RU2535636C2 - Отражающий контакт для полупроводникового светоизлучающего устройства - Google Patents

Отражающий контакт для полупроводникового светоизлучающего устройства Download PDF

Info

Publication number
RU2535636C2
RU2535636C2 RU2012105987/28A RU2012105987A RU2535636C2 RU 2535636 C2 RU2535636 C2 RU 2535636C2 RU 2012105987/28 A RU2012105987/28 A RU 2012105987/28A RU 2012105987 A RU2012105987 A RU 2012105987A RU 2535636 C2 RU2535636 C2 RU 2535636C2
Authority
RU
Russia
Prior art keywords
type region
layer
reflective
light emitting
type
Prior art date
Application number
RU2012105987/28A
Other languages
English (en)
Other versions
RU2012105987A (ru
Inventor
Джон И. ЭПЛЕР
Original Assignee
ФИЛИПС ЛЮМИЛЕДС ЛАЙТИНГ КОМПАНИ ЭлЭлСи
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФИЛИПС ЛЮМИЛЕДС ЛАЙТИНГ КОМПАНИ ЭлЭлСи, Конинклейке Филипс Электроникс Н.В. filed Critical ФИЛИПС ЛЮМИЛЕДС ЛАЙТИНГ КОМПАНИ ЭлЭлСи
Publication of RU2012105987A publication Critical patent/RU2012105987A/ru
Application granted granted Critical
Publication of RU2535636C2 publication Critical patent/RU2535636C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Полупроводниковое светоизлучающее устройство содержит полупроводниковую структуру, которая в свою очередь содержит светоизлучающий слой, размещенный между областью n-типа и областью р-типа; р-электрод, размещенный на части области р-типа, а р-электрод содержит отражающий первый материал в непосредственном контакте с первой частью области р-типа; второй материал в непосредственном контакте со второй частью области р-типа, соседней с первой частью; и третий материал, размещенный поверх первого и второго материала, при этом третий материал выполнен с возможностью предотвращения миграции первого материала, при этом первый материал и второй материал представляют собой плоские слои одинаковой толщины. Также согласно изобретению предложен способ изготовления полупроводникового светоизлучающего устройства. Изобретение обеспечивает возможность улучшения отражательной способности контакта, что повышает эффективность устройства. 2 н. и 10 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение относится к отражающему контакту для III-нитридного светоизлучающего устройства.
УРОВЕНЬ ТЕХНИКИ
[0002] Полупроводниковые светоизлучающие устройства, включающие в себя светоизлучающие диоды (LED или СИД), резонаторные светоизлучающие диоды (RCLED), лазерные диоды поверхностного излучения с вертикальным объемным резонатором (VCSEL) и лазеры с краевым излучением входят в круг наиболее эффективных источников света, доступных в настоящее время. Интересные сейчас системы материалов в производстве светоизлучающих устройств с высокой яркостью, способных работать в видимой области спектра, включают полупроводники III-V группы, в особенности двойные, тройные и четверные сплавы галлия, алюминия, индия и азота, также называемые как III-нитридные материалы. Обычно III-нитридные светоизлучающие устройства изготавливают путем эпитаксиального выращивания пакета полупроводниковых слоев с различными составами и концентрациями легирующих добавок на сапфире, карбиде кремния, III-нитриде, композите или других пригодных подложках путем химического осаждения из паров металлоорганических соединений (MOCVD), молекулярно-лучевой эпитаксией (МВЕ) или другими эпитаксиальными технологиями. Пакет часто включает в себя один или более слоев n-типа, легированных, например, Si (кремнием), образованных поверх подложки, один или более светоизлучающих слоев в активной области, образованных поверх слоя или слоев n-типа, и один или более слоев р-типа, легированных, например, Mg (магнием), образованных поверх активной области. Электрические контакты образованы на областях n- или р-типа. III-нитридные устройства часто образованы как устройства с перевернутыми кристаллами, где как n-, так и р-контакты образованы на одной и той же стороне полупроводниковой структуры, и свет излучается из стороны полупроводниковой структуры, противоположной контактам.
[0003] Серебро часто используется в качестве отражающего р-контакта и известно своей чувствительностью к транспортировке, включающей в себя механическое напряжение, химической реакции или электромиграции. Например, III-нитридный СИД с серебряным р-контактом изображен на Фиг. 1 и описан в Патенте США 6946685. Патент США 6946685 указывает, что «серебряная металлизация электрода подвергается электрохимической миграции в присутствии влаги и электрического поля, например, такого, как поле, созданное в результате приложения рабочего напряжения к контактам устройства». Электрохимическая миграция серебряной металлизации в р-n-переход устройства приводит к альтернативному шунтовому пути через переход, который ухудшает эффективность устройства.
[0004] Фиг. 1 иллюстрирует светоизлучающее устройство, включающее в себя полупроводниковую структуру, которая включает в себя светоизлучающую активную область 130А между слоем 120 n-типа из III-V-нитридного полупроводника и слоем 140 р-типа из III-V-нитридного полупроводника. P-электрод 160, содержащий металлическое серебро, размещен на слое р-типа, а n-электрод (не показанный на Фиг. 1) соединен со слоем n-типа. Предусмотрены средства, с помощью которых электрические сигналы могут быть приложены на упомянутые электроды для побуждения излучения света из активной области, и миграционный барьер 175 создан для предотвращения электрохимической миграции металлического серебра из р-электрода в направлении активной области. Миграционный барьер 175 представляет собой проводящий защитный лист. Защитный лист полностью охватывает серебро, покрывая края серебряного р-электрода, как изображено на Фиг. 1.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0005] Задачей настоящего изобретения является включение отражающего первого материала и второго материала в р-электрод. В некоторых вариантах осуществления второй материал может сокращать миграцию первого материала. Отражательная способность контакта может быть улучшена по сравнению с устройством с серебряным контактом и защитным листом, который охватывает серебряный контакт.
[0006] Варианты осуществления изобретения включают в себя полупроводниковую структуру, содержащую светоизлучающий слой, размещенный между областью n-типа и областью р-типа. P-электрод размещен на части области р-типа. P-электрод включает в себя отражающий первый материал в непосредственном контакте с первой частью области р-типа и второй материал в непосредственном контакте со второй частью области р-типа, соседней с первой частью. Первый материал и второй материал образованы в виде плоских слоев по существу одинаковой толщины.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0007] Фиг. 1 изображает светоизлучающее устройство с миграционным барьером, покрывающим серебряный р-электрод.
[0008] Фиг. 2 изображает часть III-нитридного устройства с серебряным р-контактом, на которой сформирован рисунок фоторезиста.
[0009] Фиг. 3 изображает устройство по Фиг. 2 после образования слоя поверх серебряного р-контакта со сформированным рисунком.
[0010] Фиг. 4 изображает устройство по Фиг. 3 после отслоения фоторезиста и образования защитного листа поверх р-электрода.
[0011] Фиг. 5 изображает III-нитридное устройство, соединенное с держателем.
ПОДРОБНОЕ ОПИСАНИЕ
[0012] В устройстве, изображенном в Фиг. 1, чтобы изолировать серебряный контакт защитным листом, сначала вытравливают серебро из края мезаструктуры. Полосу 10 между краем отражающего р-электрода 160 и краем мезаструктуры называют как «черный пояс», поскольку она не является такой же отражающей, как серебряный р-электрод 160. Черный пояс может иметь ширину, например, примерно 10 микрометров и может представлять примерно 7% площади устройства. Поглощение света черным поясом может снижать эффективность устройства. В дополнение, ступеньку 12, созданную на краю серебряного р-электрода 160, затруднительно изолировать защитным листом 175, и поэтому она склонна пропускать влагу и вызывать миграцию серебра наружу. Для минимизации высоты ступеньки 12 серебряный р-электрод 160 сохраняют настолько тонким, насколько возможно, например, примерно 150 нм. Стабильности и отражательной способности серебряного р-электрода могут благоприятствовать более толстые слои серебра, например, примерно 200 нм.
[0013] В вариантах осуществления изобретения, после вытравливания серебряного р-контакта, черный пояс наполняют металлическим слоем такой же толщины, как серебро. Почти плоская структура р-контакта может быть более отражающей и лучше изолированной, чем обычный контакт, такой как контакт, изображенный на Фиг. 1.
[0014] Фиг. 2-4 изображают образование отражающего контакта согласно вариантам осуществления изобретения. На Фиг. 2-4 изображена только часть устройства. На Фиг. 2 III-нитридную полупроводниковую структуру, включающую в себя область n-типа, светоизлучающую или активную область и область р-типа, наращивают на ростовой подложке (не показана), которая может быть любой подходящей ростовой подложкой, и которая обычно представляет собой сапфир или SiC. Сначала поверх подложки наращивают область 20 n-типа. Область n-типа может включать в себя множество слоев с различными составами и концентрациями легирующих добавок, включающие в себя, например, подготовительные слои, такие как буферные слои или затравочные слои, которые могут быть n-типа или ненамеренно легированными, отделяемые слои, сконструированные для облегчения последующего отделения ростовой подложки или утончения полупроводниковой структуры после удаления подложки, и слои устройства n- или даже р-типа, сконструированные для особенных оптических или электрических свойств, желательных для светоизлучающей области, чтобы эффективно излучать свет.
[0015] Светоизлучающую или активную область 22 наращивают поверх области 20 n-типа. Примеры пригодных светоизлучающих областей включают в себя единичный толстый или тонкий светоизлучающий слой или светоизлучающую область с множеством квантовых ям, включающую в себя множество тонких или толстых светоизлучающих слоев с квантовыми ямами, разделенные барьерными слоями. Например, светоизлучающая область с множеством квантовых ям может включать множество светоизлучающих слоев, каждый с толщиной 25 Å или меньше, разделенные барьерами, каждый с толщиной 100 Å или меньше. В некоторых вариантах осуществления толщина каждого из светоизлучающих слоев в устройстве составляет более 50 Å.
[0016] Поверх светоизлучающей области 22 наращивают область 24 р-типа. Подобно области n-типа, область р-типа может включать в себя множество слоев с различными составами, толщинами и концентрациями легирующих добавок, в том числе слои, которые являются ненамеренно легированными, или слои n-типа.
[0017] Отражающий металлический р-контакт 26 образован в области 24 р-типа. Отражающий металл 26 обычно включает в себя серебро и может представлять собой чистое серебро, сплав, включающий в себя серебро, или один или более слоев серебра и один или более слоев из иного металла, такого как никель, или другой проводящий материал. В некоторых вариантах осуществления отражающий металл 26 имеет толщину между 150 и 250 нм. Поверх отражающего металла 26 образуют слой 28 резиста и формируют рисунок, затем удаляют часть отражающего металла 26, например, в области 27 черного пояса. В устройстве остается часть отражающего металла 26 под слоем 28 резиста. Путем регулирования продолжительности травления можно удалить отражающий металл 26 из-под слоя 28 резиста вплоть до расстояния в несколько микрометров, обычно называемое как подтравливание.
[0018] На Фиг. 3 слой 28 резиста и черный пояс 27 покрыты слоем 30 с приблизительно такой же толщиной, как отражающий металл 26. Например, в некоторых вариантах осуществления слой 30 имеет толщину между 150 и 250 нм. Слой 30 выбирают так, чтобы он был отражающим настолько, насколько возможно, без проблем миграции серебра. Слой 30, например, может представлять собой единичный осажденный из паров алюминиевый слой, один или более напыленных алюминиевых слоев, один или более алюминиевых сплавов, пакет алюминий-металл, такой как AlTi, или неметаллический слой, такой как двойной слой Al2O3/Al или двойной слой SiO2/Al, для улучшения отражательной способности. Зазор между отражающим металлом 26 и слоем 30 может быть отрегулирован от нуля до менее чем 2 микрометров, путем управления подтравливанием отражающего металла 26 и выбора надлежащего способа размещения слоя 30.
[0019] Затем отслаивают слой 28 резиста, обнажая отражающий металл 26 и оставляя после этого слой 30 в черном поясе 27. На Фиг. 4 поверх р-электрода, который включает в себя отражающий металл 26 и слой 30, образован защитный лист 32. Защитный лист 32 может состоять, например, из одного или более металлов, таких как титан, вольфрам, или из одного или более сплавов, или из одного или более диэлектриков для улучшения отражательной способности, таких как SiNx, SiOx или Al2O3. В некоторых вариантах осуществления защитный слой 32 представляет собой слой из TiWN, размещенный между двумя слоями из TiW. В некоторых вариантах осуществления слой 30 представляет собой AlTi, и защитный слой 32 включает в себя по меньшей мере один слой из TiW. AlTi может обеспечивать улучшенную адгезию к слою защитного листа из TiW. В некоторых вариантах осуществления защитный лист включает в себя подслой и/или покровный слой, такой как никель, для улучшенной адгезии.
[0020] Фиг. 5 изображает СИД 42, соединенный с держателем 40. До или после образования вышеописанного р-электрода на области 24 р-типа части области n-типа подвергают травлению для удаления частей области р-типа и светоизлучающей области. Полупроводниковая структура, включающая в себя область 20 n-типа, светоизлучающую область 22 и область 24 р-типа, представлена структурой 44 на Фиг. 3. N-контакты 46 образованы на открытых частях области n-типа.
[0021] СИД 42 присоединен к держателю 40 n- и р-межсоединениями 56 и 58. Межсоединения 56 и 58 могут быть из любого подходящего материала, такого как припой или другие металлы, и могут включать в себя множество слоев материалов. В некоторых вариантах осуществления межсоединения включают в себя по меньшей мере один слой из золота, и связь между СИД 42 и держателем 40 образована путем ультразвуковой сварки.
[0022] Во время ультразвуковой сварки кристалл 42 СИД расположен на держателе 40. На верхней поверхности кристалла СИД расположена сварочная головка, часто на верхней поверхности сапфировой ростовой подложки в случае III-нитридного устройства, выращенного на сапфире. Сварочная головка соединена с ультразвуковым преобразователем. Ультразвуковой преобразователь может представлять собой, например, пакет слоев из титаната-цирконата свинца (PZT). Когда на преобразователь прикладывают напряжение с частотой, которая побуждает систему гармонично резонировать (часто с частотой порядка десятков или сотен кГц), преобразователь начинает вибрировать, что в свою очередь побуждает к вибрации сварочную головку и кристалл СИД, часто с амплитудой порядка микрометров. Вибрация побуждает атомы в кристаллической решетке металла в структуре на LED 42 взаимно диффундировать со структурой держателя 40, приводя к металлургически сплошному соединению. Во время связывания дополнительно могут быть привлечены нагревание и/или давление.
[0023] После связывания СИД 42 с держателем 40 вся подложка или ее часть, на которой были выращены полупроводниковые слои, может быть удалена любым способом, пригодным для конкретной, сапфировой ростовой подложки. Например, сапфировая подложка может быть удалена путем отслаивания с помощью лазера. После удаления всей ростовой подложки или ее части остальная полупроводниковая структура может быть подвергнута утончению, например, путем фотоэлектрохимического травления, и/или поверхность может быть сделана шероховатой или с нанесенным рисунком, например, с помощью фотонной кристаллической структуры. После удаления подложки поверх СИД 42 могут быть размещены линза, материал для преобразования длины волны или другая структура, известная в технике.
[0024] Вышеописанные варианты осуществления могут иметь некоторые преимущества над структурой, изображенной на Фиг. 1. Р-электродная структура в вышеуказанных вариантах осуществления может быть более плоской, тем самым сокращая точки концентрации напряжений и улучшая целостность защитного листа устранением необходимости в том, чтобы защитный лист покрывал ступеньку. Отражающий металл может быть сделан более толстым без усугубления проблем, связанных с покрытием ступеньки на краю отражающего металла с защитным листом. Оптические потери от чипа могут быть снижены путем сокращения количества света, поглощаемого черным поясом. Проблемы, связанные с отделением серебра от нижележащего полупроводникового материала, могут быть сокращены, так как слой 30 может защищать края отражающего металла 26 во время последующей обработки. Алюминиевый слой 30 может служить в качестве расходного анода, который может сдерживать или отсрочивать электрическую коррозию серебра. Миграция серебра в черный пояс может быть сокращена благодаря высокой электрической проводимости и низкой напряженности электрического поля алюминиевого слоя 30.
[0025] Описав изобретение подробно, специалисты в этой области техники поймут, что, исходя из настоящего изобретения, могут быть сделаны модификации изобретения без выхода за пределы смысла описанной здесь концепции изобретения. Поэтому не предполагается, что объем изобретения ограничивается конкретными иллюстрированными и описанными вариантами осуществления.

Claims (12)

1. Полупроводниковое светоизлучающее устройство, содержащее:
полупроводниковую структуру, содержащую светоизлучающий слой, размещенный между областью n-типа и областью р-типа;
р-электрод, размещенный на части области р-типа, причем р-электрод содержит:
отражающий первый материал в непосредственном контакте с первой частью области р-типа;
второй материал в непосредственном контакте со второй частью области р-типа, соседней с первой частью; и
третий материал, размещенный поверх первого и второго материала, при этом третий материал выполнен с возможностью предотвращения миграции первого материала,
при этом первый материал и второй материал представляют собой плоские слои одинаковой толщины.
2. Устройство по п.1, в котором первый материал содержит серебро.
3. Устройство по п.1, в котором второй материал содержит алюминий.
4. Устройство по п.1, в котором второй материал содержит одно из алюминиевого сплава, пакета алюминий-металл, AlTi, двойного слоя Al2O3/Al и двойного слоя SiO2/Al.
5. Устройство по п.1, в котором третий материал содержит титан и вольфрам.
6. Устройство по п.1, в котором
часть области р-типа и светоизлучающего слоя вытравлены для обнажения части области n-типа;
остальная часть области р-типа образует мезаструктуру; и второй материал размещен между первым материалом и краем мезаструктуры.
7. Способ изготовления полупроводникового светоизлучающего устройства, содержащий:
выращивание полупроводниковой структуры, содержащей светоизлучающий слой, размещенный между областью n-типа и областью р-типа;
формирование отражающего первого материала на области р-типа;
формирование слоя резиста на отражающем первом материале;
формирование рисунка слоя резиста для образования отверстия в слое резиста;
удаление части отражающего первого материала, соответствующей отверстию в слое резиста;
формирование второго материала на остальной части слоя резиста и части области р-типа, открытой в результате удаления части отражающего первого материала; и
удаление остальной части слоя резиста;
при этом как отражающий первый материал, так и второй материал содержат металл.
8. Способ по п.7, в котором первый материал и второй материал имеют одинаковую толщину.
9. Способ по п.7, в котором первый материал содержит серебро.
10. Способ по п.7, в котором второй материал содержит алюминий.
11. Способ по п.7, дополнительно содержащий формирование третьего материала на первом и втором материале, причем третий материал выполнен с возможностью предотвращения миграции первого материала.
12. Способ по п.11, в котором третий материал содержит титан и вольфрам.
RU2012105987/28A 2009-07-21 2010-06-24 Отражающий контакт для полупроводникового светоизлучающего устройства RU2535636C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/506,632 US8076682B2 (en) 2009-07-21 2009-07-21 Contact for a semiconductor light emitting device
US12/506,632 2009-07-21
PCT/IB2010/052894 WO2011010236A1 (en) 2009-07-21 2010-06-24 Reflective contact for a semiconductor light emitting device

Publications (2)

Publication Number Publication Date
RU2012105987A RU2012105987A (ru) 2013-08-27
RU2535636C2 true RU2535636C2 (ru) 2014-12-20

Family

ID=42799753

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105987/28A RU2535636C2 (ru) 2009-07-21 2010-06-24 Отражающий контакт для полупроводникового светоизлучающего устройства

Country Status (8)

Country Link
US (2) US8076682B2 (ru)
EP (1) EP2457266B1 (ru)
JP (1) JP2012533903A (ru)
KR (3) KR101713187B1 (ru)
CN (1) CN102473807B (ru)
RU (1) RU2535636C2 (ru)
TW (2) TWI625870B (ru)
WO (1) WO2011010236A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112000B4 (de) * 2011-08-31 2023-11-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Leuchtdiodenchip
CN102903817B (zh) * 2012-10-31 2015-04-22 安徽三安光电有限公司 具有反射电极的发光装置
TWI497767B (zh) * 2013-03-08 2015-08-21 Univ Southern Taiwan Sci & Tec Ⅲ-ⅴ族發光二極體之電極
EP2876035A1 (en) 2013-11-21 2015-05-27 Reflex Marine Ltd Device for transferring persons
RU2710005C1 (ru) * 2019-04-26 2019-12-23 Акционерное общество "ОКБ-Планета" АО "ОКБ-Планета" Способ монтажа полупроводниковых кристаллов в корпус

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2286618C2 (ru) * 2002-07-16 2006-10-27 Борис Анатольевич Матвеев Полупроводниковый диод для инфракрасного диапазона спектра

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831731B2 (ja) 1978-11-20 1983-07-08 富士通株式会社 配線形成方法
US4564997A (en) * 1981-04-21 1986-01-21 Nippon-Telegraph And Telephone Public Corporation Semiconductor device and manufacturing process thereof
US6194743B1 (en) * 1997-12-15 2001-02-27 Agilent Technologies, Inc. Nitride semiconductor light emitting device having a silver p-contact
JP4024994B2 (ja) 2000-06-30 2007-12-19 株式会社東芝 半導体発光素子
US6946685B1 (en) * 2000-08-31 2005-09-20 Lumileds Lighting U.S., Llc Light emitting semiconductor method and device
EP1406314B1 (en) * 2001-07-12 2015-08-19 Nichia Corporation Semiconductor device
US7737459B2 (en) * 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
US8174037B2 (en) * 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US8318519B2 (en) * 2005-01-11 2012-11-27 SemiLEDs Optoelectronics Co., Ltd. Method for handling a semiconductor wafer assembly
CN101882657A (zh) * 2005-10-29 2010-11-10 三星电子株式会社 半导体器件及其制造方法
JP2007157853A (ja) 2005-12-01 2007-06-21 Sony Corp 半導体発光素子およびその製造方法
US7737455B2 (en) * 2006-05-19 2010-06-15 Bridgelux, Inc. Electrode structures for LEDs with increased active area
JP4946195B2 (ja) * 2006-06-19 2012-06-06 サンケン電気株式会社 半導体発光素子及びその製造方法
JP2008192782A (ja) * 2007-02-05 2008-08-21 Toyota Central R&D Labs Inc 電極及びそれを有するiii族窒化物系化合物半導体発光素子
JP4367531B2 (ja) * 2007-06-06 2009-11-18 ソニー株式会社 発光素子における電極構造の形成方法、及び、積層構造体の形成方法
JP2009049267A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 半導体発光素子及びその製造方法
DE102007046519A1 (de) 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Dünnfilm-LED mit einer Spiegelschicht und Verfahren zu deren Herstellung
JP5325506B2 (ja) * 2008-09-03 2013-10-23 株式会社東芝 半導体発光素子及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2286618C2 (ru) * 2002-07-16 2006-10-27 Борис Анатольевич Матвеев Полупроводниковый диод для инфракрасного диапазона спектра

Also Published As

Publication number Publication date
JP2012533903A (ja) 2012-12-27
KR101991961B1 (ko) 2019-06-25
US20110018015A1 (en) 2011-01-27
RU2012105987A (ru) 2013-08-27
TWI625870B (zh) 2018-06-01
KR20170026666A (ko) 2017-03-08
KR101713187B1 (ko) 2017-03-07
KR20180053435A (ko) 2018-05-21
TW201123541A (en) 2011-07-01
US8257989B2 (en) 2012-09-04
WO2011010236A1 (en) 2011-01-27
CN102473807B (zh) 2015-05-20
US8076682B2 (en) 2011-12-13
TWI583023B (zh) 2017-05-11
CN102473807A (zh) 2012-05-23
KR20120049282A (ko) 2012-05-16
TW201707238A (zh) 2017-02-16
EP2457266A1 (en) 2012-05-30
US20120045858A1 (en) 2012-02-23
EP2457266B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
US9209362B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
US8004006B2 (en) Nitride semiconductor light emitting element
US8604502B2 (en) Light emitting diodes including barrier sublayers
US8093607B2 (en) Optoelectronic semiconductor component
US11695099B2 (en) Contact for a semiconductor light emitting device
JP4602079B2 (ja) バリア層を含む発光ダイオードおよびその製造方法
US20110079813A1 (en) Vertical gallium nitride-based light emitting diode and method of manufacturing the same
RU2535636C2 (ru) Отражающий контакт для полупроводникового светоизлучающего устройства
WO2015174924A1 (en) Method of forming a light-emitting device
US20120074457A1 (en) Semiconductor light emitting device with a contact formed on a textured surface
KR101499954B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및제조방법
US11888091B2 (en) Semiconductor light emitting device and light emitting device package
JP2023072332A (ja) 半導体発光素子および半導体発光素子の製造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20190111

PD4A Correction of name of patent owner