JP4540611B2 - Cerium-based abrasive and method for producing cerium-based abrasive - Google Patents

Cerium-based abrasive and method for producing cerium-based abrasive Download PDF

Info

Publication number
JP4540611B2
JP4540611B2 JP2005515100A JP2005515100A JP4540611B2 JP 4540611 B2 JP4540611 B2 JP 4540611B2 JP 2005515100 A JP2005515100 A JP 2005515100A JP 2005515100 A JP2005515100 A JP 2005515100A JP 4540611 B2 JP4540611 B2 JP 4540611B2
Authority
JP
Japan
Prior art keywords
lanthanum
cerium
abrasive
polishing
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515100A
Other languages
Japanese (ja)
Other versions
JPWO2005042661A1 (en
Inventor
宗二 小倉
広幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2005042661A1 publication Critical patent/JPWO2005042661A1/en
Application granted granted Critical
Publication of JP4540611B2 publication Critical patent/JP4540611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、酸化セリウム粒子等の希土類元素化合物粒子を主成分とするセリウム系研摩材に関し、特に、ランタンを含む研摩材及びその製造方法に関する。  The present invention relates to a cerium-based abrasive mainly composed of rare earth element compound particles such as cerium oxide particles, and more particularly to an abrasive containing lanthanum and a method for producing the same.

セリウム系研摩材(以下、単に研摩材とも称する)は、従来からガラス用研摩材として広く用いられているものである。そして、近年、ハードディスク等の磁気記録媒体用ガラスや液晶ディスプレイ(LCD)のガラス基板といった電子材料用基板としてガラス基板が用いられるようになったことで、これらガラス基板の研摩にも用いられている。  Cerium-based abrasives (hereinafter also simply referred to as abrasives) have been widely used as glass abrasives. In recent years, glass substrates have been used as substrates for electronic materials such as glass for magnetic recording media such as hard disks and glass substrates for liquid crystal displays (LCDs), and are also used for polishing these glass substrates. .

研摩材には効率よく研摩作業ができるように、研摩力及びその維持が求められる。従来の研摩材では、研摩力を向上させるために研摩材にフッ素成分を添加することがある。例えば、特開平9−183966号公報によれば、研摩材中にフッ化希土類を含有させることで、塩基性の高いランタンをあらかじめフッ素によって部分中和することができ、更に、ガラス表面で機械的な摩擦研摩の他に、一種の水和侵食層が形成され、ケイフッ化物を生成して研摩を促進するとしている。そして、軽希土類原料をフッ酸によりフッ素化させ、フッ素含量を3〜9%とすることで高い研摩力を長期間有する研摩材を得ることができるとしている。
[特許文献1]特開平9−183966号公報
Abrasive power and its maintenance are required so that polishing work can be performed efficiently. In a conventional abrasive, a fluorine component may be added to the abrasive to improve the polishing force. For example, according to Japanese Patent Laid-Open No. 9-183966, by adding rare earth fluoride in the abrasive, highly basic lanthanum can be partially neutralized with fluorine in advance, and further, mechanically on the glass surface. In addition to frictional polishing, a kind of hydrated erosion layer is formed, which generates silicic fluoride to promote polishing. The light rare earth material is fluorinated with hydrofluoric acid and the fluorine content is 3 to 9%, whereby an abrasive having a high polishing force for a long period can be obtained.
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-183966

だが、このようなフッ素成分を含有させた研摩材は、リサイクルの観点から好ましくない場合がある。即ち、使用済みの研摩材について添加成分を除去するための後処理が必要性となり、取扱いが煩雑になるおそれがある。  However, an abrasive containing such a fluorine component may not be preferable from the viewpoint of recycling. That is, post-treatment for removing the added components is necessary for the used abrasive, and handling may be complicated.

他方、研摩力を確保しつつ、フッ素成分の添加が不要な研摩材として、研摩材中の酸化セリウム含有量を高めた高セリウム研摩材の開発も行なわれている。ただ、この高セリウム研摩材についても問題がないわけではない。高純度の炭酸セリウム等からなる原料を使用するが、焙焼工程において粒子成長が過度に生じ、粗大粒子の要因となるからである。そして、粗大粒子の発生は、研摩傷の要因となる為、焙焼後の粉砕工程、分級工程の適用が重要となるが、粗大粒子が過度に発生すると、これら焙焼後の工程に負荷がかかり効率的な製造ができなくなる。  On the other hand, development of high cerium abrasives with an increased cerium oxide content in the abrasives is also underway as an abrasive that does not require the addition of a fluorine component while ensuring the polishing power. However, this high cerium abrasive is not without problems. This is because a raw material made of high-purity cerium carbonate or the like is used, but particle growth occurs excessively in the roasting process, which causes coarse particles. And since the generation of coarse particles becomes a factor of abrasive scratches, it is important to apply the pulverization process and classification process after roasting. However, if excessive coarse particles are generated, there is a load on these post-roasting processes. Therefore, efficient production cannot be performed.

そこで、高セリウム研摩材の粒子成長を抑制する方法として、ランタンを含有させるものがある。これは、ランタンにはセリウムと共存する場合において焙焼工程における粒子成長を抑制する効果があることを利用するものであり、これにより過度の粗大粒子の発生を防止し、高精度の研摩面が形成可能な研摩材とすることができる。また、フッ素を含有しないことから、上記したリサイクルの問題もない。しかし、実際にはより高い研摩力を有する研摩材の開発が望まれている。  Therefore, as a method for suppressing the particle growth of the high cerium abrasive, there is one containing lanthanum. This utilizes the fact that lanthanum has the effect of suppressing particle growth in the roasting process when coexisting with cerium, thereby preventing the generation of excessively coarse particles and providing a highly accurate polished surface. It can be formed abrasives. Moreover, since it does not contain fluorine, there is no problem of recycling as described above. However, in practice, it is desired to develop an abrasive having a higher polishing power.

本発明は、以上のような背景に鑑みてなされたものであり、フッ素成分の添加を不要としつつ、研摩力に優れるセリウム系研摩材を提供すること、及び、このような研摩材の製造方法を提供することを課題とする。  The present invention has been made in view of the background as described above, and provides a cerium-based abrasive that is excellent in polishing power while eliminating the need for addition of a fluorine component, and a method for producing such an abrasive. It is an issue to provide.

かかる課題を解決するために、本発明者等は、従来のランタンを含有するセリウム系研摩材の構成について詳細な検討を行った。そして、その結果、ランタンを含有する研摩材では、研摩材粒子中にランタンを主成分とする粒子(以下、ランタン化合物粒子という)が存在すること、及び、それによる研摩力との関連があることに着目した。  In order to solve this problem, the present inventors have conducted a detailed study on the structure of a conventional cerium-based abrasive containing lanthanum. As a result, in the abrasive containing lanthanum, the particles containing lanthanum as a main component (hereinafter referred to as lanthanum compound particles) are present in the abrasive particles and there is a relationship with the resulting abrasive force. Focused on.

ここで、ランタン化合物粒子とは、研摩材の製造工程において発生するものであり、以下のような過程で発生する。即ち、ランタンを含む炭酸希土等を原料とする研摩材の製造工程では、焙焼工程において酸化セリウムがランタン成分を取り込みつつ複合酸化物を形成し、この複合酸化物が研摩粒子となる。そして、焙焼後の焙焼物は、スラリー化して湿式粉砕等の湿式処理がなされ研摩粒子が所定の粒径となるように調整されるが、この湿式処理の際にスラリー中で研摩粒子に取り込まれたランタン成分の一部が溶出し、溶媒と反応しランタン化合物粒子が生成される(特開2004−123889号公報参照)。このような生成過程から、ランタン化合物粒子とは、水酸化物を主成分とすると考えられる。また、本発明者等によれば、このランタン化合物粒子の存在形態は、研摩粒子と遊離した状態のものもあるが、研摩粒子表面に付着しているものもあると考えられる。  Here, the lanthanum compound particles are generated in the manufacturing process of the abrasive and are generated in the following process. That is, in the manufacturing process of an abrasive material using a rare earth carbonate containing lanthanum or the like as a raw material, cerium oxide forms a composite oxide while incorporating a lanthanum component in the roasting process, and this composite oxide becomes abrasive particles. The roasted product after roasting is made into a slurry and subjected to a wet process such as wet pulverization and adjusted so that the abrasive particles have a predetermined particle diameter. During the wet process, they are taken into the abrasive particles. A part of the lanthanum component eluted and reacts with the solvent to produce lanthanum compound particles (see Japanese Patent Application Laid-Open No. 2004-123889). From such a generation process, it is considered that the lanthanum compound particles are mainly composed of hydroxide. Further, according to the present inventors, some of the lanthanum compound particles exist in a state of being separated from the abrasive particles, but some are attached to the surface of the abrasive particles.

そこで、本発明者等は、ランタン化合物粒子と研摩力との関連につき検討を行なった。そして、その結果、ランタン化合物含有量の少ない研摩材、とりわけ、研摩粒子表面におけるランタン化合物含有量の少ない研摩材が研摩力に優れることを見出した。そこで、本発明者等は以上の知見を基にランタンを含むセリウム系研摩材において研摩力が高く、特に、研摩力の保持能力の良好なものがあるとして本発明に想到した。  Therefore, the present inventors examined the relationship between the lanthanum compound particles and the polishing force. As a result, it has been found that an abrasive having a low lanthanum compound content, particularly an abrasive having a low lanthanum compound content on the surface of the abrasive particles, is excellent in polishing power. Based on the above knowledge, the present inventors have arrived at the present invention on the assumption that cerium-based abrasives containing lanthanum have high polishing power, and in particular, have good holding ability of the polishing power.

本発明は、ランタンを含有するセリウム系研摩材において、研摩粒子表面のCe/La元素比(S)が、研摩粒子全体のCe/La元素比(B)より大きい(S>B)ことを特徴とするセリウム系研摩材である。  In the cerium-based abrasive containing lanthanum, the present invention is characterized in that the Ce / La element ratio (S) on the surface of the abrasive particles is larger than the Ce / La element ratio (B) of the entire abrasive particles (S> B). It is a cerium-based abrasive.

本発明に係る研摩材は、研摩粒子表面において研摩力低下の要因となるランタン化合物粒子が低減されている。従って、本発明によれば、研摩力を確保しつつ効率的な研摩作業が可能となる。また、本発明は、その製造工程においてランタンの作用による焙焼工程時の研摩粒子の過剰な粒成長が抑制されている。従って、本発明によれば高精度の研摩面の形成が可能である。  The abrasive according to the present invention has reduced lanthanum compound particles that cause a reduction in the polishing force on the surface of the abrasive particles. Therefore, according to the present invention, it is possible to perform an efficient polishing operation while ensuring a polishing force. In the present invention, excessive grain growth of the abrasive particles during the roasting process by the action of lanthanum is suppressed in the manufacturing process. Therefore, according to the present invention, a highly accurate polished surface can be formed.

そして、研摩粒子表面のCe/La元素比(S)と、研摩粒子全体のCe/La元素比(B)との関係は、S>1.0Bとなることが必要であるが、好ましくは、S≧1.05Bとなるものが好ましい。また、上限としてはS≦5.0Bが好ましい。S/Bの値が大きすぎる場合、粒子の表面層のセリウム品位が高いので、初期研摩力は高いものの、粒子内部のセリウム品位が低いため、研摩力の持続性に劣る場合があるからである。また、研摩粒子全体のCe/La元素比は、3/7〜9/1のものが好ましい。Ce/La元素比が9/1を超えるランタンの含有量では、研摩材の製造工程において粒成長を生じさせ易くなるためであり、Ce/La元素比が3/7未満となるランタンの含有量では、研摩材としての効果を有するセリウムの含有量が少なくなりすぎて研摩力低下の要因となるからである。  The relationship between the Ce / La element ratio (S) on the surface of the abrasive particles and the Ce / La element ratio (B) of the entire abrasive particles needs to satisfy S> 1.0B, preferably, Those satisfying S ≧ 1.05B are preferable. The upper limit is preferably S ≦ 5.0B. If the S / B value is too large, the cerium quality of the surface layer of the particles is high, so the initial polishing force is high, but the cerium quality inside the particles is low, so the durability of the polishing force may be poor. . The Ce / La element ratio of the entire abrasive particles is preferably 3/7 to 9/1. This is because the lanthanum content in which the Ce / La element ratio exceeds 9/1 is likely to cause grain growth in the abrasive manufacturing process, and the lanthanum content in which the Ce / La element ratio is less than 3/7. Then, it is because the content of cerium having an effect as an abrasive becomes too small, which causes a decrease in the polishing power.

更に、本発明は、研摩工程中に生じるパッドの目詰まり等、研摩力に影響を与える種々の問題の要因と考えられるランタン成分が研摩粒子表面部分において低減されているため、フッ素成分を添加する必要がない。従って、本発明は使用後のリサイクルの問題にも対応可能である。ここで、本発明におけるフッ素含有量は3重量%以下のものが好ましい。  Furthermore, the present invention adds a fluorine component because the lanthanum component, which is considered to be a cause of various problems that affect the polishing force, such as pad clogging that occurs during the polishing process, is reduced in the surface portion of the polishing particles. There is no need. Therefore, the present invention can cope with the problem of recycling after use. Here, the fluorine content in the present invention is preferably 3% by weight or less.

この研摩粒子全体のCe/La元素比の測定方法としては、研摩材をアルカリ溶融して溶液化して組成分析を行う方法が好ましく、組成分析法としてはICP(誘導結合プラズマ発光分光分析)が好ましい。また、研摩粒子表面のCe/La元素比は、いわゆる表面分析法として知られるXPS(X線光電子分光分析)の適用が好ましい。  As a method for measuring the Ce / La element ratio of the entire abrasive particles, a method in which the abrasive is alkali-melted into a solution to perform composition analysis is preferred, and ICP (inductively coupled plasma emission spectroscopy) is preferred as the composition analysis method. . Further, for the Ce / La element ratio on the surface of the abrasive particles, it is preferable to apply XPS (X-ray photoelectron spectroscopy) known as a so-called surface analysis method.

また、研摩粒子の平均粒径は、用途等により種々の大きさを取り得るが、例えば仕上げ研摩などで要求される精密研摩では、0.1μm以上、3.0μm以下のものが好ましい。凝集粒子の平均粒径が0.1μmより小さくては、研摩材に十分な研摩力を与えることができず、必要な研摩速度を確保できないからである。その一方で、平均粒径が3.0μmより大きいのでは、精密な研摩を行うことが難しくなるからである。  The average particle size of the abrasive particles can vary depending on the application and the like. For example, in the case of precision polishing required for finish polishing, the average particle size is preferably 0.1 μm or more and 3.0 μm or less. This is because if the average particle size of the aggregated particles is smaller than 0.1 μm, a sufficient polishing force cannot be applied to the polishing material, and a necessary polishing speed cannot be ensured. On the other hand, if the average particle size is larger than 3.0 μm, it is difficult to perform precise polishing.

本発明に係るセリウム系研摩材の製造方法は、ランタン化合物粒子を除去する工程が付加されることを除けば、従来のセリウム系研摩材の製造工程と同様である。ここで、従来のセリウム系研摩材は、研摩材原料の粉砕等を行なう前処理工程、前処理後の原料を焙焼し酸化セリウムを主とする研摩粒子を形成する焙焼工程、焙焼後の焙焼物の解砕、粒径調整を行なう湿式処理工程、そして、必要に応じて湿式工程後の研摩材を乾燥後分級処理する分級工程を含む。  The method for producing a cerium-based abrasive according to the present invention is the same as the conventional process for producing a cerium-based abrasive except that a step of removing lanthanum compound particles is added. Here, the conventional cerium-based abrasive is a pretreatment step for grinding the abrasive raw material, a roasting step for roasting the pretreated raw material to form abrasive particles mainly composed of cerium oxide, after the roasting A wet treatment step for crushing the roasted product, adjusting the particle size, and, if necessary, a classification step for subjecting the abrasive after the wet step to drying and classification.

本発明に係る研摩材の原料としては、フッ素含有量の少ないものが好ましいことから、バストネサイト精鉱のような天然原料を直接用いるよりも、酸化希土、炭酸希土のようなフッ素を含有せず、希土類元素を高い比率で含むものの適用が好ましい。但し、バストネサイト精鉱であっても炭酸希土と混合する等、フッ素含有量を低減できる場合であれば、適用可能である。ここで、研摩材原料のフッ素含有量は3重量%以下とするのが好ましい。また、炭酸希土については、LOI(Loss on Ignition:強熱減量)を調製するため、部分的に焙焼して一部を酸化希土とした原料も適用できる。  As the raw material of the abrasive according to the present invention, a material having a low fluorine content is preferable. Therefore, fluorine such as rare earth oxide or rare earth carbonate is used rather than directly using natural raw materials such as bust nesite concentrate. It is preferable to use those containing no rare earth element at a high ratio. However, even if it is a bastonite concentrate, it can be applied if the fluorine content can be reduced, for example, by mixing with rare earth carbonate. Here, the fluorine content of the abrasive raw material is preferably 3% by weight or less. For rare earth carbonates, LOI (Loss on Ignition) is prepared, so that raw materials partially roasted and partially oxidized rare earths can also be applied.

前処理工程とは、焙焼前に行うべき工程であり、原料を粉砕する工程を基本とし、必要に応じて、焙焼時の異常粒成長の原因となるナトリウム等のアルカリ金属を除去するため鉱酸を添加する化学処理工程や、焙焼前に粉砕された原料を乾燥させる工程等を含むものである。  The pretreatment process is a process that should be performed before roasting, and is based on the process of pulverizing the raw materials, and if necessary, to remove alkali metals such as sodium that cause abnormal grain growth during roasting. It includes a chemical treatment step of adding a mineral acid, a step of drying a raw material crushed before roasting, and the like.

焙焼工程における焙焼温度は、セリウムとランタンとの複合酸化物(固溶体)を形成させる為には500℃以上の温度が必要であるが、研摩材の研摩力を維持する為には800〜1200℃の温度で焙焼するのが好ましい。  The roasting temperature in the roasting step requires a temperature of 500 ° C. or higher in order to form a complex oxide (solid solution) of cerium and lanthanum, but 800 to maintain the polishing power of the abrasive. It is preferable to bake at a temperature of 1200 ° C.

ここで、焙焼後に湿式粉砕工程を行うに当り、湿式粉砕対象物である焙焼後の中間原料は、Ce/La比が3/7〜9/1となっていることが好ましい。ランタンの含有量が少ないと、後の湿式粉砕工程においてランタン化合物粒子が生成しにくくなり、本発明の効果が発現しにくくなるからである。そして、ランタンの含有量が多いと、ランタン化合物からなる粒子が容易に生成するが、セリウムの含有量が少なくなるため、低い研摩速度の研摩材となるからである。  Here, in performing the wet pulverization step after roasting, it is preferable that the intermediate raw material after roasting which is an object to be wet pulverized has a Ce / La ratio of 3/7 to 9/1. This is because when the content of lanthanum is small, lanthanum compound particles are hardly generated in the subsequent wet pulverization step, and the effects of the present invention are hardly exhibited. When the content of lanthanum is large, particles made of a lanthanum compound are easily generated. However, since the content of cerium is reduced, an abrasive with a low polishing rate is obtained.

焙焼後の湿式処理としては、通常は湿式粉砕を示す。この湿式粉砕では研摩粒子は、より小粒径の研摩粒子に粉砕されると同時に、メカノケミカル反応によりランタン成分が研摩粒子中から流出して、その表面側にランタン化合物からなる粒子が生成され易くなる。但し、湿式処理としては、この湿式粉砕の他、湿式分級も含まれる。  As the wet treatment after roasting, wet pulverization is usually indicated. In this wet pulverization, the abrasive particles are pulverized into smaller sized abrasive particles, and at the same time, the lanthanum component flows out of the abrasive particles by a mechanochemical reaction, and particles made of a lanthanum compound are easily generated on the surface side. Become. However, the wet treatment includes wet classification in addition to this wet pulverization.

そして、これまで説明したように、ランタン化合物粒子は湿式処理工程において生成することから、その除去は湿式処理後の焙焼物に対して行なうこととなる。ここで、上記のように、湿式処理後の焙焼物スラリー中のランタン化合物粒子は、水酸化物を主成分とするものと考えられる。また、湿式処理後の焙焼物を乾燥させた場合においては、ランタン化合物粒子は酸化物を含むものであると考えられる。  And as demonstrated until now, since a lanthanum compound particle | grain is produced | generated in a wet processing process, the removal will be performed with respect to the roasted material after a wet process. Here, as described above, the lanthanum compound particles in the roasted product slurry after the wet treatment are considered to be mainly composed of hydroxide. Moreover, when the roasted material after the wet treatment is dried, the lanthanum compound particles are considered to contain oxides.

そこで、湿式処理後の焙焼物からランタン化合物粒子を除去する方法としては、焙焼物と、ランタン水酸化物又はランタン酸化物を可溶な溶液とを接触させるものが好ましい。この水酸化物、酸化物を可溶な溶液としては、酸又はキレート剤が挙げられ、酸としては硫酸、塩酸、硝酸等の鉱酸がコスト的にも好ましく、キレート剤としてはEDTAやクエン酸等の有機酸若しくはそれらの塩が好ましい。この際のランタン化合物粒子の除去は、鉱酸とキレート剤とを任意に組み合わせて添加しても良い。尚、フッ化水素酸は鉱酸であるが、ランタン水酸化物又はランタン酸化物を水に不溶なフッ化ランタンとし、研摩材粒子表面のランタン成分を低減することができないため単独での使用は好ましくない。但し、フッ化水素酸以外の鉱酸やキレート剤と組み合わせる場合、例えば、フッ化水素酸以外の鉱酸やキレート剤でランタン水酸化物又はランタン酸化物を除去処理した後に、フッ素濃度3%以下の範囲でフッ化水素酸を添加することは本願発明の応用として実施可能である。  Therefore, as a method for removing the lanthanum compound particles from the baked product after the wet treatment, a method in which the baked product is brought into contact with a solution in which lanthanum hydroxide or lanthanum oxide is soluble is preferable. Examples of the solution in which the hydroxide or oxide is soluble include an acid or a chelating agent, and the acid is preferably a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid, and the chelating agent is preferably EDTA or citric acid. Organic acids such as these or their salts are preferred. The removal of the lanthanum compound particles at this time may be performed by adding any combination of mineral acid and chelating agent. Hydrofluoric acid is a mineral acid, but lanthanum hydroxide or lanthanum oxide is lanthanum fluoride insoluble in water, and the lanthanum component on the surface of the abrasive particles cannot be reduced. It is not preferable. However, when combined with a mineral acid or chelating agent other than hydrofluoric acid, for example, after removing lanthanum hydroxide or lanthanum oxide with a mineral acid or chelating agent other than hydrofluoric acid, the fluorine concentration is 3% or less. Addition of hydrofluoric acid within this range can be carried out as an application of the present invention.

ランタン化合物粒子の除去は、湿式処理後のスラリーを乾燥させて焙焼物を回収し、これにランタン水酸化物又はランタン酸化物を可溶な溶液を接触させても良いが、好ましいのは、湿式処理後のスラリーにランタン水酸化物又はランタン酸化物を可溶な溶液を添加する方法である。湿式処理後、直ちにランタン化合物粒子の除去を行うことができ工程数を低減させることができるからである。  The removal of the lanthanum compound particles may be performed by drying the slurry after the wet treatment to recover the roasted product, and contacting this with a solution in which the lanthanum hydroxide or the lanthanum oxide is soluble. In this method, lanthanum hydroxide or a solution in which lanthanum oxide is soluble is added to the slurry after treatment. This is because the lanthanum compound particles can be removed immediately after the wet treatment, and the number of steps can be reduced.

この湿式処理後のスラリーにランタン水酸化物又はランタン酸化物を可溶な溶液を添加する場合、鉱酸等の溶液の添加量は、添加時のスラリーのpHを管理することにより行なう。詳しくは、スラリーのpHが5以下となるまで溶液を添加するのが好ましい。pH5以下においてランタン化合物粒子が溶解可能となるからである。このランタン化合物粒子の溶解処理は、湿式処理後に行なっても良いが、湿式処理中に上記のような溶解処理を並行して行なっても良い。尚、研摩材にプラセオジム化合物が含まれている場合、プラセオジムはランタン同様、湿式処理工程において研摩材粒子の表面部分に析出し、溶解処理により研摩材粒子の表面部分から溶解する可能性がある。  When a lanthanum hydroxide or a solution in which lanthanum oxide is soluble is added to the slurry after the wet treatment, the amount of the mineral acid or the like added is controlled by controlling the pH of the slurry at the time of addition. Specifically, it is preferable to add the solution until the pH of the slurry is 5 or less. This is because the lanthanum compound particles can be dissolved at pH 5 or lower. The dissolution treatment of the lanthanum compound particles may be performed after the wet treatment, but the above-described dissolution treatment may be performed in parallel during the wet treatment. In the case where the abrasive contains a praseodymium compound, praseodymium may be deposited on the surface portion of the abrasive particles in the wet treatment step, like lanthanum, and may be dissolved from the surface portion of the abrasive particles by the dissolution treatment.

ランタン化合物粒子の溶解処理後のスラリーは、ランタン化合物粒子が消滅していることから、そのまま研摩材スラリーとして利用することもできる。また、研摩材の輸送コストの問題を考慮すると、溶解処理後スラリーにろ過、洗浄、乾燥という工程を付加することで乾燥粉末としてのセリウム系研摩材を製造することもできる。  The slurry after the dissolution treatment of the lanthanum compound particles can be directly used as an abrasive slurry since the lanthanum compound particles have disappeared. Considering the problem of abrasive transportation costs, it is also possible to produce a cerium-based abrasive as a dry powder by adding the steps of filtration, washing and drying to the slurry after dissolution treatment.

以上説明したように、本発明に係るセリウム系研摩材は、フッ素を含有させることなく高い研摩力を有し、効率的な研摩作業を可能とする。そして、フッ素を含有する必要がないため、使用済み研摩材についてのリサイクルにも対応できる。従って、セリウムのような付加価値を有する希土類元素の有効的利用が可能となる。  As described above, the cerium-based abrasive according to the present invention has a high polishing force without containing fluorine, and enables an efficient polishing operation. And since it is not necessary to contain a fluorine, it can respond also to the recycling about used abrasives. Accordingly, it is possible to effectively use rare earth elements having added value such as cerium.

そして、本発明に係る研摩材は、湿式処理後の焙焼物に対して鉱酸等の溶液を添加する工程を付加するのみで製造可能であり、この方法は比較的簡易な製造方法である。  The abrasive according to the present invention can be produced simply by adding a step of adding a solution such as mineral acid to the roasted product after the wet treatment, and this method is a relatively simple production method.

以下、本発明に係るセリウム系研摩材及びその製造方法の好適な実施形態を説明する。  Hereinafter, preferred embodiments of the cerium-based abrasive and the method for producing the same according to the present invention will be described.

第1実施形態:セリウム系研摩材原料として、セリウムとランタンとを、元素比で60:40で含有し、フッ素を0.5重量%以下含有する希土類炭酸塩を用意した。そして、この原料を質量比1:2の割合で純水に分散させスラリーを調製し、ビーズミル(粉砕媒体は直径0.4mm)を用い、粉砕後の平均粒径Dが1.0μmとなるように粉砕を行った。このスラリーを濾過して得られた粉砕粒子を、120℃で24時間、静置乾燥させた。 First Embodiment : As a cerium-based abrasive raw material, a rare earth carbonate containing cerium and lanthanum in an element ratio of 60:40 and containing 0.5% by weight or less of fluorine was prepared. Then, this raw material is dispersed in pure water at a mass ratio of 1: 2 to prepare a slurry, and a bead mill (a grinding medium has a diameter of 0.4 mm) is used so that the average particle diameter D after grinding becomes 1.0 μm. Was crushed. The pulverized particles obtained by filtering the slurry were allowed to stand and dry at 120 ° C. for 24 hours.

そして、乾燥後の粉砕粒子を電気炉を用いて900℃で8時間焙焼を行い、希土類酸化物の粉末(焙焼物)を得、得られた粉末を室温になるまで放冷した。次に、この原料と純水とを、質量比1:2の割合で混合してスラリーを調製し、ビーズミル(粉砕媒体の直径0.8mm)を用いて粉砕を行った。得られたスラリー中の粉砕粒子の平均粒径を、粒度分布測定装置を用いて測定したところ、平均粒径Dは0.8μmであった。また、この際のスラリーのpHは9.3であった。  Then, the dried pulverized particles were roasted at 900 ° C. for 8 hours using an electric furnace to obtain a rare earth oxide powder (roasted product), and the obtained powder was allowed to cool to room temperature. Next, this raw material and pure water were mixed at a mass ratio of 1: 2 to prepare a slurry, and pulverized using a bead mill (diameter of the pulverizing medium 0.8 mm). When the average particle diameter of the pulverized particles in the obtained slurry was measured using a particle size distribution measuring device, the average particle diameter D was 0.8 μm. Further, the pH of the slurry at this time was 9.3.

このスラリーの一部を採取し、TEM+EDS(透過型電子顕微鏡+エネルギー分散分析)を用いて観察したところ、針状の微粒子が生成していることが確認された。この針状物質にはCeは含有されておらず、含まれる希土類元素はLaだけであり、水酸化ランタンの結晶であるものと推察された。  A part of this slurry was collected and observed using TEM + EDS (transmission electron microscope + energy dispersion analysis), and it was confirmed that needle-shaped fine particles were generated. This acicular material did not contain Ce, and the only rare earth element contained was La, which was presumed to be a lanthanum hydroxide crystal.

そして、湿式粉砕後のスラリーを十分攪拌した後、塩酸を加えランタン化合物粒子を溶解させた。塩酸はスラリーのpHが3となるまで添加した。塩酸添加後、pH=3の状態を1時間維持してスラリーを静置し、上澄み部分を除去した。  And after fully stirring the slurry after wet grinding, hydrochloric acid was added and the lanthanum compound particles were dissolved. Hydrochloric acid was added until the pH of the slurry was 3. After the addition of hydrochloric acid, the pH = 3 state was maintained for 1 hour, the slurry was allowed to stand, and the supernatant portion was removed.

上澄み除去後のスラリーを一部採取し、上記と同様、TEM+EDXにより観察したところ、針状のランタン化合物粒子は観察できなかった。従って、この観察結果から、湿式粉砕後のスラリーに塩酸を添加することでランタン化合物粒子が溶解除去されることが確認できた。そして、このようにして製造した研摩材スラリーをろ過、乾燥して粉末状の研摩材を得た。  A part of the slurry after removing the supernatant was sampled and observed with TEM + EDX as described above. As a result, acicular lanthanum compound particles could not be observed. Therefore, from this observation result, it was confirmed that lanthanum compound particles were dissolved and removed by adding hydrochloric acid to the slurry after wet pulverization. The abrasive slurry thus produced was filtered and dried to obtain a powdery abrasive.

第2実施形態:ここでは、基本的な工程は第1実施形態と同様とし、湿式粉砕後のスラリー中からランタン化合物粒子を除去する工程において、スラリーのpHが5となるまで塩酸を添加した。そして、第1実施形態と同様、塩酸添加後、pH=5の状態を1時間維持してスラリーを静置し、上澄み部分を除去し、ろ過、乾燥して粉末状の研摩材を得た。この実施形態においても、塩酸添加前後のスラリーをTEM+EDXにより観察したところ、ランタン化合物粒子と推定される針状結晶の消失が確認された。 Second Embodiment : Here, the basic steps are the same as in the first embodiment, and hydrochloric acid is added until the pH of the slurry becomes 5 in the step of removing lanthanum compound particles from the slurry after wet pulverization. Then, as in the first embodiment, after adding hydrochloric acid, the state of pH = 5 was maintained for 1 hour, the slurry was allowed to stand, the supernatant was removed, filtered and dried to obtain a powdery abrasive. Also in this embodiment, when the slurry before and after the addition of hydrochloric acid was observed by TEM + EDX, the disappearance of needle crystals presumed to be lanthanum compound particles was confirmed.

以上の実施形態に係る研摩材について、ガラス面を研摩する研摩試験を行い、研摩材の研摩力を評価した。また、研摩粒子表面のCe/La元素比(S)をXPS分析にて求めた。更に、研摩粒子全体のCe/La元素比(B)をICP分析により求めた。そして、本実施形態に対して、下記の比較例を用意して同様に検討した。  The polishing material according to the above embodiment was subjected to a polishing test for polishing the glass surface, and the polishing power of the polishing material was evaluated. Further, the Ce / La element ratio (S) on the surface of the abrasive particles was determined by XPS analysis. Further, the Ce / La element ratio (B) of the entire abrasive particles was determined by ICP analysis. And the following comparative example was prepared with respect to this embodiment, and it examined similarly.

比較例1:第1実施形態と同様の原料を湿式粉砕及び乾燥して前処理を施し、これを同じ条件で焙焼して得られる焙焼品(セリウムとランタンとの複合酸化物)をそのまま研摩材として用いた。この比較例は、湿式粉砕によるランタン化合物粒子の生成の有無を確認するためのものである。 Comparative Example 1 : A raw material similar to that in the first embodiment was wet-ground and dried, pretreated, and then roasted under the same conditions (composite oxide of cerium and lanthanum) as it was. Used as an abrasive. This comparative example is for confirming whether or not lanthanum compound particles are generated by wet grinding.

比較例2:比較例1で得られた焙焼品に純水を、質量比1:2の割合で添加しスラリーを調製し、これに塩酸をスラリーのpHが3となるまで添加し、ろ過、乾燥したものを用いた。この比較例は、比較例1でランタン化合物粒子が生成していないとの推定のもと、かかる状態で酸を添加しても研摩粒子表面の組成に変化が生じないことを確認するためのものである。 Comparative Example 2 : Pure water was added to the roasted product obtained in Comparative Example 1 at a mass ratio of 1: 2 to prepare a slurry, and hydrochloric acid was added thereto until the pH of the slurry became 3, followed by filtration. The dried one was used. This comparative example is based on the assumption that the lanthanum compound particles are not generated in Comparative Example 1, and for confirming that the composition of the surface of the abrasive particles does not change even if an acid is added in such a state. It is.

比較例3:第1実施形態において、湿式粉砕後のスラリーに塩酸を加えることなく、ろ過、乾燥して得られる研摩材を用いた。この比較例は、湿式粉砕後の塩酸の添加による効果を確認するものである。 Comparative Example 3 : In the first embodiment, an abrasive obtained by filtering and drying without adding hydrochloric acid to the slurry after wet pulverization was used. This comparative example confirms the effect of adding hydrochloric acid after wet grinding.

研摩試験は、研摩材に純水を加え、スラリー濃度10重量%とした研摩材スラリーとしてガラスの研摩を行うものである。この研摩試験では、高速研摩試験機を用い、65mmφの平面パネル用ガラス(BK−7)の表面をポリウレタン製の研摩パッドを用いて研摩した。用いた研摩材スラリーの固形分の濃度は10重量%であった。これを5L/分の割合で供給しながら研摩を行った。研摩面に対する研摩パッドの圧力は、19.6kPa(200g/cm)とし、研摩試験機の回転速度を100rpmに設定した。また、この研摩試験はガラス1枚当り5分間行い、20枚のガラスを研摩し、研摩回数の増加に応じた研摩力の低下の有無も検討した。研摩終了後のガラス材料は純水で洗浄し無塵状態で乾燥させた。研摩値の評価は、第1実施形態に係る研摩材スラリーの1回目の研摩のときの値を100とし、相対値で評価した。In the polishing test, pure water is added to the abrasive to polish the glass as an abrasive slurry having a slurry concentration of 10% by weight. In this polishing test, the surface of a 65 mmφ flat panel glass (BK-7) was polished with a polyurethane polishing pad using a high-speed polishing tester. The concentration of the solid content of the abrasive slurry used was 10% by weight. Polishing was performed while supplying this at a rate of 5 L / min. The pressure of the polishing pad against the polishing surface was 19.6 kPa (200 g / cm 2 ), and the rotation speed of the polishing tester was set to 100 rpm. In addition, this polishing test was performed for 5 minutes per glass, 20 glasses were polished, and the presence or absence of a decrease in polishing force according to the increase in the number of polishings was examined. The glass material after polishing was washed with pure water and dried in a dust-free state. For the evaluation of the polishing value, the value at the first polishing of the polishing material slurry according to the first embodiment was set to 100, and the evaluation was performed with a relative value.

研摩粒子表面の組成分析(ランタン、セリウム分析)は、XPS分析装置(島津製作所製ESCA−K1)を用いて行った。分析条件は、X線源Mg−Kα線(出力10kV、20mA)、測定間隔0.1eV、分析面積0.85mmφとした。分析後のデータ処理は以下のようにして行った。  Composition analysis (lanthanum and cerium analysis) on the surface of the abrasive particles was performed using an XPS analyzer (ESCA-K1 manufactured by Shimadzu Corporation). The analysis conditions were an X-ray source Mg-Kα ray (output: 10 kV, 20 mA), a measurement interval of 0.1 eV, and an analysis area of 0.85 mmφ. Data processing after analysis was performed as follows.

得られたXPSプロファイルから、セリウムの3d3/2軌道由来の902eV付近のピーク面積Sと、3d5/2軌道由来の884eV付近のピーク面積Sを求め、同様に、ランタンの3d3/2軌道由来の849eV付近のピーク面積Sと、3d5/2軌道由来の832eV付近のピーク面積Sを求めた。次に、セリウム及びランタンの濃度(原子%)は、これらのピークに対応する感度係数F、F、F、Fを用いて次式にて求めた。そして、求めたセリウム濃度、ランタン濃度から、研摩粒子表面の研摩粒子表面のCe/La元素比(S)を算出した。From the obtained XPS profile, calculated and the peak area S A near 902eV from 3d 3/2 orbit of cerium, a peak area S B near 884eV from 3d 5/2 orbit, likewise, lanthanum 3d 3 / and the peak area S C of the vicinity of 849eV from 2 trajectories, the peak area was determined S D near 832eV from 3d 5/2 orbit. Next, the concentration of cerium and lanthanum (atomic%), the sensitivity coefficients corresponding to these peaks F A, F B, F C , using F D calculated by the following equation. Then, from the obtained cerium concentration and lanthanum concentration, the Ce / La element ratio (S) of the abrasive particle surface to the abrasive particle surface was calculated.

Figure 0004540611
Figure 0004540611

一方、研摩粒子全体のCe/La元素比(B)は、各研摩材をアルカリ溶融することで溶液化し、この溶液についてICP分析によってそれぞれの元素の含有量を定量し、その値を用いて研摩粒子全体のセリウム/ランタン元素比(B)を求めた。以上の検討結果を表1に示す。  On the other hand, the Ce / La element ratio (B) of the entire abrasive particles is made into a solution by melting each abrasive with an alkali, and the content of each element in this solution is quantified by ICP analysis. The cerium / lanthanum element ratio (B) of the entire particle was determined. The above examination results are shown in Table 1.

Figure 0004540611
Figure 0004540611
Figure 0004540611
Figure 0004540611

表1から、湿式粉砕後に塩酸を添加した、第1、第2実施形態では、研摩粒子表面のCe/La元素比(S)が、研摩粒子全体のCe/La元素比(B)よりも大きくなり、S>1.05Bとなっている。これは、塩酸の添加により、研摩粒子表面のランタン化合物が溶解・除去されたことによる。一方、湿式粉砕を行わない比較例1では、研摩粒子表面と研摩粒子全体とが等しい組成となっている。これより、ランタン化合物粒子が湿式粉砕により生成されたことが確認できる。また、この湿式粉砕を行わない比較例1に塩酸を添加した比較例2も粒子表面と研摩粒子全体とが等しい組成であるが、これは、比較例1では、表面にランタン化合物が生成しておらず、全体的に複合酸化物(固溶体)となっているため塩酸と接触してもその組成に変化が生じないからである。  From Table 1, in the first and second embodiments in which hydrochloric acid was added after wet grinding, the Ce / La element ratio (S) on the surface of the abrasive particles was larger than the Ce / La element ratio (B) of the entire abrasive particles. S> 1.05B. This is because the lanthanum compound on the surface of the abrasive particles was dissolved and removed by the addition of hydrochloric acid. On the other hand, in Comparative Example 1 in which wet grinding is not performed, the abrasive particle surface and the entire abrasive particle have the same composition. From this, it can be confirmed that the lanthanum compound particles were produced by wet grinding. Further, Comparative Example 2 in which hydrochloric acid is added to Comparative Example 1 in which wet pulverization is not performed has a composition in which the particle surface and the entire abrasive particle are the same, but in Comparative Example 1, a lanthanum compound is generated on the surface. This is because the composition does not change even when it comes into contact with hydrochloric acid because it is a complex oxide (solid solution) as a whole.

そして、研摩試験の結果から分かるように、第1、第2実施形態に係る研摩材は、比較例3に係る研摩材よりも研摩力が高い。また、これら実施形態に係る研摩材は、S/Bの値に応じて研摩力が高くなっている。そして、これらの実施形態に係る研摩材は、研摩力の持続力に優れ20枚のガラスを研摩しても研摩力の低下が低いことが確認された。比較例3に係る研摩材は、1枚目のガラスの研摩時には良好な作業ができたが研摩回数の増大に従い研摩パッドに硬い目詰まりが生じ、研摩力の低下がみられた。このことから、ランタン化合物粒子の除去により研摩力の持続性が大幅に改善されたことが確認された。尚、湿式粉砕を行っていない比較例1、2に係る研摩材は、湿式粉砕による微粒化がなされていないために、傷を多数発生させ研摩材として使用できなかった。  As can be seen from the results of the polishing test, the abrasive according to the first and second embodiments has a higher polishing force than the abrasive according to Comparative Example 3. Moreover, the abrasives according to these embodiments have a high polishing force according to the value of S / B. And it was confirmed that the polishing material which concerns on these embodiment was excellent in the persistence of polishing force, and the fall of polishing force was low even if 20 glass was polished. The polishing material according to Comparative Example 3 was able to work well when the first glass was polished, but the clogging of the polishing pad was hard as the polishing frequency increased, and the polishing force was reduced. From this, it was confirmed that the removal of the lanthanum compound particles significantly improved the durability of the polishing force. Note that the abrasives according to Comparative Examples 1 and 2 that were not wet pulverized were not atomized by wet pulverization, so that many scratches were generated and could not be used as the abrasive.

第3実施形態:第1実施形態の工程において、焙焼後の湿式粉砕工程の粉砕時間を変更し、平均粒径Dが0.6μmとなるまで粉砕した。そして、粉砕後のスラリーに塩酸をpH3となるまで添加してランタン化合物粒子を溶解除去した。 Third Embodiment : In the process of the first embodiment, the pulverization time in the wet pulverization process after roasting was changed and pulverized until the average particle diameter D became 0.6 μm. Then, hydrochloric acid was added to the pulverized slurry until the pH became 3, and the lanthanum compound particles were dissolved and removed.

比較例4:第3実施形態において、湿式粉砕後のスラリーを塩酸を加えることなくろ過、乾燥して研摩材とした。 Comparative Example 4 : In the third embodiment, the slurry after wet pulverization was filtered and dried without adding hydrochloric acid to obtain an abrasive.

第3実施形態及び比較例4に係る研摩材について、第1実施形態と同様、組成分析、研摩試験を行った。その結果を表2に示す。表中の研摩値は、第1実施形態の1枚目の研摩値を100とする相対値である。  About the polishing material which concerns on 3rd Embodiment and Comparative Example 4, the composition analysis and the grinding | polishing test were done similarly to 1st Embodiment. The results are shown in Table 2. The polishing values in the table are relative values with the first polishing value of the first embodiment being 100.

Figure 0004540611
Figure 0004540611

第4実施形態:第1実施形態の工程において、焙焼後の湿式粉砕工程の粉砕時間を変更し、平均粒径Dが0.5μmとなるまで粉砕した。そして、粉砕後のスラリーに塩酸をpH3となるまで添加してランタン化合物粒子を溶解除去した。 Fourth Embodiment : In the process of the first embodiment, the pulverization time in the wet pulverization process after roasting was changed and pulverized until the average particle diameter D became 0.5 μm. Then, hydrochloric acid was added to the pulverized slurry until the pH became 3, and the lanthanum compound particles were dissolved and removed.

比較例5:第3実施形態において、湿式粉砕後のスラリーを塩酸を加えることなくろ過、乾燥して研摩材とした。 Comparative Example 5 : In the third embodiment, the slurry after wet pulverization was filtered and dried without adding hydrochloric acid to obtain an abrasive.

第4実施形態及び比較例5に係る研摩材について、組成分析、研摩試験を行った。その結果を表3に示す。表中の研摩値は、第1実施形態の1枚目の研摩値を100とする相対値である。  The polishing material according to the fourth embodiment and Comparative Example 5 was subjected to composition analysis and a polishing test. The results are shown in Table 3. The polishing values in the table are relative values with the first polishing value of the first embodiment being 100.

Figure 0004540611
Figure 0004540611
Figure 0004540611
Figure 0004540611

表2、表3より粉砕時間を調整することで、研摩粒子の表面元素比を変化させることができることがわかる。そして、第3、第4実施形態における研摩材は、第1、第2実施形態と同様、研摩力の持続力に優れていることが確認できる。また、これら第3、第4実施形態に係る研摩材は、S/Bの値に応じて研摩力が高くなっていることが確認された。  It can be seen from Tables 2 and 3 that the surface element ratio of the abrasive particles can be changed by adjusting the grinding time. And it can confirm that the abrasive in 3rd, 4th embodiment is excellent in the sustainability of the polishing force similarly to 1st, 2nd embodiment. Moreover, it was confirmed that the abrasives according to the third and fourth embodiments have a high polishing force according to the value of S / B.

Claims (7)

ランタンを含有するセリウム系研摩材において、
研摩粒子表面のCe/La元素比(S)が、研摩粒子全体のCe/La元素比(B)より大き(S>B)、1.05B≦S≦5.0Bであることを特徴とするセリウム系研摩材。
In cerium-based abrasive containing lanthanum,
Ce / La atomic ratio of the abrasive particle surface (S) is rather greater than Ce / La atomic ratio of the overall abrasive particles (B) (S> B) , and characterized in that it is 1.05B ≦ S ≦ 5.0B Cerium-based abrasive.
研摩粒子全体のCe/La元素比(B)が、3/7〜9/1である請求項1記載のセリウム系研摩材。The cerium-based abrasive according to claim 1, wherein the Ce / La element ratio (B) of the entire abrasive particles is 3/7 to 9/1. フッ素含有量が3重量%以下である請求項1又は請求項2記載のセリウム系研摩材。The cerium-based abrasive according to claim 1 or 2, wherein the fluorine content is 3% by weight or less. 焙焼工程によって得られる焙焼物をスラリー化して湿式粉砕処理する工程を有する、請求項1〜3のいずれかに記載のセリウム系研摩材の製造方法において、
湿式粉砕処理後の焙焼物からランタンを含む化合物粒子を除去する工程を含み、
ランタンを含む化合物粒子を除去する工程は、水酸化ランタン又は酸化ランタンを可溶な溶液と、湿式粉砕処理後の焙焼物スラリーとを接触させる工程であり、
当該スラリーをpH5以下にすること特徴とするセリウム系研摩材の製造方法。
In the method for producing a cerium-based abrasive according to any one of claims 1 to 3 , comprising a step of slurrying and subjecting a roasted product obtained by a roasting step to a wet pulverization treatment.
A step of removing the compound particles containing lanthanum from roasting product after the wet grinding process seen including,
The step of removing the compound particles containing lanthanum is a step of bringing a solution in which lanthanum hydroxide or lanthanum oxide is soluble into contact with the roasted product slurry after the wet pulverization treatment,
A method for producing a cerium-based abrasive, wherein the slurry is adjusted to pH 5 or lower .
ランタンを含む化合物粒子を除去する工程は、湿式粉砕処理後の焙焼物スラリーに水酸化ランタン又は酸化ランタンを可溶な溶液を添加するものである請求項記載のセリウム系研摩材の製造方法。The method for producing a cerium-based abrasive according to claim 4 , wherein the step of removing the compound particles containing lanthanum comprises adding a solution in which lanthanum hydroxide or lanthanum oxide is soluble to the roasted product slurry after the wet pulverization treatment. 水酸化ランタン又は酸化ランタンを可溶な溶液は、鉱酸又はキレート剤を含む溶液である請求項5記載のセリウム系研摩材の製造方法。The method for producing a cerium-based abrasive according to claim 5, wherein the solution in which lanthanum hydroxide or lanthanum oxide is soluble is a solution containing a mineral acid or a chelating agent. 湿式粉砕処理後の焙焼物を含むスラリーからランタンを含む化合物粒子を除去後、該スラリーから液体成分を分離除去する工程を含む請求項5又は請求項6に記載のセリウム系研摩材の製造方法。The method for producing a cerium-based abrasive according to claim 5 or 6, further comprising a step of separating and removing a liquid component from the slurry after removing compound particles containing lanthanum from the slurry containing the baked product after the wet pulverization treatment.
JP2005515100A 2003-10-31 2004-09-29 Cerium-based abrasive and method for producing cerium-based abrasive Expired - Fee Related JP4540611B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003373560 2003-10-31
JP2003373560 2003-10-31
PCT/JP2004/014197 WO2005042661A1 (en) 2003-10-31 2004-09-29 Cerium polishing agent and method for producing cerium polishing agent

Publications (2)

Publication Number Publication Date
JPWO2005042661A1 JPWO2005042661A1 (en) 2007-06-21
JP4540611B2 true JP4540611B2 (en) 2010-09-08

Family

ID=34544146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515100A Expired - Fee Related JP4540611B2 (en) 2003-10-31 2004-09-29 Cerium-based abrasive and method for producing cerium-based abrasive

Country Status (5)

Country Link
JP (1) JP4540611B2 (en)
KR (1) KR100679966B1 (en)
CN (1) CN100351338C (en)
TW (1) TWI266796B (en)
WO (1) WO2005042661A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231158A (en) * 2006-03-01 2007-09-13 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive
AU2018223214B2 (en) 2017-02-22 2022-04-14 Cmte Development Limited Optical acoustic sensing system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027045A (en) * 2000-12-25 2003-01-29 Nissan Chem Ind Ltd Cerium oxide sol and abrasive
JP2004168639A (en) * 2002-10-28 2004-06-17 Nissan Chem Ind Ltd Cerium oxide particle, and production method by humidifying firing
JP2004168638A (en) * 2002-10-28 2004-06-17 Nissan Chem Ind Ltd Cerium oxide particle, and production method by multistage firing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183966A (en) * 1995-12-29 1997-07-15 Seimi Chem Co Ltd Production of cerium abrasive
JP3602670B2 (en) * 1996-12-25 2004-12-15 セイミケミカル株式会社 Manufacturing method of cerium-based abrasive
FR2795065B1 (en) * 1999-06-16 2002-04-19 Rhodia Chimie Sa SOL OF A CERIUM AND / OR LANTHANE PHOSPHATE, PREPARATION METHOD AND USE FOR POLISHING
JP2002129146A (en) * 2000-10-20 2002-05-09 Mitsui Mining & Smelting Co Ltd Glass's low-fluorine cerium oxide abrasive material and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027045A (en) * 2000-12-25 2003-01-29 Nissan Chem Ind Ltd Cerium oxide sol and abrasive
JP2004168639A (en) * 2002-10-28 2004-06-17 Nissan Chem Ind Ltd Cerium oxide particle, and production method by humidifying firing
JP2004168638A (en) * 2002-10-28 2004-06-17 Nissan Chem Ind Ltd Cerium oxide particle, and production method by multistage firing

Also Published As

Publication number Publication date
KR20060009230A (en) 2006-01-31
TW200521216A (en) 2005-07-01
KR100679966B1 (en) 2007-02-08
WO2005042661A1 (en) 2005-05-12
CN100351338C (en) 2007-11-28
TWI266796B (en) 2006-11-21
CN1795251A (en) 2006-06-28
JPWO2005042661A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP3960914B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
KR102090494B1 (en) Cerium abrasive and manufacturing method
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
WO2001088056A1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
JPWO2004092297A1 (en) Cerium-based abrasive
JP4002740B2 (en) Method for producing cerium-based abrasive
WO2003104149A1 (en) Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
JP4450424B2 (en) Cerium-based abrasive and its raw materials
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
CN111051463B (en) Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP5619515B2 (en) Cerium oxide abrasive and method for producing glass hard disk substrate
JP4070180B2 (en) Method for producing cerium-based abrasive
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP7400956B2 (en) Cerium-based abrasive slurry stock solution and its manufacturing method, and polishing liquid
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
WO2024014425A1 (en) Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method
JP3986410B2 (en) Method for producing cerium-based abrasive slurry and cerium-based abrasive slurry obtained thereby

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees