JP4573428B2 - 電子デバイスのモデル化方法 - Google Patents

電子デバイスのモデル化方法 Download PDF

Info

Publication number
JP4573428B2
JP4573428B2 JP2000371235A JP2000371235A JP4573428B2 JP 4573428 B2 JP4573428 B2 JP 4573428B2 JP 2000371235 A JP2000371235 A JP 2000371235A JP 2000371235 A JP2000371235 A JP 2000371235A JP 4573428 B2 JP4573428 B2 JP 4573428B2
Authority
JP
Japan
Prior art keywords
voltage
current
electronic device
generated
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000371235A
Other languages
English (en)
Other versions
JP2002174650A (ja
Inventor
孝 直井
克己 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2000371235A priority Critical patent/JP4573428B2/ja
Publication of JP2002174650A publication Critical patent/JP2002174650A/ja
Application granted granted Critical
Publication of JP4573428B2 publication Critical patent/JP4573428B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子デバイスのシミュレーションの手法に関し、特に、電子デバイスの端子から外部回路に漏洩するノイズ等の解析用としてノイズ源としての電子デバイスをモデル化するモデル化方法に関する。
【0002】
【従来の技術】
電子回路の開発等において、電子回路をコンピュータ上等で実現するシミュレーションにより開発期間の短縮等が図られており、例えば、IC等の電子デバイスをノイズ源とする電子回路の解析等に用いられている。かかるシミュレーション技術としてSPICEが広く知られている。SPICEは電子回路、ICであれば内部回路の等価回路を回路図どおりに正確に実現するものであり、内部回路の詳細がメーカから公表されておらずIC等をブラックボックス化したものとして扱わざるを得ない場合には適用することができず、必ずしも汎用性の高いものとはいえない。
【0003】
そこで、IC等の回路構成の詳細が不明なとき、例えばICをその信号端子から漏洩するノイズ源等としてモデル化しようとすれば、図7に示すように、IC9を電圧源(もしくは電流源)901として表し、電圧源としてモデル化する場合には両端子902,903間の電圧を計測して電圧源の生成電圧とし、電流源としてモデル化する場合には端子902,903から流れる電流を計測して電流源の生成電流としている。
【0004】
【発明が解決しようとする課題】
しかしながら、電子デバイスには内部インピーダンス成分が存在するから、電子デバイスの端子と接続される外部回路のインピーダンスの影響が回避できず、外部回路に接続した時に実際の電圧や電流が異なる。その上、外部回路を構成する素子の定数や配線パターンの取りまわしによって外部回路のインピーダンスが変化し、正確なシミュレーションを行うのが困難である。
【0005】
本発明は前記実情に鑑みなされたもので、電子デバイスを正確にモデル化することのできる電子デバイスのモデル化方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の発明では、電子デバイスを、電圧源に内部インピーダンス成分が直列に接続されてなるモデルにより表す電子デバイスのモデル化方法であって、
電子デバイスが内部クロックを有する回路構成であり、
モデル化しようとする電子デバイスの一対の端子に、インピーダンスが異なる負荷を切り換えて接続し、インピーダンスが異なる当該2つの状態について、それぞれ両端子間の電圧と端子から流れる電流とを計測する電気特性計測ステップと、
テブナンの定理に基づいて、前記インピーダンスが異なる2つの状態で計測された電圧のデータと電流のデータとを既知数とするとともに前記電圧源が生成する生成電圧と前記内部インピーダンス成分のインピーダンスとを未知数として、前記電圧源の生成電圧および前記内部インピーダンス成分のインピーダンスを演算するモデル定数演算ステップとを有する。
前記電気特性計測ステップでは、前記内部クロックに同期して前記電圧および前記電流の振動波形を計測し、
前記モデル定数演算ステップは、複素数形式で表された電圧および電流から、複素数形式で表された前記生成電圧および前記内部インピーダンス成分のインピーダンスを演算する。
【0007】
負荷のインピーダンスを変えることで両端子間の電圧と端子から流れる電流とが変化する。しかして2種類の未知数としての電圧源が生成する生成電圧と内部インピーダンス成分のインピーダンスとが求められる。内部インピーダンス成分が考慮されているので、電子デバイスに接続される外部回路のインピーダンスによらず正確なモデルとなる。
電圧源および内部インピーダンス成分がより詳細に知られ、モデルの挙動がより実際の電子デバイスに近いものとなる。
【0008】
請求項2記載の発明では、電子デバイスを、電流源に内部インピーダンス成分が並列に接続されてなるモデルにより表す電子デバイスのモデル化方法であって、
電子デバイスが内部クロックを有する回路構成であり、
モデル化しようとする電子デバイスの一対の端子に、インピーダンスが異なる負荷を切り換えて接続し、インピーダンスが異なる当該2つの状態について、それぞれ両端子間の電圧と端子から流れる電流とを計測する電気特性計測ステップと、
ノートンの定理に基づいて、前記インピーダンスが異なる2つの状態で計測された電圧のデータと電流のデータとを既知数とするとともに前記電流源が生成する生成電流と前記内部インピーダンス成分のインピーダンスとを未知数として、前記電流源の生成電流および前記内部インピーダンス成分のインピーダンスを演算するモデル定数演算ステップとを有する。
前記電気特性計測ステップでは、前記内部クロックに同期して前記電圧および前記電流の振動波形を計測し、
前記モデル定数演算ステップは、複素数形式で表された電圧および電流から、複素数形式で表された前記生成電流および前記内部インピーダンス成分のインピーダンスを演算する。
【0009】
負荷のインピーダンスを変えることで両端子間の電圧と端子から流れる電流とが変化する。しかして2種類の未知数としての、電流源が生成する生成電流と内部インピーダンス成分のインピーダンスとが求められる。内部インピーダンス成分が考慮されているので、電子デバイスに接続される外部回路のインピーダンスによらず正確なモデルとなる。
電流源および内部インピーダンス成分がより詳細に知られ、モデルの挙動がより実際の電子デバイスに近いものとなる。
【0010】
請求項3記載の発明では、請求項の発明の構成において、前記モデル定数演算ステップは、計測された電圧のデータと電流のデータとをフーリエ変換し、周波数ごとに前記電圧源の生成電圧および前記内部インピーダンス成分のインピーダンスを演算する。
【0011】
周波数ごとに電圧源の生成電圧および内部インピーダンス成分のインピーダンスが得られるから、モデルの挙動がより実際の電子デバイスに近いものとなる。
【0016】
請求項記載の発明では、請求項の発明の構成において、前記モデル定数演算ステップは、計測された電圧のデータと電流のデータとをフーリエ変換し、周波数ごとに前記電流源の生成電流および前記内部インピーダンス成分のインピーダンスを演算する。
【0017】
周波数ごとに電流源の生成電流および内部インピーダンス成分のインピーダンスが得られるから、モデルの挙動がより実際の電子デバイスに近いものとなる。
【0018】
【発明の実施の形態】
(第1実施形態)
図1(A)、図1(B)に本発明の電子デバイスのモデル化方法に用いる計測システムの構成を示す。モデル化しようとする電子デバイスであるIC1の電源端子13とグランド端子14の間には負荷としての電源回路2が接続される。IC1は例えばワンチップマイコン等のCPUチップである。電源回路2は、所定の電源電圧を発生する電源回路本体21、これと並列に接続されたバイパスコンデンサ22とを有している。また電源回路2は、IC1と電源回路本体21とを接続する通電経路24の途中にインダクタ23が接続された場合(図1(A))と、インダクタ23の両端間がショートして実質的にインダクタ23を含まない場合(図1(B))に切り換え可能である。
【0019】
