JP4546123B2 - Plasma reactor - Google Patents

Plasma reactor Download PDF

Info

Publication number
JP4546123B2
JP4546123B2 JP2004081026A JP2004081026A JP4546123B2 JP 4546123 B2 JP4546123 B2 JP 4546123B2 JP 2004081026 A JP2004081026 A JP 2004081026A JP 2004081026 A JP2004081026 A JP 2004081026A JP 4546123 B2 JP4546123 B2 JP 4546123B2
Authority
JP
Japan
Prior art keywords
discharge
dielectric
electrode
plasma reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004081026A
Other languages
Japanese (ja)
Other versions
JP2005268129A (en
Inventor
水良 姚
衛 奥本
和彦 間所
建明 八嶋
武敏 米澤
琢也 伊藤
栄二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2004081026A priority Critical patent/JP4546123B2/en
Publication of JP2005268129A publication Critical patent/JP2005268129A/en
Application granted granted Critical
Publication of JP4546123B2 publication Critical patent/JP4546123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Description

本発明は、高効率で安定化したプラズマ反応器、詳しくは、電圧を印加することによって、放電が発生するプラズマ反応器、さらに詳しくは、電圧を印加することによって発生する化学反応、例えば、ディーゼル排ガス(排気)中の黒煙処理のような固体粒子及び/又は液体粒子を含むガスの処理、フロンガス処理、VOC処理などのようなガスの処理、オゾン生成などのような有用生成物の生産などの有害物質の分解もしくは有用物質の生成を行い、又は、物理変化、例えば、電気エネルギーを光エネルギーへ転換することができる放電プラズマ反応器に関するものである。   The present invention relates to a highly efficient and stabilized plasma reactor, more particularly, a plasma reactor in which a discharge is generated by applying a voltage, and more particularly a chemical reaction generated by applying a voltage, for example, diesel Treatment of gas containing solid particles and / or liquid particles such as black smoke treatment in exhaust gas (exhaust gas), treatment of gas such as Freon gas treatment and VOC treatment, production of useful products such as ozone generation, etc. The present invention relates to a discharge plasma reactor capable of decomposing toxic substances or generating useful substances, or converting physical energy, for example, electric energy into light energy.

電圧印加によって放電が発生するためのプラズマ反応器はこれまで2種類、すなわち、(1)直接型放電反応器と(2)誘電体を介した間接型放電反応器が開発されている(例えば、特許文献1、2、3参照)。
特開平7−116460号公報(第2頁、図2) 特開平4−247219号公報(第2頁、図2) 特開平5−115746号公報(第2頁、図2)
Two types of plasma reactors have been developed so far for generating a discharge by applying a voltage, that is, (1) a direct discharge reactor and (2) an indirect discharge reactor via a dielectric (for example, (See Patent Documents 1, 2, and 3).
Japanese Patent Laid-Open No. 7-116460 (2nd page, FIG. 2) JP-A-4-247219 (2nd page, FIG. 2) Japanese Patent Laid-Open No. 5-115746 (2nd page, FIG. 2)

上記の直接型放電反応器では、金属の電極対の間に直接に電圧を印加し、ガスを部分もしくは全部放電することができる。電極対構造は、図17に示すような外部電極と内部電極を同軸同心型に設けた構造、図20に示すような針状電極対針状電極、図19に示すような針状電極対板状電極、図18に示すような板状電極対板状電極がある。いずれも、電極の放電できる部分の面積と形状の違いによって分別することができるが、電極対間に放電ガスが直接に存在する特徴を有する。また、印加した電圧と放電ガスの圧力と温度条件によって、放電現象、特に放電に伴う発光が異なる。電極付近に光るコロナ放電或いはグロー放電、電極間を部分的に光るストリーマー放電、電極間を全部光るスパーク放電或いはアーク放電が観察できる。ガスの圧力と温度などの条件によっては、放電は電極間の限られた部分のみで発生する現象がよく見られるので、放電エネルギーが限られた部分に流れ込み、高いエネルギー注入密度(単位体積あたりのエネルギー注入量)が得られる。   In the above direct discharge reactor, a voltage can be directly applied between a pair of metal electrodes to discharge a gas partially or entirely. The electrode pair structure has a structure in which an external electrode and an internal electrode are coaxially provided as shown in FIG. 17, a needle-like electrode versus a needle-like electrode as shown in FIG. 20, and a needle-like electrode pair plate as shown in FIG. There are plate-like electrodes and plate-like electrodes as shown in FIG. Both can be classified according to the difference in the area and shape of the portion of the electrode that can be discharged, but has a feature that the discharge gas exists directly between the electrode pair. Further, the discharge phenomenon, particularly the light emission associated with the discharge, varies depending on the applied voltage, the pressure of the discharge gas, and the temperature conditions. Corona discharge or glow discharge that shines in the vicinity of the electrodes, streamer discharge that partially shines between the electrodes, spark discharge or arc discharge that shines completely between the electrodes can be observed. Depending on conditions such as gas pressure and temperature, discharge often occurs only in a limited area between the electrodes, so that the discharge energy flows into the limited area and high energy injection density (per unit volume) Energy injection amount).

一方、誘電体を介した放電プラズマ反応器では、電極対の片方或いは両方の電極に誘電体を設置することによって、放電を広い範囲に生成できる。電極対構造は、図21に示すような線状電極対誘電体―円筒状電極、図22に示すような充填層の内外に電極を設けた充填層型構造、図24に示すような板状電極対誘電対―板状電極、図23に示すような板状電極―誘電体対誘電体―板状電極、図25に示すような誘電体の一面に平板状電極を、他面に鋸歯状電極を設けた沿面型構造が開発されている。誘電体と片方の電極の間、或いは誘電体と誘電体の間に放電ガスを放電させる。印加した電圧とガスの圧力、温度条件によって、誘電体或いは電極表面に発生するコロナ放電とグロー放電が多く見られる。誘電体により、放電エネルギーが分散されるため、エネルギー注入密度が直接型放電反応器より低くなる。   On the other hand, in a discharge plasma reactor via a dielectric, a discharge can be generated in a wide range by installing a dielectric on one or both electrodes of an electrode pair. The electrode pair structure includes a linear electrode pair dielectric-cylindrical electrode as shown in FIG. 21, a packed layer structure in which electrodes are provided inside and outside of the packed layer as shown in FIG. 22, and a plate shape as shown in FIG. Electrode pair dielectric pair-plate-like electrode, plate-like electrode as shown in FIG. 23-dielectric vs. dielectric-plate-like electrode, a plate-like electrode on one side of the dielectric as shown in FIG. Creeping structures with electrodes have been developed. A discharge gas is discharged between the dielectric and one of the electrodes or between the dielectric and the dielectric. Depending on the applied voltage, gas pressure, and temperature conditions, many corona discharges and glow discharges are generated on the dielectric or electrode surface. Since the discharge energy is dispersed by the dielectric, the energy injection density is lower than that of the direct discharge reactor.

