JP5142146B2 - Volatile organic compound processing equipment - Google Patents

Volatile organic compound processing equipment Download PDF

Info

Publication number
JP5142146B2
JP5142146B2 JP2008131732A JP2008131732A JP5142146B2 JP 5142146 B2 JP5142146 B2 JP 5142146B2 JP 2008131732 A JP2008131732 A JP 2008131732A JP 2008131732 A JP2008131732 A JP 2008131732A JP 5142146 B2 JP5142146 B2 JP 5142146B2
Authority
JP
Japan
Prior art keywords
gas
heating element
electrically conductive
catalyst
volatile organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008131732A
Other languages
Japanese (ja)
Other versions
JP2009279482A (en
Inventor
和憲 若井
禎貴 井原
康光 高原
治光 西川
孝康 中島
修 高木
孝治 常吉
克吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University
Gifu Prefecture
TYK Corp
Original Assignee
Gifu University
Gifu Prefecture
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, Gifu Prefecture, TYK Corp filed Critical Gifu University
Priority to JP2008131732A priority Critical patent/JP5142146B2/en
Publication of JP2009279482A publication Critical patent/JP2009279482A/en
Application granted granted Critical
Publication of JP5142146B2 publication Critical patent/JP5142146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、揮発性有機化合物処理装置に関するものであり、特に、工場や事業所から排出されるガス中の揮発性有機化合物を分解し、処理済みのガスを大気中に放出するために使用される揮発性有機化合物処理装置に関するものである。   The present invention relates to an apparatus for treating volatile organic compounds, and is particularly used for decomposing volatile organic compounds in gases discharged from factories and offices and releasing treated gases into the atmosphere. The present invention relates to a volatile organic compound processing apparatus.

揮発性有機化合物(VOC)は、浮遊粒子状物質や光化学オキシダントの原因物質の一つであり、平成18年に施行された大気汚染防止法改正法により、一定規模以上の工場や事業所はVOCの排出規制の対象となると共に、規制対象外の中小規模事業所に対しても自主的にVOCの排出を抑制することが求められている。出願人らが所在する東海地方は、他地方に比べてVOCの排出量が多く、平成16年のデータによれば全国のVOC排出量の約四分の一を占めている。また、本地方では中小規模の事業所の割合も高い。そこで、VOC排出の抑制に対する中小規模の事業所の自主的な取り組みを進めるために、中小規模の事業所でも導入し易い、小型で低ランニングコストのVOC処理装置が望まれる。   Volatile organic compounds (VOCs) are one of the causative substances of suspended particulate matter and photochemical oxidants. Due to the revised Air Pollution Control Law, which was enacted in 2006, factories and business establishments over a certain scale have become VOCs. As a result, there is a need to voluntarily suppress VOC emissions even for small and medium-sized businesses that are not subject to the regulations. The Tokai region where the applicants are located has more VOC emissions than other regions, and according to the 2004 data, it accounts for about one-fourth of the nationwide VOC emissions. In this region, the ratio of small and medium-sized establishments is also high. Therefore, in order to advance the voluntary efforts of small and medium-sized business establishments for the suppression of VOC emissions, a small and low running cost VOC processing apparatus that is easy to introduce in small and medium-sized business establishments is desired.

従来のVOC処理装置は、吸着法、薬液吸収法、生物分解法、プラズマ分解法、燃焼酸化法(直接燃焼式、蓄熱燃焼式、触媒燃焼式)を用いた装置に大別される。そのうち、燃焼酸化法では、加熱の手段としてバーナを使用した装置(例えば、特許文献1参照)や、電気ヒータを使用した装置(例えば、特許文献2参照)が一般的である。   Conventional VOC treatment apparatuses are roughly classified into apparatuses using an adsorption method, a chemical solution absorption method, a biodegradation method, a plasma decomposition method, and a combustion oxidation method (direct combustion type, heat storage combustion type, catalytic combustion type). Among them, in the combustion oxidation method, an apparatus using a burner as a heating means (for example, see Patent Document 1) and an apparatus using an electric heater (for example, see Patent Document 2) are generally used.

特開平11−221430号公報JP-A-11-212430 特開2005−279570号公報JP 2005-279570 A

しかしながら、吸着材や薬液の交換が必要でランニングコストがかかる吸着法や薬液吸収法、生物の維持管理に手間や経費がかかる生物分解法、装置が大型でコスト高のプラズマ分解法を用いた装置は、中小規模の事業所には不向きであった。また、加熱する手段としてバーナを用いる装置では、可燃性のVOCに引火するおそれがあった。加えて、電気ヒータを用いる装置では、熱効率が悪く加熱に時間がかかるという問題があった。   However, an adsorption method or chemical solution absorption method that requires replacement of adsorbents or chemicals and a running cost, a biodegradation method that requires labor and expense for biological maintenance, and a device that uses a large and expensive plasma decomposition method Was not suitable for small and medium-sized establishments. Further, in an apparatus using a burner as a heating means, there is a risk of flammable VOCs being ignited. In addition, an apparatus using an electric heater has a problem that heat efficiency is poor and heating takes time.

そこで、本発明は、上記の実情に鑑み、小型化が可能で低ランニングコストであると共に、安全性が高く処理効率の高い揮発性有機化合物処理装置の提供を課題とするものである。   Therefore, in view of the above circumstances, an object of the present invention is to provide a volatile organic compound processing apparatus that can be miniaturized and has a low running cost, and has high safety and high processing efficiency.

上記の課題を解決するため、本発明にかかる揮発性有機化合物処理装置は、「ガスを流通させる連通孔部が形成された電気伝導性発熱体、及び、該電気伝導性発熱体へ通電するための電極を備え、通電による前記電気伝導性発熱体の発熱によって前記連通孔部を流通するガスを加熱する加熱部と、揮発性有機化合物の酸化分解温度を低下させる触媒体を備え、前記加熱部よりガス流通の下流側に設けられ前記加熱部で加熱されたガスに含まれる揮発性有機化合物を酸化分解させる触媒部とを具備し、前記電気伝導性発熱体は、多孔質の電気伝導性セラミックスで構成され、単一の方向に延びて列設された複数の隔壁により区画された複数のセルを備えたハニカム構造体であり、前記セル及び多孔質の前記隔壁中の連続気孔が前記連通孔部に相当し、多孔質の前記隔壁に触媒を担持していない」ものである。 In order to solve the above-mentioned problems, the volatile organic compound processing apparatus according to the present invention is described as follows: “Electrically conductive heating element in which a communicating hole through which a gas flows is formed; A heating part for heating the gas flowing through the communication hole part by heat generation of the electrically conductive heating element by energization, and a catalyst body for reducing the oxidative decomposition temperature of the volatile organic compound, the heating part A catalyst portion that is provided on the downstream side of the gas flow and oxidatively decomposes a volatile organic compound contained in the gas heated by the heating portion, and the electrically conductive heating element is a porous electrically conductive ceramic A honeycomb structure including a plurality of cells partitioned by a plurality of partition walls arranged in a single direction, and the continuous pores in the cells and the porous partition walls are the communication holes. Phase And, no catalyst is supported on the partition walls of the porous "Ru Monodea.

「電気伝導性発熱体」としては、導電性セラミックス、半導体セラミックスを使用するThe "electrically conductive heating element", used conductive ceramic, a semiconductor ceramics.

「ガスを流通させる連通孔部」は、電気伝導性発熱体を多孔質構造とした場合の連続気孔や、電気伝導性発熱体に設けた貫通孔によって構成させることができる。   The “communication hole portion through which the gas flows” can be configured by continuous pores when the electrically conductive heating element has a porous structure, or through holes provided in the electrically conductive heating element.

「揮発性有機化合物」(以下、単に「VOC」と称することがある)は、大気中に排出され又は飛散した時に気体である有機化合物であって、浮遊粒子状物質及びオキシダントの生成の原因とならない物質として政令で定める物質を除いたものであり、トルエン、キシレン、ジクロロメタン、エチルベンゼン、ベンゼン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、イソプロピルアルコール、酢酸エチル、酢酸ブチル等を挙げることができる。特に、トルエンやキシレンは、印刷や塗装関係の工場や事業所で溶剤として多用されており、排出量が多い。   “Volatile organic compounds” (hereinafter, sometimes simply referred to as “VOC”) are organic compounds that are gaseous when discharged or scattered into the atmosphere and are responsible for the formation of suspended particulate matter and oxidants. Substances specified by a government ordinance are excluded as substances that cannot be used, and examples include toluene, xylene, dichloromethane, ethylbenzene, benzene, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, isopropyl alcohol, ethyl acetate, and butyl acetate. In particular, toluene and xylene are frequently used as solvents in factories and offices related to printing and painting, and have large emissions.

「揮発性有機化合物の酸化分解温度を低下させる触媒」としては、白金、パラジウム、ロジウム、金、イリジウム、ルテニウム等の金属触媒や、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化スズ、酸化マンガン、酸化タンタル等の金属酸化物触媒を使用することができる。或いは、複数の金属触媒、複数の金属酸化物触媒、または金属触媒と金属酸化物触媒を組み合わせた複合触媒を使用することもできる。なお、VOCの酸化分解温度は650〜800℃であるが、上記の触媒の作用により200〜400℃で酸化分解させることができる。   “Catalysts that lower the oxidative decomposition temperature of volatile organic compounds” include platinum, palladium, rhodium, gold, iridium, ruthenium, and other metal catalysts, cerium oxide, zirconium oxide, titanium oxide, tin oxide, manganese oxide, and oxidation. A metal oxide catalyst such as tantalum can be used. Alternatively, a plurality of metal catalysts, a plurality of metal oxide catalysts, or a composite catalyst in which a metal catalyst and a metal oxide catalyst are combined can be used. In addition, although the oxidative decomposition temperature of VOC is 650-800 degreeC, it can be oxidatively decomposed at 200-400 degreeC by the effect | action of said catalyst.

「触媒部」は、「加熱部よりガス流通の下流側に設けられる」ことから、加熱部と触媒部とは別個の構成である。   Since the “catalyst part” is “provided on the downstream side of the gas flow from the heating part”, the heating part and the catalyst part are configured separately.

触媒体の構成としては、ガスが流通可能な多孔質体に触媒を担持させた構成、触媒自体に設けた連続気孔や貫通孔にガスを流通させる構成、ガスを流通させる管状や筒状のガス流通路の内部に、ガスが流通可能な空隙を残しつつ触媒が充填された構成を例示することができる。   The structure of the catalyst body includes a structure in which the catalyst is supported on a porous body through which gas can flow, a structure in which gas is circulated through continuous pores and through holes provided in the catalyst itself, and a tubular or cylindrical gas through which gas is circulated. The structure filled with the catalyst can be illustrated, leaving the space | gap which can distribute | circulate gas in the inside of a flow path.

上記構成により、本発明によれば、通電によって電気伝導性発熱体を発熱させた状態で、電気伝導性発熱体の連通孔部に、工場や事業所から排出されたVOCを含有する未処理ガスを流通させることにより、未処理ガスを加熱することができる。そして、電気伝導性発熱体を備える加熱部で加熱された未処理ガスは、その下流側に設けられた触媒部に流入し、触媒の作用を受ける。従って、予め加熱部において、未処理ガスの温度を触媒存在下でのVOCの酸化分解温度まで高めてから、触媒部に導入することにより、直接燃焼により酸化分解させる場合より低温でVOCを分解させることができる。そして、本発明では、ガスを流通させる構成をヒータやバーナ等の外部熱源によって外部から加熱するのではなく、ガスを流通させる構成自体が通電により発熱する。これにより、電気エネルギーを未処理ガスの加熱に効率良く利用することができる。   With the above configuration, according to the present invention, an untreated gas containing VOC discharged from a factory or office in the communicating hole portion of the electrically conductive heating element in a state where the electrically conductive heating element is heated by energization The untreated gas can be heated by circulating the gas. And the untreated gas heated by the heating part provided with an electroconductive heat generating body flows in into the catalyst part provided in the downstream, and receives the effect | action of a catalyst. Therefore, in the heating section, the temperature of the untreated gas is raised to the oxidative decomposition temperature of VOC in the presence of the catalyst, and then introduced into the catalyst section to decompose the VOC at a lower temperature than in the case of oxidative decomposition by direct combustion. be able to. And in this invention, the structure which distribute | circulates gas does not heat from the exterior by external heat sources, such as a heater and a burner, but the structure itself which distribute | circulates gas heat | fever-generates by electricity supply. Thereby, electrical energy can be efficiently used for heating the untreated gas.

ここで、触媒体の構成を、電気伝導性発熱体の連通孔部に触媒を担持させた構成とすることも想定し得る。しかしながら、この場合は、未処理ガスが充分に加熱される前に触媒体を通過してしまい、VOCの酸化分解が不充分となるおそれがある。これに対し、本発明では、加熱部と触媒部は別個の構成であり、加熱部で予め未処理ガスの温度を充分に高めてから、下流側の触媒部に導入することができるため、触媒を充分に作用させ、低温でVOCを確実に酸化分解することが可能となる。   Here, it can also be assumed that the catalyst body has a structure in which the catalyst is supported in the communication hole portion of the electrically conductive heating element. However, in this case, the untreated gas passes through the catalyst body before it is sufficiently heated, and there is a risk that the oxidative decomposition of VOC will be insufficient. On the other hand, in the present invention, the heating unit and the catalyst unit are configured separately, and the temperature of the untreated gas can be sufficiently increased in advance in the heating unit and then introduced into the downstream catalyst unit. It is possible to sufficiently oxidatively decompose VOC at a low temperature.

また、本発明では、バーナを使用する従来装置のようにVOCに引火するおそれがないため、安全性の高い装置となっている。更に、吸着法や、薬液吸収法を用いた従来装置のように定期的に交換すべき部材がなく、生物分解法を用いた従来装置のように生物の維持管理の問題もないため、ランニングコストが低廉で、取り扱いの容易な装置となる。加えて、電気伝導性発熱体と触媒体とを主な構成とする極めて簡易な構成であるため、装置全体を小型化することが可能となる。   Moreover, in this invention, since there is no possibility of igniting VOC like the conventional apparatus which uses a burner, it is a highly safe apparatus. In addition, there are no parts that need to be replaced regularly as in the conventional device using the adsorption method or chemical solution absorption method, and there is no problem in the maintenance of organisms as in the conventional device using the biodegradation method. Is inexpensive and easy to handle. In addition, since it is an extremely simple configuration mainly including an electrically conductive heating element and a catalyst body, the entire apparatus can be reduced in size.

本発明にかかる揮発性有機化合物処理装置は、上記構成に加え、「前記加熱部は、前記電極と前記電気伝導性発熱体の外表面との間に介在させたスチールウール層を備える」ものとすることができる。   The volatile organic compound processing apparatus according to the present invention includes, in addition to the above configuration, “the heating unit includes a steel wool layer interposed between the electrode and the outer surface of the electrically conductive heating element”. can do.

上記構成により、本発明によれば、スチールウールによって、電極と電気伝導性発熱体とを多くの接触点で電気的に接続させることができる。これにより、電気伝導性発熱体の外表面が平滑であるか否か等の表面状態によらず、電気伝導性発熱体に通電させ易いものとなる。また、スチールウールという極めて簡易な構成を用いることにより、コストをかけずに上記の作用効果を得ることができる。   With the above configuration, according to the present invention, the electrode and the electrically conductive heating element can be electrically connected at many contact points with the steel wool. This makes it easy to energize the electrically conductive heating element regardless of the surface state such as whether or not the outer surface of the electrically conductive heating element is smooth. In addition, by using a very simple configuration of steel wool, the above-described effects can be obtained without cost.

本発明にかかる揮発性有機化合物処理装置は、上記構成に加え、「前記加熱部は、前記電極を前記電気伝導性発熱体に圧着させる方向に付勢するバネ部材を備える」ものとすることができる。   In addition to the above configuration, the volatile organic compound processing apparatus according to the present invention includes "the heating unit includes a spring member that biases the electrode in a direction in which the electrode is pressed against the electrically conductive heating element". it can.

