JP4766490B2 - Method for producing a silk fired body - Google Patents

Method for producing a silk fired body Download PDF

Info

Publication number
JP4766490B2
JP4766490B2 JP2006268867A JP2006268867A JP4766490B2 JP 4766490 B2 JP4766490 B2 JP 4766490B2 JP 2006268867 A JP2006268867 A JP 2006268867A JP 2006268867 A JP2006268867 A JP 2006268867A JP 4766490 B2 JP4766490 B2 JP 4766490B2
Authority
JP
Japan
Prior art keywords
firing
silk
temperature
fired
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006268867A
Other languages
Japanese (ja)
Other versions
JP2007119993A (en
Inventor
國雄 中津山
勝弘 山崎
昭博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Prefecture
Original Assignee
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Prefecture filed Critical Niigata Prefecture
Priority to JP2006268867A priority Critical patent/JP4766490B2/en
Publication of JP2007119993A publication Critical patent/JP2007119993A/en
Application granted granted Critical
Publication of JP4766490B2 publication Critical patent/JP4766490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、絹焼成体の製造方法に関する。本発明製造方法で得られる絹焼成体は、例えば燃料電池用のガス拡散層、電磁波シールド材、触媒担体等として有用である。
The present invention relates to a method for producing a silk fired body . The silk fired body obtained by the production method of the present invention is useful, for example, as a gas diffusion layer for fuel cells, an electromagnetic shielding material, a catalyst carrier, and the like.

絹素材を焼成して、炭化された絹焼成体を製造することが知られている。例えば、野蚕や養蚕から生じる絹材料を、密閉可能な焼成炉に納置して絶乾状態に乾燥した後、1〜20気圧の窒素ガスやヘリウムガス等の不活性ガスを封入し230〜350℃にて5〜60分加熱して炭化処理することによって、絹材料の特性が残存した炭化処理物を得ることが提案されている(特許文献1参照)。   It is known to fire a silk material to produce a carbonized silk fired body. For example, a silk material produced from wild silkworms or sericulture is placed in a hermetically sinterable baking oven and dried to an absolutely dry state, and then filled with an inert gas such as nitrogen gas or helium gas at 1 to 20 atm. It has been proposed to obtain a carbonized product in which the properties of the silk material remain by performing carbonization by heating at 5 ° C. for 5 to 60 minutes (see Patent Document 1).

しかし、この方法では焼成炉内が加圧状態下にあるので、絹材料中に含まれるセリシン等の揮発性物質が揮発しづらく、絹材料中に残存した状態で焼成が進行しやすい。その結果、得られる焼成体においては、当該揮発性物質の炭化物が付着した状態になっており、当該炭化物に起因して焼成体の柔軟性が損なわれてしまう。   However, in this method, since the inside of the firing furnace is under a pressurized state, volatile substances such as sericin contained in the silk material are difficult to volatilize, and firing is likely to proceed while remaining in the silk material. As a result, in the obtained fired body, the carbide of the volatile substance is attached, and the flexibility of the fired body is impaired due to the carbide.

前記の技術とは別に、焼成を複数段に分けて行うことで、絹タンパク質の高次構造の急激な分解を避ける技術が提案されている。例えば、不活性ガス雰囲気中で、第1次焼成温度(500℃)までは毎時100℃以下の緩やかな昇温速度で昇温し、第1次焼成温度で数時間保持して一次焼成を行い、次いで一旦常温にまで冷却した後、第2次焼成温度(700℃)まで毎時100℃以下の緩やかな昇温速度で昇温し、第2次昇温速度で数時間保持して二次焼成を行い、次いで再び冷却することが提案されている(特許文献2参照)。   Apart from the above technique, a technique for avoiding rapid decomposition of the higher-order structure of silk protein has been proposed by performing baking in a plurality of stages. For example, in an inert gas atmosphere, the temperature is increased at a moderate temperature increase rate of 100 ° C. or less per hour up to the primary firing temperature (500 ° C.), and the primary firing is performed at the primary firing temperature for several hours. Then, after cooling to room temperature, the temperature is raised at a moderate heating rate of 100 ° C. or less per hour up to the secondary firing temperature (700 ° C.), and the secondary firing is carried out at the secondary heating rate for several hours. And then cooling again has been proposed (see Patent Document 2).

この焼成方法でも焼成炉内は不活性ガスによって加圧状態になっているので、先に述べたとおり、焼成によって得られる焼成体には、揮発性物質の炭化物が付着した状態になっている。従って、当該炭化物に起因して焼成体の柔軟性が損なわれてしまう。尤も、この焼成方法における焼成温度は、先に述べた方法における焼成温度よりも高いので、揮発性物質は揮発しやすい条件になっている。しかし、この方法では、発生した揮発性物質が焼成炉内に付着してしまい焼成炉内が汚染される場合がある。また、焼成炉内に付着した物質がタール状に変性して焼成体上に滴下し、焼成体の品質を劣化させることもある。その上、この焼成方法では昇温と冷却が繰り返し行われるので、焼成が完了するまでに長時間を要し、製造効率の点で有利とは言えない。   Even in this firing method, the inside of the firing furnace is pressurized with an inert gas, and as described above, a volatile substance carbide is adhered to the fired body obtained by firing. Accordingly, the flexibility of the fired body is impaired due to the carbide. However, since the firing temperature in this firing method is higher than the firing temperature in the above-described method, the volatile substance is in a condition where it easily volatilizes. However, in this method, the generated volatile substance may adhere to the firing furnace and the inside of the firing furnace may be contaminated. Moreover, the substance adhering to the inside of the firing furnace may be modified into a tar shape and dropped onto the fired body to deteriorate the quality of the fired body. In addition, since the temperature rise and cooling are repeatedly performed in this firing method, it takes a long time to complete the firing, which is not advantageous in terms of production efficiency.

特開平10−266010号公報Japanese Patent Laid-Open No. 10-266010 特開2005−112667号公報JP 2005-112667 A

従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る絹焼成体の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for producing a silk fired body that can eliminate the various disadvantages of the above-described prior art.

本発明は、布状の絹素材が焼成炉内に収容された状態下に、焼成炉内を吸引減圧しつつ加熱して、絹素材を焼成、炭化させる絹焼成体の製造方法であって、
前記の焼成は、焼成前後での曲げ剛性(gf・cm2/cm)の変化率(〔焼成後の曲げ剛性−焼成前の曲げ剛性〕/焼成前の曲げ剛性×100)が−100〜300%となるように行われ、
前記の焼成は、焼成炉内を降温することなく加熱することで行われ、
前記の焼成は、仮焼成と本焼成の二段階で行われ、仮焼成は一次仮焼成と二次仮焼成とからなり、
一次仮焼成は、焼成炉内を吸引減圧しつつ、昇温速度2〜10℃/minで昇温し、温度200〜500℃で10〜120分間維持し、絹素材のタンパク質の変性を防止しつつ、絹素材に含まれる低温揮発物質を揮発させ、
二次仮焼成は、焼成炉内を吸引減圧しつつ、一次仮焼成の昇温速度と同等か又はそれよりも大きいことを条件として昇温速度2〜10℃/minで昇温し、温度600〜900℃で10〜120分間維持し、絹素材から発生する揮発性物質が観察されなくなるまで行い、
本焼成は、焼成炉内を吸引減圧しつつ、一次仮焼成及び二次仮焼成の昇温速度と同等か又はそれよりも大きいことを条件として昇温速度2〜15℃/min、温度950〜1300℃で行い、絹素材を炭化させる、絹焼成体の製造方法を提供することにより前記目的を達成したものである。
The present invention is a method for producing a silk fired body in which a silk-like material is fired and carbonized by heating the inside of the firing furnace with suction and pressure reduction while the cloth-like silk material is housed in the firing furnace,
In the firing, the rate of change in flexural rigidity (gf · cm 2 / cm) before and after firing ([bending stiffness after firing−bending stiffness before firing] / bending stiffness before firing × 100) is −100 to 300. % Is done,
The firing is performed by heating the inside of the firing furnace without lowering the temperature,
The calcination is performed in two stages of calcination and main calcination, and the calcination includes a primary calcination and a secondary calcination,
In the primary pre-baking, the temperature inside the baking furnace is reduced by suction and the temperature is increased at a temperature increase rate of 2 to 10 ° C./min and maintained at a temperature of 200 to 500 ° C. for 10 to 120 minutes to prevent the denaturation of the silk material. While volatilizing the low-temperature volatile substances contained in the silk material,
In the secondary calcination, the temperature in the calcination furnace is increased by a temperature increase rate of 2 to 10 ° C./min under the condition that the temperature is equal to or higher than the temperature increase rate of the primary calcination while the pressure in the baking furnace is reduced. Maintain at ˜900 ° C. for 10 to 120 minutes until volatile substances generated from the silk material are no longer observed,
The main calcination is performed under the condition that the temperature in the calcination furnace is reduced by suction and the temperature increase rate is equal to or greater than the temperature increase rate of the primary calcination and the secondary calcination. The object is achieved by providing a method for producing a silk fired body, which is carried out at 1300 ° C. and carbonizes the silk material.