誘電体を介した間接型放電反応器は、直接型放電反応器より処理ガス量が大きいため、ガス全体に対して放電が安定、かつ均一であることが求められている。しかし、従来の放電反応器では、放電がエッジ化しやすいため、放電が部分的に発展する。図5は、従来間接型放電反応器の放電原理を示す。印加した電圧によって、誘電体1表面に正または負の電荷が発生する。負電荷と正電極(陽極)2に電場が発生し、その間、放電空間3内のガスを放電することができるが、エッジなどの所では、放電が不均一になった場合、誘電体1表面に生成した負電荷がすべてそのエッジの部分で流れてしまう。印加した電圧が高い場合、誘電体1が破壊され、放電が直接型に近い状態になる。4は陰極である。   Since the indirect discharge reactor via the dielectric has a larger amount of processing gas than the direct discharge reactor, the discharge is required to be stable and uniform with respect to the entire gas. However, in the conventional discharge reactor, since the discharge is easily edged, the discharge is partially developed. FIG. 5 shows the discharge principle of a conventional indirect discharge reactor. Depending on the applied voltage, positive or negative charges are generated on the surface of the dielectric 1. An electric field is generated in the negative charge and the positive electrode (anode) 2, during which the gas in the discharge space 3 can be discharged. However, if the discharge becomes uneven at the edge or the like, the surface of the dielectric 1 All negative charges generated in the flow at the edge. When the applied voltage is high, the dielectric 1 is destroyed and the discharge is in a state close to the direct type. 4 is a cathode.

解決しようとする問題点は、大容量ガスを処理するには、誘電体を介して放電する間接型反応器が適しているが、放電が安定できない点である。   The problem to be solved is that an indirect reactor that discharges through a dielectric is suitable for processing a large-capacity gas, but the discharge cannot be stabilized.

本発明は、誘電体を介した放電特性を検討し、電極と誘電体の構造を変えることによって放電の安定化と効率化を図るようにしたことを特徴とする。すなわち、誘電体の一面に電極を取り付け、その対面にガスを通過するギャップ(放電空間)を設置した基本構造を交互的に設けることにより、安定かつ均一な放電を行うようにしたことを最も主要な特徴とする。   The present invention is characterized in that discharge characteristics through a dielectric are studied, and discharge is stabilized and made efficient by changing the structure of the electrode and the dielectric. In other words, the most important thing is that stable and uniform discharge is achieved by attaching electrodes on one side of the dielectric and alternately providing a basic structure with gaps (discharge spaces) through which gas passes. Features.

本発明のプラズマ反応器は、誘電体の両面にそれぞれ電極を取り付け、各電極の内面とこれに対向する誘電体の外面との少なくともいずれか一方に、ガスが通過する多数の溝状のギャップ(放電空間)を設けてなる、放電反応部を備え、上記の放電反応部は、一方の電極側のギャップの存在しない位置に、他方の電極側のギャップが存在して位置するようにしてあり、上記のギャップが存在しない位置で誘電体に接触している電極の面積よりも、その誘電体を挟んだ反対側で、ギャップにより形成された放電空間を介してその誘電体に対向している電極の面積を大きくしたことを特徴としている。 In the plasma reactor of the present invention, electrodes are respectively attached to both surfaces of a dielectric, and at least one of the inner surface of each electrode and the outer surface of the dielectric opposed to the electrode is provided with a number of groove-like gaps through which gas passes ( A discharge reaction portion provided with a discharge space), and the discharge reaction portion is located at a position where there is no gap on one electrode side, and a gap is present on the other electrode side, The electrode facing the dielectric via the discharge space formed by the gap on the opposite side of the area of the electrode in contact with the dielectric at the position where the gap does not exist It is characterized by a large area.

ラズマ反応器を実際に構成する場合は、一方に排ガス入口を有し、他方に排ガス出口を有する反応器本体内に、上記の放電反応部を多段に積層して収納する。 When actually configure flop plasma reactor, while in a exhaust gas inlet, the reactor body having a gas outlet at the other, accommodated by laminating a discharge reaction device of the above multistage.

これらのプラズマ反応器において、ギャップを設置するために、凹凸状の電極を設けるか、又は凹凸状の誘電体を設ける。そして、凸部の高さを0.1〜10mm、幅を0.1〜500mmとしてなるようにすることが好ましい。
また、誘電体が、金属酸化物、セラミックス、ガラス、プラスチック及びシリコンゴムなどのいずれかからなる厚さ0.01mmから10mmの板状、管状及び球状のいずれかに形成されたものであるように構成することが好ましい。また、電極の形状は、板、管状及び球状のいずれかである。
In these plasma reactors, an uneven electrode or an uneven dielectric is provided in order to provide a gap. And it is preferable to make it the height of a convex part into 0.1-10 mm, and a width | variety as 0.1-500 mm.
Further, the dielectric is formed in any one of a plate shape, a tubular shape, and a spherical shape having a thickness of 0.01 mm to 10 mm made of any of metal oxide, ceramics, glass, plastic, silicon rubber, and the like. It is preferable to configure. The shape of the electrode is any one of a plate, a tube and a sphere.

これらのプラズマ反応器は、誘電体の両面に取り付けられた電極に電圧を印加することによって、電極と誘電体間に放電を引き起こすようになっている。印加する電圧は、交流、正直流、負直流、正パルス及び負パルスのいずれかの電圧が誘電体の両側電極に印加できる電源のものである。そして、ピーク電圧は1V〜100kVの範囲とすることが好ましい。この放電によって、ギャップを通過するガスに化学反応が生じる。
また、ガス温度は室温、低温及び高温のいずれかであり、ガスから液体や固体の生成のない範囲とするのが好ましい。また反応器本体に導入されるガス圧力は、0.1torr〜10気圧である。
These plasma reactors are adapted to cause a discharge between the electrode and the dielectric by applying a voltage to the electrodes attached to both sides of the dielectric. The voltage to be applied is that of a power supply that can apply any one of alternating current, positive direct current, negative direct current, positive pulse, and negative pulse to both electrodes of the dielectric. And it is preferable to make a peak voltage into the range of 1V-100kV. This discharge causes a chemical reaction in the gas passing through the gap.
The gas temperature is any one of room temperature, low temperature, and high temperature, and is preferably in a range where no liquid or solid is generated from the gas. The gas pressure introduced into the reactor body is 0.1 torr to 10 atm.