上記構成により、本発明によれば、バネ部材によって電極と電気伝導性発熱体との密着度を高めることができるため、電気伝導性発熱体に通電させ易いものとなる。加えて、バネ部材の弾性変形により、電気伝導性発熱体の熱膨張を吸収することができる。   With the above configuration, according to the present invention, the degree of adhesion between the electrode and the electrically conductive heating element can be increased by the spring member, and therefore it is easy to energize the electrically conductive heating element. In addition, thermal expansion of the electrically conductive heating element can be absorbed by elastic deformation of the spring member.

本発明にかかる揮発性有機化合物処理装置は、上記構成に加え、「前記電気伝導性発熱体は多孔質体であり、前記加熱部は、前記電気伝導性発熱体よりガス流通の上流側に設けられてガスの流路を分散させるガス流路分散部材を備える」ものとすることができる。なお、多孔質体における連続気孔が上記の「連通孔部」に相当する。   In addition to the above-described configuration, the volatile organic compound processing apparatus according to the present invention is “the electrically conductive heating element is a porous body, and the heating unit is provided on the upstream side of the gas flow from the electrically conductive heating element. And a gas flow path dispersing member that disperses the gas flow path ”. The continuous pores in the porous body correspond to the above “communication hole portion”.

「ガス流路分散部材」としては、ガスを流通させる小さな貫通孔が多数穿設された平板状の部材、漏斗状の面に沿ってガス流路を拡径させるファンネル、フィンや羽根に沿ってガスの流通をガイドする部材を例示することができる。   “Gas flow path dispersion member” includes a flat plate member having a large number of small through holes for circulating gas, a funnel that expands the gas flow path along a funnel-shaped surface, along fins and blades. A member that guides the flow of gas can be exemplified.

多孔質体は多数の連通孔部を有するため、本来であれば多数の連通孔部にガスをそれぞれ流通させて、効率良くガスを加熱することができる。しかしながら、仮に、多くの連通孔部の内の一部にしかガスが流通しない場合は、電気伝導性発熱体が多孔質である上記の利点を発揮することができない。例えば、加熱部にガスを導入する流路の径に比べて電気伝導性発熱体の断面積が大きいにも関わらず、ガスが直進性高く流通する場合などである。これに対し、本発明では、ガス流路分散部材を具備することにより、電気伝導性発熱体に流入する前のガスの流路を分散させることができる。これにより、電気伝導性発熱体の断面積を大きなものとしても、多孔質の発熱体に全体的にガスを流通させ易く、発熱体全体の発熱を有効に利用してガスを効率良く加熱することができる。   Since the porous body has a large number of communicating holes, the gas can be circulated through the numerous communicating holes to heat the gas efficiently. However, if the gas flows only in a part of the many communicating holes, the above-mentioned advantage that the electrically conductive heating element is porous cannot be exhibited. For example, there is a case where the gas circulates with high straightness although the cross-sectional area of the electrically conductive heating element is larger than the diameter of the flow path for introducing the gas into the heating unit. In contrast, in the present invention, the gas flow path before flowing into the electrically conductive heating element can be dispersed by providing the gas flow path dispersing member. As a result, even if the cross-sectional area of the electrically conductive heating element is large, it is easy to distribute the gas to the porous heating element as a whole, and the gas can be efficiently heated by effectively using the heat generated by the entire heating element. Can do.

加えて、多孔質体である電気伝導性発熱体のフィルタリング作用により、加熱部において未処理ガス中に含まれる微小な塵や粒子状物質を除去することができる。ここで、仮に、触媒が多孔質の電気伝導性発熱体に担持されているとすると、フィルタリング作用によって捕集された物質が触媒の表面を被覆し、触媒の作用が充分に得られないおそれがある。これに対し、本発明では触媒部は加熱部と別個の構成であるため、多孔質体のフィルタリング作用に影響を受けることなく、触媒作用を充分に発揮させることができる。   In addition, fine dust and particulate matter contained in the untreated gas can be removed by the filtering action of the electrically conductive heating element that is a porous body. Here, if the catalyst is supported on the porous electrically conductive heating element, the substance collected by the filtering action may cover the surface of the catalyst, and the action of the catalyst may not be sufficiently obtained. is there. On the other hand, in the present invention, since the catalyst part has a separate structure from the heating part, the catalyst action can be sufficiently exhibited without being affected by the filtering action of the porous body.

本発明にかかる揮発性有機化合物処理装置は、「前記電気伝導性発熱体は複数個が設けられ、その内の二以上は電気的に直列接続されている」ものとすることができる。   The volatile organic compound processing apparatus according to the present invention may be “a plurality of the electrically conductive heating elements are provided, and two or more of them are electrically connected in series”.

例えば、体積が同一の電気伝導性発熱体で対比すれば、複数個に分割して直列に接続した方が、電気伝導性発熱体中を電気が流れる距離が長くなり電気抵抗が増加する。従って、電気伝導性発熱体の電気抵抗値が小さい場合であっても、電流値が過大となることを防止しつつ、大きな発熱量を得ることができる。これにより、特別な設備を要することなく商用電源を利用して、大きな発熱量でガスを加熱することが可能となる。従って、上記の構成により、本発明にかかる揮発性有機化合物処理装置を、中小規模の事業所にとって導入し易い装置とすることができる。   For example, when compared with an electrically conductive heating element having the same volume, the distance through which electricity flows through the electrically conductive heating element becomes longer and the electrical resistance increases when divided into a plurality and connected in series. Therefore, even when the electrical resistance value of the electrically conductive heating element is small, a large amount of heat generation can be obtained while preventing the current value from becoming excessive. This makes it possible to heat the gas with a large calorific value using a commercial power supply without requiring special equipment. Therefore, with the above-described configuration, the volatile organic compound processing apparatus according to the present invention can be an apparatus that can be easily introduced for small and medium-sized businesses.

以上のように、本発明の効果として、小型化が可能で低ランニングコストであると共に、安全性が高く処理効率の高い揮発性有機化合物処理装置を提供することができる。   As described above, as an effect of the present invention, it is possible to provide a volatile organic compound processing apparatus that can be downsized and has a low running cost, and that has high safety and high processing efficiency.

以下、本発明の最良の一実施形態である揮発性有機化合物処理装置について、図1乃至図6に基づいて説明する。ここで、図1は本実施形態の揮発性有機化合物処理装置の概略構成を示す構成図であり、図2は図1の揮発性有機化合物処理装置の主要部の正面図(加熱部側から見た図)であり、図3は図1の揮発性有機化合物処理装置の主要部の背面図(触媒部側から見た図)であり、図4は図2におけるX−X線断面図であり、図5は図2におけるY−Y線断面図であり、図6はガスの分散を説明する説明図である。   Hereinafter, a volatile organic compound processing apparatus according to the best embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a configuration diagram showing a schematic configuration of the volatile organic compound processing apparatus of the present embodiment, and FIG. 2 is a front view of a main part of the volatile organic compound processing apparatus of FIG. 3 is a rear view of the main part of the volatile organic compound processing apparatus of FIG. 1 (viewed from the catalyst part side), and FIG. 4 is a sectional view taken along line XX in FIG. 5 is a cross-sectional view taken along line YY in FIG. 2, and FIG. 6 is an explanatory view for explaining gas dispersion.

本実施形態の揮発性有機化合物処理装置1(以下、単に「VOC処理装置1」と称する)は、ガスを流通させる連通孔部(図示しない)が形成された電気伝導性発熱体2(以下、単に「発熱体2」と称する)、及び発熱体2へ通電するための電極21を備え、通電による発熱体2の発熱によって連通孔部を流通するガスを加熱する加熱部20と、揮発性有機化合物の酸化分解温度を低下させる触媒体3を備え、加熱部20よりガス流通の下流側に設けられ加熱部20で加熱されたガスに含まれる揮発性有機化合物を酸化分解させる触媒部30とを具備している。   The volatile organic compound processing apparatus 1 of the present embodiment (hereinafter simply referred to as “VOC processing apparatus 1”) includes an electrically conductive heating element 2 (hereinafter referred to as “not shown”) in which a communication hole (not shown) through which gas flows is formed. A heating unit 20 that includes an electrode 21 for energizing the heating element 2 and that heats the gas flowing through the communication hole by the heat generated by the energization, and a volatile organic material. A catalyst body 30 that includes a catalyst body 3 that lowers the oxidative decomposition temperature of the compound, and that is provided downstream of the heating section 20 in the gas flow and oxidatively decomposes a volatile organic compound contained in the gas heated by the heating section 20; It has.