また、電圧計測プローブ3により、IC1の電源端子13とグランド端子14の間の電圧が計測可能である。電流計測プローブ4により、IC5の電源端子13から流れる電流を計測可能である。電圧計測プローブ3、電流計測プローブ4はオシロスコープ5と接続され、電圧のデータおよび電流のデータが取り込まれるようになっている。オシロスコープ5は、IC1の内部で発生するクロック信号による外部同期で作動するようになっている。オシロスコープ5において得られた電圧のデータおよび電流のデータはパーソナルコンピュータ6に転送される。
【0020】
また、本実施形態では、電源端子13から前記電源回路2に漏洩するノイズ源としてのIC1を、電圧源11に直列に内部インピーダンス成分12が接続された回路構成で表す場合について説明する。
【0021】
図2に本発明の電子デバイスのモデル化方法の手順を示す。先ず、インダクタ23の両端間をショートしない状態(図1(A))で、IC1の前記クロック信号に同期して電圧データと電流データとを取り込む(ステップS101)。この取り込まれたデータの例を図3に示す。次いで、ショートした状態で(図1(B))、同様に電圧データおよび電流データを取り込む(ステップS102)。この取り込まれたデータの例を図4に示す。
【0022】
両者のデータの差は電源回路2のインピーダンスすなわちインダクタ23の有無に基因し、第1回目の計測(ステップS101)と第2回目の計測(ステップS102)とで取り込まれたデータの差が明瞭に現れるようにインダクタ23のインダクタンスを設定する。なお、電源回路2のインピーダンスを違えるには通電経路24にインダクタではなく抵抗器を挿入してもよいが、本実施形態のようにインダクタ23を挿入する方が、電源回路本体21から供給される電源電圧の低下が回避され、IC1の安定作動を確保することができるので、望ましい。
【0023】
次いで、電圧のデータおよび電流のデータを、パーソナルコンピュータ6で実行されるソフトウェア上でフーリエ変換し、周波数ごとに振幅および位相差のデータを得る。これを複素数形式の電圧Vr +jVi および電流Ir +jIi に変換する(ステップS103)。Vr は電圧の実部であり、Vi は電圧の虚部である。Ir は電流の実部であり、Ii は電流の虚部である。
【0024】
次いで、周波数ごとに、IC1の電圧源11の生成電圧およびIC1の内部インピーダンス成分12のインピーダンス(以下、内部インピーダンスという)を算出する(ステップS104)。生成電圧およびインピーダンスの算出も、パーソナルコンピュータ6で実行されるソフトウェア上で行うのがよい。
【0025】
ここで、第1回目の計測と第2回目の計測とで電源回路2のインピーダンスが異なり、テブナンの定理が適用できる。先ず、前記モデルにおいて一般的に、式(1)となる。式中、Er は電圧源11の生成電圧を複素数形式で表したときの実部であり、Ei は虚部である。また、Zr は内部インピーダンスを複素数形式で表したときの実部であり、Zi は虚部である。
Er +jEi =(Zr +jZi )(Ir +jIi )+(Vr +jVi )・・・(1)
【0026】
変形して実部と虚部に分けると、式(2−1)、(2−2)となる。
Er −Vr =Ir Zr −Ii Zi ・・・(2−1)
Ei −Vi =Ir Zi +Ii Zr ・・・(2−2)
【0027】
IC1で発生するノイズすなわち電圧源11の生成電圧Er +jEi は、IC1の内部で発生するクロック信号の影響を受けて生成されるので、クロック信号に対する位相差は一定している。また、第1回目の計測(ステップS101)も第2回目の計測(ステップS102)もIC1のクロック信号に同期して取り込まれるから、式(2−1)、(2−2)において、電圧源11の生成電圧Er +jEi は、第1回目の計測(ステップS101)と第2回目の計測(ステップS102)とで同じ値とし得る。したがって、電圧Vr ,Vi 、電流Ir ,Ii について、添え字1,2により1回目の計測(ステップS101)のデータであること、2回目の計測(ステップS102)のデータであることを表すと、式(3)となる。
【0028】
【数1】
Figure 0004573428
【0029】
ここで、Ir1,Ii1,Ir2,Ii2およびVr1,Vi1, Vr2,Vi2は前記のごとくステップS101〜S103を行うことにより既知であるから、式(4)を演算することにより、Er ,Ei ,Zr ,Zi を得る(ステップS104)。
【0030】
【数2】
Figure 0004573428
【0031】
これにより、IC1を電圧源11に内部インピーダンス成分12が直列に接続された図1の回路構成のモデルが得られる。このモデルでは、内部インピーダンス成分12が考慮されているから、端子13,14に接続される外部回路のインピーダンスに依存しないモデルとなる。
【0032】
(第2実施形態)
IC1を別の回路構成により表すモデル化方法について説明する。本実施形態では図5(A)、図5(B)に示すように、IC1を、電流源11Aに内部インピーダンス成分12Aが並列に接続された回路構成のモデルとしたものである。
【0033】
図6は本実施形態のモデル化方法を行う手順を示すもので、第1実施形態と同様に電源回路2のインピーダンスを違えて第1回目、第2回目の計測を行い(ステップS101,S102)、フーリエ変換により周波数ごとに電圧Vr +jVi 、電流Ir +jIi を得る(ステップS103)。なお、本実施形態でも、適宜、第1回目、第2回目のデータであることを添え字1、2により区別するものとする。
【0034】
次いで、電圧Vr1+jVi1,Vr2+jVi2、電流Ir1+jIi1,Ir2+jIi2に基づいて、モデルを規定する定数を演算する(ステップS104A)。
【0035】
本実施形態のIC1のモデルでは、式(5)となる。式中、Ar は電流源11Aで生成される生成電流を複素数形式で表したときの実部であり、Ai は虚部である。また、Yr は内部インピーダンス成分12Aのアドミッタンスを複素数形式で表したときの実部であり、Yi は虚部である。
Ar +jAi =(Ir +jIi )+(Yr +jYi )(Vr +jVi )・・・(5)
【0036】
変形して実部と虚部に分けると、式(6−1)、(6−2)となる。
Ar −Ir =Vr Yr −Vi Yi ・・・(6−1)
Ai −Ii =Vi Yr +Vr Yi ・・・(6−2)
【0037】
したがって、式(7)となる。
【0038】
【数3】
Figure 0004573428
【0039】
ここで、Ir1,Ii1,Ir2,Ii2およびVr1,Vi1, Vr2,Vi2は前記のごとく計測により既知であり、式(8)を演算することにより、Ar ,Ai ,Yr ,Yi が得られる。
【0040】
【数4】
Figure 0004573428
【0041】
これにより、IC1を電流源11Aに内部インピーダンス成分12Aが並列に接続された回路構成のモデルが得られる。このモデルも、内部インピーダンスが考慮されているから、端子13,14に接続される回路のインピーダンスに依存しないモデルとなる。
【0042】
なお、前記各実施形態では、フーリエ変換を行って広い周波数帯域にわたってIC1をモデル化しているが、ICの電源端子からのノイズの周波数が単一とみなせる場合等には、必ずしもフーリエ変換を行う必要はない。電圧と電流の位相差が知られればよい。
【0043】
また、電圧と電流を複素数形式で得られるようにし、内部インピーダンス成分のインピーダンス(またはアドミッタンス)も複素数形式で求めているが、ICの端子に接続される負荷のインピーダンスおよび内部インピーダンス成分が静電容量成分やインダクタンス成分を含まない実質的に抵抗成分とみなせる場合には、複素数形式で表す必要はない。したがって、電圧や電流を実効値で計測することができ、演算も簡略化できる。
【0044】
また、インダクタの両端間をショート状態と非ショート状態との2種類の状態で負荷のインピーダンスを違えているが、インダクタンスの異なる2つのインダクタをスイッチで切り換え可能に接続するのもよい。あるいは、コンデンサ(例えば前記バイパスコンデンサ)の静電容量を変えるのもよい。
【図面の簡単な説明】
【図1】(A)、(B)は本発明の第1の電子デバイスのモデル化方法を実施するための計測システムの構成図である。
【図2】前記電子デバイスのモデル化方法の手順を示すフローチャートである。
【図3】前記電子デバイスのモデル化方法で得られる計測データの一例である。
【図4】前記電子デバイスのモデル化方法で得られる計測データの別の一例である。
【図5】本発明の第2の電子デバイスのモデル化方法を実施するための計測システムの構成図である。
【図6】前記電子デバイスのモデル化方法の手順を示すフローチャートである。
【図7】従来の電子デバイスのモデルの回路図である。
【符号の説明】
1 IC(電子デバイス)
11 電圧源
11A 電流源
12,12A 内部インピーダンス成分
13 電源端子(端子)
14 グランド端子(端子)
2 電源回路(負荷)
23 インダクタ