本発明のプラズマ反応器では、エネルギーが誘電体により分散され、エネルギー注入密度が低下し、大面積や大空間の放電が発生できる。この場合、放電のエッジ化現象の発生が抑制されるため、安定と均一的な放電が得られるという利点がある。   In the plasma reactor of the present invention, energy is dispersed by the dielectric, the energy injection density is lowered, and a large area or large space discharge can be generated. In this case, since the occurrence of the discharge edging phenomenon is suppressed, there is an advantage that stable and uniform discharge can be obtained.

間接型プラズマ反応器における放電の安定化、均一化という目的を誘電体の両面の電極内にギャップ(放電空間)を同じ位置にならないように交互に設けることにより実現した。   The purpose of stabilizing and homogenizing the discharge in the indirect plasma reactor was realized by alternately providing gaps (discharge spaces) in the electrodes on both sides of the dielectric so as not to be at the same position.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施されるものである。図1は本発明の実施の第1形態によるプラズマ反応器の要部(基本ユニット)を示している。
10は誘電体で、この誘電体の両面に陽極11及び陰極12が取り付けられており、陽極11及び陰極12内に、誘電体10に接してガスを通過させるためのギャップ(放電空間)13、14が一定間隔に多数設けられている。そして、一方の電極内のギャップの存在しない位置、すなわち、誘電体10に接触する電極の位置に、他方の電極内のギャップが存在して位置するようにして放電反応部15が形成され、プラズマ反応器はこの放電反応部15を備えて構成される。
Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and is appropriately modified. FIG. 1 shows a main part (basic unit) of a plasma reactor according to a first embodiment of the present invention.
Reference numeral 10 denotes a dielectric. An anode 11 and a cathode 12 are attached to both surfaces of the dielectric, and a gap (discharge space) 13 for allowing gas to pass through the anode 11 and the cathode 12 in contact with the dielectric 10; A number 14 is provided at regular intervals. Then, the discharge reaction portion 15 is formed so that the gap in the other electrode exists at the position where the gap in one electrode does not exist, that is, the position of the electrode in contact with the dielectric 10. The reactor includes the discharge reaction unit 15.

この場合、誘電体10に接触している電極の長さよりも、その対面での放電空間の長さを大きくすることが好ましい。例えば図1に示すように、上記のギャップの、ガスの流れ方向とは垂直方向の断面において、誘電体10に接触している陽極11の長さをL、この電極部の対面でのギャップ(放電空間)14の幅方向の長さをLとすると、L<Lとなるようにする。なお、ガスは、ギャップ(放電空間)13、14内を、図面の表側から裏側に抜けるように流れる。 In this case, it is preferable to make the length of the discharge space on the opposite side larger than the length of the electrode in contact with the dielectric 10. For example, as shown in FIG. 1, in the cross section perpendicular to the gas flow direction, the length of the anode 11 in contact with the dielectric 10 is L P , and the gap at the opposite side of this electrode portion is as shown in FIG. When the length in the width direction of the (discharge space) 14 is L N , L P <L N is satisfied. The gas flows through the gaps (discharge spaces) 13 and 14 so as to escape from the front side to the back side of the drawing.

図2は、一例としてディーゼル機関の排気中の黒煙(炭素系粒子状物質PMを含む)の除去機構を示している。排気が放電反応部に導入されると、誘電体10、例えばアルミナ板の表面に黒煙中のPM16が付着し、沿面放電による酸素ラジカル等の生成により黒煙中のPM16が酸化されて排気が清浄化される。   FIG. 2 shows, as an example, a mechanism for removing black smoke (including carbon-based particulate matter PM) in exhaust gas from a diesel engine. When exhaust gas is introduced into the discharge reaction section, PM16 in black smoke adheres to the surface of the dielectric 10, for example, an alumina plate, and PM16 in black smoke is oxidized by the generation of oxygen radicals or the like due to creeping discharge, resulting in exhaust gas. To be cleaned.

図1に示すプラズマ反応器の要部においては、ギャップ(放電空間)13、14を形成するために凹凸状の電極を用いている。凹凸状の電極の代わりに凹凸状の誘電体を用いることも可能である。この場合、凸部の高さを0.1〜10mm、幅を0.1〜500mmとすることが好ましい。   In the main part of the plasma reactor shown in FIG. 1, uneven electrodes are used to form gaps (discharge spaces) 13 and 14. It is also possible to use a concavo-convex dielectric instead of the concavo-convex electrode. In this case, it is preferable that the height of the convex portion is 0.1 to 10 mm and the width is 0.1 to 500 mm.

誘電体としては、金属酸化物、セラミックス、ガラス、プラスチック及びシリコンゴムなどからなる、厚さ0.01mmから10mmの板状、管状、球状などの面を持つものなら何れでもよいが、板状又は管状のものが好ましい。また、電極の形状は、板、管状及び球状のいずれでもよいが、板状のものを用いることが望ましい。   The dielectric may be any plate, 0.01 mm to 10 mm thick plate-like, tubular, spherical or the like made of metal oxide, ceramics, glass, plastic, silicon rubber, etc. Tubular ones are preferred. The shape of the electrode may be any of a plate, a tube and a sphere, but it is desirable to use a plate.

このように構成されたプラズマ反応器の要部において、誘電体の両面に取り付けられた電極に電圧を印加することによって、電極と誘電体間に放電を引き起こすことにより、反応が起こる。この場合、印加する電圧は、交流、正直流、負直流、正パルス及び負パルスなどのいずれかの電圧が誘電体の両側電極に印加できる電源のものであり、ピーク電圧は1V〜100kVの範囲、とくにピーク電圧は10kV前後とすることが望ましい。電圧を印加することによる放電によって、ギャップを通過するガスに化学反応が生じる。   In the main part of the plasma reactor configured as described above, by applying a voltage to the electrodes attached to both surfaces of the dielectric, a reaction occurs by causing a discharge between the electrode and the dielectric. In this case, the applied voltage is that of a power source that can apply any voltage such as alternating current, positive direct current, negative direct current, positive pulse and negative pulse to the both side electrodes of the dielectric, and the peak voltage ranges from 1 V to 100 kV. In particular, the peak voltage is preferably about 10 kV. A chemical reaction occurs in the gas passing through the gap due to the discharge by applying a voltage.

プラズマ反応器に導入されるガス温度は室温、低温及び高温のいずれかであり、ガスから液体や固体の生成のない範囲とすることが望ましい。また、反応器本体に導入されるガス圧力は、真空の0.1torr〜10気圧までが可能であるが、常圧付近の圧力とすることが望ましい。   The temperature of the gas introduced into the plasma reactor is one of room temperature, low temperature and high temperature, and it is desirable that the temperature be in a range where no liquid or solid is generated from the gas. The gas pressure introduced into the reactor main body can be 0.1 to 10 atm in vacuum, but it is desirable to set the pressure around normal pressure.

図3は、一例として、ディーゼルエンジンの排気を処理するためのプラズマ反応器を示している。20は反応器本体で、一端に排気入口21を有し、他端に排気出口22を有している。この反応器本体20内に、図1に示す放電反応部15を多段に積層して収納し、大容量の排気を処理できるように構成したものである。23は陽極、24は陰極、25はアルミナ絶縁管である。他の構成は図1の場合と同様である。   FIG. 3 shows, as an example, a plasma reactor for treating the exhaust of a diesel engine. A reactor main body 20 has an exhaust inlet 21 at one end and an exhaust outlet 22 at the other end. In this reactor main body 20, the discharge reaction parts 15 shown in FIG. 1 are stacked and accommodated in multiple stages so that a large volume of exhaust gas can be treated. Reference numeral 23 is an anode, 24 is a cathode, and 25 is an alumina insulating tube. Other configurations are the same as those in FIG.

本発明のプラズマ反応器においては、放電用のギャップを交互に設け、放電を効果的に分散することで、スパークのような強い放電を防ぐ。前記の図1は、その原理を示している。電極11、12を凹凸状にした場合には、電圧を印加することによって、誘電体10表面には印加した電圧極性と逆の電荷が発生する。この電荷と印加した電場との作用で、電圧が充分高い条件では、電極11、12と誘電体10との間の空間にあるガス中に放電が発生する。上記のギャップの、ガスの流れ方向とは垂直方向の断面において、電極と誘電体とが接する長さをL、電極と誘電体と接しない空間の幅方向の長さをLとする。L>Lの条件では、誘電体表面の電荷の分布が起こるため、その電荷が誘電体表面に自由に移動することが困難になるので好ましい。なぜなら、どちらか1つの放電空間が貫通しても、誘電体表面の電荷がすべてその貫通した部分へ移動することが抑制され、従来の放電器のような強い放電が起きにくくなるからである。 In the plasma reactor of the present invention, the discharge gaps are alternately provided to effectively disperse the discharge, thereby preventing a strong discharge such as a spark. FIG. 1 shows the principle. When the electrodes 11 and 12 are made uneven, by applying a voltage, charges opposite to the applied voltage polarity are generated on the surface of the dielectric 10. Due to the action of this electric charge and the applied electric field, a discharge is generated in the gas in the space between the electrodes 11 and 12 and the dielectric 10 under a sufficiently high voltage condition. In the section of the gap perpendicular to the gas flow direction , L P is a length where the electrode and the dielectric are in contact, and L N is a length in the width direction of the space where the electrode is not in contact with the dielectric. The condition of L N > L P is preferable because the charge distribution on the dielectric surface occurs, and it becomes difficult for the charge to freely move to the dielectric surface. This is because even if any one of the discharge spaces penetrates, it is suppressed that all the charges on the surface of the dielectric move to the penetrated portion, and a strong discharge like a conventional discharger is difficult to occur.

図4は本発明の実施の第2形態によるプラズマ反応器の要部(基本ユニット)で、誘電体を凹凸にした場合を示している。誘電体10aを凹凸状にした場合には、電圧を印加することによって、誘電体表面にも印加した電圧極性と逆に電荷が発生する。この電荷と印加した電場との作用で、電圧が充分高い条件では、電極11a、12aと誘電体10aとの間の空間にあるガス中に放電が発生する。電極と誘電体が接する面積をS、電極と誘電体とが接しない空間の面積をSとする。S>Sの条件では、誘電体表面の電荷の分布が電極を凹凸状にした場合より大きく起こるため、その電荷が誘電体表面に自由に移動することが更に困難になるので好ましい。どちらか1つの放電空間が貫通しても、誘電体表面の電荷の、すべてのその貫通した部分への移動が抑制され、従来の放電器のような強い放電が起きにくいからである。13a、14aはギャップ(放電空間)である。他の構成及び作用は実施の第1形態の場合と同様である。 FIG. 4 shows the main part (basic unit) of the plasma reactor according to the second embodiment of the present invention, in which the dielectric is made uneven. When the dielectric 10a is made uneven, by applying a voltage, a charge is generated opposite to the applied voltage polarity on the dielectric surface. Due to the action of this electric charge and the applied electric field, a discharge is generated in the gas in the space between the electrodes 11a, 12a and the dielectric 10a under a sufficiently high voltage condition. Let S P be the area where the electrode and the dielectric are in contact, and S N be the area of the space where the electrode and the dielectric are not in contact. In terms of S N> S P, since occurring greater than when the charge distribution of the dielectric surface has an electrode uneven, so that the charges move freely on the dielectric surface it becomes more difficult preferred. This is because even if any one of the discharge spaces penetrates, the movement of the charge on the dielectric surface to all the penetrated portions is suppressed, and a strong discharge unlike the conventional discharger is unlikely to occur. Reference numerals 13a and 14a denote gaps (discharge spaces). Other configurations and operations are the same as those in the first embodiment.

実施例1として、交互型プラズマ反応放電での放電について実験した。交互型プラズマ反応放電器の要部の構造を図6〜8に示す。図6は正面図、図7は背面図、図8は断面図である。アルミナ板30(150x150x厚み3mm)の両面に溝31(幅6x深さ0.3x長さ150mm)を掘った後、板30の中心部分に網状金属電極32、例えばステンレス網(SUS304、110x110x厚み約0.25mm、60メッシュ)を両面に各1枚取り付けた。空気中で、この2つのステンレス網のパルス電圧を印加し、放電の様子を暗室でOlympusのデジタルカメラE−10で記録した(絞り:2.4、露出時間8秒)。放電電圧は電圧プローブ(EP−50K、パルス電子技術(株))、放電電流は電流プローブ(Model 2−1.0, Strangenes)とオシロスコープ(TDS754D、Tektronix)で測定した。パルス電源はEP−10K10(パルス電子技術(株))を用いた。   As Example 1, an experiment was conducted on a discharge in an alternating plasma reaction discharge. The structure of the main part of the alternating plasma reaction discharger is shown in FIGS. 6 is a front view, FIG. 7 is a rear view, and FIG. 8 is a cross-sectional view. After digging grooves 31 (width 6 x depth 0.3 x length 150 mm) on both sides of an alumina plate 30 (150 x 150 x thickness 3 mm), a net-like metal electrode 32 such as a stainless net (SUS304, 110 x 110 x thickness approx. 0.25 mm, 60 mesh) was attached on each side. The pulse voltage of these two stainless steel nets was applied in the air, and the state of discharge was recorded in the dark room with an Olympus digital camera E-10 (aperture: 2.4, exposure time 8 seconds). The discharge voltage was measured with a voltage probe (EP-50K, Pulse Electronics Technology Co., Ltd.), and the discharge current was measured with a current probe (Model 2-1.0, Stragenes) and an oscilloscope (TDS754D, Tektronix). EP-10K10 (Pulse Electronics Technology Co., Ltd.) was used as the pulse power source.

4kHzのパルス周波数での1パルス中の放電電圧と電流波形を図9〜11に示す。電圧は約1マイクロ秒でピーク電圧まで昇圧し、約10マイクロ秒内にゼロV付近に下がる。陽極と陰極の放電電流は電圧の上昇と共に1A前後まで上昇した後、低下した。
図6〜7に示した反応器の放電の様子を正面から写真を撮り観察したところ、ステンレス網とアルミナ板の溝からできた放電ギャップ中で安定した放電が均一に見られた。正面を陽極或いは陰極にしても同様に均一な放電が得られた。
The discharge voltage and current waveform during one pulse at a pulse frequency of 4 kHz are shown in FIGS. The voltage is boosted to the peak voltage in about 1 microsecond and drops to near zero V within about 10 microseconds. The discharge current between the anode and the cathode increased to around 1 A with increasing voltage and then decreased.
When the state of the discharge of the reactor shown in FIGS. 6 to 7 was photographed and observed from the front, stable discharge was uniformly seen in the discharge gap formed by the groove of the stainless steel mesh and the alumina plate. Even when the front face was an anode or a cathode, a uniform discharge was obtained.

実施例2として、交互型プラズマ反応器を用いるディーゼル黒煙処理について実験した。交互型プラズマ反応器を用いるディーゼル排気黒煙処理システムを図12に示す。ディーゼルエンジンの排気管33に交互型のプラズマ反応器34を取り付け、実験を行った。
図13は交互型のプラズマ反応器34の構造を示し、図14はアルミナ板30まわりの基本ユニットを示している。この基本ユニットは図6〜8に示した一枚のアルミナ板30、2枚の金属電極35と4枚のガラススペサー36から構成される。アルミナ板の表面の溝31はエンジン排気流れ方向に垂直となっている。溝の幅を6mm、深さを0.5mm、長さを150mm、溝と溝との間の距離を4mmとしたアルミナ板裏面にも同様の溝を設けた。表面の溝と裏面の溝は[0008]に述べた位置関係にある。金属電極35(110x110x2mm)はスチール製で、表面に排気ガスの流れ方向に幅5mm、深さ0.5mm、長さ110mmの溝37を13個掘った。溝と溝との間の距離は3mmであった。裏面にも同様の溝を設けた。電気絶縁するために、金属電極35の両側にガラススペサー36(20x110x2mm)を取り付けた。一つの金属電極を陽極、もう一つの金属電極を陰極とした。このような基本ユニットを13ユニット製作し、図13に示すように、反応器にセットした。反応器上下の不足空間を板状アルミナ充填層38で充填した。39はアルミナ絶縁管である。他の構成は図3の場合と同様である。
As Example 2, an experiment was conducted on diesel black smoke treatment using an alternating plasma reactor. A diesel exhaust black smoke treatment system using an alternating plasma reactor is shown in FIG. An experiment was conducted by attaching an alternating plasma reactor 34 to an exhaust pipe 33 of a diesel engine.
FIG. 13 shows the structure of the alternating plasma reactor 34, and FIG. 14 shows the basic unit around the alumina plate 30. This basic unit is composed of one alumina plate 30, two metal electrodes 35 and four glass spacers 36 shown in FIGS. The groove 31 on the surface of the alumina plate is perpendicular to the engine exhaust flow direction. A similar groove was provided on the back side of the alumina plate having a groove width of 6 mm, a depth of 0.5 mm, a length of 150 mm, and a distance between the grooves of 4 mm. The groove on the front surface and the groove on the back surface have the positional relationship described in [0008]. The metal electrode 35 (110 × 110 × 2 mm) was made of steel, and 13 grooves 37 having a width of 5 mm, a depth of 0.5 mm, and a length of 110 mm were dug on the surface in the exhaust gas flow direction. The distance between the grooves was 3 mm. A similar groove was provided on the back surface. Glass spacers 36 (20 × 110 × 2 mm) were attached to both sides of the metal electrode 35 for electrical insulation. One metal electrode was the anode and the other metal electrode was the cathode. Thirteen such basic units were manufactured and set in a reactor as shown in FIG. The insufficient space above and below the reactor was filled with a plate-like alumina packed bed 38. Reference numeral 39 denotes an alumina insulating tube. Other configurations are the same as those in FIG.

黒煙発生源として、4気筒、直噴型、総排気量2Lのディーゼルエンジンを用いた。エンジンからの排気ガスの一部を空気で150℃で稀釈した後、黒煙モニター(TEOM105、Rupprecht & Patashnick)を用いて、黒煙の発生量を測定した。1krpmで3.8kWのエンジン条件で実験した。この条件では、エンジンから排出される黒煙の量は約1.5g/時間であった。エンジン始動20分後にピークパルス電圧は4.5kV前後でパルス周波数は2kHzの条件で30分、4kHzの条件で10分、計40分の放電を行った後、エンジンを停止した。反応器中のアルミナ板の表面をデジタルカメラで撮影して観察したところ、アルミナ板の溝部分と金属電極の溝のエッジ部分との間の放電の跡が均一に起こっていることが分かった。一方、図6〜8に示した溝付きのアルミナ板の代わりに、溝なしのアルミナ板と金属網(エキスパンドメタル、スモールメッシュ(2)、奥谷金属製作所)を用い、放電後の板の写真を撮影して観察したところ、強い放電と弱い放電、更に放電がしていない部分が見られた。すなわち、均一で安定した放電が得られなかった。   As a black smoke generation source, a 4-cylinder, direct-injection diesel engine with a total displacement of 2 L was used. After a part of the exhaust gas from the engine was diluted with air at 150 ° C., the amount of black smoke generated was measured using a black smoke monitor (TEOM105, Rupprecht & Patanick). The experiment was performed at an engine condition of 3.8 kW at 1 krpm. Under this condition, the amount of black smoke discharged from the engine was about 1.5 g / hour. 20 minutes after starting the engine, the peak pulse voltage was around 4.5 kV, the pulse frequency was 30 kHz under the condition of 2 kHz, 10 minutes under the condition of 4 kHz, 40 minutes in total, and then the engine was stopped. When the surface of the alumina plate in the reactor was photographed and observed with a digital camera, it was found that the trace of discharge between the groove portion of the alumina plate and the edge portion of the groove of the metal electrode occurred uniformly. On the other hand, instead of the grooved alumina plate shown in FIGS. 6-8, a grooved alumina plate and a metal net (expanded metal, small mesh (2), Okutani Metal Works) were used, and a photograph of the plate after discharge was taken. As a result of photographing and observing, strong and weak discharges were observed, and further, no discharge was observed. That is, a uniform and stable discharge could not be obtained.

実施例3として、交互型プラズマ反応器を用いるディーゼル黒煙処理について、さらに実験した。ディーゼル排気黒煙を効率的に処理するには、放電を均一に行うことが重要である。また、放電電場を均一にしても、放電が均一にできないことから、放電を強制的に発することも重要である。そこで図14に示した金属電極を、パンチングして孔を設けたスチール板を用いて実験した。パンチ穴直径:5mm、穴中心間距離:8mm、60°チドリ、板厚:0.8mm。計2枚のパンチングしたスチール板を一つの電極として使用した。アルミナ板をこの2枚のスチール板中に挿入し、電極の厚さを2mmに調整した。計20層のユニットを図13のプラズマ反応器34にセットし、実験を行った。エンジン条件は実施例2と同じであった。エンジン始動後20分からパルス電圧を変化し、放電を行いながら、黒煙排出量を測定した。図15にパルス周波数が2kHzでの黒煙除去率と印加したパルス電圧のピーク値との関係を示す。パルス電圧の増加と共に黒煙除去率が増加したことが分かる。   As Example 3, further experiments were conducted on diesel black smoke treatment using an alternating plasma reactor. In order to efficiently treat diesel exhaust black smoke, it is important to discharge uniformly. In addition, even if the discharge electric field is made uniform, the discharge cannot be made uniform, so it is also important to forcibly generate the discharge. Therefore, an experiment was conducted using a steel plate punched from the metal electrode shown in FIG. Punch hole diameter: 5 mm, distance between hole centers: 8 mm, 60 ° plover, plate thickness: 0.8 mm. A total of two punched steel plates were used as one electrode. An alumina plate was inserted into the two steel plates, and the electrode thickness was adjusted to 2 mm. A total of 20 units were set in the plasma reactor 34 of FIG. The engine conditions were the same as in Example 2. From 20 minutes after starting the engine, the pulse voltage was changed and the discharge of black smoke was measured while discharging. FIG. 15 shows the relationship between the black smoke removal rate at a pulse frequency of 2 kHz and the peak value of the applied pulse voltage. It can be seen that the black smoke removal rate increased as the pulse voltage increased.

実施例4として、交互型プラズマ反応器を用いるディーゼル黒煙処理について実験し、エンジン始動後の黒煙除去効果を考察した。ディーゼルエンジン冷始動後、エンジンから多くの黒煙が排出される。図16は、エンジン排気管にプラズマ反応器を設置しない場合(反応器なし)、実施例3の反応器を設置したが、放電がない場合(反応器あり、放電なし)、実施例3の反応器を設置し、エンジン始動前から放電を行っていた場合(反応器あり、放電あり)の黒煙排出量(モニター測定値)を示す。反応器なしの場合では、黒煙の排出量は5mg/hのピーク値を持ったが、反応器あり放電ありの場合、このピーク値を2.2mg/hまで削減することができた。その後、放電ありの場合には、他の場合より黒煙の排出量が少ないことが分かった。   As Example 4, an experiment was conducted on diesel black smoke treatment using an alternating plasma reactor, and the effect of removing black smoke after starting the engine was considered. After the diesel engine is cold started, a lot of black smoke is emitted from the engine. FIG. 16 shows the reaction of Example 3 when no plasma reactor is installed in the engine exhaust pipe (no reactor), and when the reactor of Example 3 is installed but there is no discharge (with reactor and no discharge). This shows the amount of black smoke discharged (monitor measured value) when a vessel was installed and discharge was performed before the engine was started (with reactor and with discharge). In the case without the reactor, the discharge amount of the black smoke had a peak value of 5 mg / h. However, in the case of the discharge with the reactor, this peak value could be reduced to 2.2 mg / h. Thereafter, it was found that in the case of discharge, the amount of black smoke emitted was smaller than in other cases.