ここで、本実施形態の発熱体2は、多孔質の炭化珪素質セラミックスで構成され、単一の方向に延びて列設された複数の隔壁により区画された複数のセルを備えたハニカム構造体によって構成されている。なお、本実施形態のセル及び多孔質の隔壁中の連続気孔が、本発明の「連通孔部」に相当する。   Here, the heating element 2 of the present embodiment is a honeycomb structure including a plurality of cells made of porous silicon carbide ceramics and partitioned by a plurality of partition walls extending in a single direction. It is constituted by. The continuous pores in the cell and the porous partition wall of the present embodiment correspond to the “communication hole portion” of the present invention.

また、VOC処理装置1は、ガスを吸引口6から加熱部20に導くガス導入路8と、触媒部30から排出口7までガスを導くガス排出路9と、ガス導入路8を流通するガスとガス排出路9を流通するガスとの間で熱交換を行う熱交換器4とを具備している。更に、吸引口6には、モータ(図示しない)の駆動によりガスを吸引するファン18が取り付けられている。なお、詳細な図示は省略しているが、熱交換器4はガス導入路8にガス排出路9を巻回させた構成となっている。   Further, the VOC treatment apparatus 1 includes a gas introduction path 8 that leads gas from the suction port 6 to the heating unit 20, a gas discharge path 9 that leads gas from the catalyst unit 30 to the discharge port 7, and a gas that flows through the gas introduction path 8. And a heat exchanger 4 for exchanging heat between the gas flowing through the gas discharge passage 9. Furthermore, a fan 18 that sucks gas by driving a motor (not shown) is attached to the suction port 6. In addition, although detailed illustration is abbreviate | omitted, the heat exchanger 4 becomes a structure which wound the gas discharge path 9 around the gas introduction path 8. FIG.

加熱部20では、主に図4に示すように、ガスの流通方向(図示、紙面下から上に向かう方向)に二列の発熱体2が設けられており、ガス流通方向に略直交する方向に、三列の発熱体2が設けられている。そして、主に図2に示すように、それぞれの列は、三つの発熱体2が上下に積層された三段構成となっている。そして、ガス流通方向の二列では、図5に示すように、それぞれ最下段の発熱体2が電気伝導性の導通部22で接続されている。本実施形態の導通部22は、ステンレス製の板材を用いている。また、ガス流通方向の二列のうち、上流側の最上段の発熱体2の上面に正極及び負極の一方の電極21aが取り付けられていると共に、下流側の列の最上段の発熱体2の上面に対極の電極21bが取り付けられている。   In the heating unit 20, as shown mainly in FIG. 4, two rows of heating elements 2 are provided in the gas flow direction (shown, the direction from the bottom to the top of the drawing), and the direction substantially orthogonal to the gas flow direction. In addition, three rows of heating elements 2 are provided. And as mainly shown in FIG. 2, each row | line | column has the three-stage structure on which the three heat generating bodies 2 were laminated | stacked up and down. In the two rows in the gas flow direction, as shown in FIG. 5, the lowermost heating elements 2 are connected to each other by an electrically conductive conduction portion 22. The conduction part 22 of the present embodiment uses a stainless steel plate. Further, of the two rows in the gas flow direction, one of the positive electrode 21a and the negative electrode 21a is attached to the upper surface of the uppermost heating element 2 on the upstream side, and the uppermost heating element 2 in the downstream row. A counter electrode 21b is attached to the upper surface.

このような構成により、ガス流通方向の二列の計六つの発熱体2は、電極21a,21bに通電することによって電気的に直列接続される。そして、本実施形態では、六つの発熱体2が直列に接続された列の三つが、並列に接続されている。なお、以下では、電極21a及び電極21bを区別する必要がない場合は、電極21と総称して説明する。   With such a configuration, a total of six heating elements 2 in two rows in the gas flow direction are electrically connected in series by energizing the electrodes 21a and 21b. And in this embodiment, three of the row | line | column where the six heat generating bodies 2 were connected in series are connected in parallel. Hereinafter, when it is not necessary to distinguish between the electrode 21a and the electrode 21b, they will be collectively referred to as the electrode 21.

電極21と発熱体2との間、隣接する発熱体2の間、及び、発熱体2と導通部22との間には、それぞれスチールウール層23が設けられている。また、加熱部20のケーシング29の天板29tには貫通孔が穿設されており、この貫通孔には電極21を押し下げて発熱体2に対して固定するためのボルト25が挿通されている。更に、天板29tの上面には略コ字状の支持板26が下向きに固定されており、支持板26には下方からコイル状のバネ部材27が留め付けられている。そして、ボルト25の軸部の上部がバネ部材27に下方から挿通されていると共に、軸部の外周に沿って設けられたフランジ部がバネ部材27の底面に当接している。このような構成により、バネ部材27はボルト25のフランジ部と支持板26との間で圧縮され、ボルト25を介して電極21を押し下げる方向、すなわち電極21を発熱体2に圧着させる方向に付勢している。なお、電極21a及び電極21bがボルト25及び天板29t等を介して短絡することを防止するために、ボルト25と電極21との間には断熱絶縁層24を介在させている。   Steel wool layers 23 are provided between the electrode 21 and the heating element 2, between the adjacent heating elements 2, and between the heating element 2 and the conduction portion 22. Further, a through hole is formed in the top plate 29t of the casing 29 of the heating unit 20, and a bolt 25 for pushing the electrode 21 down and fixing it to the heating element 2 is inserted into the through hole. . Further, a substantially U-shaped support plate 26 is fixed downward on the top surface of the top plate 29t, and a coil-shaped spring member 27 is fastened to the support plate 26 from below. The upper portion of the shaft portion of the bolt 25 is inserted into the spring member 27 from below, and a flange portion provided along the outer periphery of the shaft portion is in contact with the bottom surface of the spring member 27. With such a configuration, the spring member 27 is compressed between the flange portion of the bolt 25 and the support plate 26, and is attached in a direction in which the electrode 21 is pushed down via the bolt 25, that is, in a direction in which the electrode 21 is pressed against the heating element 2. It is fast. In order to prevent the electrode 21a and the electrode 21b from being short-circuited via the bolt 25, the top plate 29t, or the like, a heat insulating insulating layer 24 is interposed between the bolt 25 and the electrode 21.

また、主に図4に示すように、発熱体2とケーシング29との間、及び、ガス流通方向に略直交する方向に隣接する発熱体2の間には、断熱絶縁層24が充填されている。一方、ガス流通方向では、発熱体2と発熱体2の間には断熱絶縁層は充填されておらず、空間28が形成されている。   Further, as shown mainly in FIG. 4, a heat insulating insulating layer 24 is filled between the heating element 2 and the casing 29 and between the heating elements 2 adjacent to each other in a direction substantially orthogonal to the gas flow direction. Yes. On the other hand, in the gas flow direction, a heat insulating insulating layer is not filled between the heat generating element 2 and the heat generating element 2, and a space 28 is formed.

触媒部30では、主に図5に示すように、触媒体3がケーシング39の内部に収納されており、ガスを流通させる断面を除いた触媒体3の外表面が、断熱材34で全体的に被覆されている。本実施形態の触媒体3は、多孔質のコージェライトセラミックスのハニカム構造体に、貴金属触媒が担持されて形成されている。   In the catalyst unit 30, as shown mainly in FIG. 5, the catalyst body 3 is accommodated in the casing 39, and the outer surface of the catalyst body 3 excluding the cross section through which the gas is circulated is entirely covered with a heat insulating material 34. Is covered. The catalyst body 3 of the present embodiment is formed by supporting a noble metal catalyst on a porous cordierite ceramic honeycomb structure.

次に、本実施形態のVOC処理装置1におけるガスの処理について説明する。まず、工場や事業所から排出されたVOCを含有する未処理ガスは、ファン18によって吸引口6から吸引された後、ガス導入路8を流通し加熱部20に導入される。このとき加熱部20では、電極21a及び電極21bに通電することによって発熱体2が発熱している。そのため、未処理ガスはハニカム構造体である発熱体2を通過する際に加熱される。   Next, gas processing in the VOC processing apparatus 1 of the present embodiment will be described. First, an untreated gas containing VOC discharged from a factory or business place is sucked from the suction port 6 by the fan 18, then flows through the gas introduction path 8 and is introduced into the heating unit 20. At this time, in the heating unit 20, the heating element 2 generates heat by energizing the electrodes 21a and 21b. Therefore, the untreated gas is heated when passing through the heating element 2 that is a honeycomb structure.

本実施形態の加熱部20では発電体2がガス流通方向に二列に設けられており、その間に空間28が形成されているため、上流側の列の発熱体2を通過したガスは、下流側の列の発熱体2に流入する前にその前面に当たり、空間28内で拡散し易い(図6参照)。これにより、ガス導入路8の端部から加熱部20に導入されたガスが、発熱体2のごく一部のみを通過することが防止される。なお、本実施形態では発熱体2が約300℃に保持されるよう、発熱体2への通電を調整している。   In the heating unit 20 of the present embodiment, the power generators 2 are provided in two rows in the gas flow direction, and a space 28 is formed between them, so that the gas that has passed through the heating elements 2 in the upstream row is downstream. Before it flows into the heating elements 2 in the side row, it hits the front surface and easily diffuses in the space 28 (see FIG. 6). Thereby, the gas introduced into the heating part 20 from the end part of the gas introduction path 8 is prevented from passing through only a part of the heating element 2. In the present embodiment, the power supply to the heating element 2 is adjusted so that the heating element 2 is maintained at about 300 ° C.

また、発熱体2は複数のセルが列設されたハニカム構造体であるため、ガスはセル内を流通する際に発熱している隔壁によって効率良く加熱される。加えて、発熱体2は多孔質であるため、ガス中に微小な塵や粒子状物質が存在した場合は隔壁の気孔内に捕集される。   In addition, since the heating element 2 is a honeycomb structure in which a plurality of cells are arranged, the gas is efficiently heated by the partition walls that generate heat when flowing through the cells. In addition, since the heating element 2 is porous, if fine dust or particulate matter is present in the gas, it is collected in the pores of the partition walls.

発熱体2を通過することによって加熱された未処理ガスは、次に、触媒部30に流入し、触媒が担持されたハニカム構造体である触媒体3を通過する。この際、未処理ガスは既に加熱部30において、触媒存在下でVOCが酸化分解可能な約300℃まで加熱されているため、触媒体3を通過する際に触媒と接触することにより、ガス中のVOCは直接燃焼により酸化分解する場合より低温で酸化分解される。   The untreated gas heated by passing through the heating element 2 then flows into the catalyst unit 30 and passes through the catalyst body 3 which is a honeycomb structure on which the catalyst is supported. At this time, since the untreated gas has already been heated to about 300 ° C. in the heating unit 30 so that the VOC can be oxidatively decomposed in the presence of the catalyst, VOCs are oxidatively decomposed at a lower temperature than when oxidatively decomposed by direct combustion.

そして、VOCが酸化分解された後の処理済みガスは、ガス排出路9を流通して熱交換器4に入り、そこでガス導入路8を流通する未処理ガスに熱を与えて低温となり、排出口7から外気中に排出される。   Then, the treated gas after the oxidative decomposition of the VOC flows through the gas discharge passage 9 and enters the heat exchanger 4, where it heats the untreated gas flowing through the gas introduction passage 8 to become a low temperature, and is discharged. It is discharged from the outlet 7 into the outside air.

上記のように、本実施形態のVOC処理装置1によれば、ガスを流通させる構成をヒータやバーナ等の外部熱源によって外部から加熱するのではなく、ガスを流通させる構成である発熱体2自体が発熱するため、エネルギー効率良く流通するガスを加熱することができる。加えて、発熱体2と触媒体3とを主な構成とする簡易な構成であるため、装置全体を小型化することが可能となる。   As described above, according to the VOC processing apparatus 1 of the present embodiment, the heating element 2 itself is a structure in which the gas is circulated instead of being heated from the outside by an external heat source such as a heater or a burner. Since the heat is generated, the gas that circulates with high energy efficiency can be heated. In addition, since the heating element 2 and the catalyst body 3 have a simple configuration, the entire apparatus can be reduced in size.

また、本実施形態では、発熱体2である多孔質の炭化珪素質セラミックスに触媒が担持されているのではなく、加熱部20とは別個の構成として、加熱部20より下流側に触媒部30が設けられている。そのため、触媒存在下でのVOCの酸化分解に充分な300℃まで、未処理ガスの温度を予め加熱部20で高めてから触媒部30に導入することができる。これにより、触媒の作用を充分に発揮させて、VOCを低温で確実に酸化分解することが可能となる。   Further, in the present embodiment, the catalyst is not supported on the porous silicon carbide ceramics which is the heating element 2, but the catalyst unit 30 is arranged downstream of the heating unit 20 as a configuration separate from the heating unit 20. Is provided. Therefore, the temperature of the untreated gas can be increased in advance by the heating unit 20 to 300 ° C. sufficient for the oxidative decomposition of VOC in the presence of the catalyst, and then introduced into the catalyst unit 30. As a result, it is possible to fully oxidize and decompose VOC at a low temperature by fully exerting the action of the catalyst.

加えて、多孔質のハニカム構造体のフィルタリング作用により、未処理ガス中に含まれる微小な塵や粒子状物質は発熱体2に捕集される。この際、触媒体3と発熱体2とは別個の構成であり、発熱体2であるハニカム構造体に触媒が担持されているのではないため、捕集された物質によって触媒が被覆されることがない。これにより、触媒体3を長期にわたって使用することができる。   In addition, fine dust and particulate matter contained in the untreated gas are collected in the heating element 2 by the filtering action of the porous honeycomb structure. At this time, the catalyst body 3 and the heating element 2 are configured separately, and the catalyst is not supported on the honeycomb structure which is the heating element 2, so that the catalyst is covered with the collected substance. There is no. Thereby, the catalyst body 3 can be used over a long period of time.

更に、発熱体2として用いている炭化珪素質セラミックスは、高強度であると共に耐熱性、耐熱衝撃性に優れている。そのため、使用に伴って加熱と冷却が繰り返される発熱体2として適している。加えて、炭化珪素質セラミックスは、耐酸化性、耐食性にも優れるため、種々のVOCを含有する未処理ガスを加熱する構成として適している。加えて、炭化珪素セラミックスは熱伝導率が高く速やかに昇温するため、通電による発熱で効率良く未処理ガスを加熱することができる。   Further, the silicon carbide ceramic used as the heating element 2 has high strength and excellent heat resistance and thermal shock resistance. Therefore, it is suitable as the heating element 2 in which heating and cooling are repeated with use. In addition, since silicon carbide ceramics are excellent in oxidation resistance and corrosion resistance, they are suitable as a configuration for heating an untreated gas containing various VOCs. In addition, since silicon carbide ceramics has a high thermal conductivity and quickly rises in temperature, the raw gas can be efficiently heated by the heat generated by energization.

また、スチールウール層23を電極21と発熱体2との間に介在させているため、発熱体2の外表面が平滑であるか否か等の表面状態によらず、電極21と発熱体2とが多くの接触点でしっかりと密着し、発熱体2に通電させ易い構成となっている。更に、隣接する発熱体2の間、発熱体2と導通部22との間にもスチールウール層23を介在させているため、これらの構成間で電気伝導し易く、確実に六個の発熱体2を電気的に接続することができる。   Further, since the steel wool layer 23 is interposed between the electrode 21 and the heating element 2, the electrode 21 and the heating element 2 are independent of the surface state such as whether the outer surface of the heating element 2 is smooth or not. Are in close contact with each other at many contact points, and the heating element 2 is easily energized. Furthermore, since the steel wool layer 23 is interposed between the adjacent heating elements 2 and between the heating element 2 and the conduction portion 22, it is easy to conduct electricity between these components, and the six heating elements are surely provided. 2 can be electrically connected.

加えて、三段に積層された発熱体2には、バネ部材27によって下方に押圧する力が作用している。そのため、電極21と発熱体2との間、上下に隣接する発熱体2の間、発熱体2と導通部22との間に配されたスチールウール層23も、バネ部材27の押圧力によって圧縮されている。これにより、スチールウールによる電気的な接触点がより多数となり、スチールウール層23による電気的な接続作用をより有効に発揮させることができる。   In addition, a force pressing downward by the spring member 27 acts on the heating elements 2 stacked in three stages. Therefore, the steel wool layer 23 disposed between the electrode 21 and the heating element 2, between the heating elements 2 adjacent to each other in the vertical direction, and between the heating element 2 and the conducting portion 22 is also compressed by the pressing force of the spring member 27. Has been. Thereby, the electrical contact points by steel wool become many, and the electrical connection action by the steel wool layer 23 can be exhibited more effectively.

更に、加熱により発熱体2等が熱膨張しても、その熱膨張はバネ部材27によって吸収される。これにより、加熱部20の各構成間で熱応力が緩和され、歪みや亀裂等の発生を有効に防止することができる。   Further, even if the heating element 2 and the like are thermally expanded by heating, the thermal expansion is absorbed by the spring member 27. Thereby, a thermal stress is relieved between each structure of the heating part 20, and generation | occurrence | production of a distortion, a crack, etc. can be prevented effectively.

また、本実施形態で発熱体2に使用している炭化珪素質セラミックスは、温度の上昇に伴って電気抵抗が減少するNTC特性を有するところ、本実施形態では六つの発熱体2を直列接続することにより電気抵抗値を増加させている。これにより、電流値を過大とすることなく、商用電源を利用して大きな発熱量を得ることができる。従って、特別な設備を要することなく、大きな発熱量でガスを加温することができる本実施形態のVOC処理装置1は、中小規模の事業所で導入される装置として適している。   In addition, the silicon carbide ceramic used for the heating element 2 in the present embodiment has NTC characteristics in which the electric resistance decreases as the temperature rises. In this embodiment, six heating elements 2 are connected in series. This increases the electrical resistance value. Thereby, a large calorific value can be obtained using a commercial power supply without making the current value excessive. Therefore, the VOC processing apparatus 1 of the present embodiment that can heat the gas with a large calorific value without requiring any special equipment is suitable as an apparatus introduced in a small and medium-sized office.

また、本実施形態のVOC処理装置1は熱交換器4を備えているため、処理済みガスの排熱を有効に利用し、予め未処理ガスを加熱してから加熱部30に導入することができる。これにより、発熱体2への通電量を低減することができ、ランニングコストを抑えることができる。加えて、処理済みガスが高温状態のまま大気中に排出され、環境に悪影響を及ぼすことを防止することができる。   Moreover, since the VOC processing apparatus 1 of this embodiment is equipped with the heat exchanger 4, it can utilize the exhaust heat of processed gas effectively, can introduce | transduce into a heating part 30 after heating an untreated gas beforehand. it can. Thereby, the energization amount to the heat generating body 2 can be reduced, and running cost can be suppressed. In addition, the treated gas can be prevented from being discharged into the atmosphere in a high temperature state and adversely affecting the environment.

本実施形態のVOC処理装置1は、上記の構成に加え、加熱部20において発熱体2よりガス流通の上流側に、ガスの流路を分散させるガス流路分散部材を備えた構成とすることができる。例えば、図6に示すように、ガス導入路8の末端の近傍に、多数の小さな貫通孔が穿設された分散プレート41を設けることができる。そして、更に下流側の発熱体2の前面近傍に、断面円錐形の基体の外表面に複数枚の羽根が設けられた分散羽根42を設けることができる。ここで、分散プレート41及び分散羽根42は、共に「ガス流路分散部材」に相当する。   In addition to the above-described configuration, the VOC processing apparatus 1 according to the present embodiment includes a gas flow path dispersion member that disperses the gas flow path in the heating unit 20 on the upstream side of the gas flow from the heating element 2. Can do. For example, as shown in FIG. 6, a dispersion plate 41 having a large number of small through holes can be provided in the vicinity of the end of the gas introduction path 8. Further, a dispersion blade 42 in which a plurality of blades are provided on the outer surface of the base body having a conical section can be provided in the vicinity of the front surface of the heating element 2 on the downstream side. Here, the dispersion plate 41 and the dispersion blades 42 both correspond to “gas flow path dispersion members”.

上記のような構成にすることにより、ガス導入路8の末端から流出したガスは、まず分散プレート41の多数の貫通孔を通過することによって、種々の方向に分散する。そして、分散したガスは次に分散羽根42にガイドされて流通し、ガスの流通路が拡径する。これにより、複数個が列設された発熱体2の全断面積がガス導入路8の断面積に対して大きい場合であっても、ハニカム構造の発熱体2全体に満遍なくガスを通過させ、発熱体2全体の発熱を有効に活用してガスを加熱することができる。   With the above-described configuration, the gas flowing out from the end of the gas introduction path 8 first disperses in various directions by passing through a large number of through holes of the dispersion plate 41. The dispersed gas is then guided and distributed by the dispersion blades 42, and the diameter of the gas flow passage is expanded. As a result, even when the total cross-sectional area of the plurality of heating elements 2 arranged in a row is larger than the cross-sectional area of the gas introduction path 8, the gas is uniformly passed through the entire heating element 2 having the honeycomb structure to generate heat. The gas can be heated by effectively utilizing the heat generated by the entire body 2.

本実施形態のVOC処理装置を用いて、実際に工場からの排気ガスを処理し、VOCの処理効率について調べた。発熱体としては、炭化珪素質セラミックスのハニカム構造体(気孔率約58%、平均気孔径約19μm、セル密度169 cpsi、寸法約90mm×90mm×30mm)の計九個を使用し、図2及び図4等を用いて説明したように、ガス流通方向に二列、ガス流通方向に略直交する方向に三列、上下方向に三段となるように配置すると共に、ガス流通方向に二列を直列接続し、ガス流通方向に略直交する三列を並列接続した。触媒体としては、コージェライトのハニカム構造体(気孔率60〜70%、平均気孔径約20μm、セル密度300 cpsi、寸法約150mm×150mm×50mm)に貴金属触媒を担持させたもの四個を、上下左右に二個ずつ重ねて配置した。VOC分解装置全体の寸法は、およそ幅1.8m×奥行き0.9m×高さ1.3mであり、総重量は約300kgであった。   Using the VOC processing apparatus of this embodiment, exhaust gas from the factory was actually processed, and the processing efficiency of VOC was examined. A total of nine silicon carbide ceramic honeycomb structures (porosity of about 58%, average pore diameter of about 19 μm, cell density of 169 cpsi, dimensions of about 90 mm × 90 mm × 30 mm) were used as the heating elements. As described with reference to FIG. 4 and the like, two rows are arranged in the gas flow direction, three rows in the direction substantially perpendicular to the gas flow direction, and three rows in the up and down direction, and two rows in the gas flow direction. Three rows were connected in series, and three rows substantially perpendicular to the gas flow direction were connected in parallel. As the catalyst body, four cordierite honeycomb structures (porosity of 60 to 70%, average pore diameter of about 20 μm, cell density of 300 cpsi, dimensions of about 150 mm × 150 mm × 50 mm) supported with a noble metal catalyst, Two were placed one above the other on the top, bottom, left and right. The overall dimensions of the VOC decomposition apparatus were approximately width 1.8 m × depth 0.9 m × height 1.3 m, and the total weight was about 300 kg.

印刷工場でグラビア印刷機からの排気ガスを20分間採取すると共に、排気ガスをVOC処理装置で処理した後のガスを同じく20分間採取し、それぞれガス中のVOC濃度を測定して、処理前後のVOC濃度の対比により処理効率を求めた。測定は複数回行い、処理効率の平均値を算出した。また、貴金属触媒の種類を異ならせた場合について、それぞれ測定を行い比較した。貴金属触媒としては、(A)パラジウム触媒(日揮ユニバーサル社製NHX−724)、及び(B)白金触媒(日揮ユニバーサル社製NH−124)の二種類を使用した。測定結果を表1に示す。なお、表1のVOC処理効率は、処理前の濃度が1ppm以上であったVOC成分についての結果をまとめたものである。   Collect the exhaust gas from the gravure printing machine for 20 minutes at the printing factory, and also collect the gas after processing the exhaust gas with the VOC treatment device for 20 minutes, and measure the VOC concentration in each gas before and after the treatment. The processing efficiency was determined by comparing the VOC concentration. The measurement was performed several times, and the average value of the processing efficiency was calculated. In addition, measurements were made for comparison when different types of precious metal catalysts were used. As the noble metal catalyst, two types of (A) palladium catalyst (NHX-724 manufactured by JGC Universal) and (B) platinum catalyst (NH-124 manufactured by JGC Universal) were used. The measurement results are shown in Table 1. The VOC treatment efficiency in Table 1 is a summary of the results for VOC components whose concentration before treatment was 1 ppm or more.

Figure 0005142146
Figure 0005142146

本実施例のVOC処理装置は、従来の装置と比べて小型で、安価に製造することができたが、総VOC処理効率は約80%であり、実用的な処理能力であった。また、触媒としてパラジウムを使用した場合は、加熱部で排気ガス温度を約300℃に高めておくことにより、触媒部での温度も250〜300℃に保持された。一方、白金触媒を使用した場合は、触媒部への導入ガス温度より触媒部からの排出温度が高く、VOCの酸化分解による反応熱によるものと考えられた。このことから、触媒部でのVOCの分解反応が始まった後は、触媒部の温度を測定してフィードバックすることにより、加熱部の温度を数十℃低下させるよう制御しても、触媒部でのVOCの分解反応を継続的に行わせることができることが示唆された。このように加熱部の温度を制御することにより、エネルギー消費を節減してVOCの処理を行うことができる。   The VOC processing apparatus of this example was smaller than the conventional apparatus and could be manufactured at low cost, but the total VOC processing efficiency was about 80%, which was a practical processing capacity. Further, when palladium was used as the catalyst, the temperature in the catalyst part was also maintained at 250 to 300 ° C. by raising the exhaust gas temperature to about 300 ° C. in the heating part. On the other hand, when a platinum catalyst was used, the discharge temperature from the catalyst part was higher than the temperature of the gas introduced into the catalyst part, which was considered to be due to the reaction heat due to oxidative decomposition of VOC. From this, after the decomposition reaction of VOC in the catalyst portion has started, even if the temperature of the heating portion is controlled to be lowered by several tens of degrees centigrade by measuring and feeding back the temperature of the catalyst portion, It was suggested that the decomposition reaction of VOC can be carried out continuously. By controlling the temperature of the heating unit in this way, energy consumption can be saved and VOC processing can be performed.

また、本実施例のVOC処理装置では、排出ガスと導入ガスとの間で熱交換させることにより、常温で装置内に吸引されたガスの温度を予め150〜200℃という高温まで上昇させてから、加熱部に導入することができた。   Further, in the VOC processing apparatus of the present embodiment, the temperature of the gas sucked into the apparatus at room temperature is raised to a high temperature of 150 to 200 ° C. in advance by exchanging heat between the exhaust gas and the introduced gas. Could be introduced into the heating section.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、上記の実施形態では、ガス流通方向の二列の発熱体計六つを直列接続する場合を例示したが、これに限定されるものではなく、発熱体の接続の仕方は発熱体の種類(電気抵抗値)、サイズ等によって適宜変更することができる。特に、上記の実施形態では、三つの発熱体2が上下に積層された列の二つが、空間を介して離隔していると共に導通部によって接続された構成となっているため、その二列が直列ではなく並列に接続された構成に容易に変更することができる。すなわち、図7に示すように、上下に三つ積層された発熱体の列において、最上段及び最下段の発熱体にそれぞれ電極21a,21bを取り付けることにより、三つの発熱体が直列に接続された列が、それぞれ他の列とは並列に接続されている構成とすることができる。   For example, in the above embodiment, the case where six rows of two heating elements in the gas flow direction are connected in series is exemplified, but the present invention is not limited to this, and the method of connecting the heating elements is the kind of the heating element. It can be appropriately changed depending on (electric resistance value), size, and the like. In particular, in the above-described embodiment, two rows in which the three heating elements 2 are stacked one above the other are separated by a space and are connected by a conductive portion. It can be easily changed to a configuration connected in parallel rather than in series. That is, as shown in FIG. 7, in the row of three heating elements stacked vertically, the three heating elements are connected in series by attaching the electrodes 21a and 21b to the uppermost and lowermost heating elements, respectively. Each column can be connected in parallel to each other column.

また、触媒部に触媒体を一層設けた場合を例示したが、これに限定されず、ガス流通方向に複数の触媒体が列設された構成とすることができる。その場合、触媒の種類は同一であっても異なっていても良い。   Moreover, although the case where one catalyst body was provided in the catalyst part was illustrated, it is not limited to this, It can be set as the structure by which the several catalyst body was arranged in the gas distribution direction. In that case, the type of catalyst may be the same or different.

加えて、触媒体として多孔質体に触媒を担持させたものを例示したが、これに限定されず、例えば、発泡金属など触媒自体を多孔質構造として用いることができる。   In addition, the catalyst body is exemplified by a catalyst in which a catalyst is supported on a porous body. However, the present invention is not limited to this. For example, the catalyst itself such as a foam metal can be used as the porous structure.

本実施形態の揮発性有機化合物処理装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the volatile organic compound processing apparatus of this embodiment. 図1の揮発性有機化合物処理装置の主要部の正面図(加熱部側から見た図)である。It is a front view (figure seen from the heating part side) of the principal part of the volatile organic compound processing apparatus of FIG. 図1の揮発性有機化合物処理装置の主要部の背面図(触媒部側から見た図)である。It is a rear view (figure seen from the catalyst part side) of the principal part of the volatile organic compound processing apparatus of FIG. 図2におけるX−X線断面図である。It is the XX sectional view taken on the line in FIG. 図2におけるY−Y線断面図である。It is the YY sectional view taken on the line in FIG. ガスの分散を説明する説明図である。It is explanatory drawing explaining dispersion | distribution of gas. 他の実施形態の揮発性有機化合物処理装置の正面図(加熱部側から見た図)である。It is a front view (figure seen from the heating part side) of the volatile organic compound processing apparatus of other embodiment.

符号の説明Explanation of symbols

1 VOC処理装置(揮発性有機化合物処理装置)
2 発熱体(電気伝導性発熱体)
3 触媒体
20 加熱部
21,21a,21b 電極
23 スチールウール層
27 バネ部材
30 触媒部
41 分散プレート(ガス流路分散部材)
42 分散羽根(ガス流路分散部材)
1 VOC treatment equipment (volatile organic compound treatment equipment)
2 Heating element (electrically conductive heating element)
3 catalyst body 20 heating part 21, 21a, 21b electrode 23 steel wool layer 27 spring member 30 catalyst part 41 dispersion plate (gas flow path dispersion member)
42 Dispersion blade (gas flow path dispersion member)

Claims (4)

ガスを流通させる連通孔部が形成された電気伝導性発熱体、及び、該電気伝導性発熱体へ通電するための電極を備え、通電による前記電気伝導性発熱体の発熱によって前記連通孔部を流通するガスを加熱する加熱部と、
揮発性有機化合物の酸化分解温度を低下させる触媒体を備え、前記加熱部よりガス流通の下流側に設けられ前記加熱部で加熱されたガスに含まれる揮発性有機化合物を酸化分解させる触媒部とを具備し、
前記加熱部は、前記電極と前記電気伝導性発熱体の外表面との間に介在させたスチールウール層を備え、
前記電気伝導性発熱体は、多孔質の電気伝導性セラミックスで構成され、単一の方向に延びて列設された複数の隔壁により区画された複数のセルを備えたハニカム構造体であり、前記セル及び多孔質の前記隔壁中の連続気孔が前記連通孔部に相当し、多孔質の前記隔壁に触媒を担持していない
ことを特徴とする揮発性有機化合物処理装置。
An electrically conductive heating element in which a communicating hole for circulating gas is formed, and an electrode for energizing the electrically conductive heating element. A heating unit for heating the circulating gas;
A catalyst unit that includes a catalyst body that lowers the oxidative decomposition temperature of the volatile organic compound, and that is provided on the downstream side of the gas flow from the heating unit and oxidatively decomposes the volatile organic compound contained in the gas heated by the heating unit; equipped with,
The heating unit includes a steel wool layer interposed between the electrode and the outer surface of the electrically conductive heating element,
The electrically conductive heating element is a honeycomb structure comprising a plurality of cells made of porous electrically conductive ceramics and partitioned by a plurality of partition walls extending in a single direction. A volatile organic compound treatment apparatus, wherein continuous pores in a cell and a porous partition wall correspond to the communication hole portion, and a catalyst is not supported on the porous partition wall .
前記加熱部は、前記電極前記電気伝導性発熱体に圧着させる方向に付勢するバネ部材を備える
ことを特徴とする請求項1に記載の揮発性有機化合物処理装置。
The volatile organic compound processing apparatus according to claim 1, wherein the heating unit includes a spring member that urges the electrode in a direction in which the electrode is pressed against the electrically conductive heating element.
前記加熱部は、前記電気伝導性発熱体よりガス流通の上流側に設けられてガスの流路を分散させるガス流路分散部材を備える
ことを特徴とする請求項1または請求項2に記載の揮発性有機化合物処理装置。
The said heating part is provided in the upstream of the gas distribution | circulation from the said electrically conductive heat generating body, The gas flow path dispersion | distribution member which distributes the flow path of gas is provided, The claim 1 or Claim 2 characterized by the above-mentioned. Volatile organic compound processing equipment.
前記電気伝導性発熱体は複数個が設けられ、その内の二以上は電気的に直列接続されている
ことを特徴とする請求項1乃至請求項3の何れか一つに記載の揮発性有機化合物処理装置。
The plurality of electrically conductive heating elements are provided, and two or more of them are electrically connected in series. Volatile organic compound processing equipment.
JP2008131732A 2008-05-20 2008-05-20 Volatile organic compound processing equipment Active JP5142146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131732A JP5142146B2 (en) 2008-05-20 2008-05-20 Volatile organic compound processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131732A JP5142146B2 (en) 2008-05-20 2008-05-20 Volatile organic compound processing equipment

Publications (2)

Publication Number Publication Date
JP2009279482A JP2009279482A (en) 2009-12-03
JP5142146B2 true JP5142146B2 (en) 2013-02-13

Family

ID=41450517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131732A Active JP5142146B2 (en) 2008-05-20 2008-05-20 Volatile organic compound processing equipment

Country Status (1)

Country Link
JP (1) JP5142146B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186033A (en) * 2011-03-07 2012-09-27 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method of porous heating element and gas decomposition element
JP5716487B2 (en) * 2011-03-29 2015-05-13 住友電気工業株式会社 Porous heating element, method for manufacturing porous heating element, and gas decomposition element
JP5748172B2 (en) * 2011-05-10 2015-07-15 住友電気工業株式会社 Gas heating device and gas decomposition device
JP5811494B2 (en) * 2011-07-27 2015-11-11 住友電気工業株式会社 Gas cracker
CN109012175A (en) * 2013-03-22 2018-12-18 日本碍子株式会社 Reducing agent injection apparatus, emission-control equipment and waste gas processing method
CN113893581B (en) * 2021-10-28 2022-09-16 南京沿江资源生态科学研究院有限公司 Organic solvent innocent treatment system
CN113880584B (en) * 2021-11-16 2022-12-16 宜兴王子制陶有限公司 Improved silicon carbide honeycomb ceramic unit body rapid firing method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219404B2 (en) * 1989-09-26 2001-10-15 イビデン株式会社 Exhaust gas purification device
JP2898337B2 (en) * 1990-04-03 1999-05-31 日本碍子株式会社 Honeycomb heater and catalytic converter
JP2818039B2 (en) * 1991-03-06 1998-10-30 シャープ株式会社 Air purifier also serves as a heater
JP3334897B2 (en) * 1991-09-02 2002-10-15 臼井国際産業株式会社 Exhaust gas purification device
JPH0796203A (en) * 1993-07-26 1995-04-11 Usui Internatl Ind Co Ltd Electric heating honeycomb body
JPH09136014A (en) * 1995-11-13 1997-05-27 Toho Denshi Kk Deodorization method for odorous gas
JPH10141687A (en) * 1996-11-15 1998-05-29 Matsushita Electric Ind Co Ltd Air conditioner with deodorizing function
DE19820426C1 (en) * 1998-05-07 2000-03-16 Siemens Ag catalyst module
JPH10325314A (en) * 1998-05-25 1998-12-08 Ngk Insulators Ltd Heater of resistance adjusting type and catalytic converter
JP2001058119A (en) * 1999-08-23 2001-03-06 Hitachi Zosen Corp Method and apparatus for decomposing harmful substance in exhaust gas
JP2001327835A (en) * 2000-05-25 2001-11-27 Matsushita Electric Ind Co Ltd Method for cracking organic chlorine compound
JP2001340434A (en) * 2000-06-06 2001-12-11 Tanaka Kikinzoku Hanbai Kk Deodorization device
JP4050019B2 (en) * 2001-08-09 2008-02-20 本田技研工業株式会社 Boil-off gas processing equipment
JP2003103143A (en) * 2001-09-28 2003-04-08 Sanyo Electric Co Ltd Deodorization apparatus and apparatus for treating garbage by using the same
JP2004344842A (en) * 2003-05-26 2004-12-09 Shin Nihon Denshi Kk Heat exchange structure and catalyst type gas oxidative decomposition apparatus using the same
JP4599271B2 (en) * 2005-10-06 2010-12-15 東京窯業株式会社 Method for manufacturing sintered body
JP2007144276A (en) * 2005-11-25 2007-06-14 Sanden Corp Garbage disposal apparatus and deodorization device for garbage disposal apparatus

Also Published As

Publication number Publication date
JP2009279482A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5142146B2 (en) Volatile organic compound processing equipment
US10293072B2 (en) Air purifier for transportation vehicles
US9157639B2 (en) Cooking oven comprising exhaust gas purification assembly
US6517786B1 (en) Device and method for decomposing harmful substances contained in flue gas
US5236672A (en) Corona destruction of volatile organic compounds and toxics
US20090232718A1 (en) Multi-stage catalytic air purification system
US20070053805A1 (en) Gas decomposition apparatus
JP2008055404A (en) Air treatment apparatus
US20050048861A1 (en) Method and apparatus for manufacturing plasma display panel
CN111135658B (en) Organic waste gas catalytic combustion comprehensive treatment system containing Cl-VOCs
JPWO2010061854A1 (en) Decomposition and removal system of harmful substances by thermal excitation of chromium oxide or nickel oxide
KR20060037181A (en) Hybrid voc purification system using non-thermal plasma photo-catalyst and thermal catalytic converter
KR102636300B1 (en) An eco-friendly and easy-to-maintain air purifying device using a reusable filter and water, and an air purifying method using the same
JP2011098306A (en) Volatile organic compound treatment apparatus
JP2007020923A (en) Air cleaner
KR102411341B1 (en) Plasma Catalytic Rector for Removing Hazadous Gases and Removing Method of Hazadous Gases Using the Same
JP6373035B2 (en) Gas processing equipment
EP3482816B1 (en) Closed-environment with air purification system
CN213032128U (en) Oil fume purification device
CN208356514U (en) A kind of tandem purifying indoor formaldehyde device
JP3150279U (en) Heating device with air purification function
JP2004181301A (en) Catalyst honeycomb and air cleaner
CN215637224U (en) Catalytic combustion device
JP2006325866A (en) Photocatalyst type air cleaner
JP2009050747A (en) Treatment apparatus and treatment method of compound gas containing pfc and co

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250