発明の絹焼成体の製造方法によれば、焼成炉内を吸引減圧した状態下に焼成加熱が行われるので、絹素材に含まれる揮発性物質が揮発しやすい。つまり当該揮発性物質の焼成に起因する炭化物が、焼成体中に残存しにくい。また吸引減圧によって当該揮発性物質を系外に排出しながら焼成が行われるので、焼成炉内が汚染されにくい。焼成体にタール状の物質等が付着することも防止される。本発明の製造方法によって得られた絹焼成体は、原料である絹素材が本来的に有するしなやかさや柔軟性等の良好な風合いが維持されている。従って本発明の絹焼成体は取り扱い性が良好であり、種々の分野に好適に用いられる。
According to the method for producing a silk fired body of the present invention, calcination heating is performed in a state where the inside of the firing furnace is sucked and decompressed, so that the volatile substance contained in the silk material is easily volatilized. That is, the carbide resulting from the firing of the volatile substance is unlikely to remain in the fired body. Further, since the firing is performed while discharging the volatile substance out of the system by suction pressure reduction, the inside of the firing furnace is hardly contaminated. It is also possible to prevent tar-like substances from adhering to the fired body. The silk fired body obtained by the production method of the present invention maintains a good texture such as flexibility and flexibility inherently possessed by the raw silk material. Accordingly, the silk fired body of the present invention has good handleability and is suitably used in various fields.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の絹焼成体は、絹素材を原料として用い、これを減圧雰囲気下に焼成して得られたものである。本発明における減圧雰囲気とは、絹素材中に含まれている揮発性物質が容易に揮発し得る程度に低い圧力環境をいう。また、本発明における減圧雰囲気は、非酸化性雰囲気、すなわち酸素が存在しない雰囲気をいい、例えば希ガス類元素や窒素ガスなどの不活性ガスが低圧で存在する雰囲気や、真空状態が含まれる。減圧雰囲気は、通常、焼成炉内を真空ポンプで吸引することで実現される。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The silk fired body of the present invention is obtained by firing a silk material as a raw material and firing it in a reduced pressure atmosphere. The reduced-pressure atmosphere in the present invention refers to a pressure environment that is low enough to easily volatilize volatile substances contained in the silk material. The reduced pressure atmosphere in the present invention refers to a non-oxidizing atmosphere, that is, an atmosphere in which oxygen does not exist, and includes, for example, an atmosphere in which an inert gas such as a rare gas element or nitrogen gas exists at a low pressure, or a vacuum state. The reduced pressure atmosphere is usually realized by sucking the inside of the firing furnace with a vacuum pump.

絹素材としては布状のものであればその種類に特に制限はなく、家蚕や野蚕からなる織物、編物、不織布、これらの複合体、又はこれらと他の材料との複合体等を用いることができる。絹素材はその目付に特に制限はなく、目的とする絹焼成体の具体的な用途に応じて適切な目付のものが選択されて用いられる。本発明で用い得る絹素材の好適な目付は10〜500g/m2である。特に、後述する本発明の製造方法によれば、原料である絹素材が低目付であっても、所望の絹焼成体を得ることができるという利点がある。 The silk material is not particularly limited as long as it is cloth-like, and woven fabrics, knitted fabrics, nonwoven fabrics, composites of these, or composites of these with other materials may be used. it can. There are no particular restrictions on the basis weight of the silk material, and those having an appropriate basis weight are selected and used according to the specific use of the intended silk fired body. A suitable basis weight of the silk material that can be used in the present invention is 10 to 500 g / m 2 . In particular, according to the production method of the present invention described later, there is an advantage that a desired silk fired body can be obtained even if the raw silk material is low in weight.

本発明の絹焼成体は、焼成前後での曲げ剛性(gf・cm2/cm)の変化率が、従来の絹焼成体よりも小さいことによって特徴付けられる。このような特徴を有する本発明の絹焼成体は、原料である絹素材が本来的に有するしなやかさや柔軟性等の良好な風合いが維持されている。曲げ剛性は、その値が大きいほど曲げ難いことを意味する。曲げ剛性の変化率(%)は、〔焼成後の絹焼成体の曲げ剛性−焼成前の絹素材の曲げ剛性〕/焼成前の絹素材の曲げ剛性×100で定義される。曲げ剛性は、カトーテック製の曲げ試験機KES−FB2を用いて測定される。なお、曲げ剛性は、絹焼成体の流れ方向と幅方向(即ち、原料である絹素材の原反の流れ方向及び幅方向)で値が異なる場合があるが、その場合は、両方の値の平均値を、本発明における曲げ剛性の値と定義する。 The silk fired body of the present invention is characterized in that the rate of change in flexural rigidity (gf · cm 2 / cm) before and after firing is smaller than that of the conventional silk fired body. In the silk fired body of the present invention having such characteristics, a good texture such as flexibility and flexibility inherently possessed by the raw silk material is maintained. Bending rigidity means that it is hard to bend, so that the value is large. The change rate (%) of the bending stiffness is defined by [bending stiffness of fired silk fired body−bending stiffness of silk material before firing] / bending stiffness of silk material before firing × 100. The bending rigidity is measured using a bending tester KES-FB2 manufactured by Kato Tech. In addition, although bending rigidity may have a different value in the flow direction and width direction of the silk fired body (that is, the flow direction and width direction of the raw material of the silk raw material), in that case, both values The average value is defined as the value of bending stiffness in the present invention.