本発明の実施の第1形態によるプラズマ反応器の要部(基本ユニット)の概略構成図である。It is a schematic block diagram of the principal part (basic unit) of the plasma reactor by 1st Embodiment of this invention. ディーゼル機関の排気中の黒煙の除去機構を示す説明図である。It is explanatory drawing which shows the removal mechanism of the black smoke in exhaust_gas | exhaustion of a diesel engine. 図1に示す構成を積層したもので、一例としてディーゼル機関の排気を処理するためのプラズマ反応器を示している。FIG. 1 illustrates a plasma reactor for processing exhaust gas from a diesel engine as an example, in which the configuration illustrated in FIG. 1 is stacked. 本発明の実施の第2形態によるプラズマ反応器の要部の概略構成図である。It is a schematic block diagram of the principal part of the plasma reactor by the 2nd Embodiment of this invention. 従来のプラズマ反応器の要部の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the principal part of the conventional plasma reactor. 実施例1で用いたプラズマ反応器の要部の正面図である。1 is a front view of a main part of a plasma reactor used in Example 1. FIG. 同背面図である。It is the same rear view. 同断面図である。FIG. 実施例1における1パルス中の放電電圧波形を示すグラフである。4 is a graph showing a discharge voltage waveform during one pulse in Example 1. 実施例1における1パルス中の陽極電流波形を示すグラフである。3 is a graph showing an anode current waveform in one pulse in Example 1. 実施例1における1パルス中の陰極電流波形を示すグラフである。3 is a graph showing a cathode current waveform in one pulse in Example 1. 実施例2における黒煙発生及び測定装置のシステム図である。It is a system diagram of the black smoke generation and measurement apparatus in Example 2. 実施例2において用いたプラズマ反応器の構造を示す説明図である。6 is an explanatory view showing the structure of a plasma reactor used in Example 2. FIG. 図13に示すプラズマ反応器の基本ユニット(要部)を示す斜視図である。It is a perspective view which shows the basic unit (principal part) of the plasma reactor shown in FIG. 実施例3における黒煙除去率とピークパルス電圧との関係を示すグラフである。It is a graph which shows the relationship between the black smoke removal rate and peak pulse voltage in Example 3. 実施例4におけるエンジン冷始動後の黒煙除去効果を示すグラフである。It is a graph which shows the black smoke removal effect after the engine cold start in Example 4. 従来の直接型放電反応器の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the conventional direct type | mold discharge reactor. 従来の直接型放電反応器の他の例を示す構成説明図である。It is composition explanatory drawing which shows the other example of the conventional direct discharge reactor. 従来の直接型放電反応器の他の例を示す構成説明図である。It is composition explanatory drawing which shows the other example of the conventional direct discharge reactor. 従来の直接型放電反応器のさらに他の例を示す構成説明図である。It is composition explanatory drawing which shows the further another example of the conventional direct discharge reactor. 従来の間接型放電反応器の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the conventional indirect discharge reactor. 従来の間接型放電反応器の他の例を示す構成説明図である。It is structure explanatory drawing which shows the other example of the conventional indirect discharge reactor. 従来の間接型放電反応器の他の例を示す構成説明図である。It is structure explanatory drawing which shows the other example of the conventional indirect discharge reactor. 従来の間接型放電反応器の他の例を示す構成説明図である。It is structure explanatory drawing which shows the other example of the conventional indirect discharge reactor. 従来の間接型放電反応器のさらに他の例を示す構成説明図である。It is structure explanatory drawing which shows the further another example of the conventional indirect discharge reactor.

符号の説明Explanation of symbols

10、10a 誘電体
11、11a 陽極
12、12a 陰極
13、13a、14、14a ギャップ(放電空間)
15、15a 放電反応部
16 黒煙中のPM(粒子状物質)
20 反応器本体
21 排気入口
22 排気出口
23 陽極
24 陰極
25 アルミナ絶縁管
30 アルミナ板
31 溝
32 網状金属電極
33 排気管
34 プラズマ反応器
35 金属電極
36 ガラススペーサー
37 溝
38 板状アルミナ充填層
39 アルミナ絶縁管
10, 10a Dielectric 11, 11a Anode 12, 12a Cathode 13, 13a, 14, 14a Gap (discharge space)
15, 15a Discharge reaction part 16 PM (particulate matter) in black smoke
20 Reactor body 21 Exhaust inlet 22 Exhaust outlet 23 Anode 24 Cathode 25 Alumina insulating tube 30 Alumina plate 31 Groove 32 Reticulated metal electrode 33 Exhaust tube 34 Plasma reactor 35 Metal electrode 36 Glass spacer 37 Groove 38 Plate-shaped alumina packed layer 39 Alumina Insulation tube

Claims (9)

誘電体の両面にそれぞれ電極を取り付け、各電極の内面とこれに対向する誘電体の外面との少なくともいずれか一方に、ガスが通過する多数の溝状のギャップを設けてなる、放電反応部を備え、
上記の放電反応部は、一方の電極側のギャップの存在しない位置に、他方の電極側のギャップが存在して位置するようにしてあり、
上記のギャップが存在しない位置で誘電体に接触している電極の面積よりも、その誘電体を挟んだ反対側で、ギャップにより形成された放電空間を介してその誘電体に対向している電極の面積を大きくしたことを特徴とするプラズマ反応器
Electrode is attached to both surfaces of the dielectric, and at least one of the inner surface of each electrode and the outer surface of the dielectric facing the electrode is provided with a number of groove-like gaps through which gas passes, Prepared,
The discharge reaction part is located at a position where there is no gap on one electrode side and a gap on the other electrode side is located,
The electrode facing the dielectric via the discharge space formed by the gap on the opposite side of the area of the electrode in contact with the dielectric at the position where the gap does not exist A plasma reactor characterized by an increased area .
一方に排ガス入口を有し、他方に排ガス出口を有する反応器本体内に、上記の放電反応部を積層して収納したことを特徴とする、請求項1に記載のプラズマ反応器。 2. The plasma reactor according to claim 1 , wherein the discharge reaction part is stacked and accommodated in a reactor main body having an exhaust gas inlet on one side and an exhaust gas outlet on the other side. ギャップを設置するために、上記の電極と上記の誘電体との少なくともいずれか一方を凹凸状に設け、凸部の高さを0.1〜10mm、幅を0.1〜500mmとしてなる請求項1または請求項2に記載のプラズマ反応器。 In order to install a gap, at least one of the electrode and the dielectric is provided in a concavo-convex shape, and the height of the convex portion is 0.1 to 10 mm and the width is 0.1 to 500 mm. The plasma reactor according to claim 1 or 2 . 誘電体が、金属酸化物、セラミックス、ガラス、プラスチック及びシリコンゴムのいずれかからなる厚さ0.01mmから10mmの板状に形成されたものである請求項1〜3のいずれかに記載のプラズマ反応器。 The plasma according to any one of claims 1 to 3 , wherein the dielectric is formed in a plate shape having a thickness of 0.01 mm to 10 mm made of any of metal oxide, ceramics, glass, plastic, and silicon rubber. Reactor. 誘電体の両面に取り付けられた電極に電圧を印加することによって、電極と誘電体間に放電を引き起こすようにした請求項1〜4のいずれかに記載のプラズマ反応器。 The plasma reactor according to any one of claims 1 to 4 , wherein a discharge is caused between the electrode and the dielectric by applying a voltage to the electrodes attached to both surfaces of the dielectric. 印加する電圧は、交流、正直流、負直流、正パルス及び負パルスのいずれかの電圧が誘電体の両側電極に印加できる電源のものであり、ピーク電圧は1V〜100kVの範囲である請求項5記載のプラズマ反応器。 The applied voltage, AC, positive DC, negative DC, either the voltage of the positive pulse and negative pulse is of power that can be applied to both sides electrodes of the dielectric, claims peak voltage is in the range of 1V~100kV 5. The plasma reactor according to 5 . 放電によってギャップを通過するガスに化学反応が生じるようにした請求項1〜6のいずれかに記載のプラズマ反応器。 The plasma reactor according to any one of claims 1 to 6 as a chemical reaction occurs in the gas passing through the gap by a discharge. プラズマ反応器に導入される上記ガスの温度は室温、低温及び高温のいずれかであり、ガスから液体や固体の生成のない範囲であるようにした請求項1〜7のいずれかに記載のプラズマ反応器。 The plasma according to any one of claims 1 to 7 , wherein the temperature of the gas introduced into the plasma reactor is one of room temperature, low temperature and high temperature, and is in a range in which no liquid or solid is generated from the gas. Reactor. 反応器本体に導入されるガス圧力は0.1torr〜10気圧とした請求項2に記載のプラズマ反応器。 The plasma reactor according to claim 2 , wherein the gas pressure introduced into the reactor body is 0.1 torr to 10 atm.
JP2004081026A 2004-03-19 2004-03-19 Plasma reactor Expired - Fee Related JP4546123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081026A JP4546123B2 (en) 2004-03-19 2004-03-19 Plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081026A JP4546123B2 (en) 2004-03-19 2004-03-19 Plasma reactor

Publications (2)

Publication Number Publication Date
JP2005268129A JP2005268129A (en) 2005-09-29
JP4546123B2 true JP4546123B2 (en) 2010-09-15

Family

ID=35092439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081026A Expired - Fee Related JP4546123B2 (en) 2004-03-19 2004-03-19 Plasma reactor

Country Status (1)

Country Link
JP (1) JP4546123B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075778A (en) * 2005-09-16 2007-03-29 Research Institute Of Innovative Technology For The Earth Method for generating plasma discharge
JP4980601B2 (en) * 2005-10-05 2012-07-18 ダイハツ工業株式会社 Electrode for plasma reactor
JP2007250478A (en) * 2006-03-18 2007-09-27 Nano Electronics & Micro System Technologies Inc Plasma processing system
JP4982851B2 (en) * 2006-11-20 2012-07-25 国立大学法人京都大学 Plasma generating apparatus, surface treatment apparatus, and fluid reforming apparatus
WO2009073048A1 (en) * 2007-06-04 2009-06-11 New York Energy Group Apparatus and method for dissociating carbon dioxide
JP5068191B2 (en) * 2008-02-14 2012-11-07 日本碍子株式会社 Plasma reactor and plasma reactor
JP5224560B2 (en) * 2011-11-24 2013-07-03 国立大学法人京都大学 Plasma generating device, surface treatment device, display device, and fluid reforming device
KR20170040654A (en) * 2015-10-05 2017-04-13 주식회사 에프티넷 Hybrid dielectric barrier discharge electrode using surface discharge and volume discharge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115024A (en) * 1988-10-25 1990-04-27 Mitsubishi Heavy Ind Ltd Apparatus for decomposing nitrous oxide
WO1994022628A1 (en) * 1993-04-05 1994-10-13 Seiko Epson Corporation Combining method and apparatus using solder
WO1997019204A1 (en) * 1995-11-07 1997-05-29 Seiko Epson Corporation Method and apparatus for surface treatment
WO2003067046A1 (en) * 2002-02-07 2003-08-14 Furrex Co., Ltd. Discharge type gas cleaner
JP2003286829A (en) * 2002-03-19 2003-10-10 Hyundai Motor Co Ltd Plasma reactor and its manufacturing method and exhaust gas reducing device for vehicle provided with plasma reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115024A (en) * 1988-10-25 1990-04-27 Mitsubishi Heavy Ind Ltd Apparatus for decomposing nitrous oxide
WO1994022628A1 (en) * 1993-04-05 1994-10-13 Seiko Epson Corporation Combining method and apparatus using solder
WO1997019204A1 (en) * 1995-11-07 1997-05-29 Seiko Epson Corporation Method and apparatus for surface treatment
WO2003067046A1 (en) * 2002-02-07 2003-08-14 Furrex Co., Ltd. Discharge type gas cleaner
JP2003286829A (en) * 2002-03-19 2003-10-10 Hyundai Motor Co Ltd Plasma reactor and its manufacturing method and exhaust gas reducing device for vehicle provided with plasma reactor

Also Published As

Publication number Publication date
JP2005268129A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JPWO2007086430A1 (en) Plasma discharge reactor and plasma discharge generation method
US5603893A (en) Pollution treatment cells energized by short pulses
KR100625425B1 (en) Discharge device and air purifier
JP4546123B2 (en) Plasma reactor
Akishev et al. Stepwise expansion of a surface dielectric barrier discharge as a result of alternation in formation of streamers and leaders
Lu et al. Characteristics of Trichel pulse parameters in negative corona discharge
JP2007216193A (en) Plasma discharge reactor with heating function
JP2007196100A (en) Plasma type gas treatment device
Feng et al. Numerical study of negative corona discharge characteristics at different electrode gap spacing
TWI244112B (en) Plasma processing apparatus and method for manufacturing the same
JP2003290623A (en) Creeping discharge electrode, gas treatment apparatus using the same and gas treatment method
JP3863701B2 (en) Plasma reactor
JP2001310141A (en) Dust precipitator
JP2007035310A (en) Atmospheric pressure corona discharge generating device
JP2007075778A (en) Method for generating plasma discharge
JP4036600B2 (en) Plasma decomposition apparatus and gas plasma decomposition method
RU2733395C1 (en) Electrophysical device for cleaning gases from environmentally harmful impurities, air disinfection and sterilization
Lee Efficient generation of strong shock waves in underwater pulsed spark discharge
Yoshida Collection of particulate matters in exhaust gas using the attractive force induced by surface charging
JP2001038138A (en) Method and device for treating material
JP5283185B2 (en) Electret manufacturing method and manufacturing apparatus thereof
CN214544892U (en) Low-temperature plasma electrode structure, sterilization device and air purification device
JP2005137781A (en) Plasma generator
CN114745839B (en) Surface-body coupling discharge plasma device based on seed electron generation
JP4258296B2 (en) Plasma reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees