JP4602079B2 - バリア層を含む発光ダイオードおよびその製造方法 - Google Patents

バリア層を含む発光ダイオードおよびその製造方法 Download PDF

Info

Publication number
JP4602079B2
JP4602079B2 JP2004523125A JP2004523125A JP4602079B2 JP 4602079 B2 JP4602079 B2 JP 4602079B2 JP 2004523125 A JP2004523125 A JP 2004523125A JP 2004523125 A JP2004523125 A JP 2004523125A JP 4602079 B2 JP4602079 B2 JP 4602079B2
Authority
JP
Japan
Prior art keywords
layer
sublayer
light emitting
sub
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004523125A
Other languages
English (en)
Other versions
JP2006502563A (ja
Inventor
ビー.スレター ジュニア デービッド
イー.ウィリアムズ ブラッドリー
エス.アンドリューズ ピーター
エイ.エドモンド ジョン
ティ.アレン スコット
バラサン ジェイシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/200,244 external-priority patent/US6740906B2/en
Application filed by Cree Inc filed Critical Cree Inc
Publication of JP2006502563A publication Critical patent/JP2006502563A/ja
Application granted granted Critical
Publication of JP4602079B2 publication Critical patent/JP4602079B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、マイクロエレクトロニックデバイスおよびその製作方法に関し、より詳細には、発光ダイオード(LED)などの発光素子およびその製造方法に関する。
発光ダイオードは、民生用および商業用として広く用いられている。当業者にはよく知られているように、発光ダイオードは、一般に、マイクロエレクトロニック基板上にダイオード領域を含む。マイクロエレクトロニック基板は、例えば、ヒ化ガリウム、リン化ガリウム、それらの合金、炭化ケイ素および/またはサファイアを含む。LEDの開発を続けた結果、可視スペクトルおよびその先の領域の光まで出力でき、高効率で機械的に堅固な光源がもたらされた。これらの特質が、固体素子の潜在的に長い有効寿命と相まって、表示装置への新しい様々な応用が可能となり、LEDは、十分に確立された白熱ランプおよび蛍光ランプと競える位置につくことが可能である。
窒化ガリウム(GaN)系LEDは、一般に、複数のGaN系エピタキシャル層を堆積させた炭化ケイ素(SiC)またはサファイアなどの絶縁基板または半導体基板を含む。エピタキシャル層は、通電時に発光するpn接合を有する活性領域またはダイオード領域を含む。
LEDは、パッケージまたはリードフレームとも呼ばれる(以降「サブマウント」とする)サブマウント上に基板側を下にして実装することができる。これに対し、発光ダイオードをフリップチップ実装する場合は、基板側を上にして(つまり、サブマウントから離れて)LEDをサブマウント上へ実装する。光は基板を透過して抽出され放出される。フリップチップ実装は、SiC系LEDを実装するのには特に望ましい技術である。特に、SiCは、GaNよりも高い屈折率を有するので、活性領域またはダイオード領域に発生した光は、一般に、GaN/SiC界面において、内部全反射(つまり、GaN系の層内部へ反射)されるわけではない。SiC系LEDをフリップチップ実装することにより、この分野ではよく知られている特定の基板形成技術の効果を改善することもできる。SiC系LEDをフリップチップ実装することによって、熱放散の改善など、LEDの特定の用途によっては、望ましい他の利点が得られる。
SiCは、高屈折率を有するため、SiC基板を通過した光は、基板表面に対する入射角が非常に小さい場合を除き(つまり、かなり通常に近い場合)、表面において基板内に内部全反射される傾向がある。内部全反射される臨界角は、一般に、SiCと共に界面を形成する材料に応じて決まる。より多くの光線がSiCの表面に小さい入射角で当たるようにして内部全反射が制限されるようにSiC基板を形成すれば、SiC系LEDからの光出力を増大させることは可能である。従来技術では、このようないくつかの形成技術およびその結果形成されたデバイスが示されている(例えば、特許文献1「Light Emitting Diodes Including Modifications for Light Extraction and Manufacturing Methods Therefor」参照)。
米国特許出願公開第2002/0123164A1号 米国特許出願公開第2003/0042507A1号 米国特許出願公開第2003/0045015A1号 Schutze著「Corrosion and Environmental Degradation」、第II巻、2000年、p. 451〜452
フリップチップ実装の一つの潜在的な問題としては、従来技術を用いてLEDをサブマウント上に実装する場合、銀エポキシなどの導電性ダイ接着材が、LED上および/またはパッケージ上に堆積され、LEDとサブマウントが互いに圧迫される。これにより、粘性のある導電性ダイ接着材が押し出されることがあり、N型基板および/またはデバイス内の層と接触し、それにより、ショットキーダイオード接続が形成され、それが活性領域内のpn接合の短絡を引き起こす可能性がある。
はんだ付け、サーモソニックスクラビング(thermosonic scrubbing)結合および/または熱圧着結合によって成される金属−金属結合が、代替の接着技術となる。しかし、多くのはんだの構成成分はスズ(Sn)であり、結合表面からデバイス内へSnが移動すると、デバイスに望ましくない劣化が生じる可能性がある。このような移動によって、オーミックコンタクト部などの金属−半導体界面および/またはミラーの役割を果たす反射界面などの金属−金属界面の機能に支障をきたす可能性がある。
本発明の一部の態様による発光ダイオードなどの半導体発光素子は、基板と、基板上に設けられ、内部に発光ダイオード領域などの発光領域を含むエピタキシャル領域と、エピタキシャル領域上に設けられ、反射層側壁を含む反射層を備える多層導電スタックとを含む。反射層上にバリア層が形成され、反射層側壁上に延びている。他の態様では、多層導電スタックは、反射体とエピタキシャル領域の間に、オーミック層側壁を含むオーミック層をさらに備える。バリア層は、オーミック層側壁上にさらに延びている。本発明の、他の態様では、バリア層は、多層導電スタック外部のエピタキシャル領域上にさらに延びている。
本発明の他の態様では、バリア層は、交互に重ねた複数の第1および第2の副層を備える。一部の態様では、第1の副層が内部に結晶粒界を含むが、第2の副層は実質的に結晶粒界を含んでいない。他の態様では、第1の副層が、第1の副層からなる段状の煉瓦壁構造を画定するように配列された結晶粒界を含む。他の態様では、第1の副層がチタンタングステンを含み、第2の副層が白金、チタンおよび/またはニッケルを含む。