本発明の絹焼成体は、前記の式で定義される曲げ剛性の変化率が−100〜300%、好ましくは−80〜200%、更に好ましくは−60〜150%という低い値になっている。つまり、原料である絹素材の曲げ剛性よりも小さくなっているか、又は絹素材の曲げ剛性が大きく損なわれていない。これに対して従来知られている絹焼成体では、その剛性が高すぎることに起因して、曲げ試験を行うと当該焼成体が割れてしまい測定を行うことができないか、又は測定できたとしても、曲げ剛性の変化率は非常に高い値になってしまう。つまり、従来知られている絹焼成体は、原料である絹素材の曲げ剛性が大きく損なわれたものになっている。なお、絹素材の焼成によらず、カーボンファイバーを織り込んで布状物を作製することは可能であるが、薄手の布状物を作製して本発明の絹焼成体が有するしなやかさや柔軟性と同等の性能を達成することは容易でない。曲げ剛性の変化率を上述の範囲内とするためには、例えば後述する方法に従い絹焼成体を製造すればよい。   In the silk fired body of the present invention, the rate of change in flexural rigidity defined by the above formula is as low as -100 to 300%, preferably -80 to 200%, more preferably -60 to 150%. . That is, it is smaller than the bending rigidity of the raw silk material, or the bending rigidity of the silk material is not greatly impaired. On the other hand, in the conventionally known silk fired body, the rigidity is too high, and when the bending test is performed, the fired body is cracked and cannot be measured or measured. However, the rate of change in bending stiffness will be very high. That is, the conventionally known silk fired body has a material in which the bending rigidity of the raw silk material is greatly impaired. In addition, it is possible to fabricate a fabric by weaving carbon fibers, regardless of the firing of the silk material, but it is possible to fabricate a thin fabric and produce the flexibility and flexibility of the fired silk of the present invention. Achieving equivalent performance is not easy. In order to set the rate of change of the bending stiffness within the above range, for example, a silk fired body may be manufactured according to a method described later.

本発明の絹焼成体の曲げ剛性の変化率は前記の範囲であるが、絹焼成体それ自体の曲げ剛性の値は、0.001〜1gf・cm2/cm、特に0.02〜0.1gf・cm2/cmであることが好ましい。 The change rate of the bending rigidity of the fired silk body of the present invention is in the above range, but the value of the bending rigidity of the silk fired body itself is 0.001 to 1 gf · cm 2 / cm, particularly 0.02 to 0.00. It is preferably 1 gf · cm 2 / cm.

曲げ剛性の変化率が前記の範囲であることに加え、本発明の絹焼成体は焼成前後での曲げヒステリシスの変化率が低いことも好ましい。曲げヒステリシス(gf・cm/cm)は、曲げに対する回復の速さの尺度となるものであり、その値が大きいほど回復が遅いことを意味する。曲げヒステリシスの変化率(%)は、〔焼成後の絹焼成体の曲げヒステリシス−焼成前の絹素材の曲げヒステリシス〕/焼成前の絹素材の曲げヒステリシス×100で定義される。曲げヒステリシスは、前述の曲げ剛性と同様に、カトーテック製の曲げ試験機KES−FB2を用いて測定される。本発明の絹焼成体は、前記の式で定義される曲げヒステリシスの変化率が−100〜100%、好ましくは−80〜80%、更に好ましくは−50〜50%という低い値になっている。つまり、原料である絹素材の曲げヒステリシスが大きく損なわれていない。なお、曲げヒステリシスは、絹焼成体の流れ方向と幅方向(即ち、原料である絹素材の原反の流れ方向及び幅方向)で値が異なる場合があるが、その場合は、両方の値の平均値を、本発明における曲げヒステリシスの値と定義する。曲げヒステリシスの変化率を上述の範囲内とするためには、例えば後述する方法に従い絹焼成体を製造すればよい。   In addition to the change rate of bending stiffness being in the above range, the silk fired body of the present invention preferably has a low change rate of bending hysteresis before and after firing. Bending hysteresis (gf · cm / cm) is a measure of the speed of recovery with respect to bending, and the larger the value, the slower the recovery. The change rate (%) of the bending hysteresis is defined as [bending hysteresis of the fired silk material after firing−bending hysteresis of the silk material before firing] / bending hysteresis of the silk material before firing × 100. The bending hysteresis is measured using a bending tester KES-FB2 manufactured by Kato Tech, as with the bending rigidity described above. In the silk fired body of the present invention, the rate of change in bending hysteresis defined by the above formula is as low as -100 to 100%, preferably -80 to 80%, more preferably -50 to 50%. . That is, the bending hysteresis of the raw silk material is not significantly impaired. Note that the bending hysteresis may have different values in the flow direction and width direction of the silk fired body (that is, in the flow direction and width direction of the raw material of the silk material that is the raw material). The average value is defined as the value of bending hysteresis in the present invention. In order to make the rate of change in bending hysteresis within the above-mentioned range, for example, a silk fired body may be produced according to the method described later.

本発明の絹焼成体の曲げヒステリシスの変化率は前記の範囲であるが、絹焼成体それ自体の曲げヒステリシスの値は、0.0001〜1gf・cm/cm、特に0.002〜0.02gf・cm/cmであることが好ましい。   The change rate of the bending hysteresis of the fired silk body of the present invention is in the above-mentioned range, but the value of the bending hysteresis of the fired silk body itself is 0.0001 to 1 gf · cm / cm, particularly 0.002 to 0.02 gf. -It is preferable that it is cm / cm.

曲げ剛性の変化率及び曲げヒステリシスの変化率の値が上述した範囲であることに加え、本発明の絹焼成体は、単位厚み当たりの曲げ剛性の値が0.05〜1.0(gf・cm2/cm)/mm、特に0.1〜0.5(gf・cm2/cm)/mmであることが、しなやかで柔軟な風合いとなることから好ましい。単位厚み当たりの曲げ剛性の値は、本発明の絹焼成体の曲げ剛性の値を上述の方法で測定し、その測定値を絹焼成体の厚み(mm)で除すことで得られる。 In addition to the values of the change rate of the bending stiffness and the change rate of the bending hysteresis being in the above-described ranges, the fired silk body of the present invention has a bending stiffness value per unit thickness of 0.05 to 1.0 (gf · cm 2 / cm) / mm, preferably 0.1 to 0.5 (gf · cm 2 / cm) / mm is preferable because it provides a supple and flexible texture. The value of the bending rigidity per unit thickness is obtained by measuring the value of the bending rigidity of the fired silk body of the present invention by the above-described method and dividing the measured value by the thickness (mm) of the fired silk body.

本発明の絹焼成体の厚みは、定圧厚み測定器によって測定される。本発明において用いた定圧厚み測定器は、東洋精機製作所製のNo.132である。この測定器は、加える荷重の値が可変になっておらず、常に一定の荷重のみが測定可能なものである。本発明の絹焼成体の厚みに特に制限はないが、薄手の絹帛を原料として焼成体を製造する場合には、焼成後の厚みが30〜200μm、特に40〜100μmであることが好ましい。   The thickness of the silk fired body of the present invention is measured by a constant pressure thickness measuring instrument. The constant-pressure thickness measuring instrument used in the present invention is No. manufactured by Toyo Seiki Seisakusho. 132. In this measuring instrument, the value of the applied load is not variable, and only a constant load can always be measured. Although there is no restriction | limiting in particular in the thickness of the silk sintered body of this invention, When manufacturing a sintered body using thin silk as a raw material, it is preferable that the thickness after baking is 30-200 micrometers, especially 40-100 micrometers.

単位厚み当たりの曲げ剛性の値が上述した範囲であることに加えて、本発明の絹焼成体は、単位厚み当たりの曲げヒステリシスの値が0.01〜1.0(gf・cm/cm)/mm、特に0.03〜0.2(gf・cm/cm)/mmであることが、上述した理由と同様の理由により好ましい。単位厚み当たりの曲げヒステリシスの値は、本発明の絹焼成体の曲げヒステリシスの値を上述の方法で測定し、その測定値を絹焼成体の厚み(mm)で除すことで得られる。厚みの測定方法は上述したとおりである。   In addition to the value of the bending rigidity per unit thickness being in the above-described range, the fired silk of the present invention has a bending hysteresis value of 0.01 to 1.0 (gf · cm / cm) per unit thickness. / Mm, particularly 0.03 to 0.2 (gf · cm / cm) / mm is preferable for the same reason as described above. The value of the bending hysteresis per unit thickness is obtained by measuring the value of the bending hysteresis of the silk fired body of the present invention by the above-described method and dividing the measured value by the thickness (mm) of the silk fired body. The method for measuring the thickness is as described above.

以上の各種特性を有する本発明の絹焼成体は、しなやかで柔軟な風合いを有する。かかる風合いを一層良好にする観点から、本発明の絹焼成体はX線回折でグラファイトの(002)反射ピークが観測されないものであることが好ましい。つまりグラファイト構造を実質的に有していないことが好ましい。この理由は、本発明の絹焼成体は、原料である絹素材を焼成によって炭化して得られるものであるところ、炭化が進行しすぎてグラファイトが生成すると、絹焼成体の剛性が高くなり、その風合いが低下しやすいからである。   The silk fired body of the present invention having the above various characteristics has a supple and flexible texture. From the viewpoint of further improving the texture, it is preferable that the (002) reflection peak of graphite is not observed in the fired silk of the present invention by X-ray diffraction. That is, it is preferable that the material does not substantially have a graphite structure. The reason for this is that the silk fired body of the present invention is obtained by carbonizing the raw silk material by firing, and when the carbonization proceeds too much and graphite is produced, the rigidity of the silk fired body is increased, This is because the texture tends to decrease.

本発明の絹焼成体は、原料である絹素材が焼成によって炭化されたものであることから電気伝導性も有している。この特性を利用して、例えば、本発明の絹焼成体を燃料電池、例えば高分子電解質形燃料電池用のガス拡散層(GDL)として用いることができる。従来の燃料電池においては、ポリテトラフルオロエチレン系の電解質膜の表面に白金等からなる電極触媒層を形成し、それをカーボンペーパーからなるガス拡散層で被覆して膜電極接合体(MEA)を形成していた。これに対して、本発明の絹焼成体をガス拡散層として用いると、絹焼成体のしなやかさや柔軟性に起因して、形状にとらわれず自由な形状のMEA、例えば円筒状等の三次元形状を有するMEAを形成することが容易である。また、同じ厚みのカーボンペーパーと比較して、単位面積当たりの重量を低減させることもできる。このことは燃料電池のエネルギー密度を高める点から非常に有利である。更に、本発明の絹焼成体は高温でも安定なので、燃料電池の運転寿命を長くすることができる。   The silk fired body of the present invention also has electrical conductivity because the raw silk material is carbonized by firing. By utilizing this characteristic, for example, the silk fired body of the present invention can be used as a gas diffusion layer (GDL) for a fuel cell, for example, a polymer electrolyte fuel cell. In a conventional fuel cell, an electrode catalyst layer made of platinum or the like is formed on the surface of a polytetrafluoroethylene electrolyte membrane, and this is covered with a gas diffusion layer made of carbon paper to form a membrane electrode assembly (MEA). Was forming. On the other hand, when the fired silk body of the present invention is used as a gas diffusion layer, it is free of MEA, for example, a three-dimensional shape such as a cylindrical shape, regardless of the shape due to the flexibility and flexibility of the fired silk body. It is easy to form an MEA having Moreover, the weight per unit area can also be reduced compared with the carbon paper of the same thickness. This is very advantageous in terms of increasing the energy density of the fuel cell. Furthermore, since the silk fired body of the present invention is stable even at high temperatures, the operating life of the fuel cell can be extended.

本発明の絹焼成体を燃料電池用のガス拡散層として用いる場合には、当該絹焼成体の体積抵抗率は低いほど好ましく、5Ω・mm以下であることが好ましい。   When the fired silk body of the present invention is used as a gas diffusion layer for fuel cells, the volume resistivity of the fired silk body is preferably as low as possible, and is preferably 5 Ω · mm or less.

また本発明の絹焼成体は、絹素材の焼成による炭化に起因して電磁波シールド性も有している。従って、しなやかさや柔軟性が高いという利点を生かして、種々の形状に加工された電磁波シールド材、例えば衣料品や、電車、学校、病院などの壁材を、本発明の絹焼成体によって製造できる。   The silk fired body of the present invention also has electromagnetic wave shielding properties due to carbonization by firing of the silk material. Therefore, taking advantage of flexibility and high flexibility, electromagnetic shielding materials processed into various shapes, for example, clothing materials, wall materials for trains, schools, hospitals, etc. can be manufactured by the silk fired body of the present invention. .

更に本発明の絹焼成体は、絹素材の焼成による炭化に起因して多孔質の構造となっている。特に、本発明の絹焼成体を賦活処理(水蒸気等で賦活処理)することで、一層多孔質の構造とすることができる。この構造を利用して、本発明の絹焼成体を触媒の担体として用いることができる。例えば、本発明の絹焼成体に白金、ルテニウム、金属フタロシアニン誘導体、酸化チタンなどを担持させることができる。担持方法に特に制限はない。例えば白金を担持させる場合には、絹焼成体を酸で前処理し、次いで塩化白金酸溶液を塗布するか当該溶液中に浸漬させ、その後乾燥させればよい。   Furthermore, the silk fired body of the present invention has a porous structure due to carbonization by firing of the silk material. In particular, a more porous structure can be obtained by activating the silk fired body of the present invention (activation treatment with water vapor or the like). Using this structure, the fired silk body of the present invention can be used as a catalyst carrier. For example, platinum, ruthenium, a metal phthalocyanine derivative, titanium oxide, or the like can be supported on the silk fired body of the present invention. There are no particular restrictions on the loading method. For example, when platinum is supported, the silk fired body is pretreated with an acid, and then a chloroplatinic acid solution is applied or immersed in the solution, and then dried.

本発明の絹焼成体が多孔質の構造になっていることを利用して、本発明の絹焼成体を空気清浄機や浄水器用フィルタの吸着材、脱臭剤、抗菌剤、衛生マスクのフィルタ材として用いることもできる。   Utilizing the fact that the silk fired body of the present invention has a porous structure, the silk fired body of the present invention is used as an air cleaner or water purifier filter adsorbent, deodorant, antibacterial agent, sanitary mask filter material. Can also be used.

次に、本発明の絹焼成体の製造方法について図1を参照しながら説明する。図1には、本発明の絹焼成体を製造するのに好適な焼成炉10の模式図が示されている。同図に示す焼成炉10はその内部に、棚板11が複数段に配置されている。棚板11上には、原料である布状の絹素材12が載置されている。焼成炉10内には、棚板11を取り囲むように六面のパネルヒーターが設置されている。詳細には、棚板11の上下に、上部ヒーター13A及び下部ヒーター13Bが設置され、左右それぞれに側部ヒーター13Cが設置され(図1中、一方の側部ヒーターは省略されている)、前後に、前部ヒーター13D及び後部ヒーター13Eが設置されている。焼成炉10には、吸引口14が取り付けられている。吸引口14は開閉バルブ15を介して真空吸引装置(図示せず)に接続されている。なお図示していないが、焼成炉10の壁面と各パネルヒーターとの間には断熱材が設置されている。 Next, manufacturing method of silk fired body of the present invention will be described with reference to FIG. 1. FIG. 1 shows a schematic diagram of a firing furnace 10 suitable for producing the silk fired body of the present invention. The baking furnace 10 shown in the figure has a plurality of shelves 11 arranged therein. A cloth-like silk material 12 as a raw material is placed on the shelf board 11. A six-sided panel heater is installed in the firing furnace 10 so as to surround the shelf board 11. Specifically, an upper heater 13A and a lower heater 13B are installed above and below the shelf board 11, and side heaters 13C are installed on each of the left and right sides (in FIG. 1, one side heater is omitted). In addition, a front heater 13D and a rear heater 13E are installed. A suction port 14 is attached to the firing furnace 10. The suction port 14 is connected to a vacuum suction device (not shown) through an open / close valve 15. Although not shown, a heat insulating material is installed between the wall surface of the firing furnace 10 and each panel heater.

