JP2005325387A - Low specific gravity iron alloy - Google Patents

Low specific gravity iron alloy Download PDF

Info

Publication number
JP2005325387A
JP2005325387A JP2004143089A JP2004143089A JP2005325387A JP 2005325387 A JP2005325387 A JP 2005325387A JP 2004143089 A JP2004143089 A JP 2004143089A JP 2004143089 A JP2004143089 A JP 2004143089A JP 2005325387 A JP2005325387 A JP 2005325387A
Authority
JP
Japan
Prior art keywords
atomic
atomic weight
mass
specific gravity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004143089A
Other languages
Japanese (ja)
Inventor
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Yuji Sudo
祐司 須藤
Reiko Unno
玲子 海野
Tetsuya Shimizu
哲也 清水
Hiroyuki Takabayashi
宏之 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004143089A priority Critical patent/JP2005325387A/en
Publication of JP2005325387A publication Critical patent/JP2005325387A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material having improved specific gravity, enhanced specific strength, Young's modulas, yield stress, and tensile strength, and high oxidation resistance. <P>SOLUTION: A low specific gravity iron alloy is characterized by comprising an iron alloy containing, by mass, 15.0-45.0% Mn, 8.0-20.0% Al, 0.01-2.5% C, 0.01-5.0% Si, 0.01-10.0% Cr, 0.001-1.5% B and 0.01-1.5% N, and the balance Fe with inevitable impurities and having two phases of γ + α, in which the α-phase ratio is 10-95%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低比重を有し、高い比強度(強度/比重)を有する鉄合金に関する。    The present invention relates to an iron alloy having a low specific gravity and a high specific strength (strength / specific gravity).

鉄は地球に多量に存在し、製造が容易(製造法が確立されている)であること強度(鋼等)が高いこと、耐食性があること(ステンレス鋼、合金鋼)などの理由により、一般構造用材料、建築用材、鉄道車両や自動車のボディやフレーム材、レール材、船舶用材、耐食性材、石油等のパイプライン用材、橋梁材等の様々な分野に使用されている。また、鋼だけでなく、鋳鉄も半永久的な耐食性材料としてマンホールの蓋や大型の下水管等に使用されている。
しかし、鉄の20°Cでの比重は7.87であり、他の金属に比べて比重が大きく、そのために比強度(強度/比重)がチタン(比重4.50)やアルミニウム合金(比重2.70)等に比べて劣るという問題がある。
Iron is abundant in the earth and is easy to manufacture (established manufacturing method), high in strength (steel, etc.), and highly resistant to corrosion (stainless steel, alloy steel). It is used in various fields such as structural materials, building materials, railcars and automobile bodies and frame materials, rail materials, marine materials, corrosion-resistant materials, pipeline materials such as petroleum, and bridge materials. In addition to steel, cast iron is also used as a semi-permanent corrosion-resistant material for manhole covers and large sewer pipes.
However, the specific gravity of iron at 20 ° C is 7.87, which is higher than that of other metals. Therefore, the specific strength (strength / specific gravity) is titanium (specific gravity 4.50) or aluminum alloy (specific gravity 2 .70) and the like.

このようなことから鉄に金属元素等を添加し、また加工や熱処理条件を工夫して比強度(強度/比重)を向上させようとする提案がある。例えば、重量%でMn:25〜31%、Al:6.3〜7.8%、C:0.65〜0.85%、Cr:5.5〜9.0%、残部Feとし、この合金を800°C〜1050°Cで熱間鍛造することにより、6.78〜7.05g/cmとする技術が開示されている(例えば、特許文献1参照)。
しかし、比重のある程度の改善はあるが、この合金でさらに比重を下げ比強度(強度/比重)を向上させることは事実上難しいという問題がある。
For this reason, there has been a proposal to improve specific strength (strength / specific gravity) by adding a metal element or the like to iron and devising processing and heat treatment conditions. For example, Mn: 25-31% by weight, Al: 6.3-7.8%, C: 0.65-0.85%, Cr: 5.5-9.0%, and the balance Fe, A technique for making the alloy 6.78 to 7.05 g / cm 3 by hot forging the alloy at 800 ° C. to 1050 ° C. is disclosed (for example, see Patent Document 1).
However, although there is some improvement in specific gravity, there is a problem that it is practically difficult to further lower the specific gravity and improve the specific strength (strength / specific gravity) with this alloy.

他の参考公知文献としては、次の組成のものがある。高温下で用いる20〜35重量%マンガン、5〜13重量%アルミニウム、0〜5重量%クロム、0〜2.5重量%ケイ素、0.5〜1.4重量%炭素、残部鉄からなる鋳造部材(特許文献2参照)。
C:0.10〜1.00重量%、Mn:16〜35重量%、Si:0.2〜3.0重量%、Cr:0.5〜18.0重量%、Cu:0.01〜2.00重量%、Al:0.01〜7.00重量%、N:0.3重量%以下である耐候性、高靭性高Mn鋼(特許文献3参照)。
C:1.5重量%未満、Mn:0〜35.0重量%、0.1〜6.0重量%、残部Feからなるオーステナイト高マンガン鋼(特許文献4参照)。
Al:6〜13重量%、Mn:7〜34重量%、C:0.2〜1.4重量%、Si:0.4〜1.3重量%、Ni:0.5〜6重量%、Cr:0.5〜6重量%、残部Feからなるオーステナイト系ステンレス鋼(特許文献5参照)。
特開2002−180205号公報 特開平2−247356号公報 特開昭58−197256号公報 特表平6−505535号公報 特表平5−504788号公報
Other reference known documents include the following compositions. Casting of 20-35 wt% manganese, 5-13 wt% aluminum, 0-5 wt% chromium, 0-2.5 wt% silicon, 0.5-1.4 wt% carbon, balance iron used at high temperature Member (refer patent document 2).
C: 0.10 to 1.00% by weight, Mn: 16 to 35% by weight, Si: 0.2 to 3.0% by weight, Cr: 0.5 to 18.0% by weight, Cu: 0.01 to Weather resistance, high toughness and high Mn steel of 2.00% by weight, Al: 0.01 to 7.00% by weight, N: 0.3% by weight or less (see Patent Document 3).
An austenitic high manganese steel consisting of C: less than 1.5% by weight, Mn: 0 to 35.0% by weight, 0.1 to 6.0% by weight, and the balance Fe (see Patent Document 4).
Al: 6 to 13 wt%, Mn: 7 to 34 wt%, C: 0.2 to 1.4 wt%, Si: 0.4 to 1.3 wt%, Ni: 0.5 to 6 wt%, Austenitic stainless steel consisting of Cr: 0.5 to 6% by weight and the balance Fe (see Patent Document 5).
JP 2002-180205 A JP-A-2-247356 JP 58-197256 A JP 6-505535 A Japanese National Patent Publication No. 5-504788

本発明は、比重を改善し、比強度、ヤング率、降伏応力、引張応力を高め、かつ耐酸化性に富む材料を提供することを課題とする。   An object of the present invention is to provide a material that improves specific gravity, increases specific strength, Young's modulus, yield stress, and tensile stress, and is rich in oxidation resistance.

本発明者らは、鉄−マンガン−アルミニウム系材料を改善することにより、上記の比重、比強度等をさらに向上させることができるとの知見を得た。
この知見に基づき本発明は、1)Mn:15.0〜45.0質量%、Al:8.0〜20.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなることを特徴とする低比重鉄合金、2)Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図1参照)において、(Al:15.1原子量%、Mn:56.3原子量%)、(Al:41.8原子量%、Mn:46.7原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn:17.4原子量%)の5点で囲まれる領域Aにあり、比重5.5〜7.0g/cmであることを特徴とする請求項1記載の低比重鉄合金、を提供する。
The present inventors have obtained knowledge that the specific gravity, specific strength, and the like can be further improved by improving the iron-manganese-aluminum-based material.
Based on this knowledge, the present invention is as follows: 1) Mn: 15.0 to 45.0 mass%, Al: 8.0 to 20.0 mass%, C: 0.01 to 2.5 mass%, Si: 0.00. 01 to 5.0% by mass, Cr: 0.01 to 10.0% by mass, B: 0.001 to 1.5% by mass, N: 0.01 to 1.5% by mass, balance Fe and inevitable impurities A low specific gravity iron alloy characterized by comprising an iron alloy having two phases of γ + α having an α phase fraction of 10 to 95%, 2) Al equivalent (atomic weight%) = (Al atomic weight% + 1.07 Si Al equivalent weight + 1.09C atomic weight% + 1.32N atomic weight% + 1.04B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51 Cr atomic weight%) Al equivalent vs. Mn equivalent diagram (see FIG. 1) (Al: 15.1 atomic weight%, Mn: 56.3 atomic weight%), (Al: 4 .8 atomic weight%, Mn: 46.7 atomic weight%), (Al: 44.9 atomic weight%, Mn: 11.3 atomic weight%), (Al: 15.6 atomic weight%, Mn: 13.9 atomic weight%), 2. A region A surrounded by 5 points (Al: 15.3 atomic weight%, Mn: 17.4 atomic weight%), having a specific gravity of 5.5 to 7.0 g / cm 3. Of low specific gravity iron alloy.

本発明は、また3)Mn:18.0〜45.0質量%、Al:13.0〜20.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなることを特徴とする低比重鉄合金、4)Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図2参照)において、(Al:23.4原子量%、Mn:53.7原子量%)、(Al:41.8原子量%、Mn:46.8原子量%)、(Al:44.7原子量%、Mn:13.6原子量%)、(Al:23.6原子量%、Mn:16.0原子量%)の4点で囲まれる領域Bにあり、比重5.5〜6.6g/cmであることを特徴とする請求項3記載の低比重鉄合金、を提供する。 In the present invention, 3) Mn: 18.0 to 45.0 mass%, Al: 13.0 to 20.0 mass%, C: 0.01 to 2.5 mass%, Si: 0.01 to 5 0.0 mass%, Cr: 0.01-10.0 mass%, B: 0.001-1.5 mass%, N: 0.01-1.5 mass%, the balance Fe and unavoidable impurities, Low specific gravity iron alloy characterized by comprising an iron alloy having two phases of γ + α having an α phase fraction of 10 to 95%, 4) Al equivalent (atomic weight%) = (Al atomic weight% + 1.07 Si atomic weight% + 1) .09C atomic weight% + 1.32N atomic weight% + 1.04B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51Cr atomic weight%). Al: 23.4 atomic weight%, Mn: 53.7 atomic weight%), (Al: 41.8 atomic weight) %, Mn: 46.8 atomic weight%), (Al: 44.7 atomic weight%, Mn: 13.6 atomic weight%), (Al: 23.6 atomic weight%, Mn: 16.0 atomic weight%). The low specific gravity iron alloy according to claim 3, which is in the enclosed region B and has a specific gravity of 5.5 to 6.6 g / cm 3 .

本発明は、また5)Mn:15.0〜18.0質量%、Al:8.0〜13.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなることを特徴とする低比重鉄合金、6)Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図3参照)において、(Al:15.2原子量%、Mn:31.5原子量%)、(Al:43.7原子量%、Mn:25.5原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn:17.4原子量%)の5点で囲まれる領域Cにあり、比重5.5〜7.0g/cmであることを特徴とする請求項5記載の低比重鉄合金、を提供する。 In the present invention, 5) Mn: 15.0 to 18.0 mass%, Al: 8.0 to 13.0 mass%, C: 0.01 to 2.5 mass%, Si: 0.01 to 5 0.0 mass%, Cr: 0.01-10.0 mass%, B: 0.001-1.5 mass%, N: 0.01-1.5 mass%, the balance Fe and unavoidable impurities, Low specific gravity iron alloy characterized by comprising an iron alloy having two phases of γ + α having an α phase fraction of 10 to 95%, 6) Al equivalent (atomic weight%) = (Al atomic weight% + 1.07 Si atomic weight% + 1) .09C atomic weight% + 1.32N atomic weight% + 1.04B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51 Cr atomic weight%). Al: 15.2 atomic weight%, Mn: 31.5 atomic weight%), (Al: 43.7 atomic weight) , Mn: 25.5 atomic weight%), (Al: 44.9 atomic weight%, Mn: 11.3 atomic weight%), (Al: 15.6 atomic weight%, Mn: 13.9 atomic weight%), (Al: 15 The low specific gravity iron according to claim 5, wherein the specific gravity is 5.5 to 7.0 g / cm 3 in a region C surrounded by 5 points of 3 atomic weight% and Mn: 17.4 atomic weight%. Alloy, provide.

本発明は、また7)添加元素として、さらにBe、Mg、Ti、V、Co、Ni、Cu、Nb、Mo及びWからなる群から選択した1種又は2種以上の元素を総量で0.01〜5.0質量%含有することを特徴とする1〜6のいずれかに記載の低比重鉄合金、を提供する。   In the present invention, the total amount of one or more elements selected from the group consisting of Be, Mg, Ti, V, Co, Ni, Cu, Nb, Mo, and W is further added as 7) additional elements. The low specific gravity iron alloy according to any one of 1 to 6, characterized by containing 01 to 5.0% by mass.

本発明の鉄合金は、比重を7.0〜5.5の範囲に低下させることができ、比強度100MPa/(g/cm)以上、ヤング率100GPa以上、0.2%耐力420MPa以上、引張応力700MPa以上であるという、低比重であり、比強度に優れた材料が得られるという効果を有する。 The iron alloy of the present invention can reduce the specific gravity to a range of 7.0 to 5.5, a specific strength of 100 MPa / (g / cm 3 ) or more, a Young's modulus of 100 GPa or more, a 0.2% proof stress of 420 MPa or more, The tensile stress is 700 MPa or more, which has the effect of obtaining a material having a low specific gravity and an excellent specific strength.

本発明の低比重鉄合金は、Mn:15.0〜45.0質量%、Al:8.0〜20.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなる低比重鉄合金であり、Alを8.0質量%〜20.0質量%まで含有させた高Al含有合金である。
本発明の低比重鉄合金は、上記の通りα(bcc構造)+γの2相を備える組織を持ち、比重dが5.5≦d≦7.0を有し、延性に優れ、かつ高降伏応力を備えた低比重合金が得られる。
特に、Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図1参照)において、(Al15.1原子量%、Mn56.3原子量%)、(Al:41.8原子量%、Mn:46.7原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn:17.4原子量%)の5点で囲まれる領域Aにおいて、比重5.5〜7.0g/cmを達成することができる。
The low specific gravity iron alloy of the present invention has Mn: 15.0 to 45.0 mass%, Al: 8.0 to 20.0 mass%, C: 0.01 to 2.5 mass%, Si: 0.01 ~ 5.0 mass%, Cr: 0.01-10.0 mass%, B: 0.001-1.5 mass%, N: 0.01-1.5 mass%, balance Fe and unavoidable impurities Is a low specific gravity iron alloy made of an iron alloy having two phases of γ + α with an α phase fraction of 10 to 95%, and contains Al in a mass of 8.0 to 20.0 mass%. It is an alloy.
The low specific gravity iron alloy of the present invention has a structure having two phases of α (bcc structure) + γ as described above, a specific gravity d of 5.5 ≦ d ≦ 7.0, excellent ductility, and high yield. A low specific polymerization gold with stress is obtained.
In particular, Al equivalent (atomic weight%) = (Al atomic weight% + 1.07 Si atomic weight% + 1.09 C atomic weight% + 1.32 N atomic weight% + 1.04 B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51 Cr atomic weight %) In an Al equivalent to Mn equivalent diagram (see FIG. 1), (Al 15.1 atomic%, Mn 56.3 atomic%), (Al: 41.8 atomic%, Mn: 46.7 atomic%), (Al: 44.9 atomic weight%, Mn: 11.3 atomic weight%), (Al: 15.6 atomic weight%, Mn: 13.9 atomic weight%), (Al: 15.3 atomic weight%, Mn: 17.4 A specific gravity of 5.5 to 7.0 g / cm 3 can be achieved in a region A surrounded by 5 points of atomic weight%).

Mn:15.0〜45.0質量%とする理由は、15.0質量%未満ではfcc構造を有するγ相が得られず、45.0質量%を超えると十分な強度が得られないからである。特にMn:18.0〜45.0質量%が望ましい。さらに、Mn:15.0〜18.0質量%とすることができる。これにより引張強度の向上が可能であり、さらに耐食性を向上させることができる。
Al:8.0〜20.0質量%とする理由は、8.0質量%未満では7.0以下の低比重が得られず、20.0質量%を超えるとα相(bcc構造)+κ相(ペロブスカイト構造)の2相組織になり、脆化してしまうためである。特に、Al:13.0〜20.0質量%が望ましい。さらに、Al:8.0〜13.0質量%とすることができる。これにより、延性を向上させることができる。
C:0.01〜2.5質量%とする理由は、0.01質量%未満ではα単相組織になってしまい、2.5質量%を超えるとMC(M:Fe、Mn等)等の炭化物が析出してしまうためである。
The reason why Mn is 15.0 to 45.0% by mass is that if the amount is less than 15.0% by mass, a γ phase having an fcc structure cannot be obtained, and if it exceeds 45.0% by mass, sufficient strength cannot be obtained. It is. In particular, Mn: 18.0 to 45.0 mass% is desirable. Furthermore, it can be set as Mn: 15.0-18.0 mass%. Thereby, the tensile strength can be improved and the corrosion resistance can be further improved.
The reason for Al: 8.0 to 20.0 mass% is that if it is less than 8.0 mass%, a low specific gravity of 7.0 or less cannot be obtained, and if it exceeds 20.0 mass%, α phase (bcc structure) + κ This is because it becomes a two-phase structure of a phase (perovskite structure) and becomes brittle. In particular, Al: 13.0 to 20.0 mass% is desirable. Furthermore, it can be set as Al: 8.0-13.0 mass%. Thereby, ductility can be improved.
The reason for C: 0.01 to 2.5% by mass is that if it is less than 0.01% by mass, an α single-phase structure is formed, and if it exceeds 2.5% by mass, M 3 C (M: Fe, Mn, etc. This is because carbides such as

Si:0.01〜5.0質量%とする理由は、0.01質量%未満では低比重が得られず、5.0質量%以上ではα+γの2相組織が得られないためである。
Cr:0.01〜10.0質量%とする理由は、0.01質量%未満では低比重及び耐酸化性に優れた合金が得られず、10.0質量%を超えるとCr炭化物やσ相などの金属間化合物が出現し、γ単相やα+γの2相組織が得られないためである。
B:0.001〜1.5質量%とする理由は0.001質量%未満では鋳造組織及び鍛造組織においても微細な結晶粒組織が得られず、また1.5質量%を超えると硼素化合物等の析出により脆化してしまうからである。
N:0.01〜1.5質量%とする理由は、0.01質量%未満では十分な比強度を得ることができず、1.5質量%を超えると窒化物等の析出により脆化するからである。上記の組成範囲において微細な結晶粒組織が得られ、優れた機械的特性を持つ合金が得られる。
また、α相分率10〜95%とする理由は、α相分率10%未満では十分な硬さが得られず、10%以上が必要である。さらに60%程度をピークに増大していくが、それを過ぎると硬さが低下し、α相分率95%を超えると十分な硬さが得られなくなる。したがって、上記の範囲とする。
The reason for Si: 0.01 to 5.0% by mass is that a low specific gravity cannot be obtained if it is less than 0.01% by mass, and a α + γ two-phase structure cannot be obtained if it is 5.0% by mass or more.
The reason why Cr is 0.01 to 10.0% by mass is that if it is less than 0.01% by mass, an alloy excellent in low specific gravity and oxidation resistance cannot be obtained, and if it exceeds 10.0% by mass, Cr carbide and σ This is because an intermetallic compound such as a phase appears and a γ single phase or α + γ two-phase structure cannot be obtained.
B: 0.001 to 1.5% by mass The reason is that if it is less than 0.001% by mass, a fine crystal grain structure cannot be obtained even in the cast structure and the forged structure, and if it exceeds 1.5% by mass, a boron compound This is because it becomes brittle by precipitation of the like.
N: 0.01 to 1.5% by mass is less than 0.01% by mass when sufficient specific strength cannot be obtained, and when it exceeds 1.5% by mass, embrittlement occurs due to precipitation of nitride or the like. Because it does. A fine grain structure can be obtained within the above composition range, and an alloy having excellent mechanical properties can be obtained.
Further, the reason why the α phase fraction is 10 to 95% is that if the α phase fraction is less than 10%, sufficient hardness cannot be obtained, and 10% or more is necessary. Further, it increases to a peak of about 60%, but if it is exceeded, the hardness decreases, and if the α phase fraction exceeds 95%, sufficient hardness cannot be obtained. Therefore, it is set as the above range.

また、Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図2参照)において、(Al:23.4原子量%、Mn:53.7原子量%)、(Al:41.8原子量%、Mn:46.8原子量%)、(Al:44.7原子量%、Mn:13.6原子量%)、(Al:23.6原子量%、Mn:16.0原子量%)の4点で囲まれる領域B(図2参照)とすることにより、比重5.5〜6.6g/cmである低比重鉄合金を得ることができる。
この合金組成範囲では、特に、高降伏・引張強度および高比強度特性を得ることができる。
Also, Al equivalent (atomic weight%) = (Al atomic weight% + 1.07 Si atomic weight% + 1.09 C atomic weight% + 1.32 N atomic weight% + 1.04 B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51 Cr atomic weight %) In the Al equivalent to Mn equivalent diagram (see FIG. 2) (Al: 23.4 atomic%, Mn: 53.7 atomic%), (Al: 41.8 atomic%, Mn: 46.8) Atomic weight%), (Al: 44.7 atomic weight%, Mn: 13.6 atomic weight%), (Al: 23.6 atomic weight%, Mn: 16.0 atomic weight%). Thus, a low specific gravity iron alloy having a specific gravity of 5.5 to 6.6 g / cm 3 can be obtained.
In this alloy composition range, particularly high yield / tensile strength and high specific strength characteristics can be obtained.

さらに、Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図において、(Al:15.2原子量%、Mn:31.5原子量%)、(Al:43.7原子量%、Mn:25.5原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn17.4原子量%)の5点で囲まれる領域C(図3参照)とすることにより、比重5.5〜7.0g/cmである低比重鉄合金を得ることができる。
この組成範囲では、特に、耐食性及び延性に優れる低比重鉄合金を提供することができる。
Further, Al equivalent (atomic weight%) = (Al atomic weight% + 1.07 Si atomic weight% + 1.09 C atomic weight% + 1.32 N atomic weight% + 1.04 B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51 Cr atomic weight %) In the Al equivalent to Mn equivalent diagram (Al: 15.2 atomic%, Mn: 31.5 atomic%), (Al: 43.7 atomic%, Mn: 25.5 atomic%), ( Al: 44.9 atomic%, Mn: 11.3 atomic%), (Al: 15.6 atomic%, Mn: 13.9 atomic%), (Al: 15.3 atomic%, Mn 17.4 atomic%) Thus, a low specific gravity iron alloy having a specific gravity of 5.5 to 7.0 g / cm 3 can be obtained.
In this composition range, it is possible to provide a low specific gravity iron alloy particularly excellent in corrosion resistance and ductility.

本発明の低比重鉄合金は、さらにBe、Mg、Ti、V、Co、Ni、Cu、Nb、Mo及びWからなる群から選択した1種又は2種以上の元素を0.01〜5.0質量%含有させることができる。
Be又はMg添加は低比重化に有効であり、Ti添加は低比重化及び粒界腐食の防止に有効であり、V添加は耐摩耗性改善に有効であり、Co又はNi添加はγ相の安定化に有効であり、Cu又はMo添加は耐食性改善に有効であり、Mo添加は耐粒界腐食改善に有効であり、W添加は析出硬化に有効であるという理由による。これらを単独添加又は複合添加することができる。
また、それを0.01〜5.0質量%の範囲とするのは0.01質量%未満であると添加の効果がなく、1.5質量%を超えると脆化し、また比重が7.0を超えてしまうという問題があるので、上限を1.5質量%とする。
以上に示す通り、本発明の低比重鉄合金は、比重dが5.5≦d≦7.0であり、さらには比重dが5.5≦d≦6.6であるという低比重の合金が得られる。
また、これによって、比強度が100MPa/(g/cm)以上、さらには比強度が150MPa/(g/cm)以上である合金が得られる。
The low specific gravity iron alloy of the present invention further contains one or more elements selected from the group consisting of Be, Mg, Ti, V, Co, Ni, Cu, Nb, Mo and W in an amount of 0.01 to 5. 0 mass% can be contained.
Be or Mg addition is effective for lowering the specific gravity, Ti addition is effective for lowering the specific gravity and preventing intergranular corrosion, V addition is effective for improving wear resistance, and Co or Ni addition is effective for the γ phase. It is effective for stabilization, Cu or Mo addition is effective for improving corrosion resistance, Mo addition is effective for improving intergranular corrosion resistance, and W addition is effective for precipitation hardening. These can be added alone or in combination.
Moreover, if it is less than 0.01% by mass, the effect is not added if it is in the range of 0.01 to 5.0% by mass, and if it exceeds 1.5% by mass, it becomes brittle and the specific gravity is 7. Since there exists a problem that it will exceed 0, an upper limit shall be 1.5 mass%.
As described above, the low specific gravity iron alloy of the present invention has a low specific gravity in which the specific gravity d is 5.5 ≦ d ≦ 7.0, and the specific gravity d is 5.5 ≦ d ≦ 6.6. Is obtained.
This also provides an alloy having a specific strength of 100 MPa / (g / cm 3 ) or more, and further a specific strength of 150 MPa / (g / cm 3 ) or more.

本発明合金の製造方法としては、まずMn:15.0〜45.0質量%、Al:8.0〜20.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Feからなる組成範囲内で成分調整する。
また、必要に応じて、Be、Mg、Ti、V、Co、Ni、Cu、Nb、Mo及びWからなる群から選択した1種又は2種以上の元素を所定量(0.01〜5.0質量%)添加して、適宜原料成分を調整する。
As a manufacturing method of this invention alloy, first, Mn: 15.0-45.0 mass%, Al: 8.0-20.0 mass%, C: 0.01-2.5 mass%, Si: 0.00. 01 to 5.0% by mass, Cr: 0.01 to 10.0% by mass, B: 0.001 to 1.5% by mass, N: 0.01 to 1.5% by mass, balance of Fe Ingredient adjustment within.
Further, if necessary, one or more elements selected from the group consisting of Be, Mg, Ti, V, Co, Ni, Cu, Nb, Mo and W are added in a predetermined amount (0.01 to 5. 0% by mass) to adjust the raw material components as appropriate.

次に、これをアーク溶解炉又は高周波溶解炉を用いて溶解し、これを鋳造インゴットとし、さらに800°C〜1300°Cの温度にて熱間鍛造あるいは熱間圧延及び冷間圧延・伸線等の加工工程を経て、また必要に応じて、200°C〜1300°Cの温度にて熱処理後、焼き入れ又は空冷して製造する。
このようにして得られた材料は、単相又はα(bcc構造)相分率を10%以上含有するα(bcc構造)相+γ(fcc構造)の2相鉄合金が得られる。また、比重が5.5〜7.0g/cmである比強度が高く、比重が低い鉄合金が得られる。
Next, this is melted using an arc melting furnace or a high-frequency melting furnace, and this is used as a casting ingot, and further hot forging or hot rolling and cold rolling / drawing at a temperature of 800 ° C. to 1300 ° C. Through a processing step such as, and if necessary, after heat treatment at a temperature of 200 ° C. to 1300 ° C., quenching or air cooling is performed.
The material thus obtained is a two-phase iron alloy of α (bcc structure) phase + γ (fcc structure) containing a single phase or α (bcc structure) phase fraction of 10% or more. Further, an iron alloy having a high specific strength and a low specific gravity of 5.5 to 7.0 g / cm 3 can be obtained.

次に実施例および比較例により本発明をさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。すなわち、本発明の技術思想の範囲における他の例、態様あるいは変形等を当然含むものである。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples. That is, it naturally includes other examples, modes or modifications within the scope of the technical idea of the present invention.

(実施例1−34)
本発明の鉄合金の範囲で、表1及び表2に示す実施例1−34の合金組成についてアーク溶解炉を用いて溶解し、これを鋳造インゴットとした。次に1100°Cの温度にて、熱間圧延、1100°Cの温度にて30分の熱処理、及び水中焼き入れの製造工程を経てα+γの2相構造を有する鉄合金を作製した。
なお、実施例20、実施例21及び実施例31については、κ相がそれぞれ10%、5%、10%出ているが、主要相はα+γの2相構造であり、本発明はこのような組織を排除するものではない。
(Example 1-34)
In the range of the iron alloy of the present invention, the alloy composition of Example 1-34 shown in Table 1 and Table 2 was melted using an arc melting furnace, and this was used as a casting ingot. Next, an iron alloy having a two-phase structure of α + γ was manufactured through a manufacturing process of hot rolling at a temperature of 1100 ° C., heat treatment for 30 minutes at a temperature of 1100 ° C., and quenching in water.
In Examples 20, 21, and 31, the κ phase is 10%, 5%, and 10%, respectively, but the main phase has a two-phase structure of α + γ, and the present invention is such It does not exclude the organization.

Figure 2005325387
Figure 2005325387

Figure 2005325387
Figure 2005325387

表3及び表4にα+γの2相構造を有する鉄合金の比重(g/cm)、α分率、γ分率、ビッカース硬さ(Hv)、冷間加工率(%)、ヤング率(GPa)、降伏応力(MPa)、引張強さ(MPa)、伸び(%)、比強度(MPa/(g/cm))、熱間絞り性を示す。
実施例に示すいずれの合金も、α+γの2相合金を有していた。γ相の量が増加すると硬さが低下し、冷間加工率が高くなる。逆にγ相が低下すると、硬さが大きくなり、冷間加工率は低下する傾向がある。
Al濃度が高い本低比重鉄合金は、特にMn濃度およびC濃度を多くし、それらの濃度に応じ、耐酸化性に優れα+γ2相かつ微細な組織を有するようにCr、Si、NおよびBの濃度を任意に調製することができる(例えば範囲Bで示される合金)。これらの合金は、高い強度を有する特徴を有する(例えば、実施例8〜実施例19)。
一方、Al濃度が低い合金は、特にMn濃度およびC濃度を低くすることが可能であり、それらの濃度に応じ、耐酸化性に優れα+γ2相かつ微細な組織を有するようにCr、Si、NおよびBの濃度を任意に調製することができる(例えば範囲Cで示される合金)。これらの合金は、特に室温延性(引張伸び)に優れ、また耐食性に優れている特徴を有する(例えば、実施例25〜実施例28)。
実施例20、実施例21及び実施例31については、上記の通り、κ相が出ている。このため、延性は損なわれるが、高い引張強さを得ることができる特徴を有する。したがって、同じ比重を持つγ+αの2相合金よりも優れた比強度を示す。また、本発明はBを必須元素として含有するため、非常に微細な粒構造を持ち、優れた熱間絞り性を有する。
本発明の鉄合金は、含有成分の添加量を調整することにより、比重、α分率、γ分率、硬さ、冷間加工率、ヤング率、降伏応力、引張強さ、伸び、比強度、熱間絞り性を多様に変化させることができることが分かる。
Tables 3 and 4 show specific gravity (g / cm 3 ), α fraction, γ fraction, Vickers hardness (Hv), cold work rate (%), Young's modulus (α) of an iron alloy having a two-phase structure of α + γ. GPa), yield stress (MPa), tensile strength (MPa), elongation (%), specific strength (MPa / (g / cm 3 )), and hot drawability.
All the alloys shown in the examples had an α + γ two-phase alloy. As the amount of γ phase increases, the hardness decreases and the cold work rate increases. Conversely, when the γ phase decreases, the hardness increases and the cold working rate tends to decrease.
This low specific gravity iron alloy with a high Al concentration increases especially Mn concentration and C concentration, and according to those concentrations, it has excellent oxidation resistance and has an α + γ2 phase and a fine structure of Cr, Si, N and B. The concentration can be adjusted arbitrarily (for example, an alloy indicated by range B). These alloys have the characteristic of having high strength (for example, Example 8 to Example 19).
On the other hand, an alloy having a low Al concentration can particularly reduce the Mn concentration and the C concentration, and according to these concentrations, Cr, Si, N so as to have excellent oxidation resistance and an α + γ2 phase and a fine structure. And B concentrations can be arbitrarily adjusted (eg, alloys shown in range C). These alloys are particularly excellent in room temperature ductility (tensile elongation) and corrosion resistance (for example, Example 25 to Example 28).
About Example 20, Example 21, and Example 31, as above-mentioned, (kappa) phase has come out. For this reason, although ductility is impaired, it has the characteristic which can obtain high tensile strength. Therefore, the specific strength is superior to that of the γ + α two-phase alloy having the same specific gravity. In addition, since the present invention contains B as an essential element, it has a very fine grain structure and excellent hot drawability.
The iron alloy of the present invention has a specific gravity, α fraction, γ fraction, hardness, cold work rate, Young's modulus, yield stress, tensile strength, elongation, specific strength by adjusting the amount of components added. It can be seen that the hot drawability can be changed variously.

Figure 2005325387
Figure 2005325387

Figure 2005325387
Figure 2005325387

図4に、実施例1−31に関するα相分率とビッカース硬さとの相関を示す。α相分率10%未満では十分な硬さが得られず、10%以上が必要である。
図4から明らかなように、α相分率が高くなるにつれ、硬さは除々に上昇し、60%程度にピークに達する。それを過ぎると硬さが低下し、α相分率95%を超えると十分な硬さが得られなくなる。したがって、この図からα相分率10〜95%にすることが良いことが分かる。
FIG. 4 shows the correlation between the α phase fraction and Vickers hardness for Example 1-31. If the α phase fraction is less than 10%, sufficient hardness cannot be obtained, and 10% or more is necessary.
As is clear from FIG. 4, as the α phase fraction increases, the hardness gradually increases and reaches a peak of about 60%. After that, the hardness decreases, and when the α phase fraction exceeds 95%, sufficient hardness cannot be obtained. Therefore, it can be seen from this figure that the α phase fraction should be 10 to 95%.

図5に、実施例1−31に関するα相分率と冷間加工率との相関を示す。α相分率10%未満では、極めて優れた加工性を有するが、上述したように、十分な硬さが得られない。10%以上では加工性を有すると同時に、十分な硬さが得られるという特徴を有する。
しかし、図5から明らかなように、α相分率が高くなるにつれ、冷間加工率は急速に低下し、95%を超えると著しく脆化し、全く加工できなくなる。したがって、この図からα相分率10〜95%にすることが良いことが分かる。
κ相が存在する実施例20、21、31は冷間加工性が他に比べて悪いが、それでも10%程度の加工率があるので、用途に応じて、これらも低比重鉄合金とすることができる。
FIG. 5 shows the correlation between the α phase fraction and the cold work rate for Example 1-31. If the α phase fraction is less than 10%, the processability is extremely excellent, but as described above, sufficient hardness cannot be obtained. If it is 10% or more, it has the characteristics that it has workability and sufficient hardness.
However, as is apparent from FIG. 5, as the α phase fraction increases, the cold work rate rapidly decreases, and when it exceeds 95%, it becomes brittle and cannot be processed at all. Therefore, it can be seen from this figure that the α phase fraction should be 10 to 95%.
Examples 20, 21, and 31 in which the κ phase is present have poor cold workability compared to others, but still have a workability of about 10%, so these should be low specific gravity iron alloys depending on the application. Can do.

図6に、実施例1、17、27及び後述する比較例4(比較例はBの添加がないケース)に関する、各温度における絞り(熱間絞り性)に及ぼすBの影響を調べた結果を示す。Bの添加は絞り特性を向上させる効果があった。これは、B添加により結晶粒が微細化したことによるものと考えられる。   FIG. 6 shows the results of examining the influence of B on the drawing (hot drawing property) at each temperature with respect to Examples 1, 17, and 27 and Comparative Example 4 described later (in the case of Comparative Example in which B is not added). Show. The addition of B had the effect of improving the drawing characteristics. This is considered to be due to the refinement of crystal grains by the addition of B.

(比較例1−6)
比較例1−6は、本発明から逸脱する鉄合金であり、表2に示す比較例1−6の合金成分を、実施例と同様の製造工程を経てγ単相及びα単相構造を有する鉄合金を作製した。
比較例1−6については、表4に、実施例と同様にα+γの2相構造を有する鉄合金の比重(g/cm)、α分率、γ分率、ビッカース硬さ(Hv)、冷間加工率(%)、ヤング率(GPa)、降伏応力(MPa)、引張強さ(MPa)、伸び(%)、比強度(MPa/(g/cm))、熱間絞り性を示す。
(Comparative Example 1-6)
Comparative Example 1-6 is an iron alloy that departs from the present invention, and the alloy components of Comparative Example 1-6 shown in Table 2 have a γ single phase and an α single phase structure through the same manufacturing steps as in Examples. An iron alloy was prepared.
As for Comparative Example 1-6, in Table 4, the specific gravity (g / cm 3 ), α fraction, γ fraction, Vickers hardness (Hv) of an iron alloy having a two-phase structure of α + γ, as in Examples, Cold work rate (%), Young's modulus (GPa), yield stress (MPa), tensile strength (MPa), elongation (%), specific strength (MPa / (g / cm 3 )), hot drawability Show.

比較例1はAl量が2.90と低く、表4に示すようにγ相を持つがα相がなく、比重は7以上であり、比強度が100MPa/(g/cm)以下と悪かった。
比較例2は、比較例1と同様に、Al量が6.85と低く、表4に示すように、γ相を持つがα相がなく、比強度が100MPa/(g/cm)以下と悪かった。
比較例3は、本発明の成分組成にあるが、α相分率が5%と低いために、比強度が100MPa/(g/cm)以下と悪かった。
Comparative Example 1 has a low Al content of 2.90, as shown in Table 4, has a γ phase but no α phase, a specific gravity of 7 or more, and a specific strength of 100 MPa / (g / cm 3 ) or less. It was.
Similar to Comparative Example 1, Comparative Example 2 has a low Al content of 6.85, and as shown in Table 4, it has a γ phase but no α phase and a specific strength of 100 MPa / (g / cm 3 ) or less. It was bad.
Although the comparative example 3 exists in the component composition of this invention, since the alpha phase fraction was as low as 5%, specific strength was bad with 100 Mpa / (g / cm < 3 >) or less.

比較例4は、Al含有量が10.1wt%とやや低く、またBを添加していないものである。この場合、熱間絞り性が著しく悪かった。
比較例5は、α相分率が96%と大きいために、冷間加工性が全くなく、ヤング率、降伏応力、引張強さ、伸び、比強度が測定できなかった。また、熱間絞り性も悪かった。
比較例6は、Al量が本発明から逸脱し、C量、Si量も基準を満たしていない。また、α相分率が100%と大きいために、冷間加工性が全くなく、ヤング率、降伏応力、引張強さ、伸び、比強度が測定できなかった。また、熱間絞り性も悪かった。
In Comparative Example 4, the Al content is somewhat low at 10.1 wt%, and B is not added. In this case, the hot drawability was remarkably poor.
In Comparative Example 5, since the α phase fraction was as large as 96%, there was no cold workability at all, and Young's modulus, yield stress, tensile strength, elongation, and specific strength could not be measured. Moreover, hot drawability was also bad.
In Comparative Example 6, the amount of Al deviates from the present invention, and the amounts of C and Si do not satisfy the standard. Moreover, since the α phase fraction was as large as 100%, there was no cold workability at all, and Young's modulus, yield stress, tensile strength, elongation, and specific strength could not be measured. Moreover, hot drawability was also bad.

本発明の鉄合金は、比重を7.0〜5.5の範囲に低下させることができ、比強度100MPa/(g/cm)以上、ヤング率100GPa以上、0.2%耐力420MPa以上、引張応力700MPa以上、かつ低比重であり、比強度に優れた材料が低コストで得ることができるという効果を有するので、一般構造用材料、建築用材、鉄道車両や自動車のボディやフレーム材、レール材、船舶用材、耐食性材、石油等のパイプライン用材、橋梁材、ゴルフ用品等の様々な分野に使用することができる。 The iron alloy of the present invention can reduce the specific gravity to a range of 7.0 to 5.5, a specific strength of 100 MPa / (g / cm 3 ) or more, a Young's modulus of 100 GPa or more, a 0.2% proof stress of 420 MPa or more, Since it has an effect that a material having a tensile stress of 700 MPa or more and a low specific gravity and an excellent specific strength can be obtained at a low cost, it is possible to obtain a general structural material, a building material, a body or frame material of a railway vehicle or automobile, a rail. It can be used in various fields such as wood materials, marine materials, corrosion-resistant materials, pipeline materials such as petroleum, bridge materials, and golf equipment.

5点(Al:15.1原子量%、Mn:56.3原子量%)、(Al:41.8原子量%、Mn:46.7原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn:17.4原子量%)で囲まれる領域Aを示すAl当量対Mn当量図である。5 points (Al: 15.1 atomic%, Mn: 56.3 atomic%), (Al: 41.8 atomic%, Mn: 46.7 atomic%), (Al: 44.9 atomic%, Mn: 11 .3 atomic weight%), (Al: 15.6 atomic weight%, Mn: 13.9 atomic weight%), and (Al: 15.3 atomic weight%, Mn: 17.4 atomic weight%). FIG. 4点(Al:23.4原子量%、Mn:53.7原子量%)、(Al:41.8原子量%、Mn:46.8原子量%)、(Al:44.7原子量%、Mn:13.6原子量%)、(Al:23.6原子量%、Mn:16.0原子量%)で囲まれる領域Bを示すAl当量対Mn当量図である。4 points (Al: 23.4 atomic%, Mn: 53.7 atomic%), (Al: 41.8 atomic%, Mn: 46.8 atomic%), (Al: 44.7 atomic%, Mn: 13 .6 atomic weight%), (Al: 23.6 atomic weight%, Mn: 16.0 atomic weight%). 5点(Al:15.2原子量%、Mn:31.5原子量%)、(Al:43.7原子量%、Mn:25.5原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn:17.4原子量%)で囲まれる領域Cを示すAl当量対Mn当量図である。5 points (Al: 15.2 atomic weight%, Mn: 31.5 atomic weight%), (Al: 43.7 atomic weight%, Mn: 25.5 atomic weight%), (Al: 44.9 atomic weight%, Mn: 11 .3 atomic weight%), (Al: 15.6 atomic weight%, Mn: 13.9 atomic weight%), and (Al: 15.3 atomic weight%, Mn: 17.4 atomic weight%). FIG. 実施例合金及び比較例の合金のα分率とビッカース硬さの相関を示す図である。It is a figure which shows the correlation of (alpha) fraction and Vickers hardness of an alloy of an Example alloy and a comparative example. 実施例合金及び比較例の合金のα分率と冷間加工率の相関を示す図である。It is a figure which shows the correlation of (alpha) fraction and cold work rate of an alloy of an Example alloy and a comparative example. 実施例合金及び比較例の合金のB添加と絞り性の相関を示す図である。It is a figure which shows the correlation of B addition of an Example alloy and the alloy of a comparative example, and a drawability.

Claims (7)

Mn:15.0〜45.0質量%、Al:8.0〜20.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなることを特徴とする低比重鉄合金。   Mn: 15.0-45.0 mass%, Al: 8.0-20.0 mass%, C: 0.01-2.5 mass%, Si: 0.01-5.0 mass%, Cr: 0.01 to 10.0% by mass, B: 0.001 to 1.5% by mass, N: 0.01 to 1.5% by mass, balance Fe and inevitable impurities, α phase fraction 10 to 95 % Low specific gravity iron alloy characterized by comprising an iron alloy having two phases of γ + α. Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図1)において、(Al:15.1原子量%、Mn:56.3原子量%)、(Al:41.8原子量%、Mn:46.7原子量%)、(Al:44.9原子量%、Mn:11.3原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al15.3原子量%、Mn17.4原子量%)の5点で囲まれる領域Aにあり、比重5.5〜7.0g/cmであることを特徴とする請求項1記載の低比重鉄合金。 Al equivalent (atomic weight%) = (Al atomic weight% + 1.07Si atomic weight% + 1.09C atomic weight% + 1.32N atomic weight% + 1.04B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51Cr atomic weight%) (Al: 15.1 atomic%, Mn: 56.3 atomic%), (Al: 41.8 atomic%, Mn: 46.7 atomic%) (Al: 44.9 atomic%, Mn: 11.3 atomic%), (Al: 15.6 atomic%, Mn: 13.9 atomic%), (Al 15.3 atomic%, Mn 17.4 atomic%) The low specific gravity iron alloy according to claim 1, wherein the specific gravity is 5.5 to 7.0 g / cm 3 . Mn:18.0〜45.0質量%、Al:13.0〜20.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなることを特徴とする低比重鉄合金。   Mn: 18.0 to 45.0 mass%, Al: 13.0 to 20.0 mass%, C: 0.01 to 2.5 mass%, Si: 0.01 to 5.0 mass%, Cr: 0.01 to 10.0% by mass, B: 0.001 to 1.5% by mass, N: 0.01 to 1.5% by mass, balance Fe and inevitable impurities, α phase fraction 10 to 95 % Low specific gravity iron alloy characterized by comprising an iron alloy having two phases of γ + α. Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図2)において、(Al:23.4原子量%、Mn53.7原子量%)、(Al:41.8原子量%、Mn:46.8原子量%)、(Al:44.7原子量%、Mn:13.6原子量%)、(Al:23.6原子量%、Mn:16.0原子量%)の4点で囲まれる領域Bにあり、比重5.5〜6.6g/cmであることを特徴とする請求項3記載の低比重鉄合金。 Al equivalent (atomic weight%) = (Al atomic weight% + 1.07Si atomic weight% + 1.09C atomic weight% + 1.32N atomic weight% + 1.04B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51Cr atomic weight%) (Al: 23.4 atomic%, Mn 53.7 atomic%), (Al: 41.8 atomic%, Mn: 46.8 atomic%), ( Al: 44.7 atomic weight%, Mn: 13.6 atomic weight%), (Al: 23.6 atomic weight%, Mn: 16.0 atomic weight%) in the region B surrounded by four points, specific gravity 5.5- The low specific gravity iron alloy according to claim 3, wherein the low specific gravity iron alloy is 6.6 g / cm 3 . Mn:15.0〜18.0質量%、Al:8.0〜13.0質量%、C:0.01〜2.5質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、B:0.001〜1.5質量%、N:0.01〜1.5質量%、残部Fe及び不可避的不純物からなり、α相分率10〜95%であるγ+αの2相を備えた鉄合金からなることを特徴とする低比重鉄合金。   Mn: 15.0 to 18.0 mass%, Al: 8.0 to 13.0 mass%, C: 0.01 to 2.5 mass%, Si: 0.01 to 5.0 mass%, Cr: 0.01 to 10.0% by mass, B: 0.001 to 1.5% by mass, N: 0.01 to 1.5% by mass, balance Fe and inevitable impurities, α phase fraction 10 to 95 % Low specific gravity iron alloy characterized by comprising an iron alloy having two phases of γ + α. Al当量(原子量%)=(Al原子量%+1.07Si原子量%+1.09C原子量%+1.32N原子量%+1.04B原子量%)及びMn当量(原子量%)=(Mn原子量%+1.51Cr原子量%)で示されるAl当量対Mn当量図(図3)において、(Al:15.2原子量%、Mn:31.5原子量%)、(Al:43.7原子量%、Mn:25.5原子量%)、(Al:44.9原子量%、Mn:11.2原子量%)、(Al:15.6原子量%、Mn:13.9原子量%)、(Al:15.3原子量%、Mn:17.4原子量%)の5点で囲まれる領域Cにあり、比重5.5〜7.0g/cmであることを特徴とする請求項5記載の低比重鉄合金。 Al equivalent (atomic weight%) = (Al atomic weight% + 1.07Si atomic weight% + 1.09C atomic weight% + 1.32N atomic weight% + 1.04B atomic weight%) and Mn equivalent (atomic weight%) = (Mn atomic weight% + 1.51Cr atomic weight%) (Al: 15.2 atomic%, Mn: 31.5 atomic%), (Al: 43.7 atomic%, Mn: 25.5 atomic%) (Al: 44.9 atomic%, Mn: 11.2 atomic%), (Al: 15.6 atomic%, Mn: 13.9 atomic%), (Al: 15.3 atomic%, Mn: 17. The low specific gravity iron alloy according to claim 5, wherein the specific gravity is in a region C surrounded by 5 points of 4 atomic weight%) and has a specific gravity of 5.5 to 7.0 g / cm 3 . 添加元素として、さらにBe、Mg、Ti、V、Co、Ni、Cu、Nb、Mo及びWからなる群から選択した1種又は2種以上の元素を総量で0.01〜5.0質量%含有することを特徴とする請求項1〜6のいずれかに記載の低比重鉄合金。
As an additive element, the total amount of one or more elements selected from the group consisting of Be, Mg, Ti, V, Co, Ni, Cu, Nb, Mo, and W is 0.01 to 5.0 mass% in total. It contains, The low specific gravity iron alloy in any one of Claims 1-6 characterized by the above-mentioned.
JP2004143089A 2004-05-13 2004-05-13 Low specific gravity iron alloy Withdrawn JP2005325387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143089A JP2005325387A (en) 2004-05-13 2004-05-13 Low specific gravity iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143089A JP2005325387A (en) 2004-05-13 2004-05-13 Low specific gravity iron alloy

Publications (1)

Publication Number Publication Date
JP2005325387A true JP2005325387A (en) 2005-11-24

Family

ID=35471954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143089A Withdrawn JP2005325387A (en) 2004-05-13 2004-05-13 Low specific gravity iron alloy

Country Status (1)

Country Link
JP (1) JP2005325387A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084882A (en) * 2005-09-22 2007-04-05 Tohoku Univ Low work-hardening type iron alloy
JP2008045201A (en) * 2006-08-18 2008-02-28 Jiaotong Univ Low-density alloy material and manufacturing method for the same
US7578754B2 (en) 2006-04-26 2009-08-25 Sri Sports Limited Iron-type gold club head
JP2012525500A (en) * 2009-04-28 2012-10-22 ヒュンダイ スチール カンパニー High strength and high softness steel plate with high manganese nitrogen content and manufacturing method thereof
KR101490560B1 (en) 2012-12-20 2015-02-05 주식회사 포스코 Low gravity steel material having excellent ductility and method for manufacturing the same
JP6566166B1 (en) * 2018-08-28 2019-08-28 Jfeスチール株式会社 Steel sheet and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084882A (en) * 2005-09-22 2007-04-05 Tohoku Univ Low work-hardening type iron alloy
JP4654440B2 (en) * 2005-09-22 2011-03-23 国立大学法人東北大学 Low work hardening type iron alloy
US7578754B2 (en) 2006-04-26 2009-08-25 Sri Sports Limited Iron-type gold club head
JP2008045201A (en) * 2006-08-18 2008-02-28 Jiaotong Univ Low-density alloy material and manufacturing method for the same
JP2012525500A (en) * 2009-04-28 2012-10-22 ヒュンダイ スチール カンパニー High strength and high softness steel plate with high manganese nitrogen content and manufacturing method thereof
KR101490560B1 (en) 2012-12-20 2015-02-05 주식회사 포스코 Low gravity steel material having excellent ductility and method for manufacturing the same
JP6566166B1 (en) * 2018-08-28 2019-08-28 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
WO2020044421A1 (en) * 2018-08-28 2020-03-05 Jfeスチール株式会社 Steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP4834292B2 (en) Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds
JP3838216B2 (en) Austenitic stainless steel
US20060157171A1 (en) Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made of the alloy
KR100545301B1 (en) A ferritic-austenitic steel alloy
JP2019039073A (en) Duplex ferritic austenitic stainless steel
KR20090031858A (en) Ferritic stainless steel sheet having excellent heat resistance
JP2009215648A (en) Ferritic stainless steel having excellent high temperature strength, and method for producing the same
JP4654440B2 (en) Low work hardening type iron alloy
WO2012132679A1 (en) Cast austenitic stainless steel
JP2005325388A (en) Low specific gravity iron alloy
JP4614547B2 (en) Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
JP2010043304A (en) Fe-BASED DAMPING ALLOY
JP6426617B2 (en) Method of manufacturing ferritic stainless steel
US20160215373A1 (en) Wear resistant alloy
JP2005325387A (en) Low specific gravity iron alloy
JPWO2010150795A1 (en) Heat resistant steel for engine valves with excellent high temperature strength
JP2002161343A (en) Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
EP3670692B1 (en) Ferritic stainless steel
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP3598364B2 (en) Stainless steel
JP6690499B2 (en) Austenitic stainless steel sheet and method for producing the same
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP6756164B2 (en) Austenitic heat-resistant alloy weld metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807