一部の態様では、第1の副層が、反射層からの金属の移動を抑制するように構成され、第2の副層は、第1の副層内の少なくとも一部の結晶粒界が第1の副層を越えて伝播するのを抑制するように構成されている。他の態様では、交互に重ねた複数の第1および第2の副層が、第1の副層を含む第1および第2の外部副層を画定している。他の態様では、第2の外部副層の厚さが、第1の外部副層の厚さよりも厚い。
本発明の他の態様は、反射層上に反射層側壁上に延びるバリア層を形成することによって、金属が半導体発光素子の反射層からエピタキシャル領域内へ移動するのを抑制する方法を提供する。他の態様では、バリア層がオーミック層側壁上に延びるように形成される。他の態様では、バリア層が多層導電スタック外部のエピタキシャル領域上へ延びている。
本発明の他の態様は、バリア層を、反射層側壁に隣接するバリア層の割れを抑制できる交互に重ねた複数の第1および第2の副層として形成する。第1および第2の副層は、第1の副層で終端可能な段状の煉瓦壁構造を画定して外部副層を画定することができる。この場合、第2の副層は、第1の副層よりも薄く、外部副層は、第1の副層よりも厚い。
以下に、本発明の実施形態が示される添付の図を参照して、本発明をより詳しく説明する。しかし、本発明は、多数の代替形式で実施可能であり、本明細書に記載した実施形態に限定されると理解すべきでない。
従って、本発明は、様々な変更および代替の形式が可能であるが、一例として本発明の特定の実施形態を図に示し、本明細書で詳細に説明する。しかし、本発明は、開示される特定の形式に限定せず、特許請求の範囲で定義される本発明の趣旨および範囲に含まれるあらゆる変更、同等物および代替物を含むことを理解されたい。図の説明を通して、同様の要素には同じ参照番号を付す。図では、理解しやすいように、層および領域の寸法を誇張して示す場合がある。層、領域または基板などの要素が別の要素の「上」にあると言われている場合は、その要素は、別の要素上に直接設けられていてもよく、間に入る要素が存在してもよいことも理解されよう。これと対照的に、層、領域または基板などの要素が別の要素の「上に直接」置かれていると言われている場合は、間に入る要素は存在しない。さらに、本明細書で説明し例示する各実施形態は、その逆の導電型の実施形態も含む。
以下に、炭化ケイ素系の基板上に設けられた窒化ガリウム系発光ダイオードに関して、本発明を一般的に説明する。しかし、本発明の多くの実施形態において、放射光に対して非吸収性または透過性の基板と、屈折率が一致する発光ダイオードのエピタキシャル層との任意の組合せが使用可能であることが、当業者には理解されよう。本発明の一部の実施形態では、基板の屈折率が、ダイオードの屈折率よりも大きい。従って、GaP基板上のAlGaInPダイオード、GaAs基板上のInGaAsダイオード、GaAs基板上のAlGaAsダイオード、SiC基板上のSiCダイオード、サファイア(Al)基板上のSiCダイオード、および/または窒化ガリウム、炭化ケイ素、窒化アルミニウム、酸化亜鉛および/または他の基板上の窒化物系ダイオードなどの組合せが含まれ得る。最後に、本明細書では本発明の実施形態を、内部に発光ダイオード領域を含むエピタキシャル領域を有する発光ダイオードに関して記述するが、本発明の他の実施形態を、レーザダイオード領域などの発光領域を内部に含むエピタキシャル領域を有するレーザなど他の半導体発光素子と共に使用することも可能であることが理解されよう。
本発明の一部の実施形態は、LEDデバイス上に、はんだ付けおよび/またはサーモソニックスクラブ結合(thermosonic scrub bonding)によるダイ接着に十分に適応できる結合領域を画定する不働態化層を周囲に有する金属スタックを提供する。本発明の他の実施形態は、はんだ付けおよび/またはサーモソニック結合を使用してフリップチップ実装でき、LEDの金属および/または半導体層の好ましくない劣化を低減または解消できるバリア層を含むLEDデバイスを提供する。本発明の他の実施形態は、不働態化層およびバリア層の両方を提供することができる。本発明の他の実施形態は、これらのLEDデバイスの製作方法を提供する。本発明の一部の実施形態による不働態化層は、ダイオード領域全体にわたる短絡を防止する手段を提供する。さらに、本発明の一部の実施形態によるバリア層は、スズおよび/または他の好ましくない材料がLED内に移動するのを抑制する手段を提供することができる。
サファイアベースの従来の手法では、LEDは、チップまたはダイとも呼ばれるか、透明なエポキシ化合物と共にサブマウントに接着される。導電性SiC基板を有するLEDの場合は、LEDとサブマウントを互いに接着するために、導電性銀で充填したエポキシ化合物が一般に使用される。SiCまたはサファイア基板上に設けられた従来の窒化物系LEDは、一般に、基板がエピタキシャル側を上に向けてサブマウントに結合されたパッケージである。
従来のSiC系LEDの一部の実施形態は、n型導電基板、ならびにその基板上に設けられ、ダイオード領域を画定する1つまたは複数のn型エピタキシャル層と1つまたは複数のp型エピタキシャル層とを含むエピタキシャル領域を有する。LED表面のp型エピタキシャル領域に透明なオーミックコンタクト部を形成することができる。特許文献1で論じられているように、デバイスからの光抽出を改善するためには、薄い透明なオーミックコンタクト部を覆うように反射層を形成するのが有益である。反射層は、薄いコンタクト部の全体に電流を均一に行き渡らせ、光を反射して基板内に戻し、サブマウントから遠ざけることも可能である。
残念ながら、はんだ結合またはサーモソニック/熱圧着結合によりSnおよび/または他の異物が結合表面から反射層へ移動した場合、その反射層は、反射し難くなる場合がある。さらに、異物が反射体を超えて、透明なオーミックコンタクト部まで移動した場合は、その透明なオーミックコンタクト部には、高い比接触抵抗が生じ、それにより、デバイスの順方向電圧(V)が増大する場合がある。この両者の結果は、デバイスの劣化として特徴付けられる可能性がある。
反射層は、Agおよび/またはAlを含み、薄い透明なオーミック層は、Pt、Pd、Ni、Ti、Auまたはこれらの元素の組合せを含むことができる。残念なことに、Snは、Ag、Pt、Auおよび半導体製造に使用される他の多数の金属と容易に合金を形成する。
本発明の一部の実施形態によるLEDのp型表面上に形成される(以降、「多層導電スタック」とする)一連の導電層の最初の部分は、オーミック層、反射層およびバリア層を含む。一部の実施形態では、バリア層は、チタン、チタン/タングステン(TiW)、および/または窒化チタン/タングステン(TiNW)の薄い層を含む。他の実施形態では、バリア層は、チタン/タングステンからなる第1の層と、第1の層上に設けられ、ニッケルを含む第2の層とを含む。他の実施形態では、バリア層は、オーミック層および反射層の側壁上へ延びており、かつ/または、バリア金属層と第2の金属とを交互に重ねたスタックを含む。
本発明の一部の実施形態では、多層導電スタックのこの部分およびデバイスの最上部は、はんだまたは共晶ダイ接着材で濡れないように、絶縁層などの不働態化層によって不働態化されている。不働態化層は、気相成長法(CVD)および/または反応性スパッタリングなどの従来のスピンオン技術または堆積技術によって形成することができ、二酸化ケイ素および/または窒化ケイ素などの絶縁酸化物および/または窒化物を含むことができる。
本発明の一部の実施形態では、次いで、不働態化層の水平寸法(lateral dimensions)(つまり表面積)に開口が設けられる。この開口は、バリア層の水平寸法より小さく、バリア層表面の一部のみを露出させる。このような開口は、従来のフォトリソグラフィ技術およびエッチング技術を使用して形成することができる。開口内にTiを含む任意選択の接着層を形成し、Au、Snおよび/またはAuSnを含む厚い結合層も形成する。他の実施形態では、接着層と結合層の間に任意選択のはんだ濡れ層が設けられる。はんだ濡れ層によって、はんだとLEDの機械的接続を向上させることができ、それにより、接続の剪断強度を高めることができる。
本発明の一部の実施形態では、電気試験中、プローブの先端で多層導電スタックに機械的応力が加えられる場合、結合層はバリア層を保護することができる。さらに、本発明の他の実施形態では、結合層内のAuは、バリア層の酸化を防ぐことができる。本発明の他の実施形態では、共晶ダイ接着材としてAuSnを結合層内に使用し、はんだ結合の代替手段としてのサーモソニック結合または熱圧着結合を利用してLEDとサブマウントを互いに結合することができる。
本発明の一部の実施形態による多層導電スタックは、固体素子に十分に適応できるので、本発明の一部の実施形態は、NiまたはNiVを使用してはんだバリアを形成した場合に得られる厚さよりもかなり薄いスタックを提供できる。本発明の一部の実施形態では、W、TiWおよび/またはTiNW、および/またはWおよびNi層を含むバリア層は、Niのみをバリア層として使用した場合に得られる厚さの半分未満にすることができる。このことは、固体素子の水平寸法が一般に小さいことを考慮したとき、および垂直寸法(topographical dimensions)が大きい場合に、従来の製作技術を使用することによって生じる潜在的な問題を考慮したとき有利となる。このバリア層はまた、Snの移動および/または他の望ましくない移動に対する所望の垂直方向バリアを提供することができる。
本発明の一部の実施形態による不働態化層は、バリア層が露出している、面積が縮小された開口を除き、LEDのエピタキシャル面全体を覆うことができ、反射ミラー層またはオーミックコンタクト部内への、あるいは金属スタックの縁部に沿った下方へのSnおよび/または他の望ましくない移動を抑制または防止するためのダムを提供できる。導電基板を有するLEDの場合、本発明の一部の実施形態による不働態化層はまた、ダイ接着材が基板に接触して、寄生ショットキーダイオード形成などの望ましくない効果をもたらすことを防ぐ働きもできる。
高出力レベルで動作する大面積のLEDには、熱抵抗が低く、デバイス性能の劣化を緩和し防止するパッケージングを使用できる。エポキシ系ダイ接着材は、金属ダイ接着材と比較して高い熱抵抗を有する可能性がある。フリップチップ構造では、LEDのpn接合領域を放熱パッケージに極めて近く実装することにより基板の熱抵抗を下げることができる。SiCの熱抵抗は小さいにもかかわらず、本発明の一部の実施形態では、これを大面積のSiC系LEDにも使用することができる。本発明の一部の実施形態によって提供される金属−金属結合は、熱抵抗が高いサファイアの基板を有するLEDにも使用できる。その結果、大面積のLEDに本発明の一部の実施形態を使用し、それにより、接合部を下に向けた(フリップチップ)金属−金属ダイ接着構造利用の恩恵を受けることができる。本発明の他の実施形態は、小面積のLEDに使用することができる。
本発明の一部の実施形態によると、後続のパッケージング、組立ておよび再加工/修復ステップでデバイスが耐えられる許容温度の範囲を広げることもできる。金属−金属結合を、例えば、LEDをプリント基板に実装する次の熱サイクルで行うことが可能である。AuSnによるサーモソニック結合または熱圧着結合により300℃で、あるいはSnAgはんだにより230℃でLEDダイをそのサブマウントに接着させる場合、SnPbはんだを200℃で使用した後続の処理サイクルでは、ダイ接着ボンドをリフローさせても機械的破損が生じる可能性はない。つまり、高温での後続処理では、LEDダイがサブマウントから離脱する可能性はない。それとは対照的に、エポキシ系ダイ接着法を用いるLEDは、高い熱サイクルに耐えることができないことがある。しかも、透明なエポキシ化合物は、熱処理中に変色することがあり、好ましくない光減衰をもたらすことがある。
本発明の一部の実施形態によると、LEDとサブマウントの間に得られるボンドの剪断強度を高めることもできる。はんだバリア層を含めることによって、スズおよび/または他の好ましくない材料がデバイスのエピタキシャル層に達することが抑制または防止されるので金属−半導体界面の接着力を確保することができ、より頑丈で機械的に安定したデバイスを得ることができる。特に、金の結合層の下にニッケルはんだ濡れ層を含む実施形態では、すぐれた剪断強度が発揮されることがあることが分かった。後続のパッケージング、組立ておよび再加工/修復ステップ中の熱サイクルを通じて剪断強度も維持することができる。
さらに、本発明の一部の実施形態では、得られるデバイスの熱伝導性を向上させることができる。この効果は、従来のLEDよりも実質的に大きい電流を伝えることのできる、いわゆる「パワー」LEDまたは大面積のLEDにおいて特に明らかであろう。このようなLEDにおいて、本発明の一部の実施形態は、金属層内の「ボイド形成」を防止または抑制することができる。ボイド形成とは、金属領域内における物理的なボイドまたはスペース形成を指す。本発明の一部の実施形態では、このような金属層内の緊密な結晶粒組織を維持することができ、それによって、高出力レベルとそれに対応する高接合温度での動作にもかかわらず、デバイスが高熱伝導性を維持できるようになる。熱伝導性が向上すると、LED、特にパワーLEDを包装する封入材の劣化を緩和させることもできる。このような封入材は、一般に、熱の影響を受けやすいため、長時間にわたり高熱にさらされた後、黄ばんで透明度が低くなることがある。LEDを実装した界面の熱伝導性を向上させることによって、封入材を介しての熱放散が少なくなり、それによって劣化を低減することができる。
図1は、本発明の一部の実施形態によるLEDデバイスの前駆体10を示し、これは、第1および第2の対向面20aおよび20bを有する基板20と、基板20の第1の面20a上に形成されたエピタキシャル領域22とを含む。基板20は、炭化ケイ素、サファイア、窒化アルミニウム、窒化ガリウムまたはその他の任意の適切な導電性または非導電性基板材料を含むことができる。本発明の一部の実施形態では、基板20は、導電的にドープされたSiCを含む。本発明の一部の実施形態では、基板20は、所定の波長範囲内の光放射に対して透過性を有する。本発明の一部の実施形態では、エピタキシャル領域22は、導電性バッファ層および複数のIII族窒化物エピタキシャル層を含み、これらの層の少なくともいくつかが、ダイオード領域を形成する。図1〜10に示す基板、エピタキシャル層および金属層の寸法は、実物大には描いておらず、説明のために誇張してある。任意選択で、例えばプラズマ促進化学蒸着(PECVD)によってエピタキシャル領域22の表面上に薄いSiOおよび/または他の層(図示せず)を形成して、後続の処理および洗浄ステップ中にその表面を保護することができる。
エピタキシャル領域22の堆積後、エピタキシャル領域22を、図2に示すようにパターニングして、側壁30aおよび30bをそれぞれ有する複数のメサ30を形成する。図2には示さないが、メサ30は、基板20内へ延びていてもよい。さらに、本発明の一部の実施形態では、メサ30は、ブランケットエピタキシャル成長とエッチングではなく、マスクの開口による選択的エピタキシャル成長によって形成することができる。
図2をさらに参照すると、本発明による一部の実施形態では、前駆体10の表面上に、フォトレジスト24および/またはその他の材料の層を形成してパターニングし、メサ30の表面を露出させ、それによってメサ30の表面上に第1の縮小領域30cを画定している。任意選択のSiOが存在する場合は、フォトレジスト24の開口を介してそれをエッチングし、メサ30内のエピタキシャル領域22のエピタキシャル表面層上に第1の縮小領域30cを露出させることができる。
次いで、例えば、従来のリフトオフ技術を利用して、メサ30の第1の縮小領域30c上に多層導電スタック35を形成する。図3に示すように、多層導電スタック35は、オーミック層32、反射層34およびバリア層36を含む。本発明の一部の実施形態では、オーミック層32は、白金を含むが、他の実施形態では、パラジウム、ニッケル/金、酸化ニッケル/金、酸化ニッケル/白金、チタンおよび/またはチタン/金を含むことができる。オーミック層の他の実施形態は、特許文献1に記載されている。オーミック層32がPtを含む場合、本発明の一部の実施形態では、その厚さは、約25Åである。反射層34は、任意の適切な反射性金属を含むことができ、AlまたはAgを含んでいてもよい。本発明の一部の実施形態では、反射層34の厚さは、約1000Åである。反射層の他の実施形態は、特許文献1に記載されている(参照)。
本発明の一部の実施形態では、バリア層36は、はんだに対するバリア層とすることができ、スズなどのはんだ金属が反射層34および/またはオーミック層32と反応するのを防止している。バリア層36は、W、TiWおよび/またはTiN/Wからなり、本発明の一部の実施形態では、厚さが約500Åから約50,000Åの間であり、本発明の他の実施形態では、約5000Åである。本発明の他の実施形態では、バリア層36は、約5%のTiと約95%のWからなる組成物を有するTiWを含むことが可能である。
タングステンまたはチタン/タングステンを含み、厚さが約500Åから約3000Åの間のバリア層36の他の実施形態は、(下記の)はんだ結合操作を約210℃未満のリフロー温度で行う場合に使用できる。例えば、約190℃から約210℃のリフロー温度で共晶金/鉛/スズはんだを使用する場合、本発明の一部の実施形態による、厚さが約500Åから約3000Åの間のチタン/タングステンを含むバリア層を使用することができる。
本発明の他の実施形態では、リフロー温度が約220℃から約260℃のスズ、銀およびアンチモンを含むはんだなど他のはんだに対処するために、より高いリフロー温度を使用してもよい。これらのはんだの一例が、約96.5%のスズおよび約3.5%の銀からなるケスター(Kester)社製のR276AC銀−スズはんだペーストである。従って、本発明の一部の実施形態では、バリア層36は、厚さ約5000Åのタングステンまたはチタン/タングステンからなる第1の層36aと、第1の層36a上に設けられた厚さ約2000Åのニッケルを含む第2の層36bとを備える。本発明の一部の実施形態は、約325℃から約350℃の間の温度に約5分間耐えられ、順方向電圧(V)の実質的な増大またはLEDの光出力の低下をまねかないことが分かった。従って、本発明の一部の実施形態では、タングステンまたはチタン/タングステンからなる層36aと、ニッケルからなる層36bとを含む多層バリア層36は、リフロー温度が約200℃より高いはんだと共に使用される。本発明の他の実施形態では、これらの多層バリア層は、リフロー温度が約250℃より高いはんだと共に使用することができる。
本発明の一部の実施形態では、タングステン、銀および白金は、例えば、Eビーム技術を使用して堆積される。TiWは、Eビーム技術を使用して堆積可能であるが、本発明の他の実施形態では、TiおよびWが同時にスパッタリングにより堆積される。さらに、本発明の他の実施形態では、窒素雰囲気中でスパッタリングによりTiWを堆積させ、スズ拡散のバリアともなるTiN/TiW層を形成できる。
本発明の他の実施形態では、本質的にニッケルまたはNiVからバリア層36を構成できる。本発明の他の実施形態では、バリア層36は、厚さが約500Åから10,000Åの間の金の層で完全に覆われた、厚さ2500Åのニッケルはんだバリアを含むことができる。金層は、ニッケル層の酸化を防止できる。ただし、ニッケルバリア層を使用すると、スズが移動するため、高温かつ高電流での光学的および電気的性能に、許容しがたい大きな低下をきたす場合がある。しかも、厚いニッケルフィルムは、フィルム応力が高い可能性があるので使用し難いことがある。そのため、ニッケルが、隣接する反射層および/またはオーミック層から剥離するおそれが生じる可能性がある。さらに、バリア層の縁部にはAuが存在するため、Snがバリアの縁部に沿って下方へ、かつバリア周囲に移動する経路が形成されることがある。
次に図4を参照すると、本発明の一部の実施形態では、デバイス前駆体10の第1の(またはエピタキシャル側の)表面20a上に不働態化層40を堆積あるいはその他の方法で形成する。本発明の一部の実施形態では、不働態化層40は、(化学量論量または非化学量論量で堆積させられることができる)SiOおよび/またはSiNを含むことができるので、PECVDおよび/または反応スパッタリングなどの従来の技術で堆積させることができる。本発明の一部の実施形態では、不働態化層40の厚さは、約1500Åである。図4にも示すように、このブランケット堆積によって、メサ30および多層導電スタック35の側壁上、ならびにバリア層36の露出面上にも不働態化層が形成される。
次に図5を参照すると、エッチング用マスク(フォトレジストなどの)を用いて不働態化層40をパターニングして、第1のパターン化された不働態化層40aを提供し、バリア層36の表面の第2の縮小領域部36cを選択的に露出させている。本発明の他の実施形態では、リフトオフ技術を使用してバリア層36の表面の第2の縮小領域部36cを露出させることができる。本発明の他の実施形態では、不働態化層40aを選択的に堆積させることができ、従って、別にパターニングステップを使用する必要がなくなる。
図5をさらに参照すると、次いで、バリア層36の第2の縮小領域36c上に、例えば、Tiを含む任意選択の接着層55を堆積させ、その接着層55上に結合層60を堆積させる。これらの堆積は、パターン化された不働態化層40aをマスクとして使用し、かつ/またはリフトオフ技術を用いて行うことができる。本発明の一部の実施形態では、接着層55の厚さは、約1000Åである。一部の実施形態では、結合層60は、Au、Snおよび/またはAuSnを含むことができ、厚さは、約1000Åである。本発明の一部の実施形態では、結合層60の厚さは、最大で(Auの場合)約1μmまたは(AuSの場合)約1.7μmとすることができる。ただし、一部の実施形態では、約1000Åより厚いAuの層を使用すると、はんだリフロー処理に整合性がなくなるか、はんだ接着部のAuが脆化することがあり、それによって、剪断強度の低下を招くことがある。図に示すように、本発明の一部の実施形態によると、パターン化された不働態化層40aは、接着層55および結合層の側壁上にもある。他の実施形態では、パターン化された不働態化層40aは、接着層55および結合層60の側壁上に延びてはいない。これらの実施形態では、不働態化層は、導電スタック35の側壁上に延びていてもよい。本発明の他の実施形態によると、結合層60は、多層導電スタック35からパターン化された不働態化層40aの先まで延びている。他の実施形態では、結合層60は、パターン化された不働態化層40aの外表面を越えて延びてはいない。
導電性基板上に形成されたデバイスの場合、エピタキシャル領域に対向する第2の基板面20b上にオーミックコンタクト部およびワイアボンドパッド(図示せず)を形成して、垂直導電デバイスを形成する。このような実施形態が多数、特許文献1に記載されている。非導電性基板上に形成されたデバイスの場合、オーミックコンタクト部および金属結合層(図示せず)は、デバイスのn型エピタキシャル領域に形成して、水平導電デバイスを形成することができる。このような実施形態が多数、特許文献1に記載されている(。
次に図6を参照すると、前駆体10は、個々の発光ダイオード100にダイスされる。図6は、また、LED100は、光抽出を高めるための斜面側壁構造70を有するように切断できることを示す。基板形成に関する他の多くの実施形態が特許文献1に記載されている。
従って、図6は、本発明の一部の実施形態による発光ダイオード100を示し、これは、基板20と、基板20上に設けられ、ダイオード領域を内部に含むエピタキシャル領域(上記ではメサという)30と、基板20に対向するエピタキシャル領域30上に設けられた多層導電スタック35と、エピタキシャル領域30に対向する多層導電スタック35上に少なくとも部分的に延び、エピタキシャル領域30に対向する多層導電スタック35上に縮小結合領域36cを画定する不働態化層40bとを含む。一部の実施形態では、不働態化層40bは、多層導電スタック35全体にわたり、さらにエピタキシャル領域30全体にわたって第1の基板面20a上へも延びている。やはり図6に示すように、本発明の一部の実施形態では、多層導電スタック35およびエピタキシャル領域30の両方が、側壁を有し、不働態化層40bが、多層導電スタック35およびエピタキシャル領域30の側壁上に延びている。やはり図6に示すように、結合領域36c上に結合層60が設けられている。結合層60は、結合層側壁も含み、不働態化層40bは、結合層の側壁上へ延びていてもいなくてもよい。最後に、多層導電スタック35と結合層60の間に接着層55を設けてもよく、不働態化層40bは、やはり、接着層55および/または結合層60の側壁上へ延びていてもいなくてもよい。
図6をさらに参照すると、本発明の一部の実施形態では、基板20は、エピタキシャル領域30に隣接した第1の面20aと、エピタキシャル領域に対向する第2の面20bを有する。図6に示すように、結合層60は、多層導電スタック35よりも表面積が小さく、多層導電スタック35は、エピタキシャル領域30よりも表面積が小さい。エピタキシャル層30は、第1の面20aよりも表面積が小さい。第2の面20bも、第1の面20aより表面積が小さい。
図6は、また、本発明の一部の実施形態による発光ダイオードを示し、これは、互いに対向する第1の面20aと第2の面20bを有する基板20を含み、第2の面20bは、第1の面よりも表面積が小さい。エピタキシャル領域30は第1の面20a上にあり、その内部にダイオード領域を含む。オーミック層32は、基板20に対向するエピタキシャル領域30上にある。反射層34は、エピタキシャル領域30に対向するオーミック層32上にある。バリア層36は、オーミック層32に対向する反射層34上にある。接着層55は、反射層34に対向するバリア層36上にある。最後に、結合層60は、バリア層36に対向する接着層55上にある。
やはり図6に示すように、本発明の一部の実施形態では、バリア層36は、タングステン、チタン/タングステン、および/または窒化チタン/タングステンを含む。本発明の他の実施形態では、スズに対するバリア層36は、タングステンを含む第1の層36aと、タングステンを含む第1の層36a上に設けられた、ニッケルを含む第2の層36bとを含む。
やはり図6に示すように、本発明の一部の実施形態では、エピタキシャル領域30は、第1の面20aよりも表面積が小さい。バリア層36、反射層34およびオーミック層32は、表面積が同じで、その表面積は、エピタキシャル領域30の表面積よりも小さい。接着層55および結合層60は、表面積が同じで、その表面積は、バリア層36、反射層34およびオーミック層32の表面積よりも小さい。
最後に、やはり図6に示すように、本発明の一部の実施形態では、エピタキシャル領域30、オーミック層32、反射層34、バリア層36、接着層55および結合層60は、それぞれ側壁を含み、発光ダイオード100は、さらにエピタキシャル領域30、オーミック層32、反射層34およびバリア層36の側壁上に不働態化層40bを含む。不働態化層は、接着層55および/または結合60の側壁上に延びていても延びていなくてもよい。不働態化層40bは、基板20の第1の面20a上に延びていてもよい。
図7は、結合層60が、はんだ濡れ層62と、濡れ不働態化層64を含む本発明の他の実施形態を示す。一部の実施形態では、はんだ濡れ層62は、ニッケルを含み、厚さが約2000Åである。一部の実施形態では、濡れ不働態化層64は、Auを含み、厚さが約500Åである。本発明の一部の実施形態によれば、ニッケルのはんだ濡れ層62を使用すると、ハンダへの機械的結合を向上させることができ、これにより接続の剪断強度が高まり、機械的破損の可能性を減少させることができる。
図8は、結合層60および任意選択の接着層55が不働態化層40bの外縁40cより先には延びていない、本発明の他の実施形態を示す。本発明の一部の実施形態によると、この構成は、はんだ結合を使用してLEDをリードフレームに実装する場合に使用できる。
図1〜8は、また、本発明の一部の実施形態による複数の発光ダイオードを製作する方法を示す。これらの方法は、基板20上に、内部にダイオード領域を含む複数のメサ領域30を、間隔を置いてエピタキシャルに形成するステップを含む(図2)。メサ領域上に、第1の縮小領域30cを画定する(図2)。メサ領域30の第1の縮小領域30c上にバリア層を含む多層導電スタック35を形成する(図3)。メサ領域30間の基板20の上と、メサ領域の露出した部分の上と、多層スタック35の露出した部分の上とに不働態化層40aを形成し、不働態化層40aによって、多層導電スタック35の上に第2の縮小領域36cを画定する(図4および5)。次いで、多層導電スタック35の第2の縮小領域36c上に結合層60を形成する(図5)。メサ30間で基板20をダイスし、複数の発光ダイオード100を生成する(図6)。
次に図9および10を参照すると、LED100をダイスカットした後、そのLEDと導電性サブマウント75を互いに接着する。図9は、サーモソニック結合および/または熱圧着結合を利用し、エピタキシャル側を下にしてLED100を実装し、「フリップチップ」構成とした、本発明の実施形態を示す。すなわち、例えば特許文献2に開示されているように、エポキシ化合物またははんだを使用してLED100とサブマウント75との間に機械的な接続または結合を形成する代わりに、サーモソニック結合または熱圧着結合により、LED100の結合層60をサブマウント75に直接結合させている。
本発明の一部の実施形態によるサーモソニック結合または熱圧着結合の一部の実施形態では、LEDチップ100をサブマウントと機械的に接触させ、結合金属の共晶温度を上回る温度で機械的および/または音響刺激を与える。結合金属は、このように、金属サブマウントと共にボンドを形成し、これによって、LEDとサブマウントの間に電気機械的接続が提供される。結合層60が、約80%/20%のAu/Sn相対組成を有する本発明の実施形態では、サーモソニック結合に使用される温度は、約300℃でよい。
バリア層36および/または不働態化層40bが存在するので、結合層60内の金属と、反射層34および/またはオーミック層32との好ましくない相互干渉を抑制または防止できる。バリア層36および/または不働態化層40はまた、金属が金属スタック35の縁部に沿って好ましくない移動をするのを遅らせるかまたは阻止することができる。
本発明の他の実施形態では、図10に示すように、SnAg、SnPbおよび/または他のはんだなどの金属はんだ80を使用して、LED100をサブマウント75上に実装できる。不働態化層40bは、はんだ80からのSnが、反射層34および/またはオーミック層32へ移動する(およびそれにより、場合によってはそれを劣化させる)のを抑制または防止できる。不働態化層40bは、また、普通ならデバイス100のn型領域に好ましくない寄生ショットキー接触部を形成することがある、導電性はんだ80の、基板20およびメサ側壁への接触を抑制または防止することも可能である。本発明の他の実施形態に従って使用可能な他の結合技術が文献に開示されている(例えば、特許文献3参照)。
(試験結果)
下記の試験結果は、例示的なものであり、本発明の特許請求の範囲を限定するものと理解されるべきではない。図11A〜11Dは、2500ÅのNiはんだバリアに対する試験結果のグラフを示し、図12A〜12Dは、5000ÅのTiWバリアに対する試験結果のグラフを示す。
第1の試験で、多数のLEDサンプルの高温作動寿命(HTOL)を測定した。この試験では、TiWはんだバリア36、SiN不働態化層40bおよび金結合層60を有する20個のLEDを製作した。はんだバリアがNiであることを除いて、同じ構造を有する20個のLEDも製作した。はんだ結合により、これらのデバイスを半径5mmの銀メッキされたリードフレーム上に実装した。次いで、温度を85℃に維持しながら、これらのデバイスを20mAの順電流で動作させた。24、168、336、504、672、864および1008時間後に光出力電力およびVを測定した。図11Aおよび12Aに示すように、Niバリアのデバイスでは、TiWバリアのデバイスに比べ光出力が大きく低下した。さらに、Niバリアのデバイス(図11B)では、TiWバリアのデバイス(図12B)よりもVが高くなった。
第2の試験では、TiWはんだバリア36、SiN不働態化層40bおよび金結合層60を有する20個のLEDを製作し、はんだバリアがNiであることを除いて、同じ構造を有する20個のLEDも製作した。これらのデバイスを、HTOL試験に関して上記したように実装し、温度を85℃および相対湿度を85%に維持しながら、504時間70mAのパルス順電流(4kHzで25%のデューティーサイクル)で動作させた。24、168、336、504、672、864および1008時間後に光出力電力およびVを測定した。図11Cおよび12Cに示すように、Niバリアのデバイスでは、光出力がより大きく低下し、図11Dおよび12Dに示すように、Niバリアのデバイスでは、Vがより高くなった。
(バリア層/副層構造および製作方法)
ミラー34ともいう反射層34からの金属の移動を制限することが好ましい。これは、このような金属は、メサ30と接触した場合、デバイスのpn接合に短絡を起こす可能性があるためである。ミラー34が、比較的低い温度で容易に移動しやすい銀を含む場合に特に金属の移動を制限することが好ましい。このことは、例えば、非特許文献1に開示されている。表面水分および電界の存在下においては、酸化および/または腐食のため、正の(アノード)メタライゼーション部(positive(anodic)metallizations)で銀イオンが形成される可能性がある。銀イオンが、負の(カソード)メタライゼーション部(negative(cathodic)metallizations)へ移動するとき、樹枝状結晶(分岐構造)の形でメッキされる可能性がある。樹枝状結晶は、最終的には、LEDのアノードとカソードの間隙を埋め、短絡を引き起こすことがある。
本発明の一部の実施形態によると、ミラー金属34がメサ30へ移動するのを制限するためには、図13に示すように、バリア層36を反射層34の側壁を覆って延ばすことが望ましい。これは、フォトリソグラフィのステップを追加してオーミックコンタクト層32および反射層34を、バリア層36と比べて幅が狭くなるように形成し、かつ/または他の従来技術を使用することによって達成できる。従って、バリア層36が形成されたとき、例えば、堆積されたとき、それが反射層34およびオーミックコンタクト32の側壁、ならびに、オーミックコンタクト32および反射層34を囲むメサ30の表面の一部に接触する可能性がある。
図13に示すように、このようにバリア層36を反射層34の側壁を覆うように形成した場合、バリア層内で反射層34の側壁近傍に割れが生じる可能性がある。このような割れによって移動経路が形成され、反射層34からの銀が流出して、場合によっては、メサ30へ移動する。図14は、割れの形成を示し、薄いオーミックコンタクト層32が上に形成されたメサ30を示す。オーミックコンタクト層32上に銀の反射層34が形成され、構造全体がTiWなどのバリア金属層36で覆われている。図14から分かるように、TiWバリア金属層36を堆積させたとき、結晶粒界49によって分離された垂直配向の結晶粒47が形成される。反射層34の隅部における結晶粒47のミスアラインメントによって割れ51が形成されることがあり、これにより、反射層34からの金属が流出し、場合によってはメサ30へ移動する移動経路が形成される可能性がある。
図15に示すように、割れ51の形成を抑制または回避するために、本発明の一部の実施形態によるバリア層36は、TiWなどのバリア金属36Aと白金などの第2の金属36Bからなる複数の交互副層を含むことができる。第2の金属36Bに適した金属には、Pt、Ti、Niおよび/または他の金属がある。金属36Bは、LED構造内で容易に移動できてはならず、その融点は、LEDの製作において、後続のどの処理ステップで使用される温度よりも高くなければならない(一部の実施形態では、少なくとも約200℃)。一実施形態では、バリア層36は、少なくとも2回繰り返された、約1000ÅのTiWと約500Åの白金からなる交互副層を含み、そのスタックの最上部と底部の副層の両方がTiWより成る。すなわち、複数の第1および第2の交互副層によって、第1の副層を含む第1および第2の外部副層が画定される。さらに、スタック内のTiWからなる第2の(最終の)外層を、約5000Åの厚さにし、はんだバリアとしての働きをさせることができる。一実施形態では、TiW/Pt層のスタックを6回繰り返し、TiWからなる最終(終端)層の厚さを約5000Åとしている。本発明の他の実施形態では、他の多くの厚さのバリア金属36Aおよび第2の金属36Bを使用することができる。一般に、バリア金属36Aは、割れを抑制または防止するに足るほど充分に薄くなければならないが、有効なバリアを提供するに足る充分な厚さが必要である。一方、第2の金属36Bは、接触抵抗を悪化させないように充分に薄くなければならないが、バリア金属層36A内の割れが第2のバリア層を横切って伝播するのを防止するに足る充分な厚さが必要である。
図15に示すように、TiWからなる連続層の結晶粒界49は、必ずしも垂直にアラインメントを生じるとは限らず、それによって、反射体金属に対し移動経路を別な方法で形成する場合がある、バリア層36を貫通する長い割れの形成を阻止することができる。その場合、TiW連続層によって、各層にオフセット結晶粒のスタックを有する、一般に、煉瓦壁に類似したパターンが形成される。
この現象は図16および17に示されており、これらは、それぞれ、図14および15に示す実施形態に従って製作された金属スタックの40,000倍の走査電子顕微鏡(SEM)画像である。図16に示す構造では、TiWバリア層36は、単一の層として反射体34およびオーミックコンタクト32を覆って堆積されている。バリア層36内に垂直結晶粒界49が見える。さらに、割れ51が、反射層34の縁部からバリア層の表面に延びているのが見える。
これと対照的に、図17に示す構造では、バリア層36は、TiW36Aと白金36Bからなる複数の交互層を含む。TiW36Aの交互層内の結晶粒界49が、反射層34およびメサ30を覆って、煉瓦壁パターンを形成しているのがはっきりとわかる。図16に示す構造とは対照的に、バリア層36内に割れは見られない。
本発明の諸実施形態を図面および明細書に開示してきた。様々な特定の用語を使用しているが、それらは、一般的説明的意味で使用したものにすぎず、添付の特許請求の範囲に記載されている発明の範囲を限定するものではない。
本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの、本発明の一部の実施形態による中間製作段階の断面図である。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の一部の実施形態による発光ダイオードの試験結果を示すグラフである。 本発明の他の実施形態による発光ダイオードの断面図である。 本発明の他の実施形態による発光ダイオードの断面図である。 本発明の他の実施形態による発光ダイオードの断面図である。 本発明の他の実施形態による発光ダイオードの走査電子顕微鏡(SEM)画像である。 本発明の他の実施形態による発光ダイオードの走査電子顕微鏡(SEM)画像である。

Claims (30)

  1. 基板と、
    内部に発光領域を含む前記基板上のエピタキシャル領域と、
    前記エピタキシャル領域上の反射層側壁を含む反射層、および前記反射層と前記エピタキシャル領域との間のオーミックコンタクト層側壁を含むオーミックコンタクト層を有する多層導電スタックと、
    前記反射層側壁直上、および前記オーミックコンタクト層側壁直上に延びる前記反射層直上の導電バリア層であって、複数の第1および第2の副層を交互に重ねた層を含み、前記第1の副層は、その内部に結晶粒界を含み、および前記第2の副層は、実質的に結晶粒界を含まない導電バリア層と
    を備えたことを特徴とする半導体発光素子。
  2. 前記導電バリア層は、前記多層導電スタック外部の前記エピタキシャル領域上へさらに延びていることを特徴とする請求項1に記載の発光素子。
  3. 前記第1の副層は、その内部に段状の煉瓦壁構造を画定するように配列された結晶粒界を含むことを特徴とする請求項1に記載の発光素子。
  4. 前記第1の副層は、チタンタングステンを含み、および前記第2の副層は、白金、チタンおよび/またはニッケルを含むことを特徴とする請求項1に記載の発光素子。
  5. 前記第1の副層は、チタンタングステンを含み、および前記第2の副層は、白金、チタンおよび/またはニッケルを含むことを特徴とする請求項に記載の発光素子。
  6. 前記第1の副層は、前記反射層からの金属の移動を抑制するように構成され、および前記第2の副層は、前記第1の副層内の少なくとも一部の結晶粒界が該第2の副層を横切って伝播するのを防止するように構成されたことを特徴とする請求項1に記載の発光素子。
  7. 前記第1の副層は、前記反射層からの金属の移動を抑制するように構成され、および前記第2の副層は、前記第1の副層内の少なくとも一部の結晶粒界が該第2の副層を横切って伝播するのを防止するように構成されたことを特徴とする請求項に記載の発光素子。
  8. 前記第2の副層は、前記第1の副層よりも薄いことを特徴とする請求項1に記載の発光素子。
  9. 前記複数の第1および第2の副層を交互に重ねた層は、前記反射層に最も近接した第1の副層と、前記反射層から最も離れた第1の副層とを含むことを特徴とする請求項1に記載の発光素子。
  10. 前記反射層から最も遠い前記第1の副層は、前記反射層に最も近接した前記第1の副層よりも厚いことを特徴とする請求項に記載の発光素子。
  11. 前記第2の副層は、前記第1の副層よりも薄いことを特徴とする請求項に記載の発光素子。
  12. 前記複数の第1および第2の副層を交互に重ねた層は、前記反射層に最も近接した第1の副層と、前記反射層から最も離れた第1の副層とを含むことを特徴とする請求項11に記載の発光素子。
  13. 前記反射層から最も遠い前記第1の副層は、前記反射層に最も近接した前記第1の副層よりも厚いことを特徴とする請求項12に記載の発光素子。
  14. 前記第1の副層は、厚さが約1000Åのチタンタングステン副層を含み、および前記第2の副層は、厚さが約500Åの白金副層を含むことを特徴とする請求項1に記載の発光素子。
  15. 前記第1の副層は、厚さが約1000Åのチタンタングステン副層を含み、前記第2の副層は、厚さが約500Åの白金副層を含み、前記反射層に最も近接した前記第1の副層は、厚さが約1000Åのチタンタングステン副層を含み、および前記反射層から最も遠い前記第1の副層は、厚さが約5000Åのチタンタングステン副層を含むことを特徴とする請求項13に記載の発光素子。
  16. 前記反射層側壁に隣接する前記導電バリア層は、該導電バリア層の内部で割れが発生するのを少なくとも一部は防止するように構成されたことを特徴とする請求項1に記載の発光素子。
  17. 前記基板は炭化ケイ素を含み、および前記エピタキシャル領域は窒化ガリウムを含むことを特徴とする請求項1に記載の発光素子。
  18. 前記オーミックコンタクト層は、白金、パラジウム、ニッケル/金、酸化ニッケル/金、酸化ニッケル/白金、チタン、および/またはチタン/金を含み、および前記反射層は、アルミニウムおよび/または銀を含むことを特徴とする請求項1に記載の発光素子
  19. 前記反射層は、銀を含むことを特徴とする請求項1に記載の発光素子。
  20. 前記第1の副層は、前記反射体からの金属の移動を抑制するに足るほど充分に厚いが、前記第1の副層の割れを少なくともある程度防止するに足るほど充分に薄く、および前記第2の副層は、前記第1の副層内の結晶粒界が該第2の副層を横切って伝播するのを少なくとも一部は防止するに足るほど充分に厚いが、前記多層導電スタックの抵抗を悪化させないほど充分に薄いことを特徴とする請求項1に記載の発光素子。
  21. 基板と、内部にデバイス領域を含む該基板上のエピタキシャル領域と、前記エピタキシャル領域上の反射層側壁を含む反射層と、前記反射層および前記エピタキシャル領域の間のオーミックコンタクト層側壁を含むオーミックコンタクト層とを有する多層導電スタックとを含む半導体発光素子の製造方法であって、
    前記反射層側壁直上および前記オーミックコンタクト層側壁直上に延びる導電バリア層を、前記反射層直上に形成するステップであって、前記導電バリア層を複数の第1および第2の副層を交互に重ねた層として形成し、前記第1の副層は、その内部に結晶粒界を含み、および前記第2の副層は、実質的に結晶粒界を含まないステップ
    を備えたことを特徴とする方法。
  22. 前記形成するステップは、
    前記反射層側壁直上、前記オーミックコンタクト層側壁直上、および前記多層導電スタック外部の前記エピタキシャル領域直上に延びる導電バリア層を、前記反射層直上に形成するステップを含むことを特徴とする請求項21に記載の方法。
  23. 前記第1の副層は、前記結晶粒界が該第1の副層の段状の煉瓦壁構造を画定するように配列されたことを特徴とする請求項21に記載の方法。
  24. 前記バリア層を複数の第1および第2の副層を交互に重ねた層として形成するステップは、前記第2の副層を前記第1の副層よりも薄くなるように形成するステップを含むことを特徴とする請求項21に記載の方法。
  25. 前記複数の第1および第2の副層を交互に重ねた層を第1の副層で終端させて、外部副層を画定するステップをさらに備えたことを特徴とする請求項21に記載の方法。
  26. 前記外部副層は、前記第1の副層よりも厚いことを特徴とする請求項24に記載の方法。
  27. 前記第2の副層は、前記第1の副層よりも薄いことを特徴とする請求項21に記載の方法。
  28. 前記基板は炭化ケイ素を含み、および前記エピタキシャル領域は窒化ガリウムを含むことを特徴とする請求項21に記載の方法。
  29. 前記反射層は銀を含むことを特徴とする請求項21に記載の方法。
  30. 前記バリア層を複数の第1および第2の副層を交互に重ねた層として形成するステップは、
    前記第1の副層を、前記反射体からの金属の移動を抑制するに足るほど充分に厚く、かつ前記第1の副層の割れを防止するに足るほど充分に薄く形成するステップと、前記第2の副層を、前記第1の副層内の結晶粒界が該第2の副層を横切って伝播することを少なくともある程度防止するに足るほど充分に厚く、かつ前記多層導電スタックの抵抗を悪化させないほど充分に薄く形成するステップとを含むことを特徴とする請求項21に記載の方法。
JP2004523125A 2002-07-22 2003-07-15 バリア層を含む発光ダイオードおよびその製造方法 Expired - Lifetime JP4602079B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/200,244 US6740906B2 (en) 2001-07-23 2002-07-22 Light emitting diodes including modifications for submount bonding
US45096003P 2003-02-28 2003-02-28
PCT/US2003/021909 WO2004010509A2 (en) 2002-07-22 2003-07-15 Light emitting diode including barrier layers and manufacturing methods therefor

Publications (2)

Publication Number Publication Date
JP2006502563A JP2006502563A (ja) 2006-01-19
JP4602079B2 true JP4602079B2 (ja) 2010-12-22

Family

ID=30772536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004523125A Expired - Lifetime JP4602079B2 (ja) 2002-07-22 2003-07-15 バリア層を含む発光ダイオードおよびその製造方法

Country Status (6)

Country Link
EP (2) EP1523776B1 (ja)
JP (1) JP4602079B2 (ja)
CN (1) CN100347866C (ja)
AU (1) AU2003263779A1 (ja)
CA (1) CA2492249A1 (ja)
WO (1) WO2004010509A2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794684B2 (en) * 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US6740906B2 (en) * 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
JP2005228924A (ja) * 2004-02-13 2005-08-25 Toshiba Corp 半導体発光素子
ATE524839T1 (de) 2004-06-30 2011-09-15 Cree Inc Verfahren zum kapseln eines lichtemittierenden bauelements und gekapselte lichtemittierende bauelemente im chip-massstab
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US8513686B2 (en) * 2004-09-22 2013-08-20 Cree, Inc. High output small area group III nitride LEDs
EP2426743B1 (en) * 2004-10-22 2019-02-20 Seoul Viosys Co., Ltd GaN compound semiconductor light emitting element and method of manufacturing the same
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
TWI422044B (zh) 2005-06-30 2014-01-01 Cree Inc 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
JP5162909B2 (ja) * 2006-04-03 2013-03-13 豊田合成株式会社 半導体発光素子
JP5308618B2 (ja) * 2006-04-26 2013-10-09 日亜化学工業株式会社 半導体発光装置
US20080042145A1 (en) * 2006-08-18 2008-02-21 Helmut Hagleitner Diffusion barrier for light emitting diodes
US7759670B2 (en) * 2007-06-12 2010-07-20 SemiLEDs Optoelectronics Co., Ltd. Vertical LED with current guiding structure
JP2011066296A (ja) * 2009-09-18 2011-03-31 Fuji Xerox Co Ltd 電極コンタクト構造、自己走査型発光素子アレイ
JP4803302B2 (ja) * 2009-12-17 2011-10-26 三菱化学株式会社 窒化物半導体発光素子
EP2686892B1 (en) * 2011-03-14 2019-10-02 Lumileds Holding B.V. Led having vertical contacts redistributed for flip chip mounting
CN102738331A (zh) * 2011-04-08 2012-10-17 新世纪光电股份有限公司 垂直式发光二极管结构及其制作方法
US9269662B2 (en) * 2012-10-17 2016-02-23 Cree, Inc. Using stress reduction barrier sub-layers in a semiconductor die
KR101976450B1 (ko) 2012-10-19 2019-05-09 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
TWI527263B (zh) 2013-07-17 2016-03-21 新世紀光電股份有限公司 發光二極體結構
CN106449932A (zh) * 2016-11-17 2017-02-22 映瑞光电科技(上海)有限公司 一种垂直结构发光二极管及其制造方法
CN106449955A (zh) * 2016-11-17 2017-02-22 映瑞光电科技(上海)有限公司 一种垂直结构发光二极管及其制造方法
CN108110116B (zh) * 2017-10-20 2020-05-19 华灿光电(浙江)有限公司 一种发光二极管芯片及其制作方法
CN112885822B (zh) * 2020-07-27 2023-08-01 友达光电股份有限公司 显示装置的制造方法
CN115498088B (zh) * 2022-11-16 2023-01-31 镭昱光电科技(苏州)有限公司 微型发光二极管及制备方法
CN116646435B (zh) * 2023-07-26 2023-09-19 江西兆驰半导体有限公司 一种倒装发光二极管芯片及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894919A (en) * 1974-05-09 1975-07-15 Bell Telephone Labor Inc Contacting semiconductors during electrolytic oxidation
FR2394894A1 (fr) * 1977-06-17 1979-01-12 Thomson Csf Dispositif de prise de contact sur un element semiconducteur
FR2488049A1 (fr) * 1980-07-31 1982-02-05 Bouley Jean Source lumineuse a jonction semiconductrice, notamment source-laser, utilisant des diodes schottky, et procede de fabrication
JPH11121803A (ja) * 1997-10-16 1999-04-30 Hitachi Cable Ltd 発光ダイオード及びその製造方法
JPH11220168A (ja) * 1998-02-02 1999-08-10 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体素子及びその製造方法
JP3531475B2 (ja) * 1998-05-22 2004-05-31 日亜化学工業株式会社 フリップチップ型光半導体素子
US6514782B1 (en) * 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
JP3975388B2 (ja) * 2000-04-07 2007-09-12 サンケン電気株式会社 半導体発光素子
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
DE10112542B9 (de) * 2001-03-15 2013-01-03 Osram Opto Semiconductors Gmbh Strahlungsemittierendes optisches Bauelement
JP3912044B2 (ja) * 2001-06-06 2007-05-09 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子の製造方法
US6740906B2 (en) * 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US6888167B2 (en) 2001-07-23 2005-05-03 Cree, Inc. Flip-chip bonding of light emitting devices and light emitting devices suitable for flip-chip bonding
US6747298B2 (en) 2001-07-23 2004-06-08 Cree, Inc. Collets for bonding of light emitting diodes having shaped substrates

Also Published As

Publication number Publication date
JP2006502563A (ja) 2006-01-19
EP1523776A2 (en) 2005-04-20
AU2003263779A8 (en) 2004-02-09
AU2003263779A1 (en) 2004-02-09
WO2004010509A2 (en) 2004-01-29
CN1672268A (zh) 2005-09-21
CA2492249A1 (en) 2004-01-29
EP2287930B1 (en) 2019-06-05
EP2287930A1 (en) 2011-02-23
EP1523776B1 (en) 2019-05-15
WO2004010509A3 (en) 2004-09-23
CN100347866C (zh) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4602079B2 (ja) バリア層を含む発光ダイオードおよびその製造方法
US8907366B2 (en) Light emitting diodes including current spreading layer and barrier sublayers
US7037742B2 (en) Methods of fabricating light emitting devices using mesa regions and passivation layers
JP5676396B2 (ja) 高光抽出led用の基板除去方法
US6794684B2 (en) Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7829911B2 (en) Light emitting diode
JP4956928B2 (ja) 半導体装置
RU2535636C2 (ru) Отражающий контакт для полупроводникового светоизлучающего устройства
JP2006073618A (ja) 光学素子およびその製造方法
JP4901241B2 (ja) 半導体発光素子及びその製造方法
JP2011517084A (ja) 半導体発光装置に関する反射的コンタクト部
CN112670391A (zh) 一种发光二极管及其制造方法
KR20040019363A (ko) 서브마운트 결합을 위한 모디피케이션을 포함한 발광다이오드 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100428

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100531

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4602079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term