以上の構成を有する焼成炉10を用いた絹焼成体の製造方法について説明すると、先ず原料である布状の絹素材12を焼成炉10内の棚板11上に収容する。この状態下に吸引口14のバルブ15を開き、焼成炉10内を吸引減圧して真空状態にする。   When the manufacturing method of the silk sintered body using the baking furnace 10 which has the above structure is demonstrated, the cloth-like silk raw material 12 which is a raw material is first accommodated on the shelf board 11 in the baking furnace 10. FIG. Under this state, the valve 15 of the suction port 14 is opened, and the inside of the baking furnace 10 is sucked and decompressed to be in a vacuum state.

原料である絹素材12は、例えば前処理してフィブロン繊維の表面を薄層状に被覆するセリシンや、その他の不純物を除去しておいてもよい。前処理には酵素を用いた通常の精練処理を用いることができる。尤も、本発明の製造方法によれば、精練処理等の前処理を絹素材12に対して施さなくても首尾良く目的とする絹焼成体を得ることができる。従って絹素材12に対する前処理は本発明において必須のものではない。   The raw silk material 12 may be pre-treated to remove sericin that coats the surface of the fibron fiber in a thin layer and other impurities, for example. For the pretreatment, a normal scouring treatment using an enzyme can be used. However, according to the production method of the present invention, a desired silk fired body can be obtained successfully without performing pretreatment such as scouring treatment on the silk material 12. Therefore, the pretreatment for the silk material 12 is not essential in the present invention.

焼成炉10内が所定の真空度に到達したら、焼成炉10内に設置された各パネルヒーターに通電をして、これらを発熱させる。これによって棚板11上に載置された絹素材12を加熱して焼成を開始する。   When the inside of the firing furnace 10 reaches a predetermined degree of vacuum, the panel heaters installed in the firing furnace 10 are energized to generate heat. As a result, the silk material 12 placed on the shelf board 11 is heated to start firing.

絹素材12の焼成中に、焼成炉10内を吸引減圧する理由は、(イ)絹素材12に含まれるタンパク質の分解物等の揮発性物質を首尾良く揮発させて絹素材12から当該物質を除去するため、及び(ロ)加熱によって絹素材12から生成する揮発性物質を焼成炉外へ排出するためである。(イ)の絹素材12から揮発性物質を除去することは、該物質の焼成によって生ずる炭化物が絹焼成体に残存することを防止し得る点から有利である。該炭化物は、絹焼成体の風合いを低下させる一因になるからである。(ロ)の揮発性物質を焼成炉外へ排出することは、焼成炉10内が当該揮発性物質で汚染されることを効果的に防止し得る点から有利である。焼成炉10内が汚染されると、当該揮発性物質が変性して生じるタール状の物質等が絹素材12上に落下して、目的とする絹焼成体の品質が著しく低下してしまうからである。また、揮発性物質が焼成炉外へ排出されることで、目的物を得るまでに焼成炉10内を一度も降温する必要がなくなるからである。即ち昇温操作のみか、又は昇温操作と一定温度の維持操作の組み合わせのみを行い、目的物を得ることができる。このことは、製造サイクルの短縮化の観点から極めて有利である。更に、焼成炉10内が揮発性物質によって汚染されていないので、焼成の連続操業が可能になる。これに対して、多段の焼成を行う従来の製造方法では、各段間において焼成体を一旦室温まで冷却していたので、製造に長時間を要していた。また操業終了後、次の操業を開始する間に、焼成炉内に付着した揮発性物質を除去しなければならなかった。   The reason for sucking and reducing the pressure inside the firing furnace 10 during the firing of the silk material 12 is that (i) volatile substances such as protein degradation products contained in the silk material 12 are successfully volatilized and the substance is removed from the silk material 12. This is because (2) the volatile substance generated from the silk material 12 by heating is discharged out of the firing furnace. The removal of the volatile substance from the silk material 12 of (A) is advantageous in that it can prevent the carbide generated by the baking of the substance from remaining in the silk fired body. This is because the carbide contributes to lowering the texture of the fired silk. Discharging the volatile substance (b) to the outside of the firing furnace is advantageous because the inside of the firing furnace 10 can be effectively prevented from being contaminated with the volatile substance. When the inside of the firing furnace 10 is contaminated, tar-like substances and the like generated by the modification of the volatile substances fall on the silk material 12, and the quality of the intended silk fired body is significantly lowered. is there. Further, since the volatile substance is discharged out of the firing furnace, it is not necessary to lower the temperature in the firing furnace 10 before the target product is obtained. That is, only the temperature raising operation or only the combination of the temperature raising operation and the constant temperature maintaining operation can be performed to obtain the target product. This is extremely advantageous from the viewpoint of shortening the manufacturing cycle. Furthermore, since the inside of the firing furnace 10 is not contaminated by volatile substances, continuous operation of firing is possible. On the other hand, in the conventional manufacturing method which performs multistage baking, since the sintered body was once cooled to room temperature between each stage, a long time was required for manufacturing. Further, after the operation was completed, the volatile substances adhered in the firing furnace had to be removed while the next operation was started.

本製造方法においては、焼成を、仮焼成と本焼成の二段階で行うことが、風合いの良好な焼成体を得られる点から好ましい。ここで留意すべきことは、二段階の焼成を行う場合に、降温操作は行わないことである。仮焼成では、焼成炉10内を吸引減圧しつつ焼成炉内を900℃までの温度で加熱する。本焼成では、引き続き焼成炉10内を吸引減圧しつつ、焼成炉10内を昇温させて、仮焼成された絹素材を1300℃までの温度に加熱する。   In this production method, firing is preferably performed in two stages of temporary firing and main firing from the viewpoint of obtaining a fired body having a good texture. It should be noted here that the temperature lowering operation is not performed when performing the two-stage firing. In the pre-baking, the inside of the firing furnace is heated to a temperature of up to 900 ° C. while reducing the suction pressure in the firing furnace 10. In the main firing, the inside of the firing furnace 10 is heated while the inside of the firing furnace 10 is sucked and depressurized, and the temporarily fired silk material is heated to a temperature up to 1300 ° C.

図2には、焼成における温度制御の一例が示されている。同図に従い焼成操作を説明すると、同図においては仮焼成が、一次仮焼成と二次仮焼成とからなる。本焼成は一段である。   FIG. 2 shows an example of temperature control in firing. The firing operation will be described with reference to the figure. In the figure, the temporary firing includes a primary temporary firing and a secondary preliminary firing. The main firing is one stage.

一次仮焼成においては、焼成炉10内を吸引減圧しつつ焼成炉10内を緩やかな昇温速度で加熱する。昇温速度は2〜10℃/min、特に3〜8℃/minであることが、急激な加熱による絹素材12のタンパク質の変性を防止し得る点から好ましい。なお、図2においては、一次焼成における昇温を直線的に行う状態が示されているが、昇温パターンはこれに限られず、例えば上に凸、若しくは下に凸、又はこれら両者が組み合わされたカーブを描くような昇温パターンとしてもよい。   In the primary pre-baking, the inside of the baking furnace 10 is heated at a moderate temperature increase rate while the pressure in the baking furnace 10 is reduced by suction. The rate of temperature increase is preferably 2 to 10 ° C./min, particularly 3 to 8 ° C./min, from the viewpoint that denaturation of the protein of the silk material 12 due to rapid heating can be prevented. In addition, in FIG. 2, although the state which linearly raises the temperature in primary firing is shown, the temperature rising pattern is not limited to this, for example, convex upward, convex downward, or a combination of both. It may be a temperature rising pattern that draws a curved line.

一次仮焼成のターゲット温度は200〜500℃、特に300〜450℃とすることが、急激な加熱による絹素材12のタンパク質の変性を防止し得る点から好ましい。ターゲット温度に到達したら、当該温度を一定時間維持して、絹素材12を仮焼成する。この仮焼成では絹素材12の炭化は未だ十分に進行していない。ターゲット温度の維持は10〜120分、特に20〜100分であることが、絹素材12を熱的に安定化させる点から好ましい。   The target temperature for primary pre-baking is preferably 200 to 500 ° C., particularly 300 to 450 ° C., from the viewpoint that denaturation of the protein of the silk material 12 due to rapid heating can be prevented. When the target temperature is reached, the silk material 12 is temporarily fired while maintaining the temperature for a certain period of time. In this preliminary firing, the carbonization of the silk material 12 has not yet progressed sufficiently. The maintenance of the target temperature is preferably 10 to 120 minutes, particularly 20 to 100 minutes from the viewpoint of thermally stabilizing the silk material 12.

一次仮焼成が完了したら、次いで二次仮焼成を行う。二次仮焼成においては、焼成炉10内を吸引減圧しつつ、焼成炉10内を昇温させる。二次仮焼成の昇温速度は、先に説明した一次仮焼成の昇温速度と同等か又はそれよりも大きくすることができる。この理由は、一次仮焼成によって、絹素材12に含まれている低温揮発性物質の揮発がほぼ完了しているからである。昇温速度を大きくできることは、製造時間の短縮化の点から有利である。この観点から二次仮焼成の昇温速度は、2〜10℃/min、特に3〜8℃/minの範囲内で、一次仮焼成の昇温速度と同等か又はそれよりも大きいことが好ましい。図2には、二次仮焼成における昇温を直線的に行う状態が示されているが、昇温パターンがこれに限られないことは、一次仮焼成の場合と同様である。   When primary calcination is completed, secondary calcination is then performed. In the secondary preliminary firing, the temperature in the firing furnace 10 is increased while the pressure in the firing furnace 10 is reduced by suction. The temperature increase rate of the secondary calcination can be equal to or greater than the temperature increase rate of the primary calcination described above. This is because volatilization of the low-temperature volatile substance contained in the silk material 12 is almost completed by the primary temporary firing. The ability to increase the heating rate is advantageous from the viewpoint of shortening the manufacturing time. From this point of view, the temperature increase rate of the secondary pre-baking is preferably within the range of 2 to 10 ° C./min, particularly 3 to 8 ° C./min. . FIG. 2 shows a state in which the temperature rise in the secondary pre-baking is performed linearly, but the temperature rising pattern is not limited to this, as in the case of the primary pre-baking.

二次仮焼成のターゲット温度は600〜900℃、特に700〜900℃とすることが、絹素材12を熱的に安定化させる点から好ましい。ターゲット温度に到達したら、当該温度を一定時間維持して、絹素材12を仮焼成する。この仮焼成では、一次仮焼成に比較して絹素材12の炭化が進行すると同時に、絹素材12からの揮発性物質の揮発がほとんど完了する。ターゲット温度は、絹素材12から発生する揮発性物質が観察されなくなるまで維持されることが好ましい。この観点からターゲット温度の維持は10〜120分、特に20〜100分であることが好ましい。   The target temperature of the secondary pre-baking is preferably 600 to 900 ° C., particularly 700 to 900 ° C., from the viewpoint of thermally stabilizing the silk material 12. When the target temperature is reached, the silk material 12 is temporarily fired while maintaining the temperature for a certain period of time. In this temporary baking, the carbonization of the silk material 12 proceeds as compared with the primary temporary baking, and at the same time, the volatilization of the volatile substance from the silk material 12 is almost completed. The target temperature is preferably maintained until no volatile substances generated from the silk material 12 are observed. From this viewpoint, the maintenance of the target temperature is preferably 10 to 120 minutes, particularly preferably 20 to 100 minutes.

絹素材12からの揮発性物質の発生が観察されなくなったら二次仮焼成を完了させ、本焼成を行う。本焼成においても引き続き焼成炉10内を吸引減圧する。この状態下に焼成炉10内を昇温させる。本焼成の昇温速度は、先に説明した一次仮焼成の昇温速度と同等か又はそれよりも大きくすることができる。また二次仮焼成の昇温速度と同等か又はそれよりも大きくすることができる。この理由は、二段の仮焼成によって絹素材12からは揮発性物質がもはや発生しない状態になっており、絹素材12が熱的に安定した状態になっているからである。昇温速度を大きくできることは、製造時間の短縮化の点から有利である。この観点から本焼成の昇温速度は、2〜15℃/min、特に3〜12℃/minの範囲内で、一次仮焼成及び二次仮焼成の昇温速度と同等か又はそれよりも大きいことが好ましい。図2には、本焼成における昇温を直線的に行う状態が示されているが、昇温パターンがこれに限られないことは、一次仮焼成及び二次仮焼成の場合と同様である。   When the generation of volatile substances from the silk material 12 is no longer observed, the secondary preliminary firing is completed and the main firing is performed. In the main baking, the pressure in the baking furnace 10 is continuously reduced by suction. Under this condition, the temperature in the firing furnace 10 is raised. The temperature increase rate of the main firing can be equal to or greater than the temperature increase rate of the primary preliminary firing described above. Moreover, it can be equal to or larger than the temperature increase rate of the secondary pre-baking. This is because the volatile material is no longer generated from the silk material 12 by the two-stage pre-baking, and the silk material 12 is in a thermally stable state. The ability to increase the heating rate is advantageous from the viewpoint of shortening the manufacturing time. From this point of view, the heating rate of the main firing is within the range of 2 to 15 ° C./min, particularly 3 to 12 ° C./min. It is preferable. FIG. 2 shows a state in which the temperature rise in the main firing is performed linearly, but the temperature rise pattern is not limited to this, as in the case of the primary pre-baking and the secondary pre-baking.

本焼成のターゲット温度は、目的とする絹焼成体に要求される特性に応じて決定する。一般的に言って、950〜1300℃、特に1050〜1300℃とすれば、所望の特性の絹焼成体を得ることができる。ターゲット温度に到達したら、当該温度を一定時間維持して、絹素材12を本焼成する。本焼成では絹素材12の炭化が十分に進行する。ターゲット温度の維持は10〜120分、特に20〜100分であることが、十分に炭化を行う点から好ましい。   The target temperature of the main firing is determined according to the characteristics required for the desired silk fired body. Generally speaking, if the temperature is 950 to 1300 ° C., particularly 1050 to 1300 ° C., a silk fired body having desired characteristics can be obtained. When the target temperature is reached, the silk material 12 is finally fired while maintaining the temperature for a certain period of time. In the main firing, the carbonization of the silk material 12 proceeds sufficiently. The maintenance of the target temperature is preferably 10 to 120 minutes, particularly 20 to 100 minutes from the viewpoint of sufficient carbonization.

所定時間本焼成を行ったら、各パネルヒーターの通電を停止し、加熱を終了させる。更に、焼成炉10に備えられているファン(図示せず)を回転させて焼成炉10内に不活性ガスを循環させ、焼成炉10内を強制冷却する。この場合、不活性ガスの循環風量が多すぎると、棚板11上の絹焼成体が風で吹き飛ばされてしまうことがあるので注意を要する。焼成炉10内が十分に冷めたら、焼成炉10内から目的物である絹焼成物を取り出す。   When the main baking is performed for a predetermined time, the energization of each panel heater is stopped and the heating is ended. Further, a fan (not shown) provided in the firing furnace 10 is rotated to circulate an inert gas in the firing furnace 10 to forcibly cool the inside of the firing furnace 10. In this case, if the circulation volume of the inert gas is too large, the silk fired body on the shelf board 11 may be blown off by the wind. When the inside of the firing furnace 10 is sufficiently cooled, the silk fired product which is the target product is taken out from the inside of the firing furnace 10.

このようにして得られた絹焼成体は、原料である絹素材の目付にもよるが、10g/m2程度、特に20g/m2程度の低目付から、500g/m2程度、特に400g/m2程度の高目付のものとなる。そして低目付のものであっても、布状物として十分な強度を有するものであり、取り扱い性が良好なものとなる。 The silk fired body thus obtained depends on the basis weight of the raw silk material, but is about 10 g / m 2 , especially about 20 g / m 2, and about 500 g / m 2 , especially 400 g / m 2. It is a thing of the m 2 as high weight per unit area. And even if it is a thing with a low fabric weight, it has sufficient intensity | strength as a cloth-like thing, and a handleability will become favorable.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態の製造方法においては仮焼成を二段で行ったが、これに代えて、図3に示すように仮焼成及び本焼成をそれぞれ一段で行ってもよい。或いは、仮焼成を三段以上で行ってもよい。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the manufacturing method of the above-described embodiment, the preliminary baking is performed in two stages, but instead of this, the temporary baking and the main baking may be performed in one stage as shown in FIG. Or you may perform temporary baking by three steps or more.

以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〜4〕
図1に示す装置を用い、焼成炉内を吸引減圧した状態下に、図2に示す昇温パターンで絹素材の焼成を行い、絹焼成体を得た。その他の条件は以下の表1に示すとおりである。
[Examples 1 to 4]
Using the apparatus shown in FIG. 1, the silk material was fired in the temperature rising pattern shown in FIG. Other conditions are as shown in Table 1 below.

Figure 0004766490
Figure 0004766490

得られた絹焼成体について曲げ試験を行った。また、体積抵抗率を測定した。更に電子線マイクロアナライザーで元素分析(半定量分析)を行った。これらの結果を以下の表2及び表3に示す。なお、表には示していないが、実施例1〜4で得られた絹焼成体についてX線回折測定を行ったところ、グラファイトの(002)反射ピークは観測されなかった。   The obtained silk fired body was subjected to a bending test. Moreover, the volume resistivity was measured. Furthermore, elemental analysis (semi-quantitative analysis) was performed with an electron beam microanalyzer. These results are shown in Tables 2 and 3 below. In addition, although not shown in the table | surface, when the X-ray-diffraction measurement was performed about the silk sintered body obtained in Examples 1-4, the (002) reflection peak of graphite was not observed.

Figure 0004766490
Figure 0004766490

Figure 0004766490
Figure 0004766490

次に、実施例2の絹焼成体を2枚重ねにしたものをガス拡散層として用い、高分子固体電解質形燃料電池を作製した。燃料電池の膜電極接合体の作製においては、固体電解質膜としてポリテトラフルオロエチレン系の膜を用い、膜の各面にカーボンに担持された白金触媒のペーストを塗布後、ホットプレスによって一体化し、その上を絹焼成体で挟み込むことで膜電極接合体を作製した。この膜電極接合体を用い、燃料極に水素ガス、空気極に空気を流通させて発電を行った。そのときの電流−電圧曲線を図4に示す。なお、図4には、比較として、ガス拡散層としてカーボンペーパー(東レ製、体積抵抗率0.05Ωmm)を用いて作製した燃料電池の評価結果も併せて示されている。図4に示す結果から明らかなように、本発明の絹焼成体をガス拡散層として用いた燃料電池は、従来のカーボンペーパーをガス拡散層として用いた燃料電池と比較して、抵抗率が高いにもかかわらず、同等の性能を示すことが判る。   Next, a polymer solid electrolyte fuel cell was produced by using two layers of the fired silk bodies of Example 2 as a gas diffusion layer. In the production of a fuel cell membrane electrode assembly, a polytetrafluoroethylene-based membrane is used as the solid electrolyte membrane, and after applying a platinum catalyst paste supported on carbon on each surface of the membrane, it is integrated by hot pressing, A membrane / electrode assembly was prepared by sandwiching the resultant structure with a silk fired body. Using this membrane electrode assembly, power was generated by flowing hydrogen gas to the fuel electrode and air to the air electrode. The current-voltage curve at that time is shown in FIG. For comparison, FIG. 4 also shows evaluation results of a fuel cell manufactured using carbon paper (manufactured by Toray Industries, Inc., volume resistivity 0.05 Ωmm) as a gas diffusion layer. As is clear from the results shown in FIG. 4, the fuel cell using the fired silk body of the present invention as the gas diffusion layer has a higher resistivity than the fuel cell using the conventional carbon paper as the gas diffusion layer. Nevertheless, it can be seen that the same performance is exhibited.

次に、実施例3の絹焼成体について電磁波シールド性能を評価した。その結果、1〜18GHzの周波数領域において、電磁波の減衰率は35〜40dBであった。更に、実施例4の絹焼成体についても電磁波シールド性能を評価した。測定周波数45MHz〜3GHzの領域における電磁波の減衰量(dB)の測定結果を図5に示す。   Next, the electromagnetic wave shielding performance of the fired silk body of Example 3 was evaluated. As a result, the attenuation rate of electromagnetic waves was 35 to 40 dB in the frequency region of 1 to 18 GHz. Furthermore, the electromagnetic wave shielding performance was also evaluated for the silk fired body of Example 4. FIG. 5 shows the measurement results of electromagnetic wave attenuation (dB) in the measurement frequency region of 45 MHz to 3 GHz.

本発明の絹焼成体の製造に好ましく用いられる焼成炉の構造を示す模式図である。It is a schematic diagram which shows the structure of the baking furnace preferably used for manufacture of the silk sintered body of this invention. 焼成の昇温パターンの一例を示すグラフである。It is a graph which shows an example of the temperature rising pattern of baking. 焼成の昇温パターンの他の例を示すグラフである。It is a graph which shows the other example of the temperature rising pattern of baking. 本発明の絹焼成体をガス拡散層として用いた燃料電池の特性を示すグラフである。It is a graph which shows the characteristic of the fuel cell which used the silk calcination object of the present invention as a gas diffusion layer. 実施例4で得られた絹焼成体の電磁波シールド性能の測定結果である。It is a measurement result of the electromagnetic wave shielding performance of the silk sintered body obtained in Example 4.

符号の説明Explanation of symbols

10 焼成炉
11 棚板
12 絹素材
13A、13B、13C、13D、13E パネルヒーター
14 吸引口
15 バルブ
DESCRIPTION OF SYMBOLS 10 Baking furnace 11 Shelf 12 Silk material 13A, 13B, 13C, 13D, 13E Panel heater 14 Suction port 15 Valve

Claims (4)

布状の絹素材が焼成炉内に収容された状態下に、焼成炉内を吸引減圧しつつ加熱して、絹素材を焼成、炭化させる絹焼成体の製造方法であって、
前記の焼成は、焼成前後での曲げ剛性(gf・cm2/cm)の変化率(〔焼成後の曲げ剛性−焼成前の曲げ剛性〕/焼成前の曲げ剛性×100)が−100〜300%となるように行われ、
前記の焼成は、焼成炉内を降温することなく加熱することで行われ、
前記の焼成は、仮焼成と本焼成の二段階で行われ、仮焼成は一次仮焼成と二次仮焼成とからなり、
一次仮焼成は、焼成炉内を吸引減圧しつつ、昇温速度2〜10℃/minで昇温し、温度200〜500℃で10〜120分間維持し、絹素材のタンパク質の変性を防止しつつ、絹素材に含まれる低温揮発物質を揮発させ、
二次仮焼成は、焼成炉内を吸引減圧しつつ、一次仮焼成の昇温速度と同等か又はそれよりも大きいことを条件として昇温速度2〜10℃/minで昇温し、温度600〜900℃で10〜120分間維持し、絹素材から発生する揮発性物質が観察されなくなるまで行い、
本焼成は、焼成炉内を吸引減圧しつつ、一次仮焼成及び二次仮焼成の昇温速度と同等か又はそれよりも大きいことを条件として昇温速度2〜15℃/min、温度950〜1300℃で行い、絹素材を炭化させる、絹焼成体の製造方法。
Under the condition that the cloth-like silk material is housed in the firing furnace, the inside of the firing furnace is heated while sucking and reducing the pressure, and the silk material is fired and carbonized.
In the firing, the rate of change in flexural rigidity (gf · cm 2 / cm) before and after firing ([bending stiffness after firing−bending stiffness before firing] / bending stiffness before firing × 100) is −100 to 300. % Is done,
The firing is performed by heating the inside of the firing furnace without lowering the temperature,
The calcination is performed in two stages of calcination and main calcination, and the calcination includes a primary calcination and a secondary calcination,
In the primary pre-baking, the temperature inside the baking furnace is reduced by suction and the temperature is increased at a temperature increase rate of 2 to 10 ° C./min and maintained at a temperature of 200 to 500 ° C. for 10 to 120 minutes to prevent the denaturation of the silk material. While volatilizing the low-temperature volatile substances contained in the silk material,
In the secondary calcination, the temperature in the calcination furnace is increased by a temperature increase rate of 2 to 10 ° C./min under the condition that the temperature is equal to or higher than the temperature increase rate of the primary calcination while the pressure in the baking furnace is reduced. Maintain at ˜900 ° C. for 10 to 120 minutes until volatile substances generated from the silk material are no longer observed,
The main firing is performed under the condition that the temperature in the firing furnace is equal to or higher than that of the primary pre-baking and the secondary pre-baking while the pressure is reduced by suction. A method for producing a silk fired body, which is performed at 1300 ° C. and carbonizes a silk material.
焼成前後での曲げヒステリシス(gf・cm/cm)の変化率(〔焼成後の曲げヒステリシス−焼成前の曲げヒステリシス〕/焼成前の曲げヒステリシス×100)が−100〜100%となるように焼成が行われる請求項1記載の絹焼成体の製造方法。   Baking so that the rate of change in bending hysteresis (gf · cm / cm) before and after firing ([bending hysteresis after firing−bending hysteresis before firing] / bending hysteresis before firing × 100) becomes −100 to 100%. The method for producing a silk fired body according to claim 1, wherein: 単位厚み当たりの曲げ剛性の値が0.05〜1.0(gf・cm2/cm)/mmであり、単位厚み当たりの曲げヒステリシスの値が0.01〜1.0(gf・cm/cm)/mmである絹焼成体が得られるように焼成を行う請求項1又は2記載の絹焼成体の製造方法。 The value of the bending rigidity per unit thickness is 0.05 to 1.0 (gf · cm 2 / cm) / mm, and the value of the bending hysteresis per unit thickness is 0.01 to 1.0 (gf · cm / The method for producing a fired silk body according to claim 1 or 2, wherein firing is performed so that a silk fired body having a size of cm) / mm is obtained. X線回折でグラファイトの(002)反射ピークが観測されない絹焼成体が得られるように焼成を行う請求項1ないし3の何れかに記載の絹焼成体の製造方法。   The method for producing a fired silk body according to any one of claims 1 to 3, wherein the fired body is fired so as to obtain a fired silk body in which a (002) reflection peak of graphite is not observed by X-ray diffraction.
JP2006268867A 2005-09-29 2006-09-29 Method for producing a silk fired body Active JP4766490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268867A JP4766490B2 (en) 2005-09-29 2006-09-29 Method for producing a silk fired body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005285442 2005-09-29
JP2005285442 2005-09-29
JP2006268867A JP4766490B2 (en) 2005-09-29 2006-09-29 Method for producing a silk fired body

Publications (2)

Publication Number Publication Date
JP2007119993A JP2007119993A (en) 2007-05-17
JP4766490B2 true JP4766490B2 (en) 2011-09-07

Family

ID=38144115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268867A Active JP4766490B2 (en) 2005-09-29 2006-09-29 Method for producing a silk fired body

Country Status (1)

Country Link
JP (1) JP4766490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242250A (en) * 2006-03-03 2007-09-20 National Univ Corp Shizuoka Univ Solid polymer fuel cell electrode, membrane electrode assembly, and solid polymer type fuel cell
JP4919166B2 (en) * 2007-06-28 2012-04-18 行政院原子能委員会核能研究所 Method for producing membrane / electrode assembly
CN111961441B (en) * 2020-08-26 2023-04-28 浙江理工大学桐乡研究院有限公司 Preparation method of wave-absorbing material based on mulberry silk biomass charcoal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220745A (en) * 2000-11-10 2002-08-09 Shizuo Hayashi Electromagnetic wave shielding material and method for producing the same
JP2002363572A (en) * 2001-06-12 2002-12-18 Miki Yoshioka Electromagnetic wave shielding material obtained by carbonizing silk material and method for producing the same
JP2004186672A (en) * 2002-10-03 2004-07-02 Senshin:Kk Method for manufacturing electromagnetic shielding material through sintering protein fiber
EP1645665A4 (en) * 2003-07-16 2007-09-19 Shinano Kenshi Co Silk firing product, antibacterial material using the same and process for producing the silk firing product
JP4071699B2 (en) * 2003-11-07 2008-04-02 シナノケンシ株式会社 Carbon material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007119993A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4971187B2 (en) Method for controlling shrinkage and porosity during sintering of multilayered structures.
JP5395303B1 (en) Current collecting member and fuel cell
KR100824844B1 (en) Nickel foam and felt-based anode for solid oxide fuel cells
CN101519779A (en) Surface treatment method of titanium material for electrodes
WO2005027239A2 (en) Process for solid oxide fuel cell manufature
Nie et al. Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells
JP4766490B2 (en) Method for producing a silk fired body
KR20150015486A (en) Gas diffusion electrode substrate for fuel cell
JP6673759B2 (en) Manufacturing method of magnesium air battery
JP4599271B2 (en) Method for manufacturing sintered body
Singh et al. Fabrication of dense Ce0. 9Mg0. 1P2O7-PmOn composites by microwave heating for application as electrolyte in intermediate-temperature fuel cells
JPWO2005008815A1 (en) FUEL CELL, FUEL CELL ELECTRODE MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2006273645A (en) Apparatus and method for continuously firing organic substance, carbon material, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2005350307A (en) Modified carbon material and method for manufacturing the same
JP2016188163A (en) Porous carbon nanostructure, manufacturing method of porous carbon nanostructure, and electric double layer capacitor
JP4171491B2 (en) Method for producing silk fired body and method for producing antibacterial material comprising fired silk body
JP3574387B2 (en) Manufacturing method of electromagnetic wave shielding material
JP4071699B2 (en) Carbon material and manufacturing method thereof
KR101288407B1 (en) Manufacturing method of anode for solid oxide fuel cell and anode for solid oxide fuel cell manufactured thereby
KR100797048B1 (en) Fabrication method of porous metal oxide foam for cathode current collector of solid oxide fuel cell
JP2002324555A (en) Thin net film electrode and its production method
CN110706943A (en) Preparation method and application of three-dimensional hydrophilic carbon foam conductive matrix
KR102198526B1 (en) Graphene fiber and method for preparing the same
JP2545821B2 (en) Method for producing bubble resistant layer for fuel cell
JP2005112667A (en) Silk burnt product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4766490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250