Claims (4)

  1. 電子デバイスを、電圧源に内部インピーダンス成分が直列に接続されてなるモデルにより表す電子デバイスのモデル化方法であって、
    電子デバイスが内部クロックを有する回路構成であり、
    モデル化しようとする電子デバイスの一対の端子に、インピーダンスが異なる負荷を切り換えて接続し、インピーダンスが異なる当該2つの状態について、それぞれ両端子間の電圧と端子から流れる電流とを計測する電気特性計測ステップと、
    テブナンの定理に基づいて、前記インピーダンスが異なる2つの状態で計測された電圧のデータと電流のデータとを既知数とするとともに前記電圧源が生成する生成電圧と前記内部インピーダンス成分のインピーダンスとを未知数として、前記電圧源の生成電圧および前記内部インピーダンス成分のインピーダンスを演算するモデル定数演算ステップとを有し、
    前記電気特性計測ステップでは、前記内部クロックに同期して前記電圧および前記電流の振動波形を計測し、
    前記モデル定数演算ステップは、複素数形式で表された電圧および電流から、複素数形式で表された前記生成電圧および前記内部インピーダンス成分のインピーダンスを演算することを特徴とする電子デバイスのモデル化方法。
  2. 電子デバイスを、電流源に内部インピーダンス成分が並列に接続されてなるモデルにより表す電子デバイスのモデル化方法であって、
    電子デバイスが内部クロックを有する回路構成であり、
    モデル化しようとする電子デバイスの一対の端子に、インピーダンスが異なる負荷を切り換えて接続し、インピーダンスが異なる当該2つの状態について、それぞれ両端子間の電圧と端子から流れる電流とを計測する電気特性計測ステップと、
    ノートンの定理に基づいて、前記インピーダンスが異なる2つの状態で計測された電圧のデータと電流のデータとを既知数とするとともに前記電流源が生成する生成電流と前記内部インピーダンス成分のインピーダンス値とを未知数として、前記電流源の生成電流および前記内部インピーダンス成分のインピーダンスを演算するモデル定数演算ステップとを有し、
    前記電気特性計測ステップでは、前記内部クロックに同期して前記電圧および前記電流の振動波形を計測し、
    前記モデル定数演算ステップは、複素数形式で表された電圧および電流から、複素数形式で表された前記生成電流および前記内部インピーダンス成分のインピーダンスを演算することを特徴とする電子デバイスのモデル化方法。
  3. 請求項1記載の電子デバイスのモデル化方法において、前記モデル定数演算ステップは、計測された電圧のデータと電流のデータとをフーリエ変換し、周波数ごとに前記電圧源の生成電圧および前記内部インピーダンス成分のインピーダンスを演算する電子デバイスのモデル化方法。
  4. 請求項2記載の電子デバイスのモデル化方法において、前記モデル定数演算ステップは、計測された電圧のデータと電流のデータとをフーリエ変換し、周波数ごとに前記電流源の生成電流および前記内部インピーダンス成分のインピーダンスを演算する電子デバイスのモデル化方法。
JP2000371235A 2000-12-06 2000-12-06 電子デバイスのモデル化方法 Expired - Fee Related JP4573428B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371235A JP4573428B2 (ja) 2000-12-06 2000-12-06 電子デバイスのモデル化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371235A JP4573428B2 (ja) 2000-12-06 2000-12-06 電子デバイスのモデル化方法

Publications (2)

Publication Number Publication Date
JP2002174650A JP2002174650A (ja) 2002-06-21
JP4573428B2 true JP4573428B2 (ja) 2010-11-04

Family

ID=18840990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371235A Expired - Fee Related JP4573428B2 (ja) 2000-12-06 2000-12-06 電子デバイスのモデル化方法

Country Status (1)

Country Link
JP (1) JP4573428B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824349A (zh) * 2019-11-20 2020-02-21 国网宁夏电力有限公司电力科学研究院 直流保护电器级差配合检测***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015252A1 (ja) * 2003-06-27 2005-02-17 The Furukawa Electric Co., Ltd. 蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム
JP2007207168A (ja) * 2006-02-06 2007-08-16 Nec Electronics Corp Emiシミュレーションモデル、emiシミュレーションシステムと方法
CN103018562B (zh) * 2012-12-05 2014-12-17 上海电机学院 同步多频阻抗测量方法及装置
CN111025124B (zh) * 2019-11-21 2021-09-28 北方工业大学 确定电路本安属性的方法及应用、存储有电路的本安属性校验程序的计算机可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204162A (ja) * 1987-02-18 1988-08-23 Mitsubishi Electric Corp 等価モデル定数の自動決定装置
JPH06124133A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd 電流波形整形回路
JPH07294573A (ja) * 1994-04-22 1995-11-10 Sumitomo Electric Ind Ltd 交流4電圧測定による活線ケーブル絶縁劣化診断方法および装置
JPH096814A (ja) * 1995-06-19 1997-01-10 Sony Corp チップのシミュレーション方法
JPH1056744A (ja) * 1996-08-08 1998-02-24 Shin Kobe Electric Mach Co Ltd 密閉型鉛蓄電池を備えた電源装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306177A (ja) * 1989-05-19 1990-12-19 Asahi Optical Co Ltd デジタル回路の出力レベル判別装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204162A (ja) * 1987-02-18 1988-08-23 Mitsubishi Electric Corp 等価モデル定数の自動決定装置
JPH06124133A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd 電流波形整形回路
JPH07294573A (ja) * 1994-04-22 1995-11-10 Sumitomo Electric Ind Ltd 交流4電圧測定による活線ケーブル絶縁劣化診断方法および装置
JPH096814A (ja) * 1995-06-19 1997-01-10 Sony Corp チップのシミュレーション方法
JPH1056744A (ja) * 1996-08-08 1998-02-24 Shin Kobe Electric Mach Co Ltd 密閉型鉛蓄電池を備えた電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824349A (zh) * 2019-11-20 2020-02-21 国网宁夏电力有限公司电力科学研究院 直流保护电器级差配合检测***

Also Published As

Publication number Publication date
JP2002174650A (ja) 2002-06-21

Similar Documents

Publication Publication Date Title
JP5773102B2 (ja) インダクタのシミュレーション方法並びにインダクタのシミュレーション装置およびその使用方法
JP2010204869A (ja) 積層チップインダクタの等価回路モデルの回路定数解析方法及び回路シミュレーション方法
EP1440395A2 (en) Method and apparatus for analysing and modeling of analog systems
JP4573428B2 (ja) 電子デバイスのモデル化方法
JP3492254B2 (ja) アクセスを制限したテストにおいて目標コンポーネントを選択するための方法及び装置
US7233889B2 (en) Method, apparatus, and computer program for evaluating noise immunity of a semiconductor device
Fasig et al. Introduction to non-invasive current estimation (NICE)
US8129867B2 (en) RF AC/DC coupling circuit using general purpose solid-state relay
Gazda et al. Harmonic balance surrogate-based immunity modeling of a nonlinear analog circuit
JP2001175702A (ja) 回路設計方法
WO2019014341A1 (en) SYSTEMS AND METHODS FOR ESTIMATING CURRENT
US7225420B2 (en) System and method for signal integrity testing of electronic circuits
Shi et al. An experimental procedure for characterizing interconnects to the DC power bus on a multilayer printed circuit board
JP3415681B2 (ja) インピーダンス測定装置
JP3988623B2 (ja) 電子回路特性解析コンピュータプログラム及び特性解析方法
US6804807B2 (en) Method of characterizing an electronic device having unbalanced ground currents
Pommerenke et al. Simulation challenges in system level electrostatic discharge modeling
JP3494942B2 (ja) 集積半導体回路
Irino et al. SPICE simulation of power supply current from LSI on PCB with a behavioral model
JP6931830B2 (ja) インダクタンスの計測方法、計測システム、及びプログラム
Onikienko et al. Conductive EMI of class D audio amplifiers prediction system
JP3666408B2 (ja) 半導体試験装置
Goral et al. Power delivery network simulation methodology including integrated circuit behavior
Zilch et al. A versatile test set generation tool for structural analog circuit testing
JP2001201546A (ja) ノイズ試験方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees