未満の場合には、第2位相差領域のレターデーションは50〜70nmが好ましい。但し、前記好ましい範囲は、本態様の液晶表示装置が、液晶セルと偏光膜との間に偏光膜を保護する少なくとも一枚の保護膜を有し、且つ該保護膜の厚み方向のレターデーションが40nm〜−50nmである場合の好ましい範囲である。
前記第2位相差領域は、前記光学特性を有する限り、その材料について特に制限はない。例えば、複屈折ポリマーフィルムからなる位相差膜、および透明支持体上に低分子あるいは高分子液晶性化合物を塗布もしくは転写することによって形成された位相差層を有する位相差膜など、いずれも使用することができる。また、それぞれを積層して使用することもできる。また、第2位相差領域は、該第2位相差領域と隣接する偏光板の保護膜と兼ねる構成であってもよい。
上記光学特性を有する複屈折ポリマーフィルムからなる位相差膜は、高分子フィルムを一軸および二軸延伸することでも容易に形成できる(例 特開2002−139621号公報、特開2002−146045号公報)。また、延伸することなしに流延するだけでこの光学特性を発現するセルロースアシレート類を好適に用いることができる。かかるセルロースアシレートとして、特開2000−275434号公報、特開2001−166144号公報、特開2002−161144号公報、特開2002−90541号公報に記載されているものを用いることができる。高分子フィルムの材料は、一般に合成ポリマー(例、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート、ポリメタクリレート、ノルボルネン樹脂、セルロースアシレート)が用いられる。
上記光学特性を有する液晶性化合物から形成された位相差層は、キラル構造単位を含んだ棒状コレステリック液晶性組成物を、支持体上もしくは仮支持体上に塗布し、その螺旋軸を基板に略垂直に配向させた後、固定化することによって形成することができる。前記位相差層を仮支持体上に形成した場合は、支持体上に転写することで作製することができる。また、複屈折が負のディスコティック液晶性化合物を水平配向(ダイレクターは基板に垂直)させて、固定した位相差層、およびポリイミド高分子を基板上に流延固定した位相差層も、同様に用いることができ。さらに、一枚の位相差層のみならず複数の位相差層を積層して、上記光学特性を示す第2位相差領域を構成することもできる。また、支持体と位相差層との積層体全体で上記光学特性を満たすようにして、第2位相差領域を構成してもよい。
ディスコティック液晶性化合物から形成された位相差層を含む第2位相差領域は、ディスコティック液晶性化合物あるいは重合性開始剤や空気界面水平配向剤(例、特願2003−388308号明細書に記載)および前述の他の添加剤を含む塗布液を、支持体の上に形成された水平配向膜の上に塗布することで形成することができる。ディスコティック液晶層を水平に配向させるための配向膜としては有機酸や塩などの固形分含有量が0.1質量%未満のポリビニルアルコールやポリイミド、ポリアミド、アクリルなどの高分子配向膜を使用できる。配向膜を形成後にラビングは行なってもよいが、行なわなくてもよい。
その他、使用可能なディスコティック液晶性化合物の例、塗布液の調製に用いる溶媒の例、塗布方法の例、重合性開始剤および重合性モノマー等の他の材料、および位相差層の形成に用いられる支持体については、特開2004−37835号公報に記載のものを好ましく用いることができる。
[偏光膜用保護膜]
本発明の液晶表示装置に用いられる偏光板保護膜のうち、液晶層に近い側の保護膜として、セルロースアシレートフィルムが用いられる。すなわち、前記保護膜が、下記(1)(2)のいずれかの条件を満たす。
(1)下記式(I)および(II)を満たすセルロースアシレートフィルム
(I)0≦Re(630)≦10、かつ、|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35
(上記式(I)および(II)中、Re(λ)は、波長λnmにおける正面レターデーション値(nm)を表し、Rth(λ)は、波長λnmにおける膜厚方向のレターデーション値(nm)を表す。)
(2)保護膜の膜厚方向のRthが下記式(III)および(IV)を満たすようなRthを低下させる化合物を含有する、保護膜
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
(式(III)および(IV)中、Rth(A)は、Rthを低下させる化合物をA%含有したセルロースアシレートフィルムのRth(nm)を表し、Rth(0)は、該セルロースアシレートフィルムであって、Rth(λ)を低下させる化合物を含有しないセルロースアシレートフィルムのRth(nm)を表し、Aは、セルロースアシレートフィルム原料ポリマーに対する、Rth(λ)を低下させる化合物の重量(%)を表す。)
以下、本発明で好ましく用いられるセルロースアシレートフィルムについて詳細に説明する。
セルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあげられ、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載のセルロースを用いることができ、本発明のセルロースアシレートフィルムに対しては特に限定されるものではない。
セルロースアシレート置換度
本発明で用いることができるセルロースアシレートは、例えば、セルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数2〜22のアセチル基のいずれも用いることができる。本発明で用いることができるセルロースアシレートのセルロースの水酸基への置換度については特に限定されないが、セルロースを水酸基に置換する酢酸および/または炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度が得られる。測定方法としては、ASTMのD−817−91に準じて実施することができる。
上述のように本発明のセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基へのアシル置換度が2.50〜3.00であることが好ましい。さらには置換度が2.75〜3.00であることがより好ましく、2.85〜3.00であることがさらに好ましい。
セルロースの水酸基に置換する酢酸および/または炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族基でもアリル基でもよく、単一でも2種類以上の混合物でもよい。例えば、セルロースのアルキルカルボニルエステル、アルケニルカルボニルエステル、芳香族カルボニルエステルおよび芳香族アルキルカルボニルエステル等が挙げられる。これらは、それぞれさらに置換された基を有していてもよい。これらの好ましいアシル基としては、アセチル基、プロピオニル基、ブタノイル基、へプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、iso−ブタノイル基、tert−ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などを挙げることができる。これらの中でも、アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、tert−ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などが好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましい。
本発明の発明者が鋭意検討した結果、上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチル基、プロピオニル基およびブタノイル基の少なくとも2種類からなる場合においては、その全置換度が2.50〜3.00の場合にセルロースアシレートフィルムの光学異方性を低下できることがわかった。より好ましいアシル置換度は2.60〜3.00であり、さらに好ましくは2.65〜3.00である。
セルロースアシレートの重合度
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400がさらに好ましく、180〜350が特に好ましい。重合度が一定以下とすることによりセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になるのをより効果的に防止することができる。重合度を一定以上とすることにより、作製したフィルムの強度が低下してしまうをより効果的に防止できる。平均重合度は、例えば、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。この方法は、特開平9−95538号公報の段落番号0014〜0015に詳細に記載されている。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。本発明で用いることができるセルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下の含水率を有するセルロースアシレートである。一般に、セルロースアシレートは、水を含有しており2.5〜5質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。本発明のこれらのセルロースアシレートは、その原料綿や合成方法は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて7頁〜12頁に詳細に記載されている。
本発明のセルロースアシレートは置換基、置換度、重合度、分子量分布など前述した範囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。
セルロースアシレートへの添加剤
本発明で用いることができるセルロースアシレート溶液には、各調製工程において用途に応じた種々の添加剤(例えば、光学異方性を低下させる化合物(特に、Rthを低下させる化合物)、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
本発明で用いることができるセルロースアシレートフィルムは、膜厚方向のRthが下記式(III)および(IV)を満たすようなRthを低下させる化合物を含有することが好ましい。
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
(式(III)および(IV)中、Rth(A)は、Rthを低下させる化合物をA%含有した保護膜のRth(nm)を表し、Rth(0)は、該保護膜であって、Rthを低下させる化合物を含有しないフィルムのRth(nm)を表し、Aは、フィルム原料ポリマーの重量を100としたときのRthを低下させる化合物の重量(%)を表す。)
上記式(III)、(IV)は
(III-I)(Rth(A)−Rth(0))/A≦−2.0
(IV-I)0.1≦A≦20
であることがさらに好ましい。
セルロースアシレートフィルムのRthを低下させる化合物の構造的特徴
セルロースアシレートフィルムのRthを低下させる化合物について説明する。本発明の発明者らは、鋭意検討した結果、フィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制する化合物を用いて光学異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにした。ここで、ゼロに近くなるとは、例えば、0±25nmをいう。このためにはRthを低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
logP値
本発明で用いることができるセルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制してRthを低下させる化合物のうち、オクタノール−水分配係数(logP値)が0〜7である化合物が好ましい。logP値が7以下の化合物を採用することにより、セルロースアシレートとの相溶性がより良くなり、フィルムの白濁や粉吹きをより効果的に防止することができる。また、logP値が0以上の化合物を採用することにより、親水性が高いために、セルロースアセテートフィルムの耐水性が悪化してしまうのをより効果的に防止できる。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法
(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto's fragmentation法(Eur.J.Med.Chem.− Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen's fragmentation法により判断することが好ましい。
Rthを低下させる化合物の物性
Rthを低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。またRthを低下させる化合物は、分子量が150〜3000であることが好ましく、170〜2000であることがより好ましく、200〜1000であることがさらに好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
Rthを低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。またRthを低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
Rthを低下させる化合物の添加量は、セルロースアシレートの0.01〜30質量%であることが好ましく、1〜25質量%であることがより好ましく、5〜20質量%であることが特に好ましい。
Rthを低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
Rthを低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
Rthを低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80〜99%となるよう存在するのが好ましい。Rthを低下させる化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。
以下に本発明で好ましく用いられる、セルロースアシレートフィルムのRthを低下させる化合物の具体例を示すが、本発明はこれら化合物に限定されない。
Rthを低下させる化合物の第一の例は、下記一般式(13)または一般式(18)で表される化合物である。
Figure 0004619108
一般式(13)中、R11はアルキル基またはアリール基を表し、R12およびR13は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。また、R11、R12およびR13の炭素原子数の総和が10以上であることが特に好ましい。R11、R12およびR13は置換基を有していてもよく、置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基、シアノ基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、アミル基、イソアミル基、t−アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ビシクロオクチル基、ノニル基、アダマンチル基、デシル基、t−オクチル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、ジデシル基)が特に好ましい。アリール基としては炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル基、ビフェニル基、テルフェニル基、ナフチル基、ビナフチル基、トリフェニルフェニル基)が特に好ましい。
Figure 0004619108
一般式(18)中、R14はアルキル基またはアリール基を表し、R15およびR16はそれぞれ独立に水素原子、アルキル基またはアリール基を表す。
14は、フェニル基または、環状アルキル基が好ましい。R15およびR16は、それぞれ、フェニル基またはアルキル基が好ましい。アルキル基としては、環状アルキル基および直鎖のアルキル基のいずれも好ましい。
これらの基は、置換基を有していてもよく、置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。
一般式(18)で表される化合物は、より好ましくは一般式(19)で表される化合物である。
Figure 0004619108
一般式(19)中、R114、R115およびR116はそれぞれ独立にアルキル基またはアリール基を表す。アルキル基は、環状アルキル基および直鎖のアルキル基のいずれも好ましいく、アリール基はフェニル基が好ましい。
以下に、一般式(13)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。尚、化合物中、Priはイソプロピル基を意味する(以下、同じ)。
Figure 0004619108
Figure 0004619108
Figure 0004619108
以下に、一般式(18)(および一般式(19))で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。尚、化合物中、Buiはイソブチル基を意味する。
Figure 0004619108
Figure 0004619108
Figure 0004619108
Figure 0004619108
Figure 0004619108
Figure 0004619108
Figure 0004619108
Figure 0004619108
波長分散調整剤
セルロースアシレートフィルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)について説明する。本発明のセルロースアシレートフィルムのRthの波長分散を良化させるためには、下記式(VII)で表されるRthの波長分散ΔRth=|Rth(400)−Rth(700)|を低下させる化合物を、下記式(V)、(VI)を満たす範囲で少なくとも1種含有することが好ましい。
(VII)ΔRth=|Rth(400)−Rth(700)
(V)(ΔRth(B)−ΔRth(0))/B≦−2.0
(VI)0.01≦B≦30
上記式(V)、(VI)は
(V-I)(ΔRth(B)−ΔRth(0))/B≦−3.0
(VI-I)0.05≦B≦25
であることがより好ましく、
(V-II)(ΔRth(B)−ΔRth(0))/B≦−4.0
(VI-II)0.1≦B≦20
であることがさらに好ましい。
上記要件は、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30重量%含ませることによって達成できる。含量は、セルロースアシレートの0.1〜20重量%であることがより好ましく、0.2〜10重量%であることが特に好ましい。
セルロースアシレートフィルムのRe、Rthの値は一般に短波長側よりも長波長側が大きい波長分散特性となる。したがって相対的に小さい短波長側のRe、Rthを大きくすることによって波長分散を平滑にすることが要求される。一方200〜400nmの紫外領域に吸収を持つ化合物は短波長側よりも長波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフィルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は吸光度の波長分散と同様に短波長側が大きいと想定される。
従って上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が、短波長側が大きいと想定されるものを用いることによって、セルロースアシレートフィルムのRe、Rthの波長分散を調製することができる。このためには波長分散を調整する化合物はセルロースアシレートに十分均一に相溶することが要求される。このような化合物の紫外領域の吸収帯範囲は200〜400nmが好ましいが、220〜395nmがより好ましく、240〜390nmがさらに好ましい。
また、近年テレビやノートパソコン、モバイル型携帯端末などの液晶表示装置ではより少ない電力で輝度を高めるに、液晶表示装置に用いられる光学部材の透過率が優れたものが要求されている。その点においては、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物をセルロースアシレートフィルムに添加する場合、分光透過率が優れていることが要求される。本発明のセルロースアシレートフィルムにおいては、波長380nmにおける分光透過率が45%〜95%であり、かつ波長350nmにおける分光透過率が10%以下であることが好ましい。
上述のような、本発明で好ましく用いられる波長分散調整剤は揮散性の観点から分子量が250〜1000であることが好ましく、より好ましくは260〜800であり、さらに好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
波長分散調整剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
これら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
また、これら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。
ベンゾトリアゾール系化合物としては下記一般式(101)で示されるものが本発明の波長分散調整剤として好ましく用いられる。
一般式(101)
11−Q12−OH
(一般式(101)中、Q11は含窒素芳香族ヘテロ環を表し、Q12は芳香族環を表す。)
11は含窒素方向芳香族へテロ環を表し、好ましくは5〜7員環の含窒素芳香族ヘテロ環であり、より好ましくは5または6員環の含窒素芳香族ヘテロ環であり、例えば、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、チアゾール環、オキサゾール環、セレナゾール環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンズオキサゾール環、ベンゾセレナゾール環、チアジアゾール環、オキサジアゾール環、ナフトチアゾール環、ナフトオキサゾール環、アザベンズイミダゾール環、プリン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアザインデン環、テトラザインデン環等があげられ、さらに好ましくは、5員環の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、チアゾール環、オキサゾール環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンズオキサゾール環、チアジアゾール環、オキサジアゾール環が好ましく、特に好ましくは、ベンゾトリアゾール環である。
11で表される含窒素芳香族ヘテロ環はさらに置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環してさらに環を形成してもよい。
12で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。
芳香族炭化水素環は、好ましくは炭素数6〜30の単環または2環の芳香族炭化水素環であり、より好ましくは炭素数6〜20の単環または2環の芳香族炭化水素環であり、さらに好ましくは炭素数6〜12の単環または2環の芳香族炭化水素環である。Q12で表される芳香族環は、具体的には、好ましくはナフタレン環、ベンゼン環であり、より好ましくはベンゼン環である。
芳香族ヘテロ環は、好ましくは窒素原子または硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環などが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン環、トリアジン環、キノリン環である。
12は置換基を有してもよく、置換基としては、後述の置換基Tが好ましい。
置換基Tとしては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。)、置換または未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基はさらに置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(101)は、好ましくは下記一般式(101−A)で表される化合物である。
一般式(101−A)
Figure 0004619108
(一般式(101−A)中、R1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表す。)
1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基はさらに別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1およびR3は、それぞれ、好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
2およびR4は、それぞれ、好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
5およびR8は、それぞれ、好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
6およびR7は、それぞれ、好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。
一般式(101)は、より好ましくは下記一般式(101−B)で表される化合物である。
一般式(101−B)
Figure 0004619108
一般式(101−B)中、R1、R3、R6およびR7は一般式(101−A)におけるそれらと同義であり、また好ましい範囲も同様である。
以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0004619108
Figure 0004619108
以上例に挙げたベンゾトリアゾール系化合物の中でも、分子量が320以下のものを含まずに本発明のセルロースアシレートフィルムを作製した場合、保留性の点で有利であることが確認された。
また本発明に用いられる波長分散調整剤のひとつであるベンゾフェノン系化合物としては一般式(102)で示されるものが好ましく用いられる。
一般式(102)
Figure 0004619108
(一般式(102)中、Q1およびQ2は、それぞれ、芳香族環を表す。XはNR(Rは水素原子または置換基を表す。)、酸素原子または硫黄原子を表す。)
1またはQ2で表される芳香族環は、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。
1およびQ2で表される芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、さらに好ましくは炭素数6〜12の芳香族炭化水素環である。)さらに好ましくはベンゼン環である。
1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン環、ピロール環、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環などが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン環、トリアジン環、キノリン環である。
1またはQ2で表される芳香族環は、好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、さらに好ましくは置換または無置換のベンゼン環である。
1またはQ2は、さらに置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
XはNR(Rは水素原子または置換基を表す。置換基としては上述の置換基Tが適用できる。)、酸素原子または硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基はさらに置換してもよい。)、または酸素原子であり、特に好ましくは酸素原子である。
一般式(102)は、好ましくは下記一般式(102−A)で表される化合物である。
一般式(102−A)
Figure 0004619108
(一般式(102−A)中、R21、R22、R23、R24、R25、R26、R27、R28、およびR29はそれぞれ独立に水素原子または置換基を表す。)
21、R23、R24、R25、R26、R28、およびR29はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基はさらに別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
21、R23、R24、R25、R26、R28、およびR29は、好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
22として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、さらに好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
27として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、さらに好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、さらに好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
一般式(102)としてより好ましくは下記一般式(102−B)で表される化合物である。
一般式(102−B)
Figure 0004619108
(一般式(102−B)中、R10は水素原子、アルキル基、アルケニル基、アルキニル基、アリール基を表す。)
10は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基を表し、これらは置換基を有していてもよい。置換基としては前述の置換基Tが適用できる。
10として好ましくは、アルキル基であり、より好ましくは炭素数5〜20のアルキル基であり、さらに好ましくは炭素数5〜12のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
一般式(102)で表される化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0004619108
Figure 0004619108
Figure 0004619108
また本発明に用いられる波長分散調整剤のひとつであるシアノ基を含む化合物としては一般式(103)で示されるものが好ましく用いられる。
一般式(103)
Figure 0004619108
(一般式(103)中、Q31およびQ32はそれぞれ独立に芳香族環を表す。X31およびX32はそれぞれ、水素原子または置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。)
31およびQ32で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは炭素数6〜30の単環または2環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環であり、さらに好ましくは炭素数6〜12の芳香族炭化水素環であり、最も好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環などが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン環、トリアジン環、キノリン環である。
31およびQ32で表される芳香族環は、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。
31およびQ32はさらに置換基を有してもよく、上述の置換基Tが好ましい。
1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。X1およびX2で表される置換基は前述の置換基Tを適用することができる。また、X1およびX2はで表される置換基はさらに他の置換基によって置換されてもよく、X1およびX2はそれぞれが縮環して環構造を形成してもよい。
1およびX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、さらに好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(−C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)として好ましくは下記一般式(103−A)で表される化合物である。
一般式(103−A)
Figure 0004619108
(一般式(103−A)中、R31、R32、R33、R34、R35、R36、R37、R38、R39およびR30はそれぞれ独立に水素原子または置換基を表す。X31およびX32は一般式(103)におけるそれらと同義であり、また好ましい範囲も同様である。)
31、R32、R34、R35、R36、R37、R39およびR30はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基はさらに別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
31、R32、R34、R35、R36、R37、R39およびR30は、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
33およびR38は、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、さらに好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
一般式(103)は、より好ましくは下記一般式(103−B)で表される化合物である。
一般式(103−B)
Figure 0004619108
(一般式(103−B)中、R33およびR38は一般式(103−A)におけるそれらと同義であり、また、好ましい範囲も同様である。X33は水素原子、または置換基を表す。)
33は、水素原子、または置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合はさらに置換基で置換されてもよい。X33は、好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、さらに好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(−C(=O)OR301(R301は、炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの))である。
一般式(103)としてさらに好ましくは一般式(103−C)で表される化合物である。
一般式(103−C)
Figure 0004619108
(一般式(103−C)中、R33およびR38は、一般式(103−A)におけるそれらと同義であり、また、好ましい範囲も同様である。R302は炭素数1〜20のアルキル基を表す。)
302は、好ましくはR33およびR38の両方が水素原子の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、さらに好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert−オクチル基、2−エチルへキシル基、n−デシル基、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
302は、好ましくはR33およびR38が水素以外の場合には、一般式(103−C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。
本発明一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。
以下に一般式(103)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0004619108
Figure 0004619108
Figure 0004619108
マット剤微粒子
本発明で用いるセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子サイズが20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子サイズが0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子サイズは0.2μm〜1.5μmが好ましく、0.4μm〜1.2μmがさらに好ましく、0.6μm〜1.1μmが最も好ましい。1次、2次粒子サイズはフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒子サイズとした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子サイズとした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976およびR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子サイズが20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次平均粒子サイズの小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子がさらに再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%がさらに好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gがさらに好ましく、0.08〜0.16gが最も好ましい。
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。例えば、炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が挙げられる。溶媒は1種類でもよいし、2種類以上を併用してもよい。
可塑剤、劣化防止剤、剥離剤
上記のRthを低下させる化合物、波長分散調整剤の他に、本発明のセルロースアシレートフィルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号公報などに記載されている。さらにまた、赤外吸収染料としては例えば特開2001−194522号公報に記載されている。またその添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。さらにまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
化合物添加の比率
本発明で用いることができるセルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート重量に対して5〜45%であることが好ましい。より好ましくは10〜40%であり、さらに好ましくは15〜30%である。これらの化合物としては上述したように、Rthを低下させる化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下が好ましく、2000以下がより好ましく、1000以下がさらに好ましい。これら化合物の総量が5%以下であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45%以上であると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する(フィルムからの泣き出し)などの問題が生じやすくなる。
セルロースアシレート溶液の有機溶媒
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、および炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
以上本発明で用いることができるセルロースアシレートフィルムに対しては塩素系のハロゲン化炭化水素を主溶媒としても良いし、発明協会公開技報2001−1745(12頁〜16頁)に記載されているように、非塩素系溶媒を主溶媒としても良く、本発明で用いることができるセルロースアシレートフィルムに対しては特に限定されるものではない。
その他、本発明のセルロースアシレート溶液およびフィルムについての溶媒は、その溶解方法も含め以下の特許に開示されており、好ましい態様である。それらは、例えば、特開2000−95876号、特開平12−95877号、特開平10−324774号、特開平8−152514号、特開平10−330538号、特開平9−95538号、特開平9−95557号、特開平10−235664号、特開平12−63534号、特開平11−21379号、特開平10−182853号、特開平10−278056号、特開平10−279702号、特開平10−323853号、特開平10−237186号、特開平11−60807号、特開平11−152342号、特開平11−292988号、特開平11−60752号、特開平11−60752号各公報などに記載されている。これらの特許によると本発明のセルロースアシレートに好ましい溶媒だけでなく、その溶液物性や共存させる共存物質についても記載があり、本発明においても好ましい態様である。
セルロースアシレートフィルムの製造工程
溶解工程
本発明のセルロースアシレート溶液(ドープ)の調製は、その溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
ドープ溶液の透明度
本発明で用いるセルロースアシレート溶液のドープ透明度としては85%以上であることが好ましく、より好ましくは88%以上であり、さらに好ましくは90%以上である。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
流延、乾燥、巻き取り工程
次に、本発明のセルロースアシレート溶液を用いたセルロースアシレートフィルムの製造方法について述べる。本発明で用いることができるセルロースアシレートフィルムを製造する方法および設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法および溶液流延製膜装置が用いることができる。例えば、溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて得られたフィルムを乾燥装置のロール群で機械的に搬送し乾燥を終了して巻き取り機でロール状に所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。さらに、本発明で用いるセルロースアシレートフィルムは、偏光膜への表面加工のために、塗布装置が付加されることが多い。これらについては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて25頁〜30頁に詳細に記載されており、流延(共流延を含む)、金属支持体、乾燥、剥離などに分類され、本発明において好ましく用いることができる。
また、セルロースアシレートフィルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
高湿度処理後のセルロースアシレートフィルムの光学性能変化
セルロースアシレートフィルム物性評価
本発明で用いることができるセルロースアシレートフィルムの環境変化による光学性能の変化については、60℃、90%RHに240時間処理したセルロースアシレートフィルムのReおよびRthの変化量が15nm以下であることが好ましい。より好ましくは12nm以下であり、10nm以下であることがさらに好ましい。
高温度処理後のフィルムの光学性能変化
また、80℃240時間処理したセルロースアシレートフィルムのReおよびRthの変化量が15nm以下であることが好ましい。より好ましくは12nm以下であり、10nm以下であることがさらに好ましい。
フィルム加熱処理後の化合物揮散量
本発明で用いるセルロースアシレートフィルムでは、Rthを低下させる化合物と、ΔRthを低下させる化合物は、80℃240時間処理したセルロースアシレートフィルムからの化合物の揮散量が30%以下であることが好ましい。より好ましくは25%以下であり、20%以下であることがさらに好ましい。
なお、セルロースアシレートフィルムからの揮散量は、80℃、240時間処理したフィルムおよび未処理のセルロースアシレートフィルムをそれぞれ溶媒に溶かし出し、液体高速クロマトグラフィーにて化合物を検出し、化合物のピーク面積をフィルム中に残存した化合物量として、下記式により算出した。
揮散量(%)= {(未処理品中の残存化合物量)−(処理品中の残存化合物量)}/(未処理品中の残存化合物量)×100
セルロースアシレートフィルムのガラス転移温度(Tg)
本発明で用いることができるセルロースアシレートフィルムのガラス転移温度Tgは、80〜165℃である。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度(Tg)の測定は、本発明で用いることができるセルロースアシレートフィルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度(Tg)を算出することができる。
セルロースアシレートフィルムのヘイズ
本発明で用いることができるセルロースアシレートフィルムのヘイズは0.01〜2.0%であることが好ましい。より好ましくは0.05〜1.5%であり、0.1〜1.0%であることがさらに好ましい。ヘイズの測定は、例えば、本発明で用いることができるセルロースアシレートフィルム試料40mm×80mmを、25℃、60%RHで、ヘイズメーター(HGM−2DP、スガ試験機)を用いてJIS K−6714に従って測定することができる。
セルロースアシレートフィルムのRe、Rthの湿度依存性
本発明で用いることができるセルロースアシレートフィルムの面内のレターデーション(Re)および膜厚方向のレターデーション(Rth)はともに湿度による変化が小さいことが好ましい。具体的には、25℃10%RHにおけるRth値と25℃、80%RHにおけるRth値の差ΔRth(=Rth10%RH−Rth80%RH)が0〜50nmであることが好ましい。より好ましくは0〜40nmであり、さらに好ましくは0〜35nmである。
セルロースアシレートフィルムの平衡含水率
本発明で用いるセルロースアシレートフィルムは、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃、80%RHにおける平衡含水率が、0〜4%であることが好ましく、0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以下の平衡含水率とすることにより、レターデーションの湿度変化による依存性をより小さくでき好ましい。
本発明の含水率は、セルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定し、水分量(g)を試料重量(g)で除して算出することができる。
セルロースアシレートフィルムの透湿度
本発明で用いることができるセルロースアシレートフィルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることが好ましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24h以下とすることにより、セルロースアシレートフィルムのRe、Rthの湿度依存性の絶対値を0.5nm/%RH以下により容易に保つことが可能となり、また、液晶表示装置の色味の変化や視野角の低下をより効果的に抑止できる。また、セルロースアシレートフィルムの透湿度を400g/m2・24h以上とすることにより、セルロースアシレートフィルムの接着剤が乾燥しやすくなり、接着性がよりよくなる。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算するとよい。本発明では、膜厚は、80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm、として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、本発明で用いることができるセルロースアシレートフィルム試料70mmφを25℃、90%RHおよび60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後重量−調湿前重量で求めた。
フィルムの寸度変化
本発明で用いることができるセルロースアシレートフィルムの寸度安定性は、60℃、90%RHの条件下に24時間静置した場合(高湿)の寸度変化率および90℃、5%RHの条件下に24時間静置した場合(高温)の寸度変化率がいずれも0.5%以下であることが好ましい。
より好ましくは0.3%以下であり、さらに好ましくは0.15%以下である。
本発明の寸法変化率は、以下に述べる方法で求めたものである。すなわち、セルロースアシレートフィルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて24時間処理した後のパンチ間隔の寸法(L1)を測定し、もう1枚の試料を90℃、5%RHにて24時間処理した後のパンチ間隔の寸法(L2)を測定した。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めた。
フィルムの弾性率
(弾性率)
本発明で用いることができるセルロースアシレートフィルムの弾性率は、200〜500kgf/mm2であることが好ましく、より好ましくは240〜470kgf/mm2であり、さらに好ましくは270〜440kgf/mm2である。本発明の弾性率は、東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃、70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定して得られる値をいう。
フィルムの光弾性係数
(光弾性係数)
本発明で用いることができるセルロースアシレートフィルムの光弾性係数は、50×10-13cm2/dyne以下であることが好ましく、30×10-13cm2/dyne以下であることがより好ましく、20×10-13cm2/dyne以下であることがさらに好ましい。光弾性係数は、セルロースアシレートフィルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から算出することができる。
延伸前後における正面レターデーション変化、遅相軸の検出
試料100×100mmを用意し、固定一軸延伸機を用いて温度140℃の条件下で機械搬送方向(MD方向)または垂直方向(TD方向)に延伸を行った。延伸前後における各試料の正面レターデーションは自動複屈折計KOBRA21ADHを用いて測定した。遅相軸の検出は上記のレターデーション測定の際に得られる配向角から決定した。延伸によってReの変化が小さいことが好ましく、具体的にはRe(n)をn(%)延伸したフィルムの面内正面レターデーション(nm)、Re(0)を延伸していないフィルムの面内正面レターデーション(nm)としたときに、|Re(n)−Re(0)|/n≦1.0を有することが好ましく、|Re(n)−Re(0)|/n≦0.3以下がさらに好ましい。
遅相軸を有する方向
本発明で用いることができるセルロースアシレートフィルムは、偏光膜が機械搬送方向(MD方向)に吸収軸を持つため、セルロースアシレートフィルムは遅相軸がMD方向近傍またはTD近傍にあることが好ましい。遅相軸が偏光膜と平行または直交させることにより光漏れや色味変化を低減できる。近傍とは、例えば、遅相軸とMDまたはTD方向が0〜10°、好ましくは0〜5°の範囲にあることを表す。
固有複屈折が正であるセルロースアシレートフィルム
本発明で用いることができるセルロースアシレートフィルムは、フィルム面内において、遅相軸を有する方向に延伸すると正面レターデーションが大きくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションが小さくなる。このことは固有複屈折が正であることを示しており、セルロースアシレートフィルム中で発現したレターデーションを打ち消すには遅相軸と垂直方向に延伸することが有効である。この方法としては例えば、フィルムが機械搬送方向(MD方向)に遅相軸を有している場合にMDとは垂直な方向(TD方向)にテンター延伸を用いて正面レターデーションを小さくすることが考えられる。逆の例として、TD方向に遅相軸を有している場合にはMD方向の機械搬送ロールの張力を強めて延伸することによって正面レターデーションを小さくすることが考えられる。
固有複屈折が負であるセルロースアシレートフィルム
本発明で用いることができるセルロースアシレートフィルムは、遅相軸を有する方向に延伸すると正面レターデーションが小さくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションが大きくなる場合もある。このことは固有複屈折が負であることを示しており、フィルム中で発現したレターデーションを打ち消すには遅相軸と同一の方向に延伸することが有効である。この方法としては例えば、セルロースアシレートフィルムが機械搬送方向(MD方向)に遅相軸を有している場合にMD方向の機械搬送ロールの張力を強めて延伸することによって正面レターデーションを小さくすることが考えられる。逆の例として、TD方向に遅相軸を有している場合にはMDとは垂直な方向(TD方向)にテンター延伸を用いて正面レターデーションを小さくすることが考えられる。
セルロースアシレートフィルムの評価方法
本発明で用いることができるセルロースアシレートフィルムの評価に当たって、後述する本願実施例では、以下の方法で測定して実施した。
(面内のレターデーションRe、膜厚方向のレターデーションRth)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、Re(λ)は自動複屈折計KOBRA21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定した。また、Rth(λ)は前記Re(λ)と、面内の遅相軸を傾斜軸としてフィルム法線方向を0°としてサンプルを10°ごとに50°まで傾斜させて波長λnmの光を入射させて測定したレターデーション値を基に、平均屈折率の仮定値1.48および膜厚を入力し算出した。
(Re、Rthの波長分散測定)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、エリプソメーターM−150(日本分光(株)製)において波長780nmから380nmの光をフィルム法線方向に入射させることにより各波長でのReを求め、Reの波長分散を測定した。また、Rthの波長分散については、前記Re、面内の遅相軸を傾斜軸としてフィルム法線方向に対して+40°傾斜した方向から780〜380nmの波長の光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸としてフィルム法線方向に対して−40°傾斜した方向から波長780〜380nmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基に、平均屈折率の仮定値1.48および膜厚を入力して算出した。
(分子配向軸)
試料70mm×100mmを、25℃、65%RHで2時間調湿し、自動複屈折計(KOBRA21DH、王子計測(株))にて、垂直入射における入射角を変化させた時の位相差より分子配向軸を算出した。
(軸ズレ)
また、自動複屈折計(KOBRA−21ADH、王子計測機器(株))で軸ズレ角度を測定した。幅方向に全幅にわたって等間隔で20点測定し、絶対値の平均値を求めた。また、遅相軸角度(軸ズレ)のレンジとは、幅方向全域にわたって等間隔に20点測定し、軸ズレの絶対値の大きい方から4点の平均と小さい方から4点の平均の差をとったものである。
(透過率)
試料20mm×70mmを、25℃、60%RHで透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
(分光特性)
試料13mm×40mmを、25℃、60%RHで分光光度計(U−3210、(株)日立製作所)にて、波長300〜450nmにおける透過率を測定した。傾斜幅は72%の波長−5%の波長で求めた。限界波長は、(傾斜幅/2)+5%の波長で表した。吸収端は、透過率0.4%の波長で表した。これより380nmおよび350nmの透過率を評価した。
セルロースアシレートフィルム表面の性状
本発明で用いることができるセルロースアシレートフィルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、および最大高さ(Ry)が0.5μm以下であることが好ましい。好ましくは、算術平均粗さ(Ra)が0.05μm以下、および最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力顕微鏡(AFM)により評価することができる。
セルロースアシレートフィルムのレターデーションの面内ばらつき
本発明で用いることができるセルロースアシレートフィルムは次の式を満たすことが好ましい。
|Re(MAX)−Re(MIN)|≦3、かつ、|Rth(MAX)−Rth(MIN)|≦5
式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフィルムの最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。
セルロースアシレートフィルムの保留性
本発明で用いることができるセルロースアシレートフィルムにおいては、フィルムに添加した各種化合物の保留性が要求される。具体的には、本発明で用いることができるセルロースアシレートフィルムを80℃、90%RHの条件下に48時間静置した場合のフィルムの質量変化が、0〜5%であることが好ましく、より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
(保留性の評価方法)
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。
保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
(フィルムの力学特性)
カール
本発明で用いることができるセルロースアシレートフィルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。本発明で用いることができるセルロースアシレートフィルムには、貼合などを長尺で行う際に、本発明で用いることができるセルロースアシレートフィルムの幅方向のカール値を前述の範囲内とすることにより、フィルムのハンドリングに支障をきたしたり、フィルムの切断が起きるのをより効果的に防ぐことができる。また、フィルムのエッジや中央部などで、フィルムが搬送ロールと強く接触するために発塵しやすくなり、フィルム上への異物付着が多くなり、光学補償フィルムの点欠陥や塗布スジの頻度が許容値を超えてしまうのをより効果的に防止できる。さらに、偏光膜との貼り合せ時に気泡が入ることを防ぐことができる観点からも好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
(引裂き強度)
JISK7128−2:1998の引裂き試験方法に基づく引裂き強度(エルメンドルフ引裂き法)が、本発明で用いることができるセルロースアシレートフィルムの膜厚が20〜80μmの範囲において、2g以上であることが好ましい。より好ましくは5〜25gであり、さらに好ましくは6〜25gである。また、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
セルロースアシレートフィルムの残留溶剤量
本発明で用いることができるセルロースアシレートフィルムに対する残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましく、より好ましくは0.01〜1.0質量%である。本発明に用いる偏光膜の残留溶剤量は1.5%以下とすることでカールを抑制できる。1.0%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量が少なくすることで自由堆積が小さくなることが主要な効果要因になるためと思われる。
セルロースアシレートフィルムの吸湿膨張係数
本発明で用いることができるセルロースアシレートフィルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることが好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。
表面処理
セルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムとの接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、さらにまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類およびそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
アルカリ鹸化処理によるセルロースアシレートフィルム表面の接触角
本発明で用いることができるセルロースアシレートフィルムの表面処理の有効な手段の1つとしてアルカリ鹸化処理が挙げられる。この場合、アルカリ鹸化処理後のセルロースアシレートフィルム表面の接触角が55°以下であることが好ましい。より好ましくは50°以下であり、45°以下であることがさらに好ましい。接触角の評価法はアルカリ鹸化処理後のフィルム表面に直径3mmの水滴を落とし、セルロースアシレートフィルム表面と水滴のなす角をもとめる通常の手法によって親疎水性の評価として用いることができる。
耐光性
本発明で用いることができるセルロースアシレートフィルムの光耐久性の指標として、スーパーキセノン光を240時間照射したセルロースアシレートフィルムの色差ΔE*abが20以下であることが好ましい。より好ましくは18以下であり、15以下であることがさらに好ましい。色差の測定は、例えば、UV3100(島津製作所製)を用いて行なうことができる。測定の仕方は、セルロースアシレートフィルムを25℃60%RHに2時間以上調湿した後キセノン光照射前のセルロースアシレートフィルムのカラーを測定し、初期値(L0*、a0*、b0*)を求める。そして、セルロースアシレートフィルム単体で、スーパーキセノンウェザーメーターSX−75(スガ試験機(株)製)にて、150W/m2、60℃50%RH条件にてキセノン光を240時間照射する。所定時間の経過後、セルロースアシレートフィルムを恒温槽から取り出し、25℃60%RHに2時間調湿した後に、再びカラー測定を行い、照射経時後の値(L1*、a1*、b1*)を求めた。これらから、色差ΔE*ab=((L0*−L1*)^2+(a0*−a1*)^2+(b0*−b1*)^2)^0.5を求めることによって測定できる。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<IPSモード液晶セル1の作製>
一枚のガラス基板上に、図1に示す様に、隣接する電極間の距離が20μmとなるように電極(図1中2および3)を配設し、その上にポリイミド膜を配向膜として設け、ラビング処理を行なった。図1中に示す方向4に、ラビング処理を行なった。別に用意した一枚のガラス基板の一方の表面にポリイミド膜を設け、ラビング処理を行なって配向膜とした。二枚のガラス基板を、配向膜同士を対向させて、基板の間隔(ギャップ;d)を3.9μmとし、二枚のガラス基板のラビング方向が平行となるようにして重ねて貼り合わせ、次いで屈折率異方性(Δn)が0.0769および誘電率異方性(Δε)が正の4.5であるネマチック液晶組成物を封入した。液晶層のd・Δnの値は300nmであった。
<第1位相差領域1、第1位相差領域2、第1位相差領域3の作製>
厚さ80μm、Reが120nmのポリカーボネートフィルムの両面に、一軸延伸ポリエステルフィルム製の熱収縮性フィルムをその遅相軸が直交するようにアクリル系粘着層を介して接着し、これを160℃に加熱して熱収縮性フィルムを収縮させながら延伸装置を用いて、幅方向の長さをそれぞれ収縮前の88%、97%および93%にした後、熱収縮性のフィルムを剥がして、それぞれ第1位相差領域1、第1位相差領域2、第1位相差領域3を得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、Reの光入射角度依存性を測定し、これらの光学特性を算出したところ、第1位相差領域1はReが150nm、Rthが−60nmで、Nzが0.10であり、第1位相差領域2はReが190nm、Rthが−29nmで、Nzが0.35であり、第1位相差領域3はReが160nm、Rthが−40nmで、Nzが0.25であることが確認できた。
<第2位相差領域1の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、下記の組成を有するセルロースアセテート溶液を調製した。
セルロースアセテート溶液の組成
酢化度60.9%のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール(第3溶媒) 11質量部
別のミキシングタンクに、下記のレターデーション上昇剤16質量部、メチレンクロライド80質量部およびメタノール20質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。セルロースアセテート溶液487質量部にレターデーション上昇剤溶液6質量部を混合し、十分に攪拌してドープを調製した。
レターデーション上昇剤
Figure 0004619108
得られたドープを、バンド流延機を用いて流延した。バンド上での膜面温度が40℃となってから、60℃の温風で1分間乾燥し、フィルムをバンドから剥ぎ取った。次にフィルムを140℃の乾燥風で10分間乾燥し、厚さ80μmのフィルムを作製した。
このフィルムの光学特性は自動複屈折率計(KOBRA−21ADH、王子計測機器(株)製)を用いて、Reの光入射角度依存性を測定することにより求めたところ、Re=5nm、Rth=80nmであった。このフィルムを第2位相差領域1とした。
<偏光板保護膜1の作製>
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Aを調製した。
(セルロースアセテート溶液A組成)
酢化度2.86のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
(マット剤溶液の調製)
平均粒子サイズ16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒子サイズ16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液A 10.3質量部
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
(添加剤溶液組成)
Rthを低下させる化合物(A−19)49.3質量部
波長分散調整剤(UV−102) 7.6質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液A 12.8質量部
なお、A−19とUV−102の LogP値はそれぞれ2.9、5.6である。
(セルロースアセテートフィルムの作製)
上記セルロースアセテート溶液Aを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成でRthを低下させる化合物および波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.8%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させセルロースアセテートフィルムを製造した。得られたセルロースアセテートフィルムの残留溶剤量は0.2%であり、膜厚は40μmであった。
また、この膜のRe(630)は0.3nm、Rth(630)は3.2nm、|Re(400)−Re(700)|は1.2nm、|Rth(400)−Rth(700)|は7.5nm、フィルムのTgは134.3℃、フィルムのヘイズは0.34%、ΔRth(10%RH−80%RH)は24.9nmであった。この膜を保護膜1とした。
<偏光板Aの作製>
次に延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光膜を製作し、市販のセルロースアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製、Re=2nm、Rth=48nm)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の片面に貼り付けた。さらに偏光膜のもう片側に偏光板保護膜1をそのセルロースアセテートフィルム側が偏光膜側になるようにポリビニルアルコール系接着剤を用いて貼り付け、偏光板Aを作製した。
<偏光板Bの作製>
上記と同様にして偏光膜を製作し、市販のセルロースアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の両面に貼り付け偏光板Bを作製した。また、この市販のセルロースアセテートフィルムのRe(630)は4.5nm、Rth(630)は47.5nm、|Re(400)−Re(700)|は9.4nm、|Rth(400)−Rth(700)|は22.6nmであった。
[実施例1]
偏光板Aの偏光板保護膜1側にアクリル系接着剤を用いて、作製した第1位相差領域1を、偏光膜の透過軸と第1位相差領域1の遅相軸が直交になるように貼り付けた。さらにこれに第2位相差領域1を、アクリル系接着剤を用いて貼合した。
これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域2の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と直交になるように)、且つ第2位相差領域1面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に偏光板Aを偏光板保護膜1側が液晶セル側になるように、且つ上記偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。測定はまず、暗室内に設置されたシャーカステン上に、偏光板を貼り合わせない状態で液晶セル1を置き、液晶セルのラビング方向を基準として左方向に45度の方位で、且つ液晶セル法線方向から方向60°の方向に1m離れたところに設置された輝度計で輝度1を測定した。
次いで、上記と同じシャーカステン上に実施例1の液晶表示パネルを同様に配置して、暗表示の状態で同様に輝度2を測定し、これを輝度1に対する100分率で表したものを漏れ光とした。測定した漏れ光は0.08%であった。
[実施例2]
偏光板Bにアクリル系接着剤を用いて、作製した第1位相差領域2を、偏光膜の透過軸と第1位相差領域2の遅相軸が平行になるように貼り付けた。この構成では偏光板Bの保護膜であるフジタックTD80UF、Re=2nm、Rth=48nmが第2位相差領域に相当する。
これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域1の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第1位相差領域1面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に偏光板Aを偏光板保護膜1側が液晶セル側になるように、且つ偏光板Aとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光は0.03%であった。
[実施例3]
偏光板Bにアクリル系接着剤を用いて、作製した第1位相差領域3を、偏光膜の透過軸と第1位相差領域3の遅相軸が平行になるように貼り付けた。この構成では偏光板Bの保護膜であるフジタックTD80UF、Re=2nm、Rth=48nmが第2位相差領域に相当する。
これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域1の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第1位相差領域1面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に偏光板Aを偏光板保護膜1側が液晶セル側になるように、且つ偏光板Aとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光は0.04%であった。
[実施例4]
偏光板Bにアクリル系接着剤を用いて、作製した第1位相差領域3を、偏光膜の透過軸と第1位相差領域3の遅相軸が平行になるように貼り付けた。この構成では偏光板Bの保護膜であるフジタックTD80UF、Re=2nm、Rth=48nmが第2位相差領域に相当する。
これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域1の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第1位相差領域1面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に液晶セル側の保護膜のRthが48nmの偏光板Bを、他方の偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光は0.19%であった。
即ち、液晶セル側に配置される保護膜のRthが25nm以下である偏光板B(液晶セル側保護膜のRthは2nm)を用いた実施例3のほうが、液晶セル側の保護膜のRthが25nmを超える偏光板B(液晶セル側保護膜のRthは48nm)を用いた実施例4と比較して、漏れ光がより少ないことがわかった。
[比較例1]
前記作製したIPSモード液晶セル1の両側に市販の偏光板(HLC2−5618、(株)サンリッツ製)を、クロスニコルの配置で貼り付け、液晶表示装置を作製した。光学補償フィルムは用いなかった。この市販の偏光板の保護フィルムを湯浴中ではがし、光学特性を測定したところRe(630)は4.7nm、Rth(630)は48.5nm、|Re(400)−Re(700)|は10.1nm、|Rth(400)−Rth(700)|は23.4nmであった。
上記液晶表示装置では、実施例1と同様に、上側の偏光板の透過軸が液晶セルのラビング方向と平行になるように偏光板を貼り付けた。このように作製した液晶表示装置の漏れ光は0.55%であった。
[比較例2]
偏光板Aの偏光板保護膜1側にアクリル系接着剤を用いて、作製した第1位相差領域1を、偏光膜の透過軸と第1位相差領域1の遅相軸が平行になるように貼り付けた。さらにこれに第2位相差領域1を、アクリル系接着剤を用いて貼合した。
これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と直交になるように(即ち、第1位相差領域2の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第2位相差領域1面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に偏光板Aを偏光板保護膜1側が液晶セル側になるように、且つ上記偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光は0.99%であった。
本発明の液晶表示装置の画素領域例を示す概略図である。 本発明の液晶表示装置の一例を示す概略図である。 本発明の液晶表示装置の他の例を示す概略図である。
符号の説明
1 液晶素子画素領域
2 画素電極
3 表示電極
4 ラビング方向
5a、5b 黒表示時の液晶化合物のダイレクター
6a、6b 白表示時の液晶化合物のダイレクター
7a,7b、19a,19b 偏光膜用保護膜
8、20 偏光膜
9、21 偏光膜の偏光透過軸
10 第1位相差領域
11 第1位相差領域の遅相軸
12 第2位相差領域
13、17 セル基板
14、18 セル基板ラビング方向
15 液晶層
16 液晶層の遅相軸方向

Claims (16)

  1. 少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層および該液晶層を挟持する一対の基板からなる液晶セルと、第2偏光膜とがこの順序で配置され、黒表示時に前記液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
    前記第1位相差領域の面内レターデーション(Re)が70nm〜330nmであり、前記面内レターデーション(Re)と、前記第1位相差領域の厚み方向のレターデーション(Rth)を用いてNz=Rth/Re+0.5で定義される第1位相差領域のNz値が0を超え0.4未満であり、 前記第2位相差領域の面内のレターデーションが50nm以下であり、かつ、光学軸が前記第2位相差領域の面内に含まれておらず、前記第2位相差領域の厚み方向の位相差レターデーションが10nm〜140nmであり、前記第1位相差領域の遅相軸が、前記第1偏光膜の透過軸に直交、かつ、前記第1偏光膜の透過軸が、黒表示時の液晶分子の遅相軸方向に平行であり、前記第1偏光膜および第2偏光膜は、それぞれ、少なくとも前記液晶層に近い側の面に保護膜を有し(但し、該保護膜は、他の膜と兼ねる構成であってもよい)、該保護膜が下記式(I)および(II)を満たすセルロースアシレートフィルムである液晶表示装置。
    (I)0≦Re(630)≦10、かつ、|Rth(630)|≦25
    (II)|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35
    (式(I)、(II)中、Re(λ)は波長λnmにおける面内レターデーション(nm)を表し、Rth(λ)は波長λnmにおける膜厚方向のレターデーション(nm)を表す。)
  2. 少なくとも、第1偏光膜と、第2位相差領域と、第1位相差領域と、液晶層および該液晶層を挟持する一対の基板からなる液晶セルと、第2偏光膜とがこの順序で配置され、黒表示時に前記液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
    前記第1位相差領域の面内レターデーション(Re)が80nm〜230nmであり、前記面内レターデーション(Re)と、前記第1位相差領域の厚み方向のレターデーション(Rth)を用いてNz=Rth/Re+0.5で定義される第1位相差領域のNz値が0を超え0.4未満であり、 前記第2位相差領域の面内のレターデーションが50nm以下であり、かつ、光学軸が前記第2位相差領域の面内に含まれておらず、第2位相差領域の厚み方向のレターデーションが20nm〜120nmであり、前記第1位相差領域の遅相軸が、第1偏光膜の透過軸に平行、かつ、前記第1偏光膜の透過軸が、黒表示時の液晶分子の遅相軸方向に平行であり、前記第1偏光膜および第2偏光膜は、それぞれ、少なくとも前記液晶層に近い側の面に保護膜を有し(但し、該保護膜は、他の膜と兼ねる構成であってもよい)、該保護膜が下記式(I)および(II)を満たすセルロースアシレートフィルムである液晶表示装置。
    (I)0≦Re(630)≦10、かつ、|Rth(630)|≦25
    (II)|Re(400)−Re(700)|≦10、かつ、|Rth(400)−Rth(700)|≦35
    (式(I)、(II)中、Re(λ)は波長λnmにおける面内レターデーション(nm)を表し、Rth(λ)は波長λnmにおける膜厚方向のレターデーション(nm)を表す。)
  3. 前記セルロースアシレートフィルムが該セルロースアシレートフィルムのRthを低下させる化合物を、下記式(III)、(IV)を満たすような範囲で少なくとも1種含有する、請求項1または2に記載の液晶表示装置。
    (III)(Rth(A)−Rth(0))/A≦−1.0
    (IV)0.01≦A≦30
    (式(III)および(IV)中、Rth(A)は、Rthを低下させる化合物をA%含有したセルロースアシレートフィルムのRth(nm)を表し、Rth(0)は、該セルロースアシレートフィルムであって、Rth(λ)を低下させる化合物を含有しないセルロースアシレートフィルムのRth(nm)を表し、Aは、セルロースアシレートフィルム原料ポリマーに対する、Rth(λ)を低下させる化合物の重量(%)を表す。)
  4. 前記セルロースアシレートフィルムが、アシル置換度が2.85〜3.00のセルロースアシレートに、Rthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30重量%含む、請求項1〜3いずれかに記載の液晶表示装置。
  5. 前記セルロースアシレートフィルムが、前記セルロースアシレートフィルムの|Rth(400)−Rth(700)|を低下させる化合物の少なくとも1種を、該セルロースアシレート固形分に対して0.01〜30重量%含む、請求項1〜4のいずれかに記載の液晶表示装置。
  6. 前記セルロースアシレートフィルムの膜厚が10〜120μmである、請求項1〜5のいずれかに記載の液晶表示装置。
  7. 前記セルロースアシレートフィルムが、Rthを低下させ、かつ、オクタノール−水分配係数(LogP値)が0〜7である化合物の少なくとも1種を、該セルロースアシレート固形分に対して0.01〜30重量%含む、請求項1〜6のいずれかに記載の液晶表示装置。
  8. 前記Rthを低下させ、かつ、オクタノール−水分配係数(LogP値)が0〜7である化合物が、下記一般式(13)および/または一般式(18)で表される化合物である、請求項7に記載の液晶表示装置。
    Figure 0004619108
    (一般式(13)中、R11はアルキル基またはアリール基を表し、R12およびR13は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。)
    Figure 0004619108
    (一般式(18)中、R14はアルキル基またはアリール基を表し、R15およびR16はそれぞれ独立に水素原子、アルキル基またはアリール基を表す。)
  9. 前記セルロースアシレートフィルムは、波長380nmにおける分光透過率が45〜95%であり、かつ、波長350nmにおける分光透過率が10%以下である、請求項1〜8のいずれかに記載の液晶表示装置。
  10. 前記セルロースアシレートフィルムを、60℃、90%RHに240時間処理した後のセルロースアシレートフィルムのRthの変化量が15nm以下である、請求項1〜9のいずれかに記載の液晶表示装置。
  11. 前記セルロースアシレートフィルムを、80℃、240時間処理した後のセルロースアシレートフィルムのRthの変化量が15nm以下である、請求項1〜10のいずれかに記載の液晶表示装置。
  12. 前記セルロースアシレートフィルムは、フィルム面内の正面レターデーションが下記式を満たす、請求項1〜11のいずれかに記載の液晶表示装置。
    |Re(n)−Re(0)|/n≦1.0
    (式中、Re(n)は、n(%)延伸したフィルムの面内正面レターデーション(nm)を表し、Re(0)は、延伸していないフィルムの面内正面レターデーション(nm)を表す。)
  13. 前記セルロースアシレートフィルムは、該フィルム面内に、該フィルムを製造する機械の該フィルムの搬送方向(MD方向)に対して垂直な方向(TD方向)に遅相軸を有する、請求項1〜12のいずれかに記載の液晶表示装置。
  14. 前記セルロースアシレートフィルムの該フィルム面内において、遅相軸を有する方向に延伸すると正面レターデーションが小さくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションが大きくなることを特徴とする、請求項1〜13のいずれかに記載の液晶表示装置。
  15. 前記液晶セルの一対の基板のうち視認側と反対側の基板により近い位置に、前記第1位相差領域および前記第2位相差領域が配置されている、請求項1〜14のいずれかに記載の液晶表示装置。
  16. 前記液晶セルの一対の基板のうち視認側の基板により近い位置に、前記第1位相差領域および前記第2位相差領域が配置されている、請求項1〜14のいずれかに記載の液晶表示装置。
JP2004372111A 2004-12-22 2004-12-22 液晶表示装置 Active JP4619108B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004372111A JP4619108B2 (ja) 2004-12-22 2004-12-22 液晶表示装置
US11/793,056 US7505101B2 (en) 2004-12-22 2005-12-22 Liquid crystal display
PCT/JP2005/024167 WO2006068311A1 (en) 2004-12-22 2005-12-22 Liquid crystal display
KR1020077016590A KR101249641B1 (ko) 2004-12-22 2005-12-22 액정 디스플레이
CN200580044274A CN100578319C (zh) 2004-12-22 2005-12-22 液晶显示器
TW094145724A TWI370932B (en) 2004-12-22 2005-12-22 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372111A JP4619108B2 (ja) 2004-12-22 2004-12-22 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2006178226A JP2006178226A (ja) 2006-07-06
JP4619108B2 true JP4619108B2 (ja) 2011-01-26

Family

ID=36601891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372111A Active JP4619108B2 (ja) 2004-12-22 2004-12-22 液晶表示装置

Country Status (6)

Country Link
US (1) US7505101B2 (ja)
JP (1) JP4619108B2 (ja)
KR (1) KR101249641B1 (ja)
CN (1) CN100578319C (ja)
TW (1) TWI370932B (ja)
WO (1) WO2006068311A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311919B1 (ko) 2012-11-12 2013-09-26 에스케이이노베이션 주식회사 광학 필름

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624129B2 (ja) * 2004-04-27 2011-02-02 富士フイルム株式会社 液晶表示装置
KR100823442B1 (ko) * 2006-02-21 2008-04-17 주식회사 엘지화학 이방성 확산시트
JP2008112127A (ja) * 2006-10-04 2008-05-15 Konica Minolta Opto Inc 偏光板保護フィルム、偏光板、液晶表示装置
JP5184803B2 (ja) * 2007-02-26 2013-04-17 富士フイルム株式会社 液晶表示装置、及びカラーフィルタ
JP2009098605A (ja) 2007-09-27 2009-05-07 Fujifilm Corp 液晶表示装置
KR101557815B1 (ko) 2008-08-26 2015-10-07 삼성디스플레이 주식회사 액정 표시 장치와 그 제조 방법
US8525405B2 (en) 2011-08-19 2013-09-03 Apple Inc. Electronic devices with flexible glass polarizers
WO2014092520A1 (ko) 2012-12-14 2014-06-19 주식회사 엘지화학 액정 소자
KR102029120B1 (ko) * 2015-09-08 2019-11-08 후지필름 가부시키가이샤 첩합용 필름 및 적층체의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054257A (ja) * 2002-05-29 2004-02-19 Fuji Photo Film Co Ltd 光学補償シート、その製造方法およびそれを用いた偏光板、液晶表示装置
JP2004226591A (ja) * 2003-01-22 2004-08-12 Fuji Photo Film Co Ltd 液晶表示装置および偏光板
JP2004258602A (ja) * 2003-02-05 2004-09-16 Fuji Photo Film Co Ltd 液晶表示装置および偏光板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001295983A1 (en) * 2000-10-20 2002-04-29 Fuji Photo Film Co. Ltd. Cellulose acetate film with regulated retardation and thickness
JP4076454B2 (ja) * 2002-04-19 2008-04-16 富士フイルム株式会社 光学補償シート、偏光板および画像表示装置
JP4624129B2 (ja) * 2004-04-27 2011-02-02 富士フイルム株式会社 液晶表示装置
TWI383191B (zh) * 2004-05-07 2013-01-21 Fujifilm Corp 液晶顯示裝置
TWI353461B (en) * 2004-05-18 2011-12-01 Fujifilm Corp Optical film, optical compensation film, polarizin
WO2006016667A1 (en) * 2004-08-09 2006-02-16 Fujifilm Corporation Polymer film, and optically-compensatory film, polarizer and liquid-crystal display device comprising the same
TW200617084A (en) * 2004-09-14 2006-06-01 Fuji Photo Film Co Ltd Cellulose acylate film, polarizing plate and liquid crystal display
US7502088B2 (en) * 2005-03-17 2009-03-10 Fujifilm Corporation Liquid crystal display device having an antiglare layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054257A (ja) * 2002-05-29 2004-02-19 Fuji Photo Film Co Ltd 光学補償シート、その製造方法およびそれを用いた偏光板、液晶表示装置
JP2004226591A (ja) * 2003-01-22 2004-08-12 Fuji Photo Film Co Ltd 液晶表示装置および偏光板
JP2004258602A (ja) * 2003-02-05 2004-09-16 Fuji Photo Film Co Ltd 液晶表示装置および偏光板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311919B1 (ko) 2012-11-12 2013-09-26 에스케이이노베이션 주식회사 광학 필름

Also Published As

Publication number Publication date
CN100578319C (zh) 2010-01-06
KR20070092744A (ko) 2007-09-13
JP2006178226A (ja) 2006-07-06
US7505101B2 (en) 2009-03-17
US20080198316A1 (en) 2008-08-21
KR101249641B1 (ko) 2013-04-01
CN101116027A (zh) 2008-01-30
TWI370932B (en) 2012-08-21
TW200632475A (en) 2006-09-16
WO2006068311A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4689286B2 (ja) 液晶表示装置
JP4740604B2 (ja) 光学補償フィルム、その製造方法、偏光板および液晶表示装置
JP4404735B2 (ja) セルロースアシレートフィルム、それを用いた光学補償フィルム、偏光板
JP2014240984A (ja) 光学フィルム、偏光板、液晶表示装置、及び光学フィルムの製造方法
US7505101B2 (en) Liquid crystal display
JP2006301570A (ja) 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP4491353B2 (ja) 光学フィルム、光学フィルムの製造方法、光学補償フィルム、偏光板及び液晶表示装置
JP2006293255A (ja) 光学フィルム、光学補償フィルム、偏光板、液晶表示装置、および自発光型表示装置
JP2006291186A (ja) セルロースアシレートフィルム及びその製造方法、光学補償フィルム、偏光板および液晶表示装置
JP4142691B2 (ja) 液晶表示装置
JP4860333B2 (ja) 液晶表示装置
KR101268747B1 (ko) 셀룰로오스 아실레이트 필름, 광학 보상 필름, 편광 필름 및 액정표시장치
JP2005338815A (ja) 偏光板一体型光学補償フィルム、その製造方法、及び液晶表示装置
JP4694848B2 (ja) 液晶表示装置
JP2006265288A (ja) 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板、及び液晶表示装置
KR101139264B1 (ko) 길이가 긴 편광판과 그 제조 방법, 및 액정 표시 장치
JP2006194923A (ja) ベンド配向モードの液晶表示装置
JP5587391B2 (ja) 液晶表示装置
JP2006184479A (ja) 光学補償フィルム及び液晶表示装置
JP2006195205A (ja) 液晶表示装置及び偏光板
JP4737993B2 (ja) ベンド配向モードの液晶表示装置
JP2006317922A (ja) セルロースアシレートフィルム、光学補償フィルム、これらの製造方法、偏光板および液晶表示装置
KR101175575B1 (ko) 액정 표시 장치
JP2007328246A (ja) 液晶表示装置
JP2006178359A (ja) 光学補償フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250