JP4599271B2 - Method for manufacturing sintered body - Google Patents

Method for manufacturing sintered body Download PDF

Info

Publication number
JP4599271B2
JP4599271B2 JP2005294012A JP2005294012A JP4599271B2 JP 4599271 B2 JP4599271 B2 JP 4599271B2 JP 2005294012 A JP2005294012 A JP 2005294012A JP 2005294012 A JP2005294012 A JP 2005294012A JP 4599271 B2 JP4599271 B2 JP 4599271B2
Authority
JP
Japan
Prior art keywords
molded body
buffer layer
electrode
sheet
conductive buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005294012A
Other languages
Japanese (ja)
Other versions
JP2007099578A (en
Inventor
靖 松平
浩吏 大塚
寛二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2005294012A priority Critical patent/JP4599271B2/en
Publication of JP2007099578A publication Critical patent/JP2007099578A/en
Application granted granted Critical
Publication of JP4599271B2 publication Critical patent/JP4599271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、あらかじめ所望の形状に成形された成形体に通電して、成形体を加熱して焼結体を製造する方法に関する。   The present invention relates to a method for producing a sintered body by energizing a molded body that has been previously molded into a desired shape and heating the molded body.

原料粉末を成形することにより所定の形状とした成形体を焼結する方法のひとつとして、通電加熱が用いられている。通電加熱とは、成形体に通電した時に、成形体を構成する材料固有の電気抵抗により発熱するジュール熱を利用して焼結を行う方法である。   As one of methods for sintering a molded body having a predetermined shape by molding raw material powder, current heating is used. The energization heating is a method for performing sintering using Joule heat generated by electric resistance specific to the material constituting the molded body when the molded body is energized.

通電加熱は、電源と一対の電極とからなる簡単な構成の装置で、迅速で均一な加熱を行えるため、成形体の焼結に限らず幅広い分野で利用されており、さらに効率よく加熱が行えるように、様々な改良がなされている。たとえば、特許文献1では、通電加熱により成形体を焼結する加熱装置において、サイドヒーターによる外部加熱を補助的に行っている。   Electric heating is a device with a simple structure consisting of a power source and a pair of electrodes, and can be heated quickly and uniformly, so it is used not only for sintering of compacts but also in a wide range of fields, and can be heated more efficiently. As such, various improvements have been made. For example, in Patent Document 1, external heating by a side heater is supplementarily performed in a heating apparatus that sinters a molded body by energization heating.

通電加熱では、成形体を一対の電極で挟持して成形体に通電するため、電極と成形体との接触状態が、電流の流れに影響を及ぼす。成形体の形状が、電極間の距離や電極の形状に合致する場合には、両者は良好に接触するため、所望の加熱処理を施すことができる。ところが、成形体の成形で生じる、製品の性能上では問題がない程度の僅かな突出や凹み、面の傾斜などにより、通電加熱時に成形体と電極との接触面積が狭くなり、所望の加熱処理が行えないという問題がある。
特開平10−52618号公報
In energization heating, the molded body is sandwiched between a pair of electrodes to energize the molded body, so the contact state between the electrode and the molded body affects the flow of current. When the shape of the molded body matches the distance between the electrodes and the shape of the electrodes, both are in good contact with each other, so that a desired heat treatment can be performed. However, the contact area between the molded body and the electrode becomes narrow during energization heating due to slight protrusions, dents, surface inclination, etc. that do not cause problems in the performance of the product that occur in the molding of the molded body. There is a problem that cannot be done.
Japanese Patent Laid-Open No. 10-52618

本発明は、上記問題点に鑑み、成形体と電極とを良好に接触させた状態で、成形体に通電して焼結することができる新規な焼結体の製造方法を提供することを目的とする。   In view of the above problems, the present invention has an object to provide a novel method for producing a sintered body that can be sintered by energizing the molded body in a state where the molded body and the electrode are in good contact with each other. And

本発明の焼結体の製造方法は、導電性材料を含む原料粉末から成形された成形体と電極との間に、シート状で一方の面が該電極と接触するとともに他方の面が該成形体の表面形状に応じて変形可能な導電性をもつ導電性緩衝層を介在させて、前記成形体を一対の前記電極で挟持し、該電極に電力を供給して該成形体に通電して焼結する焼結体の製造方法であって、
前記導電性緩衝層は、導電性をもつシートが複数枚積層された積層シートであることを特徴とする。
In the method for producing a sintered body of the present invention , a sheet is formed between a molded body molded from a raw material powder containing a conductive material and an electrode, and one surface is in contact with the electrode and the other surface is the molded body. with intervening conductive buffer layer having a deformable electrically conductive in accordance with the surface shape of the body, the molded body was sandwiched by a pair of the electrodes, by energizing the molded product by supplying power to the electrode A method for producing a sintered body to be sintered,
The conductive buffer layer sheet having a conductivity characterized by laminated sheet der Rukoto which are plurally stacked.

前記導電性緩衝層は、炭素材料からなる炭素材料シートであるのが好ましい。この際、前記導電性緩衝層は、炭素材料シートが複数枚積層された積層シートであるのが好ましい。また、前記炭素材料シートは、炭素繊維の織布または不織布であるのが好ましく、この際、前記導電性緩衝層は、前記織布と前記不織布とが互いに積層された積層シートであって、前記成形体と該織布とが当接するように介在されるのが望ましい。   The conductive buffer layer is preferably a carbon material sheet made of a carbon material. At this time, the conductive buffer layer is preferably a laminated sheet in which a plurality of carbon material sheets are laminated. The carbon material sheet is preferably a carbon fiber woven or non-woven fabric, wherein the conductive buffer layer is a laminated sheet in which the woven fabric and the non-woven fabric are laminated to each other, It is desirable that the molded body and the woven fabric are interposed so as to contact each other.

本発明の焼結体の製造方法では、通電加熱において、成形体と電極との間にシート状で一方の面が該電極と接触するとともに他方の面が該成形体の表面形状に応じて変形可能な導電性をもつ導電性緩衝層を介在させる。導電性緩衝層は、その電極側では電極と接触し、成形体側では成形体の表面形状に応じて変形する。そのため、成形体と電極とを直接当接させると非接触の部分が生じる場合でも、導電性緩衝層の緩衝作用により、成形体と電極とが導電性緩衝層を介して良好に接触するようになる。また、接触状態が良好となるように電極を成形体に押しつけても、導電性緩衝層の緩衝作用により、成形体の破損を防ぐことができる。   In the method for producing a sintered body according to the present invention, in energization heating, a sheet-like shape is formed between the molded body and the electrode, and one surface is in contact with the electrode and the other surface is deformed according to the surface shape of the molded body. A conductive buffer layer with possible conductivity is interposed. The conductive buffer layer is in contact with the electrode on the electrode side and deforms according to the surface shape of the molded body on the molded body side. Therefore, even if a non-contact portion occurs when the molded body and the electrode are brought into direct contact with each other, the molded body and the electrode are in good contact with each other through the conductive buffer layer due to the buffering action of the conductive buffer layer. Become. Even if the electrode is pressed against the molded body so that the contact state is good, the molded body can be prevented from being damaged by the buffering action of the conductive buffer layer.

導電性緩衝層は、炭素材料シートであるのが好ましく、複数枚積層して用いることで、緩衝作用が向上する。   The conductive buffer layer is preferably a carbon material sheet, and the buffering action is improved by using a plurality of stacked layers.

以下に、本発明の焼結体の製造方法(以下、「本発明の焼結方法」と略記)を実施するための最良の形態を説明する。   The best mode for carrying out the method for producing a sintered body of the present invention (hereinafter abbreviated as “the sintering method of the present invention”) will be described below.

本発明の焼結方法は、導電性材料を含む原料粉末から成形された成形体を一対の電極で挟持し、その電極に電力を供給して成形体に通電して焼結する、いわゆる、通電加熱による焼結方法である。   The sintering method of the present invention is a so-called energization method in which a molded body formed from a raw material powder containing a conductive material is sandwiched between a pair of electrodes, power is supplied to the electrodes and the molded body is energized and sintered. It is a sintering method by heating.

なお、本発明の焼結方法には、主として一対の電極から構成される一般的な通電加熱装置を用いることができる。すなわち、電源装置に接続された一対の電極をもち、焼結させたい成形体を挟持できる構成であれば、いずれの通電加熱装置であっても使用可能である。   In the sintering method of the present invention, a general electric heating apparatus mainly composed of a pair of electrodes can be used. That is, any energization heating device can be used as long as it has a pair of electrodes connected to the power supply device and can sandwich a molded body to be sintered.

電極の形状や材質については、成形体の形状や材質に応じて適宜選択すればよいが、電極の材質については、カーボン、炭化珪素、珪化モリブデン、金属などの導電性材料を使用することができる。この際、電極の発熱を抑制するため、成形体よりも熱容量を大きくすることが好ましい。   The shape and material of the electrode may be appropriately selected according to the shape and material of the molded body, but the electrode material may be a conductive material such as carbon, silicon carbide, molybdenum silicide, or metal. . At this time, in order to suppress the heat generation of the electrode, it is preferable to increase the heat capacity compared to the molded body.

また、通電加熱装置は、電源装置に接続された電極のほか、加熱雰囲気を調整する排気装置や、補助的な加熱を行うサイドヒータや電極の位置を調節する位置調節装置や、加熱温度を制御する制御装置などを装備してもよい。   In addition to the electrodes connected to the power supply device, the energization heating device controls the heating temperature, the exhaust device that adjusts the heating atmosphere, the side heater that performs auxiliary heating, the position adjustment device that adjusts the position of the electrodes, and the heating temperature It may be equipped with a control device or the like.

焼結される成形体としては、導電性材料を含む原料粉末から成形された成形体であれば特に限定はなく、金属粉末やセラミックス粉末、それらの混合粉末など、得られる焼結体の用途に応じて選択すればよい。また、その形状についても、得られる焼結体の用途に応じて選択すればよいが、本発明の焼結方法は、円柱形状や角柱形状をもつ柱状体あるいは板状体であると、特に効果的である。柱状体や板状体は、通常、略平行な端面(柱状体)や表裏面(板状体)等の平坦な面において、同様に平坦な面を有する電極により成形体を平行に挟持する(図1参照)。そのため、成形体の表面に僅かな凹凸があったり、面が僅かに傾いていたりすると、電極と成形体との接触面積が小さくなるという問題があるからである。   The molded body to be sintered is not particularly limited as long as it is a molded body formed from a raw material powder containing a conductive material, and can be used for the obtained sintered body such as metal powder, ceramic powder, and mixed powder thereof. You may choose according to it. Further, the shape may be selected depending on the use of the obtained sintered body, but the sintering method of the present invention is particularly effective when it is a columnar body or a plate-shaped body having a cylindrical shape or a prismatic shape. Is. A columnar body or a plate-shaped body usually sandwiches a molded body in parallel between electrodes having a flat surface on a flat surface such as a substantially parallel end surface (columnar body) or front and back surfaces (plate-shaped body) ( (See FIG. 1). For this reason, there is a problem that the contact area between the electrode and the molded body becomes small if the surface of the molded body has slight irregularities or the surface is slightly inclined.

そこで、本発明の焼結方法では、成形体と電極との間に、シート状で一方の面が電極と接触するとともに他方の面が成形体の表面形状に応じて変形可能な導電性をもつ導電性緩衝層を用いた。導電性緩衝層は、一方の面では電極との接触を保ちつつ他方の面で成形体の面に応じて変形するため、緩衝作用により電極との接触面積を確保することができる。すなわち、本発明の焼結方法では、成形体と電極との間に導電性緩衝層を介在させて、成形体に通電して焼結する。   Therefore, in the sintering method of the present invention, between the molded body and the electrode, in a sheet form, one surface is in contact with the electrode and the other surface has conductivity that can be deformed according to the surface shape of the molded body. A conductive buffer layer was used. Since the conductive buffer layer is deformed in accordance with the surface of the molded body on the other surface while maintaining contact with the electrode on one surface, a contact area with the electrode can be ensured by a buffering action. That is, in the sintering method of the present invention, a conductive buffer layer is interposed between the compact and the electrode, and the compact is energized and sintered.

導電性緩衝層は、シート状で導電性をもつ材料からなれば特に限定はない。そのため、導電性緩衝層には、たとえば、各種金属材料や、炭素材料、導電性を有する樹脂、などからなるシートを用いることができるが、使用温度(焼結温度)の点から、金属材料シートや炭素材料シートを用いるのがよい。また、導電性緩衝層が一方の面が電極と接触するとともに他方の面が成形体の表面形状に応じて変形可能するためには、弾性や可撓性が必要である。たとえば、少なくとも厚さ方向に変形する導電性緩衝層であるのが望ましく、成形体と電極とを互いに押しつけることにより、両者を良好に接触させることができる。導電性や変形能の面からはもちろん耐熱性の面でも導電性緩衝層として最適であるのは、炭素材料からなる炭素材料シートである。   The conductive buffer layer is not particularly limited as long as it is made of a sheet-like conductive material. Therefore, for the conductive buffer layer, for example, a sheet made of various metal materials, carbon materials, conductive resins, and the like can be used. From the viewpoint of use temperature (sintering temperature), the metal material sheet It is preferable to use a carbon material sheet. In addition, in order for the conductive buffer layer to have one surface in contact with the electrode and the other surface to be deformable according to the surface shape of the molded body, elasticity and flexibility are required. For example, it is desirable that the conductive buffer layer be deformed at least in the thickness direction, and the molded body and the electrode can be pressed against each other so that both can be brought into good contact. A carbon material sheet made of a carbon material is most suitable as a conductive buffer layer in terms of heat resistance as well as conductivity and deformability.

炭素材料シートや金属材料シートは、炭素繊維や金属繊維からなる織布や不織布であるのが好ましい。具体的には、金属材料シートであればシート状にしたスチールウール、スチールメッシュ、炭素材料シートであれば紡績された炭素繊維の長繊維からなる織布である織物や編物など、長繊維や短繊維からなる不織布であるフェルトやマット、また、カーボンペーパーやカーボンフィルム等の市販のカーボンシートなど、を用いることができる。なお、織布は、平織の他、綾織、朱子織などであっても構わない。   The carbon material sheet or the metal material sheet is preferably a woven fabric or a nonwoven fabric made of carbon fiber or metal fiber. Specifically, if the metal material sheet is a sheet-like steel wool, steel mesh, if the carbon material sheet is a woven or knitted fabric made of spun carbon fiber long fibers, such as long fibers and shorts. Felt and mat, which are nonwoven fabrics made of fibers, and commercially available carbon sheets such as carbon paper and carbon film can be used. The woven fabric may be a twill weave, a satin weave, or the like in addition to a plain weave.

導電性緩衝層は、その厚さに特に限定はなく、成形体と電極とを当接させた場合に接触しない部分の間隙がごく僅かであれば薄くてもよい。成形体と電極との間にできる間隙よりも導電性緩衝層が厚ければ、緩衝作用が良好に発揮される。導電性緩衝層の厚さは、好ましくは0.1〜5.0mm、さらに好ましくは0.5〜2.0mmである。そのため、炭素材料シート1枚では厚みが足りない場合は、複数枚積層した積層シートとしてもよい。積層シートとすれば、緩衝作用が向上するため好ましい。織布は、織物面の表面凹凸が細かいため、導電性緩衝層と当接する成形体の表面が粗くなるのを低減できる。また、フェルトなどの不織布は、織布よりも緩衝作用に優れる反面、織布に比べて表面が粗いため、得られる焼結体の表面状態に影響する。導電性緩衝層として織布と不織布とが互いに積層された積層シートを用い、成形体と織布とが当接するように介在させることにより、高い緩衝作用を維持しつつ、焼結体の表面粗さを低減させることができる。   The thickness of the conductive buffer layer is not particularly limited, and the conductive buffer layer may be thin as long as the gap between the portions that do not come into contact with the molded body and the electrode is very small. If the conductive buffer layer is thicker than the gap formed between the molded body and the electrode, the buffering effect is exhibited well. The thickness of the conductive buffer layer is preferably 0.1 to 5.0 mm, more preferably 0.5 to 2.0 mm. Therefore, when the thickness of one carbon material sheet is insufficient, a laminated sheet obtained by laminating a plurality of sheets may be used. A laminated sheet is preferable because the buffering action is improved. Since the woven fabric has fine surface irregularities on the fabric surface, it is possible to reduce the roughening of the surface of the molded body that comes into contact with the conductive buffer layer. In addition, the nonwoven fabric such as felt is superior in cushioning effect than the woven fabric, but has a rougher surface than the woven fabric, and therefore affects the surface state of the obtained sintered body. By using a laminated sheet in which a woven fabric and a nonwoven fabric are laminated together as a conductive buffer layer and interposing the molded body and the woven fabric in contact with each other, the surface roughness of the sintered body is maintained while maintaining a high buffering effect. The thickness can be reduced.

導電性緩衝層は、その大きさに特に限定はないが、電極と当接する成形体の当接面の面積と同じであるか広い方がよい。また、導電性緩衝層の面積が成形体の当接面より広い場合には、その形状に特に限定はないが、当接面と同程度の面積であれば、当接面の形状と同じ形状をもつとよい。いずれにしても、導電性緩衝層は、成形体の当接面の全面と接触させるのが望ましい。   The size of the conductive buffer layer is not particularly limited, but it is preferable that the conductive buffer layer has the same area as that of the contact surface of the molded body that contacts the electrode or a wider area. In addition, when the area of the conductive buffer layer is wider than the contact surface of the molded body, the shape is not particularly limited. However, if the area is approximately the same as the contact surface, the shape is the same as the shape of the contact surface. It is good to have. In any case, it is desirable that the conductive buffer layer is in contact with the entire contact surface of the molded body.

また、本発明の焼結方法は、成形体が、電極に挟持される表面に凹凸を有する場合に、電極との接触面積を増加させることができる。前述のように、導電性緩衝層は成形体の面に応じて変形するので、凹凸の程度にもよるが、導電性緩衝層が凹部に入り込んで接触面積が増加する。たとえば、成形体は、隔壁で区画され所定の方向に貫通する複数のセルを有するハニカム形状成形体であるのが好ましい。ハニカム形状成形体では、導電性緩衝層の変形により、セルの開口端部においてセルの内面にまで導電性緩衝層を接触させることができる。そのため、単に電極と端面で接触する場合よりも、広い範囲でより確実に接触されるため、通電状態が良好となる。なお、ハニカム構造体の「所定の方向」とは、ハニカム構造体の外周形状が円柱状や角柱状の柱状体であれば、ハニカム構造体の軸方向に相当し、排ガス浄化用触媒に用いられるのであれば、排ガスが流れる流路方向となる。   Moreover, the sintering method of this invention can increase a contact area with an electrode, when a molded object has an unevenness | corrugation in the surface clamped by an electrode. As described above, since the conductive buffer layer is deformed according to the surface of the molded body, the conductive buffer layer enters the concave portion and the contact area increases depending on the degree of unevenness. For example, the formed body is preferably a honeycomb-shaped formed body having a plurality of cells partitioned by partition walls and penetrating in a predetermined direction. In the honeycomb-shaped formed body, the conductive buffer layer can be brought into contact with the inner surface of the cell at the opening end of the cell by deformation of the conductive buffer layer. For this reason, since the contact is made more reliably in a wider range than when the electrode is simply contacted at the end face, the energized state is improved. The “predetermined direction” of the honeycomb structure corresponds to the axial direction of the honeycomb structure when the outer peripheral shape of the honeycomb structure is a columnar or prismatic columnar body, and is used for an exhaust gas purification catalyst. If it is, it becomes the flow path direction through which exhaust gas flows.

導電性緩衝層は、成形体と電極との間に介在されるが、一対の電極のうち少なくとも一方に介在させればよい。たとえば、互いに平行に対向する電極を用い、柱状体であって両端面が互いに僅かに平行でない成形体を焼結する場合には、一方の端面と電極との間に導電性緩衝層を介在させるだけでも両端面の接触状態が良好となる。   The conductive buffer layer is interposed between the molded body and the electrode, but may be interposed between at least one of the pair of electrodes. For example, in the case where electrodes that are parallel to each other are used and a molded body that is a columnar body and whose both end faces are not slightly parallel to each other is sintered, a conductive buffer layer is interposed between one end face and the electrode. Only the contact state of both end faces becomes good.

また、本発明は、通常の通電加熱装置の電極に導電性緩衝層を設けた通電加熱装置として捉えることも可能である。   Moreover, this invention can also be grasped | ascertained as an electric heating apparatus which provided the electroconductive buffer layer in the electrode of the normal electric heating apparatus.

以上、本発明の焼結体の製造方法の実施形態を説明したが、本発明の焼結方法は、上記実施形態に限定されるものではない。本発明は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the manufacturing method of the sintered compact of this invention was described, the sintering method of this invention is not limited to the said embodiment. The present invention can be carried out in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention.

以下に、本発明の焼結体の製造方法の実施例を説明する。   Below, the Example of the manufacturing method of the sintered compact of this invention is described.

[通電加熱装置]
以下に、本実施例で用いた通電加熱装置について、図1を用いて説明する。加熱装置1は、上下一対の電極11,12による通電加熱とサイドヒーター13による外部加熱とを併用して被処理物を加熱処理するものである。
[Electric heating device]
Below, the electric heating apparatus used in the present Example is demonstrated using FIG. The heating device 1 heats an object to be processed by using both current heating by a pair of upper and lower electrodes 11 and 12 and external heating by a side heater 13.

加熱装置1は、加熱処理室10内に、被処理物(成形体2)を挟持し直接通電するための上部電極11および下部電極12からなる一対の電極と、被加熱物を側面から外部加熱するためのサイドヒーター13と、が配置されている。電極11,12とサイドヒーター13は、それぞれに所定量の電力を供給する電力制御装置を含む電源装置15に接続されている。また、下部電極12は、図示しない電極昇降装置により昇降する。   The heating apparatus 1 includes a pair of electrodes including an upper electrode 11 and a lower electrode 12 for sandwiching an object to be processed (molded body 2) and directly energizing the object in the heat treatment chamber 10, and externally heating the object to be heated from the side. A side heater 13 is provided for the purpose. The electrodes 11 and 12 and the side heater 13 are connected to a power supply device 15 including a power control device that supplies a predetermined amount of power to each. The lower electrode 12 is moved up and down by an electrode lifting device (not shown).

加熱の際には、被加熱物は、下部電極12に載置され、電極昇降装置により下部電極が上昇し、被処理物の上端面が上部電極に押し付けられて通電される。電源装置15では、被処理物の温度に応じて、電極11,12やサイドヒータ13への供給電力が制御される。   During heating, the object to be heated is placed on the lower electrode 12, the lower electrode is raised by the electrode lifting device, and the upper end surface of the object to be processed is pressed against the upper electrode to be energized. In the power supply device 15, the power supplied to the electrodes 11, 12 and the side heater 13 is controlled according to the temperature of the object to be processed.

[実施例1]
炭化珪素粉末(平均粒径5μm)100重量部に対し、水20重量部、バインダーとしてメチルセルロース10重量部を配合し、ヘンシェル混合機で10分間混合して混練物を調製した。次いで、この混練物を真空押出成形機を用い、成形圧力80kg/cm2 の条件で、外径寸法□100mm、セル寸法2.0mm、壁厚0.4mmのハニカム形状に押出成形してから、長さ100mmに切断し、ハニカム形状成形体2を得た。得られた成形体2を乾燥後、窒素雰囲気中、450℃で1時間の脱脂を行った。
[Example 1]
20 parts by weight of water and 10 parts by weight of methylcellulose as a binder were blended with 100 parts by weight of silicon carbide powder (average particle size: 5 μm), and mixed for 10 minutes with a Henschel mixer to prepare a kneaded product. Next, this kneaded product was extruded into a honeycomb shape having an outer diameter of □ 100 mm, a cell size of 2.0 mm, and a wall thickness of 0.4 mm under the conditions of a molding pressure of 80 kg / cm 2 using a vacuum extruder. The honeycomb shaped body 2 was obtained by cutting to a length of 100 mm. The obtained molded body 2 was dried and then degreased at 450 ° C. for 1 hour in a nitrogen atmosphere.

乾燥・脱脂後の成形体2を加熱装置1内に配置した。はじめに、下部電極12の中央部に厚さ1.5mmの下部カーボンフェルト32fを載置し、さらにその上に厚さ0.5mmで平織の下部カーボンクロス32cを積層させた(導電性緩衝層3:厚さ2.0mm)。次に、導電性緩衝層3上に成形体2をその一端面が下部カーボンクロス32cと接触するように載置した後、成形体2の他端面に、上部カーボンクロス31c、上部カーボンフェルト31f、の順に成形体2の下部と同様の導電性緩衝層3を載置した。この状態で、下部電極12を上昇させ、成形体2の両端面を導電性緩衝層3を介して電極11,12で挟持した。成形体2の両端は、100g/cm2 で押圧された。なお、導電性緩衝層3は、成形体2の断面よりも一回り大きな形状とした。 The molded body 2 after drying and degreasing was placed in the heating device 1. First, a lower carbon felt 32f having a thickness of 1.5 mm was placed at the center of the lower electrode 12, and a plain carbon lower carbon cloth 32c having a thickness of 0.5 mm was further laminated thereon (conductive buffer layer 3). : Thickness 2.0 mm). Next, after placing the molded body 2 on the conductive buffer layer 3 so that one end surface thereof is in contact with the lower carbon cloth 32c, the upper carbon cloth 31c, the upper carbon felt 31f, The same conductive buffer layer 3 as the lower part of the molded body 2 was placed in this order. In this state, the lower electrode 12 was raised, and both end surfaces of the molded body 2 were sandwiched between the electrodes 11 and 12 via the conductive buffer layer 3. Both ends of the molded body 2 were pressed at 100 g / cm 2 . The conductive buffer layer 3 has a shape that is slightly larger than the cross section of the molded body 2.

その後、電源装置15を操作して、加熱処理室1を窒素雰囲気とし、通電加熱による焼結を行った。成形体2の軸方向に最大2000Aの電流を流し、50℃/分の昇温速度で1650℃まで昇温し、2分間保持した。得られた焼結体は、大気中900℃で3時間の酸化処理を行い残存する黒鉛を焼失させてハニカム形状をもつ焼結体を得た。   Then, the power supply device 15 was operated, the heat processing chamber 1 was made into nitrogen atmosphere, and sintering by an electrical heating was performed. A maximum current of 2000 A was passed in the axial direction of the molded body 2, the temperature was increased to 1650 ° C. at a temperature increase rate of 50 ° C./min, and held for 2 minutes. The obtained sintered body was oxidized in the atmosphere at 900 ° C. for 3 hours to burn off the remaining graphite to obtain a sintered body having a honeycomb shape.

本実施例では、成形体2に所望の値の電流を良好に印加して所望の昇温速度、到達温度で均一に焼結を行うことができた。そのため、本実施例では、成形体2と電極11,12とが導電性緩衝層3により、確実に接触していたと推測できる。   In this example, a desired value of current was satisfactorily applied to the molded body 2 and sintering could be performed uniformly at a desired rate of temperature rise and an ultimate temperature. Therefore, in this example, it can be estimated that the molded body 2 and the electrodes 11 and 12 were reliably in contact with each other by the conductive buffer layer 3.

[比較例1]
導電性緩衝層3を用いない他は、実施例1と同様にして、ハニカム形状成形体2を焼結して焼結体を得た。得られた焼結体は、局部的に加熱されて焼結されたため、密度の不均一な焼結体となった。
[Comparative Example 1]
Except not using the conductive buffer layer 3, the honeycomb-shaped formed body 2 was sintered in the same manner as in Example 1 to obtain a sintered body. Since the obtained sintered body was locally heated and sintered, it became a sintered body with non-uniform density.

本発明の焼結体の製造方法を実施した場合の通電加熱装置を模式的に示す断面図である。It is sectional drawing which shows typically the electricity heating apparatus at the time of implementing the manufacturing method of the sintered compact of this invention.

符号の説明Explanation of symbols

1:通電加熱装置 2:成形体 3:導電性緩衝層
10:加熱室
11:上部電極
12:下部電極
13:サイドヒータ
15:電源装置
31c:上部カーボンクロス
31f:上部カーボンフェルト
32c:下部カーボンクロス
32f:下部カーボンフェルト
1: Current heating device 2: Molded body 3: Conductive buffer layer 10: Heating chamber 11: Upper electrode 12: Lower electrode 13: Side heater 15: Power supply device 31c: Upper carbon cloth 31f: Upper carbon felt 32c: Lower carbon cloth 32f: Lower carbon felt

Claims (6)

導電性材料を含む原料粉末から成形された成形体と電極との間に、シート状で一方の面が該電極と接触するとともに他方の面が該成形体の表面形状に応じて変形可能な導電性をもつ導電性緩衝層を介在させて、前記成形体を一対の前記電極で挟持し、該電極に電力を供給して該成形体に通電して焼結する焼結体の製造方法であって、
前記導電性緩衝層は、導電性をもつシートが複数枚積層された積層シートであることを特徴とする焼結体の製造方法。
Between a molded body formed from a raw material powder containing a conductive material and an electrode, the sheet is in the form of a sheet whose one surface is in contact with the electrode and whose other surface is deformable according to the surface shape of the molded body. with intervening conductive buffer layer having sex, the molded body was sandwiched by a pair of the electrodes, a manufacturing method of a sintered body sintered by energizing the molded product by supplying power to the electrode And
The conductive buffer layer manufacturing method of a sintered body sheet having conductivity and wherein the laminated sheet der Rukoto which are plurally stacked.
前記導電性緩衝層は、少なくとも厚さ方向に変形することで前記電極および前記成形体と接触する請求項1記載の焼結体の製造方法。   The method for manufacturing a sintered body according to claim 1, wherein the conductive buffer layer is in contact with the electrode and the molded body by being deformed at least in a thickness direction. 導電性をもつ前記シートは、炭素材料からなる炭素材料シートである請求項1記載の焼結体の製造方法。 The method for manufacturing a sintered body according to claim 1, wherein the conductive sheet is a carbon material sheet made of a carbon material. 前記炭素材料シートは、炭素繊維の織布または不織布である請求項3記載の焼結体の製造方法。 The carbon material sheet, a manufacturing method of the sintered body according to claim 3 Symbol mounting a woven or non-woven carbon fiber. 前記導電性緩衝層は、前記織布と前記不織布とが互いに積層された積層シートであって、前記成形体と該織布とが当接するように介在される請求項記載の焼結体の製造方法。 5. The sintered body according to claim 4, wherein the conductive buffer layer is a laminated sheet in which the woven fabric and the non-woven fabric are laminated to each other, and is interposed so that the molded body and the woven fabric come into contact with each other. Production method. 前記成形体は、隔壁で区画され所定の方向に貫通する複数のセルを有するハニカム形状成形体である請求項1記載の焼結体の製造方法。   The method for producing a sintered body according to claim 1, wherein the formed body is a honeycomb-shaped formed body having a plurality of cells partitioned by partition walls and penetrating in a predetermined direction.
JP2005294012A 2005-10-06 2005-10-06 Method for manufacturing sintered body Expired - Fee Related JP4599271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294012A JP4599271B2 (en) 2005-10-06 2005-10-06 Method for manufacturing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294012A JP4599271B2 (en) 2005-10-06 2005-10-06 Method for manufacturing sintered body

Publications (2)

Publication Number Publication Date
JP2007099578A JP2007099578A (en) 2007-04-19
JP4599271B2 true JP4599271B2 (en) 2010-12-15

Family

ID=38026869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294012A Expired - Fee Related JP4599271B2 (en) 2005-10-06 2005-10-06 Method for manufacturing sintered body

Country Status (1)

Country Link
JP (1) JP4599271B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142146B2 (en) * 2008-05-20 2013-02-13 国立大学法人岐阜大学 Volatile organic compound processing equipment
JP2011098306A (en) * 2009-11-06 2011-05-19 Gifu Univ Volatile organic compound treatment apparatus
JP5540317B2 (en) * 2010-04-12 2014-07-02 日本電信電話株式会社 Conductive buffer material, electrode mechanism
JP6437786B2 (en) * 2014-10-27 2018-12-12 京セラ株式会社 Sensor substrate, sensor device, and sensor substrate manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315302A (en) * 2003-04-17 2004-11-11 Tokyo Yogyo Co Ltd Manufacturing process of conductive ceramic sintered compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315302A (en) * 2003-04-17 2004-11-11 Tokyo Yogyo Co Ltd Manufacturing process of conductive ceramic sintered compact

Also Published As

Publication number Publication date
JP2007099578A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5421227B2 (en) Manufacturing method, manufacturing apparatus and fuel cell for gas diffusion layer of fuel cell
JP4599271B2 (en) Method for manufacturing sintered body
KR100749886B1 (en) Heating element using Carbon Nano tube
EP2400814A2 (en) Carbon nanotube sheet heater
JPS63153388A (en) Heat treating furnace
US20060166075A1 (en) Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
KR102328045B1 (en) Carbon fiber heating mat
KR100756053B1 (en) Manufacturing method of carbon fiber for sheet heater
WO2011025931A1 (en) A fuel cell composite flow field element and method of forming the same
CA2607842C (en) Gas diffusion layer, arrangement and method for the manufacture thereof
JPH0896820A (en) Fuel cell
JP2011165390A (en) Battery unit
JP2001279479A (en) Power feeder and electrolytic cell
CN110289434B (en) Support film, method of attaching, method of manufacturing film-electrode assembly, and apparatus for manufacturing film-electrode assembly
JP3965502B2 (en) Conductive member for solid oxide fuel cell stack
JP4766490B2 (en) Method for producing a silk fired body
JP2004207231A5 (en)
KR20200022093A (en) Firing apparatus for solid oxide fuel cell and method for manufacturing the same
JP2009234851A (en) Porous carbon sheet and its manufacturing process
KR102361220B1 (en) Method for manufacturing a highly conductive carbon fiber paper, carbon fiber paper manufactured using the same, and carbon fiber plane heating element including the carbon fiber paper
JPH0636783A (en) Fuel electrode current collector for flat type solid electrolyte fuel cell
JP2002069682A (en) Feeder body for electrochemical cell
JP3853666B2 (en) Heat treatment furnace
WO2020183911A1 (en) Graphite production method and production device
JPH10270051A (en) Fuel cell electrode base material and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees