JP4543171B2 - Iron alloy for high resistors - Google Patents

Iron alloy for high resistors Download PDF

Info

Publication number
JP4543171B2
JP4543171B2 JP2005034662A JP2005034662A JP4543171B2 JP 4543171 B2 JP4543171 B2 JP 4543171B2 JP 2005034662 A JP2005034662 A JP 2005034662A JP 2005034662 A JP2005034662 A JP 2005034662A JP 4543171 B2 JP4543171 B2 JP 4543171B2
Authority
JP
Japan
Prior art keywords
weight
iron alloy
resistance
mass
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005034662A
Other languages
Japanese (ja)
Other versions
JP2006219728A (en
Inventor
清仁 石田
亮介 貝沼
祐司 須藤
玲子 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005034662A priority Critical patent/JP4543171B2/en
Publication of JP2006219728A publication Critical patent/JP2006219728A/en
Application granted granted Critical
Publication of JP4543171B2 publication Critical patent/JP4543171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、優れた加工性を有し、高い比抵抗(μΩ・cm)と小さい抵抗値温度係数(ppm/℃)とを兼ね備えた、抵抗器として用いるのに好適な鉄合金に関するものである。   The present invention relates to an iron alloy suitable for use as a resistor, having excellent workability and having a high specific resistance (μΩ · cm) and a small resistance value temperature coefficient (ppm / ° C.). .

現在では高抵抗器用のエレメントの線材として、Ni−Cr−Al−Si、Ni−Cr合金などが使用されている。特に高抵抗器線材には、(1)温度による影響が小さいこと(熱による抵抗値変化が小さい→低温度係数)、(2)比抵抗が大きいこと、(3)抵抗値の経時変化が小さいこと、(4)加工性に富むこと、(5)半田付けやスポット溶接性がよいこと、(6)耐腐食性、(7)対熱応力断線性などの性能が要求される。最近では、抵抗器の信頼性の向上、巻き線作業性の向上のためにさらなる比抵抗値の増加が求められている。   At present, Ni—Cr—Al—Si, Ni—Cr alloys, and the like are used as wire rods for elements for high resistors. Especially for high-resistor wires, (1) the effect of temperature is small (resistance change due to heat is small → low temperature coefficient), (2) the specific resistance is large, and (3) the resistance value changes with time is small. In addition, (4) high workability, (5) good soldering and spot weldability, (6) corrosion resistance, (7) resistance to thermal stress disconnection, etc. are required. Recently, there has been a demand for further increase in specific resistance value in order to improve the reliability of the resistor and to improve the winding workability.

近年、計測器、精密電源、電気自動車などの高性能化・発展に伴い、精密抵抗材料、特に高い比抵抗値・優れた温度特性を有する抵抗材料の開発が望まれている。従来、精密抵抗材料としてCu−Mn合金、Ni−Cu合金、Ni−Cr系合金などが使用されている。Cu−Mn合金やNi−Cu合金は温度特性に優れているものの、比抵抗値が小さく高抵抗器用材料としての使用は不可とされている。一方、Ni−Cr系合金は、比抵抗値が高いため高抵抗材料へ適用されているが、比抵抗値の大きさが未だ不十分であり、例えば、計測器、電気自動車などに使用される巻線型抵抗器に使用する場合、抵抗を大きくするために線径を非常に細くしなければならず(φ0.02mm程度)、巻き作業中に断線してしまうという問題があった。   In recent years, with the improvement and development of measuring instruments, precision power supplies, electric vehicles, etc., development of precision resistance materials, particularly resistance materials having high specific resistance values and excellent temperature characteristics, is desired. Conventionally, Cu—Mn alloys, Ni—Cu alloys, Ni—Cr alloys and the like have been used as precision resistance materials. Although Cu-Mn alloy and Ni-Cu alloy are excellent in temperature characteristics, their specific resistance values are small and their use as high-resistor materials is not possible. On the other hand, Ni—Cr-based alloys are applied to high-resistance materials because of their high specific resistance values, but the specific resistance values are still insufficient, and are used, for example, in measuring instruments and electric vehicles. When used in a wire-wound resistor, the wire diameter has to be made very thin (about φ0.02 mm) in order to increase the resistance, and there is a problem that the wire breaks during the winding operation.

本発明に関連する高い比抵抗(μΩ・cm)と小さい抵抗値温度係数(ppm/℃)とを兼ね備えた、抵抗器として用いるのに好適な鉄合金に関する合金としては、10〜26重量%クロム、3.5〜15重量%銅および2.5〜10%アルミニウムの合計25〜40%、0.01〜20重量%コバルト、0.01〜5重量%マンガン、0.01〜5重量%タングステン、0.01〜5重量%チタンおよび0.01〜5重量%シリコンの内から選ばれた1種あるいは2種以上の合計0.01〜20重量%および残部ニッケルからなる精密抵抗合金がある。(例えば特許文献1参照)しかしながら、特許文献1に記載の合金は、40重量%以上のニッケルからなる合金であり、複雑な加工工程を得て成形される。また、比抵抗値も150μΩ・cm以下であり、未だ十分とは言えない。
特許2922989
As an alloy relating to an iron alloy suitable for use as a resistor having both a high specific resistance (μΩ · cm) and a small temperature coefficient of resistance (ppm / ° C.) related to the present invention, 10 to 26 wt% chromium 3.5 to 15% copper and 2.5 to 10% aluminum in total 25 to 40%, 0.01 to 20% cobalt, 0.01 to 5% manganese, 0.01 to 5% tungsten There is a precision resistance alloy consisting of 0.01 to 5% by weight of titanium and 0.01 to 5% by weight of silicon and 0.01 to 20% by weight in total of one or two or more selected from silicon and the remaining nickel. (For example, see Patent Document 1) However, the alloy described in Patent Document 1 is an alloy made of nickel of 40% by weight or more, and is formed by obtaining a complicated processing step. Further, the specific resistance value is 150 μΩ · cm or less, which is not yet sufficient.
Patent 2922989

本発明は、加工性に優れ、高い比抵抗値および低い抵抗値温度係数を兼ね備え、耐熱性、耐食性にも優れた材料を提供することを課題とする。   An object of the present invention is to provide a material having excellent workability, a high specific resistance value, a low resistance temperature coefficient, and excellent heat resistance and corrosion resistance.

本発明によれば、Mn:10.0〜45.0重量%、Al:5.0〜15.0重量%、C:0.01〜2.0重量%、Cr:0.01〜15.0重量%、残部Fe及び不可避的不純物からなることを特徴とする高抵抗器用鉄合金が得られる。   According to the present invention, Mn: 10.0-45.0 wt%, Al: 5.0-15.0 wt%, C: 0.01-2.0 wt%, Cr: 0.01-15. An iron alloy for high resistors, characterized by comprising 0% by weight, the balance Fe and unavoidable impurities, is obtained.

また本発明によれば、150(μΩ・cm)以上の比抵抗値を有する高抵抗器用鉄合金が得られる。   Moreover, according to the present invention, an iron alloy for high resistors having a specific resistance value of 150 (μΩ · cm) or more can be obtained.

また本発明によれば、抵抗値の温度係数が±200ppm/℃の範囲内である高抵抗器用鉄合金が得られる。   Moreover, according to this invention, the iron alloy for high resistors whose temperature coefficient of resistance value is in the range of +/- 200 ppm / degrees C is obtained.

また本発明によれば、時効熱処理により抵抗値の温度係数を低く制御した高抵抗器用鉄合金が得られる。   Moreover, according to this invention, the iron alloy for high resistors which controlled the temperature coefficient of resistance value low by aging heat processing is obtained.

また本発明によれば、添加元素として、さらにB:0.001〜1.5重量%、N:0.001〜1.5重量%、Be、Mg、Si、Ti、V、Co、Ni、Cu、Nb、Mo及びW:それぞれ0.01〜5.0重量%、からなる群から選択した1種又は2種以上の元素を含有することを特徴とする高抵抗器用鉄合金が得られる。Further, according to the present invention, as additional elements, B: 0.001 to 1.5% by weight, N: 0.001 to 1.5% by weight, Be, Mg, Si, Ti, V, Co, Ni, Cu, Nb, Mo and W: each 0.01 to 5.0 wt%, the high-resistance dexterity iron alloy, characterized in that it comprises containing one or more elements selected from the group consisting of is obtained.

組成範囲について、Mn:10.0〜45.0重量%とする理由は、5.0重量%未満では、高い比抵抗値を実現できず、45.0重量%以上であると、耐食性が劣化するからである。特にMn:15.0〜40.0重量%が望ましい。これにより高い比抵抗値および耐食性に富む材料を実現することができる。   The reason why the composition range is Mn: 10.0 to 45.0% by weight is that if it is less than 5.0% by weight, a high specific resistance value cannot be realized, and if it is 45.0% by weight or more, the corrosion resistance deteriorates. Because it does. In particular, Mn: 15.0 to 40.0% by weight is desirable. As a result, a material having a high specific resistance value and high corrosion resistance can be realized.

Alについては、5.0〜15.0重量%とする利用は、5.0重量%未満では高抵抗値が得られず、15.0重量%を超えると、十分な加工性が得られないからである。特に、Al:7.0〜14.0重量%が望ましい。これにより高い比抵抗値と十分な加工性を得ることができる。また、Cについては、0.01〜2.0重量%とする理由は、0.01重量%以下では、小さい抵抗値温度係数を得ることができず、2.0重量%を超えると多量のFeCやMnCなどの炭化物の析出により脆くなり、また耐熱性が劣化するからである。更に、Crについては、0.01〜15.0重量%とする理由は、0.01重量%以下では、十分な耐食性を得ることができず、10.0重量%を超えると、σ相などの金属間化合物の析出により十分な加工性が得られないからである。 For Al, the use of 5.0 to 15.0% by weight is not possible to obtain a high resistance value if it is less than 5.0% by weight, and sufficient workability cannot be obtained if it exceeds 15.0% by weight. Because. In particular, Al: 7.0 to 14.0% by weight is desirable. Thereby, a high specific resistance value and sufficient workability can be obtained. Moreover, about C, the reason for setting it as 0.01 to 2.0 weight% is that if it is 0.01 weight% or less, a small resistance temperature coefficient cannot be obtained, and if it exceeds 2.0 weight%, a large amount It is because it becomes brittle by precipitation of carbides such as Fe 3 C and Mn 3 C, and heat resistance deteriorates. Furthermore, with respect to Cr, the reason for 0.01 to 15.0% by weight is that if it is 0.01% by weight or less, sufficient corrosion resistance cannot be obtained. This is because sufficient workability cannot be obtained by precipitation of the intermetallic compound.

本発明の高抵抗器用鉄合金は、必要に応じて、さらにB:0.001〜1.5重量%、N:0.001〜1.5重量%、Be、Mg、Si、Ti、V、Co、Ni、Cu、Nb、Mo及びW:それぞれ0.01〜5.0重量%、からなる群から選択した1種又は2種以上の元素を含有させることができる。その添加効果を高めるための、成分の数値限定の理由は、次の通りである。The iron alloy for high resistors of the present invention may further include B: 0.001 to 1.5% by weight, N: 0.001 to 1.5% by weight, Be, Mg, Si, Ti, V, if necessary. Co, Ni, Cu, Nb, Mo and W: each 0.01 to 5.0 wt%, one or more elements selected from the group consisting of can be free Yes. The reason for limiting the numerical values of the components to enhance the effect of the addition is as follows.

Bについては、0.001〜1.5重量%とする理由は、0.001重量%未満では鋳造組織及び鍛造組織においても微細な結晶粒組織を得るための添加効果が小さく、また1.5重量%を超えると硼素化合物等の析出により脆化してしまうからである。また、Nについては、0.001〜1.5重量%とする理由は、0.001重量%未満では十分な加工性を得るための添加効果が小さく、1.5重量%を超えると窒化物等の析出により脆化するからである。更に、Be、Mg、Si添加については、材料強化に有効であり、Ti添加は粒界腐食の防止に有効であり、V添加は耐摩耗性改善に有効であり、Co又はNi添加はγ相の安定化による加工性改善に有効であり、Cu又はNb添加は耐食性改善に有効であり、Mo添加は耐粒界腐食改善に有効であり、W添加は析出硬化に有効であるという理由による。これらを単独添加又は複合添加することができる。また、それを0.01〜5.0重量%の範囲とするのは0.01重量%未満であると添加効果がなく、5.0重量%を超えると脆化し、また抵抗値の温度係数が大きくなってしまうという問題があるので、上限を5.0重量%とする。   Regarding B, the reason of 0.001 to 1.5% by weight is that if it is less than 0.001% by weight, the effect of addition for obtaining a fine crystal grain structure is small even in the cast structure and the forged structure. This is because if it exceeds wt%, it becomes brittle due to precipitation of a boron compound or the like. The reason for N being 0.001 to 1.5% by weight is that if less than 0.001% by weight, the effect of addition for obtaining sufficient workability is small, and if it exceeds 1.5% by weight, nitrides This is because the material is embrittled by precipitation. Further, the addition of Be, Mg and Si is effective for strengthening the material, the addition of Ti is effective for preventing intergranular corrosion, the addition of V is effective for improving wear resistance, and the addition of Co or Ni is a γ phase. This is because the addition of Cu or Nb is effective for improving the corrosion resistance, the addition of Mo is effective for improving the intergranular corrosion resistance, and the addition of W is effective for precipitation hardening. These can be added alone or in combination. Moreover, if it is less than 0.01% by weight, the effect is not added if it is in the range of 0.01 to 5.0% by weight, and if it exceeds 5.0% by weight, it becomes brittle and the temperature coefficient of resistance Therefore, the upper limit is set to 5.0% by weight.

本発明の鉄合金は、比抵抗値を150μΩ・cm以上にさせることができ、また±200ppm/℃の範囲内の温度係数を有し、耐熱、耐食性に優れた材料が得られるという効果を有する。   The iron alloy of the present invention can have a specific resistance value of 150 μΩ · cm or more, has a temperature coefficient within a range of ± 200 ppm / ° C., and has an effect that a material excellent in heat resistance and corrosion resistance can be obtained. .

本発明合金の製造方法としては、まずMn:10.0〜45.0重量%、Al:5.0〜15.0重量%、C:0.01〜2.0重量%、Cr:0.01〜15.0重量%、残部Feからなる組成範囲内で成分調整する。また、必要に応じて、B:0.001〜1.5重量%、N:0.001〜1.5重量%、Be、Mg、Si、Ti、V、Co、Ni、Cu、Nb、Mo、W:それぞれ0.01〜5.0重量%、から選択した元素の1種又は2種以上を所定量添加して、適宜原料成分を調整する。   As the method for producing the alloy of the present invention, Mn: 10.0 to 45.0% by weight, Al: 5.0 to 15.0% by weight, C: 0.01 to 2.0% by weight, Cr: 0.00. The components are adjusted within the composition range of 01 to 15.0% by weight and the balance Fe. Further, as necessary, B: 0.001 to 1.5% by weight, N: 0.001 to 1.5% by weight, Be, Mg, Si, Ti, V, Co, Ni, Cu, Nb, Mo , W: A predetermined amount of one or two or more elements selected from 0.01 to 5.0% by weight are added, and the raw material components are appropriately adjusted.

次に、これをアーク溶解炉又は高周波溶解炉を用いて溶解し、これを鋳造インゴットとし、さらに800℃〜1300℃の温度にて熱間鍛造あるいは熱間圧延及び200℃〜1100℃までの温度にて焼鈍を行いながら冷間圧延・伸線等の加工工程を経て、また必要に応じて、200℃〜1300℃の温度にて熱処理後、焼き入れ又は空冷して製造する。その後、さらに必要に応じて、200℃〜700℃の温度にて時効熱処理して製造する。以上のようにして作製された材料の結晶組織は、γ相(fcc構造)、α相(bcc構造)、Cr炭化物などから形成される。   Next, this is melted using an arc melting furnace or a high-frequency melting furnace, which is used as a casting ingot, and further hot forging or hot rolling at a temperature of 800 ° C. to 1300 ° C. and a temperature of 200 ° C. to 1100 ° C. It is manufactured through a heat treatment at a temperature of 200 ° C. to 1300 ° C., followed by quenching or air cooling, if necessary, through processing steps such as cold rolling and wire drawing while annealing. Thereafter, it is further manufactured by aging heat treatment at a temperature of 200 ° C. to 700 ° C. as necessary. The crystal structure of the material produced as described above is formed of γ phase (fcc structure), α phase (bcc structure), Cr carbide, and the like.

次に実施例および比較例により本発明をさらに詳細に説明する。本発明の鉄合金の範囲で、実施例1〜実施例32を表1、表2及び表3に示した。実施例1−実施例32の組成の合金について、高周波溶解炉を用いて溶解し、これを鋳造インゴットとした。次に1100℃の温度にて、熱間圧延、1100℃あるいは1200℃の温度にて15分の熱処理、及び水中焼き入れあるいは空冷の製造工程、またその後、必要に応じて300℃〜500℃の時効熱処理を経て鉄合金を作製した。   Next, the present invention will be described in more detail with reference to examples and comparative examples. In the range of the iron alloy of the present invention, Examples 1 to 32 are shown in Tables 1, 2 and 3. Example 1 An alloy having the composition of Example 32 was melted using a high-frequency melting furnace to obtain a cast ingot. Next, at a temperature of 1100 ° C., hot rolling, heat treatment for 15 minutes at a temperature of 1100 ° C. or 1200 ° C., and a manufacturing process of quenching in water or air cooling, and then 300 ° C. to 500 ° C. as necessary An iron alloy was prepared through aging heat treatment.

同様に、比較例1−比較例13を表1に示した。比較例1−比較例13の組成の合金について、高周波溶解炉を用いて溶解し、これを鋳造インゴットとした。次に1100℃の温度にて、熱間圧延、1100℃あるいは1200℃の温度にて15分の熱処理、及び水中焼き入れあるいは空冷の製造工程を経て鉄合金を作製した。   Similarly, Comparative Example 1 to Comparative Example 13 are shown in Table 1. Comparative Example 1—The alloy having the composition of Comparative Example 13 was melted using a high-frequency melting furnace, and this was used as a casting ingot. Next, an iron alloy was manufactured through a manufacturing process of hot rolling at a temperature of 1100 ° C., heat treatment for 15 minutes at a temperature of 1100 ° C. or 1200 ° C., and quenching in water or air cooling.

また、表1に、本発明の実施例1−実施例25の鉄合金および比較例1−比較例13の鉄合金の、熱処理条件、存在する相、冷間圧延率(%)、比抵抗値(μΩ・cm)、抵抗値の温度係数(ppm/℃)(20℃〜100℃における)を示した。   Table 1 shows heat treatment conditions, existing phase, cold rolling rate (%), specific resistance value of the iron alloy of Example 1 to Example 25 and the iron alloy of Comparative Example 1 to Comparative Example 13 of the present invention. (ΜΩ · cm), temperature coefficient of resistance (ppm / ° C.) (at 20 ° C. to 100 ° C.).

【表1】

Figure 0004543171
[Table 1]
Figure 0004543171

表1に示たし通り、実施例1−実施例25の合金は、冷間圧延率60%という優れた加工性および150μΩ・cm以上の高い比抵抗値および±200ppm/℃内の小さい温度係数を有する。これに対し、比較例1−比較例13については、優れた加工性を有するが、比抵抗値が低く、温度係数も±200ppm/℃を超えている。あるいは、比抵抗値が充分に高く温度係数が小さくても、加工性が非常に悪くなっている(冷間圧延率20%以下)。   As shown in Table 1, the alloys of Examples 1 to 25 have excellent workability of a cold rolling rate of 60%, a high specific resistance value of 150 μΩ · cm or more, and a small temperature coefficient within ± 200 ppm / ° C. Have On the other hand, Comparative Example 1 to Comparative Example 13 have excellent workability, but have a low specific resistance value and a temperature coefficient exceeding ± 200 ppm / ° C. Alternatively, even if the specific resistance value is sufficiently high and the temperature coefficient is small, the workability is very poor (cold rolling rate of 20% or less).

表2は、実施例15および実施例18の鉄合金において、比抵抗値および温度係数に及ぼす時効熱処理の影響を調査した結果を示している。表2に示すとおり、適切な時効熱処理を施し、γ相、α相およびCr炭化物の量を制御することにより、特に、抵抗値の温度係数を小さくすることができることがわかる。   Table 2 shows the results of investigating the influence of aging heat treatment on the specific resistance value and the temperature coefficient in the iron alloys of Example 15 and Example 18. As shown in Table 2, it can be seen that the temperature coefficient of the resistance value can be particularly reduced by performing an appropriate aging heat treatment and controlling the amounts of the γ phase, α phase and Cr carbide.

Figure 0004543171
Figure 0004543171

表3は、実施例13および実施例31の鉄合金の耐熱性を調査した結果を示している。本発明の合金の耐熱性は、150℃にて2週間保持することにより調査した。表に示すとおり、本発明の合金は、150℃にて2週間保持してもその比抵抗値、温度係数は殆ど変化せず、耐熱性、経時変化にも極めて優れていることがわかる。   Table 3 shows the results of investigating the heat resistance of the iron alloys of Example 13 and Example 31. The heat resistance of the alloys of the present invention was investigated by holding at 150 ° C. for 2 weeks. As shown in the table, it can be seen that the specific resistance value and temperature coefficient of the alloy of the present invention hardly change even when held at 150 ° C. for 2 weeks, and are extremely excellent in heat resistance and change with time.

Figure 0004543171
Figure 0004543171

本発明の鉄合金は、加工性に優れ、比抵抗値が高く、温度特性にも優れ、さらに耐熱性、耐食性に富む材料を低コストで得られるという効果を有する。従って、高抵抗器用材料、一般パワー抵抗器、精密抵抗器、電熱線などに使用することができる。本発明は、前記の実施例によってなんら限定されるものではない。すなわち、本発明の技術思想の範囲における他の例、態様等を当然含むものである。
The iron alloy of the present invention has an effect that a material having excellent workability, high specific resistance, excellent temperature characteristics, and excellent heat resistance and corrosion resistance can be obtained at low cost. Therefore, it can be used for materials for high resistors, general power resistors, precision resistors, heating wires, and the like. The present invention is not limited to the above-described embodiments. That is, other examples, aspects, and the like within the scope of the technical idea of the present invention are naturally included.

Claims (6)

Mn:10.0〜45.0質量%、Al:5.0〜15.0質量%、C:0.01〜2.0質量%、Cr:0.01〜15.0質量%、残部Fe及び不可避的不純物からなることを特徴とする高抵抗器用鉄合金。Mn: from 10.0 to 45.0 wt%, Al: 5.0 to 15.0 wt%, C: 0.01 to 2.0 wt%, Cr: 0.01 to 15.0 wt%, balance Fe And an iron alloy for high resistors, characterized by comprising inevitable impurities. 添加元素として、さらにB:0.001〜1.5質量%、N:0.001〜1.5質量%、Be、Mg、Si、Ti、V、Co、Ni、Nb、Mo及びW:それぞれ0.01〜5.0質量%、Cu:0.01〜0.8質量%、からなる群から選択した1種又は2種以上の元素を含有することを特徴とする請求項1に記載の高抵抗器用鉄合金。As an additive element, further B: 0.001 to 1.5 wt%, N: 0.001 to 1.5 mass%, Be, Mg, Si, Ti, V, Co, Ni, N b, Mo and W: each 0.01-5.0 wt%, Cu: 0.01 to 0.8 mass%, one or more elements selected from the group consisting of and having containing the claim 1 Iron alloy for high resistance. Mn:10.0〜45.0質量%、Al:5.0〜15.0質量%、C:0.〜2.0質量%、Cr:0.01〜15.0質量%、残部Fe及び不可避的不純物からなることを特徴とする高抵抗器用鉄合金において、
添加元素として、さらにB:0.001〜1.5質量%、N:0.001〜1.5質量%、Be、Mg、Si、Ti、V、Co、Ni、Cu、Nb、Mo及びW:それぞれ0.01〜5.0質量%、からなる群から選択した1種又は2種以上の元素を含有することを特徴とする高抵抗器用鉄合金。
Mn: 10.0-45.0% by mass , Al: 5.0-15.0% by mass , C: 0.0. In an iron alloy for high resistors, characterized by comprising 5 to 2.0 mass %, Cr: 0.01 to 15.0 mass %, the balance Fe and inevitable impurities ,
As additional elements, B: 0.001 to 1.5 mass%, N: 0.001 to 1.5 mass%, Be, Mg, Si, Ti, V, Co, Ni, Cu, Nb, Mo, and W : An iron alloy for high resistors, comprising one or more elements selected from the group consisting of 0.01 to 5.0% by mass, respectively.
150(μΩ・cm)以上の比抵抗値を有する請求項1乃至3のいずれか1項に記載の高抵抗器用鉄合金。The iron alloy for high resistors according to any one of claims 1 to 3, having a specific resistance value of 150 (µΩ · cm) or more. 抵抗値の温度係数が、20℃〜100℃において、±200ppm/℃の範囲内である請求項1乃至4のいずれか1項に記載の高抵抗器用鉄合金。The high-resistance iron alloy according to any one of claims 1 to 4, wherein a temperature coefficient of a resistance value is within a range of ± 200 ppm / ° C at 20 ° C to 100 ° C. 請求項1乃至5のいずれか1項に記載の合金であって、時効熱処理により抵抗値の温度係数を低く制御した高抵抗器用鉄合金。The iron alloy for high resistors according to any one of claims 1 to 5, wherein the temperature coefficient of resistance value is controlled to be low by aging heat treatment.
JP2005034662A 2005-02-10 2005-02-10 Iron alloy for high resistors Active JP4543171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034662A JP4543171B2 (en) 2005-02-10 2005-02-10 Iron alloy for high resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034662A JP4543171B2 (en) 2005-02-10 2005-02-10 Iron alloy for high resistors

Publications (2)

Publication Number Publication Date
JP2006219728A JP2006219728A (en) 2006-08-24
JP4543171B2 true JP4543171B2 (en) 2010-09-15

Family

ID=36982240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034662A Active JP4543171B2 (en) 2005-02-10 2005-02-10 Iron alloy for high resistors

Country Status (1)

Country Link
JP (1) JP4543171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317048B2 (en) * 2008-06-10 2013-10-16 株式会社Neomaxマテリアル Resistance alloy manufacturing method
JP5671869B2 (en) * 2010-08-09 2015-02-18 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN114774802B (en) * 2022-04-07 2022-11-25 中南大学 Method for improving mechanical and electrical resistance performance of FeCrAl-based resistance alloy and FeCrAl-based resistance alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928561A (en) * 1982-08-11 1984-02-15 Sumitomo Metal Ind Ltd Non-magnetic steel high in volume electric resistivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928561A (en) * 1982-08-11 1984-02-15 Sumitomo Metal Ind Ltd Non-magnetic steel high in volume electric resistivity

Also Published As

Publication number Publication date
JP2006219728A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
EP1867740B1 (en) Low thermal expansion Ni-base superalloy
EP2826877B1 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP5462281B2 (en) Stainless austenitic low Ni steel alloy
JP7422781B2 (en) Nickel alloy with good corrosion resistance and high tensile strength, and method for producing semi-finished products
WO2012026354A1 (en) Co-based alloy
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP6809170B2 (en) Manufacturing method of Ni-based superalloy material
JP6809169B2 (en) Manufacturing method of Ni-based superalloy material
EP3208354B1 (en) Ni-based superalloy for hot forging
JP6225598B2 (en) Austenitic stainless steel welding material
JP2011219864A (en) Heat resistant steel for exhaust valve
JP5863770B2 (en) Austenitic cast stainless steel
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP6860413B2 (en) Maraging steel and its manufacturing method
EP3208355B1 (en) Ni-based superalloy for hot forging
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP5486050B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP4543171B2 (en) Iron alloy for high resistors
JP4972972B2 (en) Ni-based alloy
JP5317048B2 (en) Resistance alloy manufacturing method
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP7131225B2 (en) Precipitation Hardening Martensitic Stainless Steel
JP2005325387A (en) Low specific gravity iron alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150