WO2024014425A1 - Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method - Google Patents

Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method Download PDF

Info

Publication number
WO2024014425A1
WO2024014425A1 PCT/JP2023/025421 JP2023025421W WO2024014425A1 WO 2024014425 A1 WO2024014425 A1 WO 2024014425A1 JP 2023025421 W JP2023025421 W JP 2023025421W WO 2024014425 A1 WO2024014425 A1 WO 2024014425A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
rare earth
lanthanum
mass
based abrasive
Prior art date
Application number
PCT/JP2023/025421
Other languages
French (fr)
Japanese (ja)
Inventor
博 山野
知之 増田
政輝 深山
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024014425A1 publication Critical patent/WO2024014425A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention provides a cerium-based abrasive material, a polishing liquid, and a method for producing a polishing liquid used for polishing glass materials such as glass substrates used for liquid crystal panels, hard disks, specific frequency cut filters, glass substrates for optical lenses, etc. , and a glass polishing method.
  • Glass materials are used for various purposes, and depending on the purpose, surface polishing may be required.
  • glass materials such as glass substrates used in liquid crystal panels, hard disks, specific frequency cut filters, glass substrates for optical lenses, etc. are required to be polished with high smoothness and high efficiency.
  • cerium-based abrasives such as those described in Patent Document 1 and Patent Document 2, are often used, for example.
  • Cerium-based abrasives are generally used as glass abrasives, and those containing lanthanum are often used. Cerium-based abrasives are generally used in the form of a slurry dispersed in water. The slurry is neutral to alkaline and may irritate the skin of some users, causing symptoms such as rough skin and dermatitis. Therefore, there has been a need for a cerium-based abrasive material that has less skin irritation and is easier to handle.
  • the present invention has been made to solve the above-mentioned problems, and provides a cerium-based abrasive material, a polishing liquid, a method for producing a polishing liquid, and a glass polishing method that suppress the occurrence of rough skin and dermatitis.
  • the task is to do so.
  • the present invention provides a cerium abrasive material containing mixed rare earth abrasive particles containing lanthanum and cerium, in which the content of cerium in terms of oxide in the total content of rare earth elements in terms of oxide (TREO) is 55.0% by mass.
  • the dissolved amount of lanthanum in the mixed liquid containing the cerium-based abrasive and obtained by a predetermined method is 40 mg/L or less, rough skin and dermatitis that occur when it adheres to the skin can be prevented. Based on the discovery that it can be reduced.
  • the present invention provides the following [1] to [16].
  • [1] A cerium-based abrasive containing mixed rare earth abrasive particles containing lanthanum and cerium, The oxide equivalent content of the cerium in the total rare earth element oxide equivalent content (TREO) is 55.0% by mass or more,
  • a 100 mL polyethylene container put 10 g of the cerium-based abrasive material and 40 g of pure water as well as 130 g of zirconia beads with a particle size of 1 mm as beads, and use a ball mill stand to perform the cerium-based polishing at the container rotation speed of 210 rpm for 30 minutes.
  • a cerium-based abrasive material in which the amount of lanthanum dissolved in a liquid mixture obtained by pulverizing the material is 40 mg/L or less.
  • the cerium-based abrasive material according to [1] above further containing a lanthanum dissolution inhibitor.
  • the cerium-based abrasive material according to the above [1] which is a two-part type containing.
  • the lanthanum dissolution inhibitor is an alkali metal carbonate, an alkali metal phosphate, an alkali metal hydroxide salt, an alkali metal sulfate, an alkali metal nitrate, an alkali metal organic acid salt, an alkali Earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal hydroxide salts, alkaline earth metal sulfates, alkaline earth metal nitrates, alkaline earth metal organic acid salts, [2] or [3] above, which is one or more selected from ammonium carbonate, ammonium phosphate, ammonium hydroxide salt, ammonium sulfate, ammonium nitrate, and ammonium organic acid salt.
  • the lanthanum dissolution inhibitor is one or more selected from alkaline earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal organic acid salts, and alkali metal carbonates. , the cerium-based abrasive material according to [6] above. [8] The cerium-based abrasive material according to [2] or [3] above, wherein the lanthanum dissolution inhibitor has a molecular weight of 300 or less.
  • the cerium-based abrasive material according to [2] or [3] above which contains 0.001 to 0.9 parts by mass of the lanthanum dissolution inhibitor based on 100 parts by mass of the mixed rare earth abrasive particles.
  • the present invention it is possible to provide a cerium-based abrasive material, a polishing liquid, a method for producing a polishing liquid, and a glass polishing method in which the occurrence of rough skin and dermatitis is suppressed.
  • volume-based cumulative particle size distribution refers to volume-based cumulative particle size distribution determined from particle size distribution measured by laser diffraction/scattering method. This is the particle size that is 50% of the total. Specifically, it is a value measured using a Microtrac particle size distribution analyzer described in the Examples below.
  • the cerium-based abrasive of the present embodiment is a cerium-based abrasive containing mixed rare earth abrasive particles containing lanthanum and cerium, and has a total rare earth element oxide equivalent content (TREO; an abbreviation for Total Rare Earth Oxides).
  • the content of cerium in terms of oxide (CeO 2 ) (hereinafter referred to as "amount of CeO 2 /TREO") is 55.0% by mass or more.
  • the TREO in the cerium-based abrasive of this embodiment is derived from mixed rare earth abrasive particles.
  • the TREO in the mixed rare earth abrasive particles is preferably 85.0% by mass or more, more preferably 90.0% by mass or more, even more preferably 92.0% by mass or more, from the viewpoint of improving the polishing rate.
  • the content is preferably 95.0% by mass or less.
  • the cerium oxide (CeO 2 ) equivalent content (CeO 2 amount/TREO) in TREO is 55.0% by mass or more, and from the viewpoint of improving the polishing rate, preferably 60.0% by mass or more, more Preferably it is 62.0% by mass or more, more preferably 64.0% by mass or more.
  • the amount of CeO2 /TREO is preferably 90.0% by mass or less, more preferably 80.0% by mass. % or less, more preferably 75.0% by mass or less, even more preferably 70.0% by mass or less.
  • La 2 O 3 amount/TREO The lanthanum oxide (La 2 O 3 ) equivalent content (hereinafter referred to as La 2 O 3 amount/TREO) in TREO is preferably 0.00 to suppress the occurrence of scratches on the polished surface. 01% by mass or more, more preferably 1.0% by mass or more, still more preferably 10.0% by mass or more, even more preferably 20.0% by mass or more, even more preferably 30.0% by mass or more.
  • the amount of La 2 O 3 /TREO is 45.0% by mass or less since the amount of Ce in TREO is 55.0% by mass or more, from the viewpoint of improving the polishing rate and from the viewpoint of reducing rough skin and dermatitis. , preferably 40.0% by mass or less, more preferably 37.0% by mass or less, even more preferably 35.0% by mass or less.
  • TREO can be measured by oxalate precipitation, calcination, and gravimetric methods, and specifically, it can be measured by the method described in the Examples below.
  • the content of each rare earth element such as Ce and La can be measured by instrumental analysis such as high-frequency inductively coupled plasma (ICP) analysis or fluorescent X-ray analysis.
  • ICP inductively coupled plasma
  • fluorescent X-ray analysis The value obtained by converting each rare earth element as an oxide from the measured value by -AES) is defined as the oxide equivalent amount.
  • cerium-based abrasive material of this embodiment can suppress rough skin and dermatitis.
  • the lanthanum contained in the cerium-based abrasive is eluted and dissolved in water, water-soluble organic solvents, etc. as lanthanum ions when the cerium-based abrasive is manufactured or made into a slurry. If a large amount of lanthanum is dissolved in the liquid, it will combine with chloride ions derived from the raw material of the cerium-based abrasive to produce highly toxic lanthanum chloride, which will adhere to human skin and cause rough skin and dermatitis.
  • the amount of lanthanum dissolved in the liquid mixture obtained by the above prescribed method is 40 mg/L or less, and from the viewpoint of further suppressing the occurrence of rough skin and dermatitis, it is preferably 35 mg/L or less, more preferably 30 mg/L. Below, it is more preferably 25 mg/L or less, and from the viewpoint of cost, preferably 0.1 mg/L or more, more preferably 0.5 mg/L or more, and still more preferably 1.0 mg/L or more.
  • the ratio of the cerium-based abrasive material, water as a dispersion medium, and water-soluble organic solvent in the slurry is determined according to the above-described method. Although it may differ from the above, the effect of the present embodiment is exhibited as long as the dissolved lanthanum concentration is equal to or lower than that measured by the measurement method.
  • the amount of lanthanum dissolved is a value calculated from ICP analysis, and specifically, a value calculated by the method described in the following example.
  • chloride ions derived from the raw materials of the cerium-based abrasives are dissolved in water, water-soluble organic solvents, etc. along with lanthanum ions.
  • the amount of chlorine dissolved in the mixed liquid obtained by the above-described method is preferably 40 mg/L or less, more preferably 35 mg/L or less, still more preferably 25 mg/L, from the viewpoint of further suppressing the occurrence of rough skin and dermatitis. From the viewpoint of cost, it is preferably 0.1 mg/L or more, more preferably 0.5 mg/L or more, and still more preferably 1.0 mg/L or more.
  • the "chlorine dissolution amount" is a value calculated from IC analysis, specifically, a value calculated by the method described in the following example.
  • the particle size (D 50 ) of the cerium-based abrasive of this embodiment is preferably 0.10 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably D50 is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and from the viewpoint of obtaining excellent polishing performance that can reduce polishing scratches and satisfactorily smooth the polished surface, D50 is preferably 10.0 ⁇ m or less, more preferably Preferably it is 5.0 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the specific surface area of the cerium-based abrasive material of this embodiment is preferably 1.0 m 2 /g or more, more preferably 2.0 m 2 /g or more, from the viewpoint of suppressing the occurrence of scratches on the polished surface. It is preferably 3.0 m 2 /g or more, and from the viewpoint of improving the polishing rate, it is preferably 10.0 m 2 /g or less, more preferably 8.0 m 2 /g or less, and even more preferably 7.0 m 2 /g or less. , even more preferably 6.0 m 2 /g or less. Note that in this specification, the specific surface area is a value measured by the BET method (single point method).
  • the cerium-based abrasive material of this embodiment may contain fluorine atoms from the viewpoint of improving the polishing rate.
  • the fluorine atom content in the cerium-based abrasive is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and It is preferably 3.0% by mass or more, and from the viewpoint of suppressing the occurrence of scratches on the polished surface, preferably 10.0% by mass or less, more preferably 9.0% by mass or less, and even more preferably 8.0% by mass.
  • the content is more preferably 7.0% by mass or less.
  • the fluorine atom content in a cerium-based abrasive can be measured by melting the cerium-based abrasive into an aqueous solution using an ion electrode method.
  • TREO in the cerium-based abrasive material of this embodiment is preferably 85.0% by mass or more, more preferably 90.0% by mass or more, and even more preferably 92.0% by mass or more. , preferably 99.0% by mass or less, from the viewpoint of further improving the polishing rate by containing elements other than the elements constituting TREO, and from the viewpoint of suppressing the occurrence of surface defects (fine surface irregularities) on the polished surface. , more preferably 97.0% by mass or less, still more preferably 96.0% by mass or less.
  • the mixed rare earth abrasive particles may contain rare earth elements other than Ce and La (lanthanum). Examples of the rare earth elements include Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
  • the particle size (D 50 ) of the mixed rare earth abrasive particles of this embodiment is preferably 0.10 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably is 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and is preferably 10.0 ⁇ m or less, more preferably It is 5.0 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the specific surface area of the mixed rare earth abrasive particles of this embodiment is preferably 1.0 m 2 /g or more, more preferably 2.0 m 2 /g or more, from the viewpoint of suppressing the occurrence of scratches on the polished surface. More preferably, it is 3.0 m 2 /g or more, and from the viewpoint of improving the polishing rate, it is preferably 10.0 m 2 /g or less, more preferably 8.0 m 2 /g or less, and even more preferably 7.0 m 2 /g. Below, it is still more preferably 6.0 m 2 /g or less. Note that in this specification, the specific surface area is a value measured by the BET method (single point method).
  • the mixed rare earth abrasive particles of this embodiment may contain fluorine atoms from the viewpoint of improving the polishing rate.
  • the fluorine atom content in the mixed rare earth abrasive particles is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, from the viewpoint of improving the polishing rate. , more preferably 3.0% by mass or more, and from the viewpoint of suppressing the occurrence of scratches on the polished surface, preferably 10.0% by mass or less, more preferably 9.0% by mass or less, even more preferably 8.0% by mass. It is not more than 7.0% by mass, more preferably not more than 7.0% by mass.
  • the cerium-based abrasive of this embodiment may contain, in addition to the mixed rare earth abrasive particles, a lanthanum dissolution inhibitor that suppresses dissolution of lanthanum.
  • Lanthanum dissolution inhibitors include those that have the effect of converting lanthanum ions dissolved in water or water-soluble organic solvents into insoluble salts, etc. and precipitate them, and those that have the effect of fixing lanthanum ions through chelating action. Preferably.
  • Such lanthanum dissolution inhibitors include alkali metal carbonates, alkali metal phosphates, alkali metal hydroxides, alkali metal sulfates, alkali metal nitrates, alkali metal organic acid salts, alkali Earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal hydroxide salts, alkaline earth metal sulfates, alkaline earth metal nitrates, alkaline earth metal organic acid salts, Preferably, it is one or more selected from ammonium carbonate, ammonium phosphate, ammonium hydroxide salt, ammonium sulfate, ammonium nitrate, and ammonium organic acid salt, and the resulting salt is safe. From the viewpoint of properties, it is more preferable that the carbonate is one or more selected from alkaline earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal organic acid salts, and alkali metal carbonates.
  • the alkali metal sodium and potassium are preferred, and sodium is more preferred, from the viewpoint of safety of the generated salt.
  • calcium and magnesium are preferred as the alkaline earth metals.
  • the lanthanum dissolution inhibitors include monocalcium phosphate, dibasic calcium phosphate, calcium hydroxide, calcium carbonate, calcium gluconate, calcium citrate, sodium bicarbonate, ammonium bicarbonate, dibasic magnesium phosphate, dibasic Calcium phosphate and the like are preferred, and among these, dibasic calcium phosphate is more preferred from the viewpoint of further suppressing the occurrence of rough skin and dermatitis, ensuring the safety of the produced salt, and suppressing the occurrence of scratches on the polished surface.
  • the lanthanum dissolution inhibitors may be used alone or in combination of two or more.
  • the molecular weight of the lanthanum dissolution inhibitor is preferably 50 or more, more preferably 75 or more, even more preferably 100 or more, and preferably 300 or less, more preferably It is 200 or less, more preferably 150 or less.
  • a molecular weight of 300 or less is preferable because it has high reactivity with lanthanum ions and a high lanthanum dissolution suppressing effect.
  • the cerium-based abrasive of this embodiment contains a lanthanum dissolution inhibitor
  • the cerium-based abrasive may be a one-component type containing the lanthanum dissolution inhibitor in advance, and the mixed rare earth abrasive particles It may be a two-dose type containing a first part containing a lanthanum dissolution inhibitor and a second part containing a lanthanum dissolution inhibitor.
  • the content of the mixed rare earth abrasive particles is preferably 85.0% by mass or more, more preferably 90.0% by mass or more, even more preferably 92.0% by mass or more, from the viewpoint of improving the polishing rate, and prevents rough skin and From the viewpoint of suppressing the occurrence of dermatitis, the content is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, even more preferably 99.2% by mass or less.
  • the content of the lanthanum dissolution inhibitor in the cerium-based abrasive is preferably 0.95 parts by mass per 100 parts by mass of mixed rare earth abrasive particles in both one-part and two-part types. It is not more than 0.85 parts by mass, more preferably not more than 0.75 parts by mass. Further, from the viewpoint of suppressing the occurrence of rough skin and dermatitis, the amount is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and even more preferably 0.1 parts by mass or more.
  • the content of the lanthanum dissolution inhibitor in the cerium-based abrasive is preferably 0.95% by mass or less, more preferably 0.90% by mass, in both one-part and two-part types. It is not more than 0.80% by mass, more preferably not more than 0.70% by mass, even more preferably not more than 0.70% by mass.
  • the content of the lanthanum dissolution inhibitor in the cerium-based abrasive is preferably 0.95% by mass or less, more preferably 0.90% by mass, in both one-part and two-part types. It is not more than 0.80% by mass, more preferably not more than 0.70% by mass, even more preferably not more than 0.70% by mass.
  • the cerium-based abrasive material of this embodiment contains additives such as glycols such as ethylene glycol and polyethylene glycol, polyacrylate, etc., in order to improve dispersibility, prevent sedimentation, prevent solidification, improve stability, and improve workability. Even if sodium salts of acids, polymeric dispersants such as polycarboxylic acid polymers and polysulfonic acid polymers, cellulose ethers such as methylcellulose and carboxymethylcellulose, water-soluble polymers such as polyvinyl alcohol, and phosphoric acid compounds are added. good. These may be used alone or in combination of two or more.
  • polymer dispersants When adding additives, among these, polymer dispersants, phosphoric acid compounds, and cellulose ethers are preferred from the viewpoint of further improving dispersibility, preventing sedimentation, preventing solidification, improving stability, and improving workability.
  • polymeric dispersants include poly(meth)acrylic acid, polyhydroxy(meth)acrylic acid, (meth)acrylic acid copolymers such as copolymers of (meth)acrylic acid and maleic acid, and copolymers of olefin and maleic acid.
  • Examples include copolymers, copolymers of maleic acid and allyl alcohol with alkylene oxide adducts such as ethylene oxide and propylene oxide, copolymers of allylsulfonic acid and maleic acid, and alkali metal salts thereof such as sodium salts and potassium salts. It will be done. Among these, polyacrylic acid, a copolymer of acrylic acid and maleic acid, or an alkali metal salt thereof is preferable, a copolymer of acrylic acid and maleic acid or an alkali metal salt thereof is more preferable, and a copolymer of acrylic acid and maleic acid or an alkali metal salt thereof is more preferable. Even more preferred is the sodium salt of a copolymer of .
  • Examples of phosphoric acid compounds include inorganic phosphoric acids such as tripolyphosphoric acid, pyrophosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, orthophosphoric acid, and phosphorous acid; aminotrimethylenephosphonic acid, and 1-hydroxyethylidene-1,1-diphosphonic acid. , organic phosphonic acids such as ethylenediaminetetramethylenephosphonic acid and diethylenetriaminepentamethylenephosphonic acid; or alkali metal salts thereof such as sodium salts and potassium salts. Among these, tripolyphosphoric acid, pyrophosphoric acid, hexametaphosphoric acid, or alkali metal salts thereof are preferred, and sodium tripolyphosphate is more preferred.
  • inorganic phosphoric acids such as tripolyphosphoric acid, pyrophosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, orthophosphoric acid, and phosphorous acid
  • the content of the additive relative to 100 parts by mass of the mixed rare earth abrasive particles is preferably from the viewpoint of improving dispersibility, preventing sedimentation, preventing solidification, improving stability, and improving workability.
  • the amount is 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, even more preferably 0.3 parts by mass or more, even more preferably 0.5 parts by mass or more, and from the viewpoint of cost, preferably 10.0 parts by mass or more. It is not more than 5.0 parts by mass, more preferably not more than 3.0 parts by mass.
  • the content of the additive in the cerium-based abrasive is preferably 0 from the viewpoint of improving dispersibility, preventing sedimentation, preventing solidification, improving stability, and improving workability. .01% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.3% by mass or more, even more preferably 0.5% by mass or more, and from the viewpoint of cost, preferably 10.0% by mass. % or less, more preferably 5.0% by mass or less, still more preferably 3.0% by mass or less.
  • the method for producing the cerium-based abrasive is not particularly limited, but specifically includes the step (1) of preparing a mixed light rare earth compound, and the production of a mixed rare earth oxide raw material from the mixed light rare earth compound.
  • a cerium-based abrasive is produced through step (2) of wet-pulverizing the mixed rare earth oxide raw material, followed by firing, crushing, and classification to obtain mixed rare earth abrasive particles. It is preferable to do so.
  • a step (4) of further adding and mixing a lanthanum dissolution inhibitor after the step (3), or preparing a second agent containing a lanthanum dissolution inhibitor (4) ) It is more preferable to produce a cerium-based abrasive. "Mixing” here is also synonymous with “mixing” of the mixed rare earth abrasive particles described above. Each step will be explained in order below.
  • a mixed light rare earth compound is prepared.
  • the method for preparing the mixed light rare earth compound is not particularly limited.
  • the mixed light rare earth compound can be obtained, for example, by separating and reducing impurity components other than rare earth elements and medium and heavy rare earths from an ore containing rare earth elements by chemical treatment.
  • the mixed light rare earth compound is preferably one in which the content of impurity components such as alkali metals, alkaline earth metals, and non-rare earth components such as radioactive substances, as well as the content of medium and heavy rare earths is reduced.
  • medium-heavy rare earth refers to a rare earth element having an atomic number larger than Pm
  • rare earth elements other than medium-heavy rare earth are referred to as light rare earth.
  • the ore containing rare earth elements for example, rare earth concentrate obtained from raw material ores such as natural monazite and bastnasite, which contain a large amount of Ce, are preferably used.
  • sulfuric acid roasting is a common chemical treatment method for reducing the content of impurity components.
  • the pulverized raw material ore is roasted with sulfuric acid to produce sulfate (rare earth sulfate), and this sulfate is dissolved in water to form a rare earth sulfate solution, which removes impurity components that are insoluble matter.
  • This method removes the substances by filtration or the like.
  • the content of impurity components in the mixed light rare earth compound is preferably reduced to 1.0% by mass or less.
  • a chemical treatment method for reducing the content of medium and heavy rare earth for example, carbonate is added to the sulfuric acid rare earth solution after the sulfuric acid roasting to obtain crude rare earth carbonate, and then hydrochloric acid is added to this.
  • it can be carried out by preparing a mixed rare earth chloride aqueous solution and performing solvent extraction using an organic solvent.
  • the contents of cerium, lanthanum, and other light rare earths can be adjusted as necessary using known methods such as adjusting the degree of extraction and using additives.
  • the content of medium and heavy rare earths in the mixed light rare earth compound is preferably reduced to 1.0% by mass or less.
  • a mixed rare earth oxide raw material is produced from the mixed light rare earth compound.
  • the method for producing the mixed rare earth oxide raw material from the mixed light rare earth compound is not particularly limited.
  • the mixed rare earth oxide raw material is obtained by, for example, producing mixed rare earth carbonate, which is a carbonate, using a mixed light rare earth compound, sodium carbonate, ammonium bicarbonate, etc., and then firing the mixed rare earth carbonate. .
  • the firing temperature when firing the mixed rare earth carbonate to obtain the mixed rare earth oxide raw material is adjusted appropriately depending on the composition of the mixed rare earth carbonate, but is preferably 500 to 1200°C, more preferably 600°C. ⁇ 1100°C, more preferably 700 ⁇ 1000°C.
  • the firing time is preferably 0.5 to 48 hours, more preferably 1 to 40 hours, and still more preferably 1.5 to 30 hours.
  • the firing atmosphere is preferably an air atmosphere. After firing, the mixed rare earth oxide raw material may be crushed by a mechanical method to adjust it to particles having a desired particle size.
  • the mixed rare earth oxide raw material is also commercially available, and commercially available products may be used.
  • Mixed rare earth oxide raw materials can be obtained by firing mixed light rare earth compounds such as mixed rare earth carbonate, mixed monooxy rare earth carbonate, mixed rare earth oxalate, and mixed rare earth hydroxide, and are therefore commercially available.
  • mixed rare earth oxide raw material of the product mixed rare earth carbonate, mixed rare earth monooxycarbonate, mixed rare earth oxalate, etc., which are the manufacturing raw materials, may remain in the mixed rare earth oxide raw material of the product.
  • step (3) the mixed rare earth oxide raw material is wet-pulverized, then fired, crushed, and classified to obtain mixed rare earth abrasive particles.
  • Wet pulverization is preferably carried out using a media mill such as a wet ball mill from the viewpoint of obtaining homogeneous mixed rare earth abrasive particles.
  • a media mill such as a wet ball mill from the viewpoint of obtaining homogeneous mixed rare earth abrasive particles.
  • water, water-soluble organic solvents, etc. are preferably used.
  • mixed rare earth abrasive particles are obtained by drying, firing, crushing, and classifying. Drying, calcination, crushing and classification can be carried out in a manner similar to that applied in the production of conventional mixed rare earth abrasive particles.
  • the firing temperature is preferably 600 to 1200°C, more preferably 650 to 1150°C, and still more preferably 700 to 1100°C.
  • the firing time at the target temperature is preferably 0.1 to 10 hours, more preferably 0.5 to 6 hours, and even more preferably 0.5 to 4 hours.
  • the firing atmosphere is preferably air.
  • mixed rare earth abrasive particles may contain fluorine atoms.
  • the method of incorporating fluorine atoms is not particularly limited, but the mixed fluorinated rare earth raw material is mixed with the mixed rare earth oxide raw material, wet-pulverized, calcined, crushed and classified, and then mixed. Preferred are methods for obtaining rare earth abrasive particles.
  • the method for obtaining the mixed rare earth fluoride raw material is not particularly limited, but for example, a fluoride such as hydrofluoric acid, ammonium fluoride, or acidic ammonium fluoride is added to the mixed light rare earth compound as a fluorine source. It can be obtained by heat treatment.
  • the temperature of the heat treatment is preferably 400° C. or lower from the viewpoint of obtaining a cerium-based abrasive that is homogeneous and has excellent polishing properties.
  • the heat treatment atmosphere is preferably in the air.
  • the heat treatment time is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours, and still more preferably 1.0 to 4 hours.
  • the firing atmosphere is preferably an air atmosphere.
  • a method of obtaining mixed rare earth abrasive particles by mixing a mixed fluorinated rare earth raw material with a mixed rare earth oxide raw material is to add fluorides such as ammonium fluoride or hydrofluoric acid directly to the mixed rare earth oxide raw material to obtain mixed rare earth polishing.
  • This method is safer and lower cost than the method of obtaining raw material particles, and can easily obtain mixed rare earth abrasive particles containing fluorine.
  • TREO in the mixed rare earth fluoride raw material is preferably 75% by mass or more, more preferably 80% by mass or more, and even more preferably 82% by mass or more. Further, it is preferable that the mixed rare earth fluoride raw material contains cerium as a main component among all rare earth elements contained.
  • the cerium oxide equivalent content ( CeO2 amount/TREO) in TREO is preferably 55.0% by mass or more, more preferably 60.0% by mass or more from the viewpoint of improving the polishing rate, and further Preferably it is 62.0% by mass or more, and even more preferably 64.0% by mass or more.
  • the amount of CeO2 /TREO is preferably 90.0% by mass or less, more preferably 80.0% by mass. % or less, more preferably 75.0% by mass or less, even more preferably 70.0% by mass or less.
  • the fluorine atom content in the mixed rare earth fluoride raw material is preferably 10 to 30% by mass, more preferably 15 to 30% by mass, and still more preferably 20 to 30% by mass.
  • the amount of the mixed rare earth fluoride raw material added to the mixed rare earth oxide raw material is appropriately determined depending on the fluorine atom content required for the cerium-based abrasive to be manufactured. From the viewpoint of obtaining excellent polishing properties, the amount of the mixed rare earth fluoride raw material is added in an amount of 1 to 40% by mass relative to the total of 100% by mass of the mixed rare earth oxide raw material and the mixed rare earth fluoride raw material. The amount is preferably 3 to 35% by weight, and even more preferably 5 to 30% by weight.
  • Step (4) is, after step (3), adding and mixing a lanthanum dissolution inhibitor to the mixed rare earth abrasive particles obtained in step (3), or preparing a second agent containing a lanthanum dissolution inhibitor.
  • the cerium-based abrasive is a one-component type
  • the mixed rare earth abrasive particles may be directly used as the cerium-based abrasive without going through step (4), or the mixed rare earth abrasive particles obtained in step (3) may be used as the cerium-based abrasive.
  • a cerium-based abrasive may be obtained by adding and mixing a lanthanum dissolution inhibitor to rare earth abrasive particles.
  • additives may be added and mixed together with the lanthanum dissolution inhibitor.
  • the mixing method is not particularly limited, and for example, the mixture may be mixed using a stirrer such as a batch type stirrer, or may be mixed using a medium mill such as a ball mill or a bead mill.
  • a stirrer such as a batch type stirrer
  • a medium mill such as a ball mill or a bead mill.
  • a second part containing a lanthanum dissolution inhibitor is prepared in step (4).
  • the cerium-based abrasive is a two-part type containing a first part containing the mixed rare earth abrasive particles and a second part containing a lanthanum dissolution inhibitor
  • the mixed rare earth abrasive A first part containing particles and a second part containing a lanthanum dissolution inhibitor may be prepared separately, and the first part and second part may be mixed at the time of manufacturing the polishing liquid.
  • the second agent may or may not contain water, a water-soluble organic solvent, additives, etc. in addition to the lanthanum dissolution inhibitor.
  • the polishing liquid of this embodiment contains the above-mentioned cerium-based abrasive and one or more selected from water and a water-soluble organic solvent.
  • the polishing liquid preferably contains a lanthanum dissolution inhibitor from the viewpoint of further suppressing the occurrence of rough skin and dermatitis.
  • the polishing liquid may contain components other than a cerium-based abrasive, one or more selected from water and a water-soluble organic solvent, and a lanthanum dissolution inhibitor.
  • the polishing liquid of this embodiment is a polishing liquid that suppresses skin roughness, dermatitis, etc. caused by adhesion to human skin.
  • the polishing liquid is used in such a manner that the content of the cerium-based abrasive in the polishing liquid is in the range of 0.1 to 40.0% by mass from the viewpoint of exhibiting good polishing performance and from the viewpoint of cost. It is preferably from 1.0 to 35.0% by weight, even more preferably from 3.0 to 30.0% by weight, even more preferably from 5.0 to 20.0% by weight.
  • the polishing liquid may be added with, for example, a pH adjuster or an antifoaming agent, if necessary, within a range that does not impede the polishing performance, when preparing the polishing liquid, taking into account the polishing target and the specifications of the polishing apparatus. , an additive such as a rust preventive agent may be added.
  • the polishing liquid is particularly suitable for final polishing of various glass materials and glass products, such as glass substrates for optical disks and magnetic disks, glass substrates for liquid crystal displays, glass substrates for color filters and photomasks, and glass substrates for optical lenses. It is suitably used for.
  • the method for producing a polishing liquid of the present invention is a method for producing a polishing liquid containing the above-mentioned cerium-based abrasive and one or more selected from water and a water-soluble organic solvent.
  • the method for producing a polishing liquid includes a step (I) of mixing the cerium-based abrasive and one or more selected from the water and the water-soluble organic solvent to form a slurry.
  • the cerium-based abrasive may or may not contain the lanthanum dissolution inhibitor.
  • the cerium-based abrasive is a two-part type containing a first part containing mixed rare earth abrasive particles and a second part containing a lanthanum dissolution inhibitor
  • the cerium-based abrasive is Step (I) is performed using the first agent and the second agent.
  • the method of making the slurry is not particularly limited, but for example, it may be made into a slurry by mixing with a stirrer, or it may be made using a grinder such as a wet ball mill, an attritor, or a bead mill. It may also be made into a slurry.
  • the method for producing a polishing liquid comprises mixing the cerium-based abrasive, the lanthanum dissolution inhibitor, and one or more selected from the water and the water-soluble organic solvent to form a slurry.
  • the cerium-based abrasive may or may not contain the lanthanum dissolution inhibitor.
  • the method of making a slurry in step (II) is the same as the method of making a slurry in step (I).
  • the method for producing a polishing liquid includes a step (III) of mixing the cerium-based polishing material and one or more selected from the water and the water-soluble organic solvent to form a slurry. and a step (IV) of adding and mixing the lanthanum dissolution inhibitor to the slurry obtained in the step (III).
  • the cerium-based abrasive may or may not contain the lanthanum dissolution inhibitor.
  • the method of making a slurry in step (III) is the same as the method of making a slurry in step (I).
  • the glass polishing method of the present invention is a method of polishing using the above polishing liquid.
  • the glass polishing method is not particularly limited other than using the polishing liquid, and a method using a known polishing device or the like can be applied.
  • the polishing liquid can be used in a known manner when performing final polishing such as mirror polishing of a glass material using, for example, a single-sided polisher or a double-sided polisher.
  • TREO in the preparation of the mixed rare earth oxide raw material, the preparation of the mixed fluoride rare earth raw material, Examples, and Comparative Examples, the oxide equivalent content of each rare earth element in TREO ( CeO2 amount/TREO, La2O
  • the fluorine atom content was determined as follows. [TREO] Aqueous ammonia was added to a solution in which the measurement sample was dissolved in acid. The generated precipitate was filtered and washed to remove alkali metals, and then dissolved in acid again. Oxalic acid was added to this solution, and the resulting precipitate was calcined in the air at 800° C.
  • the TREO of the mixed rare earth abrasive particles is obtained from "the total amount of rare earth oxide obtained after firing/the mass of the mixed rare earth abrasive particles before acid dissolution treatment", and the TREO of the cerium abrasive is obtained from "the total amount of rare earth oxide obtained after firing/the mass of the mixed rare earth abrasive particles before acid dissolution treatment”. It is obtained from the formula: total amount of rare earth oxide substances/mass of cerium abrasive material before acid dissolution treatment.
  • This mixed light rare earth compound has a cerium oxide equivalent ([CeO 2 ]) content (CeO 2 amount/TREO) of 64.7% by mass in TREO and a lanthanum oxide equivalent ([La 2 O 3 ] ) content (La 2 O 3 amount/TREO) is 34.1% by mass, neodymium oxide equivalent ([Nd 2 O 3 ]) content (Nd 2 O 3 amount/TREO) is 0.6% by mass, The praseodymium oxide equivalent ([Pr 6 O 11 ]) content (Pr 6 O 11 amount/TREO) was 0.2% by mass.
  • This mixed light rare earth compound was treated with ammonium bicarbonate to obtain a mixed rare earth carbonate.
  • the mixed rare earth carbonate had a TREO content of 49% by mass.
  • This mixed rare earth carbonate was heat treated at 800° C. for 10 hours in the atmosphere in a firing furnace to obtain a mixed rare earth oxide raw material A.
  • Table 1 shows the TREO, amount of CeO 2 /TREO, amount of La 2 O 3 /TREO, amount of Nd 2 O 3 /TREO, and amount of Pr 6 O 11 /TREO of mixed rare earth oxide raw material A.
  • mixed rare earth oxide raw materials B to E In the same way as in the preparation of mixed rare earth oxide raw material A, mixed rare earth oxide raw materials B to E were prepared by using a mixed light rare earth compound and adjusting the treatment conditions thereof and the heat treatment conditions of mixed rare earth carbonate. .
  • Table 1 shows the TREO, CeO 2 amount/TREO, La 2 O 3 amount/TREO, Nd 2 O 3 amount/TREO, and Pr 6 O 11 amount/TREO of the mixed rare earth oxide raw materials B to E.
  • mixed rare earth fluoride raw materials G to I Similarly to the preparation of mixed rare earth fluoride raw material F, mixed rare earth fluoride raw materials G to I were each prepared by adjusting the treatment conditions using a mixed light rare earth compound. Table 2 shows the TREO, CeO 2 amount/TREO, and fluorine content of the mixed rare earth fluoride raw materials G to I.
  • Cerium-based abrasives were manufactured according to the following Examples and Comparative Examples. Details of the additives used in the following Examples and Comparative Examples are shown below.
  • ⁇ Additive 1 Sodium tripolyphosphate (Kanto Kagaku Co., Ltd.): Molecular weight over 300
  • ⁇ Additive 2 Sodium salt of polyacrylic acid "Poise 530" (Kao Corporation): Molecular weight over 300
  • ⁇ Additive 3 Acrylic acid and Maleic acid copolymer sodium salt “Poise 521” (Kao Corporation): Molecular weight over 300
  • ⁇ Additive 4 Carboxymethylcellulose (Kanto Kagaku Co., Ltd.): Molecular weight over 300 ⁇ Additive 5: Crystalline cellulose “Cellulose microcrystals” (Kanto Kagaku Co., Ltd.): Molecular weight over 300
  • Example 1 After stirring and mixing 1,000 kg of water and a total of 1,400 kg of the mixed rare earth oxide raw material A and the mixed rare earth fluoride raw material F (mass ratio 76:24) in a slurry tank, a wet ball mill (media: 5 mm diameter zirconia A uniform mixed solution was obtained by mixing and pulverizing for 17 hours using a ball. This mixed solution was put into a rotary kiln, dried in the atmosphere at 700°C for 1 hour, and then fired at 960°C for 4 hours. The obtained fired body was left to cool, then crushed and classified to obtain mixed rare earth abrasive particles.
  • a cerium-based abrasive was produced by adding dibasic calcium phosphate as a lanthanum dissolution inhibitor to the mixed rare earth abrasive particles in an amount of 0.1 part by mass per 100 parts by mass of the mixed rare earth abrasive particles and mixing with a stirrer. .
  • Examples 2 to 25 and Comparative Examples 1 to 5 In the same manner as in Example 1, except that the mixed rare earth oxide raw material, mixed rare earth fluoride raw material, firing temperature, lanthanum dissolution inhibitor, and additives 1 to 5 were as shown in Tables 3 and 4, A cerium-based abrasive was manufactured.
  • Particle size distribution D50 Disperse cerium-based abrasive or mixed rare earth abrasive particles in pure water containing a dispersant, prepare a measurement sample, and use a Microtrac particle size distribution meter "MT3300II" (manufactured by Nikkiso Co., Ltd.) by laser diffraction scattering method. The particle size distribution of the cerium-based abrasive was measured, and the particle diameter (D 50 ) at a cumulative volume of 50% was determined.
  • MT3300II Microtrac particle size distribution meter
  • ICP analysis After adding 10 mL of an aqueous solution in which nitric acid (concentration 70% by mass) and ultrapure water were mixed at a volume ratio of 1:1 to the obtained 10 mL of the sample for analysis, the volume was diluted to 100 mL with ultrapure water, and the sample for ICP analysis was prepared. adjusted. The absorbance of this ICP analysis sample at a wavelength of 333.749 nm was measured using an ICP emission spectrometer "iCap7000Duo" (manufactured by Thermo Fisher Scientific Co., Ltd.), and the mass concentration (mg/L) of lanthanum atoms was determined. Calculated.
  • abrasive slurry which is the test substance
  • 0.2 ml of the abrasive slurry was applied to the gauze part of a bandage on five subjects, and after it was thoroughly absorbed, it was applied directly to the inside of each person's forearm, and after 30 minutes had passed, The condition of the skin surface was observed. As rough skin and dermatitis progress, itching and erythema are observed.If no itching or erythema is observed, no change is considered, those with itching are considered to have worsened slightly, and those with slight erythema are considered to be no change.
  • polishing pad Suede pad Lower surface plate rotation speed: 260 rpm Pressure during polishing: 100g/cm 2 Polishing time: 20 minutes x 3 pieces
  • Each evaluation method is as follows. [Polishing speed] The thickness before and after polishing at five locations per sample was measured with a micrometer, and the average value of the amount of decrease in thickness ( ⁇ T [ ⁇ m]) was determined. The average value of [ ⁇ T/polishing time (20 minutes)] for the three samples was taken as the polishing rate. [Polishing scratches] The polished surface of the polished sample was observed using a differential interference microscope ("BX51M” manufactured by Olympus Corporation) at a magnification of 50 times, the number of scratches was measured, and the average value for the three samples was determined.
  • the cerium-based abrasives (Examples 1 to 25) in which the amount of lanthanum dissolved in the mixed liquid obtained by the prescribed method was 40 mg/L or less suppressed the occurrence of rough skin and dermatitis. It was recognized that this was done. Furthermore, it has been found that the polishing liquid containing the cerium-based abrasive material suppresses the occurrence of polishing scratches and allows polishing to be performed at a good polishing rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

A cerium-based abrasive material containing composite rare earth abrasive material particles that contain lanthanum and cerium, wherein the cerium oxide content is at least 55.0 mass% of the total rare earth oxide (TREO) content, and the amount of dissolved lanthanum in a liquid mixture obtained by inserting 10 g of the cerium-based abrasive material and 40 g of pure water, as slurry components, and 130 g of zirconia beads having a particle diameter of 1 mm, as beads, into a 100 mL polyethylene container subjecting the cerium-based polishing material to a pulverization treatment for 30 minutes with a container rotation speed of 210 rpm using a ball mill stand is 40 mg/L or less.

Description

セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法Cerium-based abrasive, polishing liquid, method for producing polishing liquid, and glass polishing method
 本発明は、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材の研磨に用いられる、セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法に関する。 The present invention provides a cerium-based abrasive material, a polishing liquid, and a method for producing a polishing liquid used for polishing glass materials such as glass substrates used for liquid crystal panels, hard disks, specific frequency cut filters, glass substrates for optical lenses, etc. , and a glass polishing method.
 ガラス材は、様々な用途に用いられており、その用途によっては表面研磨が必要な場合がある。特に、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材は、高い平滑度かつ高効率での表面研磨加工が求められている。 Glass materials are used for various purposes, and depending on the purpose, surface polishing may be required. In particular, glass materials such as glass substrates used in liquid crystal panels, hard disks, specific frequency cut filters, glass substrates for optical lenses, etc. are required to be polished with high smoothness and high efficiency.
 このような優れた研磨性能が求められるガラス材の表面研磨加工においては、例えば、特許文献1や特許文献2に記載されているようなセリウム系研磨材が多用されている。 In surface polishing of glass materials that requires such excellent polishing performance, cerium-based abrasives, such as those described in Patent Document 1 and Patent Document 2, are often used, for example.
国際公開第2005/042661号International Publication No. 2005/042661 国際公開第2002/031079号International Publication No. 2002/031079
 ガラス研磨材としては、一般的にセリウム系研磨材が用いられており、ランタンを含有するものが多く用いられている。セリウム系研磨材は、水で分散させたスラリーで使用するのが一般的である。そのスラリーは中性からアルカリ性であり、使用者によっては使用者の皮膚に刺激を与え、肌荒れや皮膚炎等の症状が見られる問題があった。そのため、より皮膚刺激が低い取扱い性に優れたセリウム系研磨材が求められていた。 Cerium-based abrasives are generally used as glass abrasives, and those containing lanthanum are often used. Cerium-based abrasives are generally used in the form of a slurry dispersed in water. The slurry is neutral to alkaline and may irritate the skin of some users, causing symptoms such as rough skin and dermatitis. Therefore, there has been a need for a cerium-based abrasive material that has less skin irritation and is easier to handle.
 本発明は、上記のような課題を解決するためになされたものであり、肌荒れ及び皮膚炎の発生が抑制されたセリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems, and provides a cerium-based abrasive material, a polishing liquid, a method for producing a polishing liquid, and a glass polishing method that suppress the occurrence of rough skin and dermatitis. The task is to do so.
 本発明は、ランタン及びセリウムを含む混合希土類研磨材粒子を含有するセリウム研磨材において、全希土類元素の酸化物換算含有量(TREO)中の前記セリウムの酸化物換算含有量が55.0質量%以上であり、前記セリウム系研磨材を含み、所定の方法により得られた混合液中におけるランタン溶解量が、40mg/L以下であることで、皮膚に付着した際に発生する肌荒れや皮膚炎を低減できることを見出したことに基づく。 The present invention provides a cerium abrasive material containing mixed rare earth abrasive particles containing lanthanum and cerium, in which the content of cerium in terms of oxide in the total content of rare earth elements in terms of oxide (TREO) is 55.0% by mass. As described above, if the dissolved amount of lanthanum in the mixed liquid containing the cerium-based abrasive and obtained by a predetermined method is 40 mg/L or less, rough skin and dermatitis that occur when it adheres to the skin can be prevented. Based on the discovery that it can be reduced.
 すなわち、本発明は、以下の[1]~[16]を提供するものである。
 [1] ランタン及びセリウムを含む混合希土類研磨材粒子を含有するセリウム系研磨材であって、
 全希土類元素の酸化物換算含有量(TREO)中における前記セリウムの酸化物換算含有量が55.0質量%以上であり、
 100mLポリエチレン容器に、前記セリウム系研磨材10g及び純水40gを入れると共にビーズとして粒径が1mmのジルコニアビーズ130gを入れ、ボールミル架台を用いて、容器回転数210rpmにて30分間、前記セリウム系研磨材の粉砕処理を行うことにより得られた混合液中におけるランタン溶解量が、40mg/L以下である、セリウム系研磨材。
 [2] さらにランタン溶解抑制剤を含有する、上記[1]に記載のセリウム系研磨材。
 [3] 前記混合希土希土類研磨材粒子を含有する第一剤と、
 ランタン溶解抑制剤を含有する第二剤と、
を含有する二剤型である、上記[1]に記載のセリウム系研磨材。
 [4] フッ素原子を0.1~10質量%含有する、上記[1]に記載のセリウム系研磨材。
 [5] 前記TREO中における前記ランタンの酸化物換算含有量が0.01~45.0質量%である、上記[1]に記載のセリウム系研磨材。
 [6] 前記ランタン溶解抑制剤が、アルカリ金属の炭酸塩、アルカリ金属のリン酸塩、アルカリ金属の水酸化物塩、アルカリ金属の硫酸塩、アルカリ金属の硝酸塩、アルカリ金属の有機酸塩、アルカリ土類金属の炭酸塩、アルカリ土類金属のリン酸塩、アルカリ土類金属の水酸化物塩、アルカリ土類金属の硫酸塩、アルカリ土類金属の硝酸塩、アルカリ土類金属の有機酸塩、アンモニウムの炭酸塩、アンモニウムのリン酸塩、アンモニウムの水酸化物塩、アンモニウムの硫酸塩、アンモニウムの硝酸塩、及びアンモニウムの有機酸塩から選ばれる1種以上である、上記[2]又は[3]に記載のセリウム系研磨材。
 [7] 前記ランタン溶解抑制剤が、アルカリ土類金属の炭酸塩、アルカリ土類金属のリン酸塩、アルカリ土類金属の有機酸塩、及びアルカリ金属の炭酸塩から選ばれる1種以上である、上記[6]に記載のセリウム系研磨材。
 [8] 前記ランタン溶解抑制剤の分子量が300以下である、上記[2]又は[3]に記載のセリウム系研磨材。
 [9] 前記混合希土類研磨材粒子100質量部に対して、前記ランタン溶解抑制剤を0.001~0.9質量部含む、上記[2]又は[3]に記載のセリウム系研磨材。
 [10] 上記[1]に記載のセリウム系研磨材と、水及び水溶性有機溶媒から選ばれる1種以上を含有する、研磨液。
 [11] 上記[10]に記載の研磨液の製造方法であって、
 前記セリウム系研磨材と、
 前記水及び前記水溶性有機溶媒から選ばれる1種以上と、
を混合してスラリー化する工程(I)を含む、研磨液の製造方法。
 [12] 前記セリウム系研磨材は、前記ランタン溶解抑制剤を含有する、上記[11]に記載の研磨液の製造方法。
 [13] 上記[10]に記載の研磨液の製造方法であって、
 前記セリウム系研磨材と、
 前記ランタン溶解抑制剤と、
 前記水及び前記水溶性有機溶媒から選ばれる1種以上と、
を混合してスラリー化する工程(II)を含む、研磨液の製造方法。
 [14] 上記[10]に記載の研磨液の製造方法であって、
 前記セリウム系研磨材と、
 前記水及び前記水溶性有機溶媒から選ばれる1種以上と、
を混合してスラリー化する工程(III)と、
 前記工程(III)で得られたスラリーに、
 前記ランタン溶解抑制剤を添加混合する工程(IV)を含む、研磨液の製造方法。
 [15] 前記セリウム系研磨材は、前記溶解抑制剤を含有しない、上記[14]に記載の研磨液の製造方法。
 [16] 上記[10]に記載の研磨液を用いて研磨を行う、ガラス研磨方法。
That is, the present invention provides the following [1] to [16].
[1] A cerium-based abrasive containing mixed rare earth abrasive particles containing lanthanum and cerium,
The oxide equivalent content of the cerium in the total rare earth element oxide equivalent content (TREO) is 55.0% by mass or more,
In a 100 mL polyethylene container, put 10 g of the cerium-based abrasive material and 40 g of pure water as well as 130 g of zirconia beads with a particle size of 1 mm as beads, and use a ball mill stand to perform the cerium-based polishing at the container rotation speed of 210 rpm for 30 minutes. A cerium-based abrasive material in which the amount of lanthanum dissolved in a liquid mixture obtained by pulverizing the material is 40 mg/L or less.
[2] The cerium-based abrasive material according to [1] above, further containing a lanthanum dissolution inhibitor.
[3] a first agent containing the mixed rare earth abrasive particles;
a second agent containing a lanthanum dissolution inhibitor;
The cerium-based abrasive material according to the above [1], which is a two-part type containing.
[4] The cerium-based abrasive material according to [1] above, containing 0.1 to 10% by mass of fluorine atoms.
[5] The cerium-based abrasive according to [1] above, wherein the content of the lanthanum in the TREO in terms of oxide is 0.01 to 45.0% by mass.
[6] The lanthanum dissolution inhibitor is an alkali metal carbonate, an alkali metal phosphate, an alkali metal hydroxide salt, an alkali metal sulfate, an alkali metal nitrate, an alkali metal organic acid salt, an alkali Earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal hydroxide salts, alkaline earth metal sulfates, alkaline earth metal nitrates, alkaline earth metal organic acid salts, [2] or [3] above, which is one or more selected from ammonium carbonate, ammonium phosphate, ammonium hydroxide salt, ammonium sulfate, ammonium nitrate, and ammonium organic acid salt. A cerium-based abrasive as described in .
[7] The lanthanum dissolution inhibitor is one or more selected from alkaline earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal organic acid salts, and alkali metal carbonates. , the cerium-based abrasive material according to [6] above.
[8] The cerium-based abrasive material according to [2] or [3] above, wherein the lanthanum dissolution inhibitor has a molecular weight of 300 or less.
[9] The cerium-based abrasive material according to [2] or [3] above, which contains 0.001 to 0.9 parts by mass of the lanthanum dissolution inhibitor based on 100 parts by mass of the mixed rare earth abrasive particles.
[10] A polishing liquid containing the cerium-based abrasive material according to [1] above and one or more selected from water and water-soluble organic solvents.
[11] The method for producing a polishing liquid according to [10] above, comprising:
the cerium-based abrasive;
one or more selected from the water and the water-soluble organic solvent;
A method for producing a polishing liquid, comprising a step (I) of mixing and forming a slurry.
[12] The method for producing a polishing liquid according to [11] above, wherein the cerium-based abrasive contains the lanthanum dissolution inhibitor.
[13] The method for producing a polishing liquid according to [10] above,
the cerium-based abrasive;
the lanthanum dissolution inhibitor;
one or more selected from the water and the water-soluble organic solvent;
A method for producing a polishing liquid, comprising a step (II) of mixing and forming a slurry.
[14] The method for producing a polishing liquid according to [10] above,
the cerium-based abrasive;
one or more selected from the water and the water-soluble organic solvent;
a step (III) of mixing to form a slurry;
To the slurry obtained in the step (III),
A method for producing a polishing liquid, comprising a step (IV) of adding and mixing the lanthanum dissolution inhibitor.
[15] The method for producing a polishing liquid according to [14] above, wherein the cerium-based abrasive does not contain the dissolution inhibitor.
[16] A method for polishing glass, comprising polishing using the polishing liquid according to [10] above.
 本発明によれば、肌荒れ及び皮膚炎の発生が抑制されたセリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法を提供することができる。 According to the present invention, it is possible to provide a cerium-based abrasive material, a polishing liquid, a method for producing a polishing liquid, and a glass polishing method in which the occurrence of rough skin and dermatitis is suppressed.
 以下、本発明のセリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法の実施形態を詳細に説明する。
 なお、本明細書において、「体積基準の累積粒度分布における50%粒子径」及び「D50」とは、レーザー回折・散乱法によって測定される粒度分布から求めた、体積基準の累積粒径分布において50%となる粒子径である。具体的には、下記実施例に記載のマイクロトラック粒度分布計で測定された値である。
EMBODIMENT OF THE INVENTION Hereinafter, embodiments of the cerium-based abrasive material, polishing liquid, method for manufacturing a polishing liquid, and glass polishing method of the present invention will be described in detail.
In this specification, "50% particle diameter in volume-based cumulative particle size distribution" and " D50 " refer to volume-based cumulative particle size distribution determined from particle size distribution measured by laser diffraction/scattering method. This is the particle size that is 50% of the total. Specifically, it is a value measured using a Microtrac particle size distribution analyzer described in the Examples below.
[セリウム系研磨材]
 本実施形態のセリウム系研磨材は、ランタン及びセリウムを含む混合希土類研磨材粒子を含有するセリウム系研磨材であって、全希土類元素の酸化物換算含有量(TREO;Total Rare Earth Oxidesの略称)中における前記セリウムの酸化物(CeO2)換算含有量(以下、「CeO量/TREO」と表記する。)が55.0質量%以上である。
 そして、100mLポリエチレン容器に、前記セリウム系研磨材10g及び純水40gを入れると共にビーズとして粒径が1mmのジルコニアビーズ130gを入れ、ボールミル架台を用いて、容器回転数210rpmにて30分間、前記セリウム系研磨材の粉砕処理を行うことにより得られた混合液中におけるランタン溶解量が、40mg/L以下である。
[Cerium-based abrasive]
The cerium-based abrasive of the present embodiment is a cerium-based abrasive containing mixed rare earth abrasive particles containing lanthanum and cerium, and has a total rare earth element oxide equivalent content (TREO; an abbreviation for Total Rare Earth Oxides). The content of cerium in terms of oxide (CeO 2 ) (hereinafter referred to as "amount of CeO 2 /TREO") is 55.0% by mass or more.
Then, 10 g of the cerium-based abrasive and 40 g of pure water were put into a 100 mL polyethylene container, and 130 g of zirconia beads with a particle size of 1 mm were added to the container. The amount of lanthanum dissolved in the liquid mixture obtained by pulverizing the abrasive material is 40 mg/L or less.
 本実施形態のセリウム系研磨材中のTREOは、混合希土類研磨材粒子を由来とするものである。
 前記混合希土類研磨材粒子中のTREOは、研磨速度向上の観点から、好ましくは85.0質量%以上、より好ましくは90.0質量%以上、さらに好ましくは92.0質量%以上であり、TREOを構成する元素以外の元素を含有させ、研磨速度をさらに向上させる観点、及び研磨面の表面欠陥の発生を抑制する観点から、好ましくは99.0質量%以下、より好ましくは98.0質量%以下、さらに好ましくは95.0質量%以下である。
TREO in the cerium-based abrasive of this embodiment is derived from mixed rare earth abrasive particles.
The TREO in the mixed rare earth abrasive particles is preferably 85.0% by mass or more, more preferably 90.0% by mass or more, even more preferably 92.0% by mass or more, from the viewpoint of improving the polishing rate. Preferably 99.0% by mass or less, more preferably 98.0% by mass from the viewpoint of further improving the polishing rate and suppressing the occurrence of surface defects on the polished surface by containing elements other than the elements constituting the The content is preferably 95.0% by mass or less.
 TREO中における前記セリウムの酸化物(CeO2)換算含有量(CeO量/TREO)は、55.0質量%以上であり、研磨速度向上の観点から、好ましくは60.0質量%以上、より好ましくは62.0質量%以上、さらに好ましくは64.0質量%以上である。また、CeO量/TREOは、Ce以外の希土類元素の含有量を確保し、研磨面の表面欠陥の発生を抑制する観点から、好ましくは90.0質量%以下、より好ましくは80.0質量%以下、さらに好ましくは75.0質量%以下、さらにより好ましくは70.0質量%以下である。 The cerium oxide (CeO 2 ) equivalent content (CeO 2 amount/TREO) in TREO is 55.0% by mass or more, and from the viewpoint of improving the polishing rate, preferably 60.0% by mass or more, more Preferably it is 62.0% by mass or more, more preferably 64.0% by mass or more. In addition, from the viewpoint of ensuring the content of rare earth elements other than Ce and suppressing the occurrence of surface defects on the polished surface, the amount of CeO2 /TREO is preferably 90.0% by mass or less, more preferably 80.0% by mass. % or less, more preferably 75.0% by mass or less, even more preferably 70.0% by mass or less.
 TREO中における前記ランタンの酸化物(La)換算含有量(以下、La量/TREOと表記する。)は、研磨面のスクラッチの発生を抑制する観点から、好ましくは0.01質量%以上、より好ましくは1.0質量%以上、さらに好ましくは10.0質量%以上、よりさらに好ましくは20.0質量%以上、よりさらに好ましくは30.0質量%以上である。La量/TREOは、TREO中におけるCe量が55.0質量%以上であることから45.0質量%以下であり、研磨速度向上の観点、並びにより肌荒れ及び皮膚炎を低減する観点から、好ましくは40.0質量%以下、より好ましくは37.0質量%以下、さらに好ましくは35.0質量%以下である。 The lanthanum oxide (La 2 O 3 ) equivalent content (hereinafter referred to as La 2 O 3 amount/TREO) in TREO is preferably 0.00 to suppress the occurrence of scratches on the polished surface. 01% by mass or more, more preferably 1.0% by mass or more, still more preferably 10.0% by mass or more, even more preferably 20.0% by mass or more, even more preferably 30.0% by mass or more. The amount of La 2 O 3 /TREO is 45.0% by mass or less since the amount of Ce in TREO is 55.0% by mass or more, from the viewpoint of improving the polishing rate and from the viewpoint of reducing rough skin and dermatitis. , preferably 40.0% by mass or less, more preferably 37.0% by mass or less, even more preferably 35.0% by mass or less.
 なお、TREOは、シュウ酸塩沈殿、焼成及び重量法により測定することができ、具体的には、後述する実施例に記載の方法により測定することができる。
 また、CeやLa等の各希土類元素の含有量は、高周波誘導結合プラズマ(ICP)分析や蛍光X線分析等の機器分析により測定することができ、本実施形態では、ICP発光分光分析(ICP-AES)による測定値から、各希土類元素を酸化物として換算した値を酸化物換算量とする。
Note that TREO can be measured by oxalate precipitation, calcination, and gravimetric methods, and specifically, it can be measured by the method described in the Examples below.
Furthermore, the content of each rare earth element such as Ce and La can be measured by instrumental analysis such as high-frequency inductively coupled plasma (ICP) analysis or fluorescent X-ray analysis. The value obtained by converting each rare earth element as an oxide from the measured value by -AES) is defined as the oxide equivalent amount.
 本実施形態のセリウム系研磨材が、肌荒れや皮膚炎を抑制できる理由は定かではないが、次のように考えられる。
 セリウム系研磨材に含まれるランタンは、セリウム系研磨材の製造時や、スラリー化した際に、水や水溶性有機溶媒等に、ランタンイオンとして溶出し、溶解する。液体中のランタン溶解量が多いと、セリウム系研磨材の原料由来の塩化物イオン等と結びつき、毒性の強い塩化ランタン等を生成し、人体の皮膚に付着して肌荒れや皮膚炎を生じさせる。一方、ランタン溶解量を40mg/L以下と低濃度とすることで、塩化物ランタン等の生成が抑制され、その結果、肌荒れや、皮膚炎等の発生が抑制されると考えられる。
The reason why the cerium-based abrasive material of this embodiment can suppress rough skin and dermatitis is not clear, but it is thought to be as follows.
The lanthanum contained in the cerium-based abrasive is eluted and dissolved in water, water-soluble organic solvents, etc. as lanthanum ions when the cerium-based abrasive is manufactured or made into a slurry. If a large amount of lanthanum is dissolved in the liquid, it will combine with chloride ions derived from the raw material of the cerium-based abrasive to produce highly toxic lanthanum chloride, which will adhere to human skin and cause rough skin and dermatitis. On the other hand, by setting the dissolved amount of lanthanum to a low concentration of 40 mg/L or less, the production of lanthanum chloride and the like is suppressed, and as a result, it is thought that the occurrence of rough skin, dermatitis, etc. is suppressed.
 上記所定の方法により得られた混合液中におけるランタン溶解量は、40mg/L以下であり、より肌荒れ及び皮膚炎の発生を抑制する観点から、好ましくは35mg/L以下、より好ましくは30mg/L以下、さらに好ましくは25mg/L以下であり、コストの観点から、好ましくは0.1mg/L以上、より好ましくは0.5mg/L以上、さらに好ましくは1.0mg/L以上である。なお、本実施形態のセリウム系研磨材を、実機にてスラリー状態で用いる場合、スラリー中の、セリウム系研磨材と分散媒である水、水溶性有機溶剤との比率は上記所定の方法の場合と異なることもあるが、当該測定方法で測定されたランタン溶解濃度以下であれば、本実施形態の効果は発現する。
 なお、本明細書において、「ランタン溶解量」とは、ICP分析から算出される値であり、具体的には、下記実施例に記載の方法により算出される値である。
The amount of lanthanum dissolved in the liquid mixture obtained by the above prescribed method is 40 mg/L or less, and from the viewpoint of further suppressing the occurrence of rough skin and dermatitis, it is preferably 35 mg/L or less, more preferably 30 mg/L. Below, it is more preferably 25 mg/L or less, and from the viewpoint of cost, preferably 0.1 mg/L or more, more preferably 0.5 mg/L or more, and still more preferably 1.0 mg/L or more. In addition, when the cerium-based abrasive material of this embodiment is used in a slurry state in an actual machine, the ratio of the cerium-based abrasive material, water as a dispersion medium, and water-soluble organic solvent in the slurry is determined according to the above-described method. Although it may differ from the above, the effect of the present embodiment is exhibited as long as the dissolved lanthanum concentration is equal to or lower than that measured by the measurement method.
In addition, in this specification, "the amount of lanthanum dissolved" is a value calculated from ICP analysis, and specifically, a value calculated by the method described in the following example.
 セリウム系研磨材の製造時や、スラリー化した際に、ランタンイオンと共にセリウム系研磨材の原料由来の塩化物イオンも、水や水溶性有機溶媒等に溶解する。
 上記所定の方法により得られた混合液中における塩素溶解量は、より肌荒れ及び皮膚炎の発生を抑制する観点から、好ましくは40mg/L以下、より好ましくは35mg/L以下、さらに好ましくは25mg/L以下であり、コストの観点から、好ましくは0.1mg/L以上、より好ましくは0.5mg/L以上、さらに好ましくは1.0mg/L以上である。
 なお、本明細書において、「塩素溶解量」とは、IC分析から算出される値であり、具体的には、下記実施例に記載の方法により算出される値である。
When cerium-based abrasives are manufactured or slurried, chloride ions derived from the raw materials of the cerium-based abrasives are dissolved in water, water-soluble organic solvents, etc. along with lanthanum ions.
The amount of chlorine dissolved in the mixed liquid obtained by the above-described method is preferably 40 mg/L or less, more preferably 35 mg/L or less, still more preferably 25 mg/L, from the viewpoint of further suppressing the occurrence of rough skin and dermatitis. From the viewpoint of cost, it is preferably 0.1 mg/L or more, more preferably 0.5 mg/L or more, and still more preferably 1.0 mg/L or more.
In addition, in this specification, the "chlorine dissolution amount" is a value calculated from IC analysis, specifically, a value calculated by the method described in the following example.
 本実施形態のセリウム系研磨材の粒径(D50)は、セリウム系研磨材を良好な生産性で製造する観点から、好ましくは0.10μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上、よりさらに好ましくは0.7μm以上であり、研磨傷を低減し研磨面を良好に平滑化できる、優れた研磨性能を得る観点から、D50が好ましくは10.0μm以下、より好ましくは5.0μm以下、さらに好ましくは3.0μm以下である。 The particle size (D 50 ) of the cerium-based abrasive of this embodiment is preferably 0.10 μm or more, more preferably 0.3 μm or more, and even more preferably D50 is preferably 0.5 μm or more, more preferably 0.7 μm or more, and from the viewpoint of obtaining excellent polishing performance that can reduce polishing scratches and satisfactorily smooth the polished surface, D50 is preferably 10.0 μm or less, more preferably Preferably it is 5.0 μm or less, more preferably 3.0 μm or less.
 本実施形態のセリウム系研磨材の比表面積は、研磨面のスクラッチ(傷)の発生を抑制する観点から、好ましくは1.0m/g以上、より好ましくは2.0m/g以上、さらに好ましくは3.0m/g以上であり、研磨速度向上の観点から、好ましくは10.0m/g以下、より好ましくは8.0m/g以下、さらに好ましくは7.0m/g以下、よりさらにより好ましくは6.0m/g以下である。
 なお、本明細書において、比表面積はBET法(一点法)により測定された値である。
The specific surface area of the cerium-based abrasive material of this embodiment is preferably 1.0 m 2 /g or more, more preferably 2.0 m 2 /g or more, from the viewpoint of suppressing the occurrence of scratches on the polished surface. It is preferably 3.0 m 2 /g or more, and from the viewpoint of improving the polishing rate, it is preferably 10.0 m 2 /g or less, more preferably 8.0 m 2 /g or less, and even more preferably 7.0 m 2 /g or less. , even more preferably 6.0 m 2 /g or less.
Note that in this specification, the specific surface area is a value measured by the BET method (single point method).
 本実施形態のセリウム系研磨材は、研磨速度向上の観点から、フッ素原子を含んでもよい。
 セリウム系研磨材がフッ素原子を含む場合、セリウム系研磨材中におけるフッ素原子含有量は、研磨速度向上の観点から、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、さらに好ましくは3.0質量%以上であり、研磨面のスクラッチの発生を抑制する観点から、好ましくは10.0質量%以下、より好ましくは9.0質量%以下、さらに好ましくは8.0質量%以下、よりさらに好ましくは7.0質量%以下である。
 セリウム系研磨材中のフッ素原子含有量は、該セリウム系研磨材をアルカリ溶融して水溶液化し、イオン電極法により測定することができる。
The cerium-based abrasive material of this embodiment may contain fluorine atoms from the viewpoint of improving the polishing rate.
When the cerium-based abrasive contains fluorine atoms, the fluorine atom content in the cerium-based abrasive is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and It is preferably 3.0% by mass or more, and from the viewpoint of suppressing the occurrence of scratches on the polished surface, preferably 10.0% by mass or less, more preferably 9.0% by mass or less, and even more preferably 8.0% by mass. The content is more preferably 7.0% by mass or less.
The fluorine atom content in a cerium-based abrasive can be measured by melting the cerium-based abrasive into an aqueous solution using an ion electrode method.
 本実施形態のセリウム系研磨材中におけるTREOは、研磨速度向上の観点から、好ましくは85.0質量%以上、より好ましくは90.0質量%以上、さらに好ましくは92.0質量%以上であり、TREOを構成する元素以外の元素を含有させ、研磨速度をさらに向上させる観点、及び研磨面の表面欠陥(表面の微細な凹凸)の発生を抑制する観点から、好ましくは99.0質量%以下、より好ましくは97.0質量%以下、さらに好ましくは96.0質量%以下である。 From the viewpoint of improving the polishing rate, TREO in the cerium-based abrasive material of this embodiment is preferably 85.0% by mass or more, more preferably 90.0% by mass or more, and even more preferably 92.0% by mass or more. , preferably 99.0% by mass or less, from the viewpoint of further improving the polishing rate by containing elements other than the elements constituting TREO, and from the viewpoint of suppressing the occurrence of surface defects (fine surface irregularities) on the polished surface. , more preferably 97.0% by mass or less, still more preferably 96.0% by mass or less.
(混合希土類研磨材粒子)
 本実施形態における混合希土類研磨材粒子の「混合」とは、複数種の希土類元素が含まれていることを意味する。前記混合希土類研磨材粒子には、Ce及びLa(ランタン)以外の希土類元素が含まれていてもよい。前記希土類元素としては、例えば、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb等が挙げられる。
(Mixed rare earth abrasive particles)
"Mixed" in the mixed rare earth abrasive particles in this embodiment means that multiple types of rare earth elements are included. The mixed rare earth abrasive particles may contain rare earth elements other than Ce and La (lanthanum). Examples of the rare earth elements include Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
 本実施形態の混合希土類研磨材粒子の粒径(D50)は、セリウム系研磨材を良好な生産性で製造する観点から、好ましくは0.10μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上、よりさらに好ましくは0.7μm以上であり、研磨傷を低減し研磨面を良好に平滑化できる、優れた研磨性能を得る観点から、好ましくは10.0μm以下、より好ましくは5.0μm以下、さらに好ましくは3.0μm以下である。 The particle size (D 50 ) of the mixed rare earth abrasive particles of this embodiment is preferably 0.10 μm or more, more preferably 0.3 μm or more, and even more preferably is 0.5 μm or more, more preferably 0.7 μm or more, and is preferably 10.0 μm or less, more preferably It is 5.0 μm or less, more preferably 3.0 μm or less.
 本実施形態の混合希土類研磨材粒子の比表面積は、研磨面のスクラッチ(傷)の発生を抑制する観点から、好ましくは1.0m/g以上、より好ましくは2.0m/g以上、さらに好ましくは3.0m/g以上であり、研磨速度向上の観点から、好ましくは10.0m/g以下、より好ましくは8.0m/g以下、さらに好ましくは7.0m/g以下、よりさらにより好ましくは6.0m/g以下である。
 なお、本明細書において、比表面積はBET法(一点法)により測定された値である。
The specific surface area of the mixed rare earth abrasive particles of this embodiment is preferably 1.0 m 2 /g or more, more preferably 2.0 m 2 /g or more, from the viewpoint of suppressing the occurrence of scratches on the polished surface. More preferably, it is 3.0 m 2 /g or more, and from the viewpoint of improving the polishing rate, it is preferably 10.0 m 2 /g or less, more preferably 8.0 m 2 /g or less, and even more preferably 7.0 m 2 /g. Below, it is still more preferably 6.0 m 2 /g or less.
Note that in this specification, the specific surface area is a value measured by the BET method (single point method).
 本実施形態の混合希土類研磨材粒子は、研磨速度向上の観点から、フッ素原子を含んでもよい。
 混合希土類研磨材粒子がフッ素原子を含む場合、混合希土類研磨材粒子中におけるフッ素原子含有量は、研磨速度向上の観点から、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、さらに好ましくは3.0質量%以上であり、研磨面のスクラッチの発生を抑制する観点から、好ましくは10.0質量%以下、より好ましくは9.0質量%以下、さらに好ましくは8.0質量%以下、よりさらに好ましくは7.0質量%以下である。
The mixed rare earth abrasive particles of this embodiment may contain fluorine atoms from the viewpoint of improving the polishing rate.
When the mixed rare earth abrasive particles contain fluorine atoms, the fluorine atom content in the mixed rare earth abrasive particles is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, from the viewpoint of improving the polishing rate. , more preferably 3.0% by mass or more, and from the viewpoint of suppressing the occurrence of scratches on the polished surface, preferably 10.0% by mass or less, more preferably 9.0% by mass or less, even more preferably 8.0% by mass. It is not more than 7.0% by mass, more preferably not more than 7.0% by mass.
(ランタン溶解抑制剤)
 本実施形態のセリウム系研磨材は、前記混合希土類研磨材粒子に加えて、ランタンの溶解を抑制するランタン溶解抑制剤を含有してもよい。
 ランタン溶解抑制剤としては、水や水溶性有機溶媒等に溶解しているランタンイオンを、不溶性の塩等に変換させ沈降させる作用を有するものや、キレート作用によりランタンイオンを固定化する作用を有するものが好ましい。
 そのようなランタン溶解抑制剤としては、アルカリ金属の炭酸塩、アルカリ金属のリン酸塩、アルカリ金属の水酸化物塩、アルカリ金属の硫酸塩、アルカリ金属の硝酸塩、アルカリ金属の有機酸塩、アルカリ土類金属の炭酸塩、アルカリ土類金属のリン酸塩、アルカリ土類金属の水酸化物塩、アルカリ土類金属の硫酸塩、アルカリ土類金属の硝酸塩、アルカリ土類金属の有機酸塩、アンモニウムの炭酸塩、アンモニウムのリン酸塩、アンモニウムの水酸化物塩、アンモニウムの硫酸塩、アンモニウムの硝酸塩、及びアンモニウムの有機酸塩から選ばれる1種以上であることが好ましく、生成する塩の安全性の観点から、アルカリ土類金属の炭酸塩、アルカリ土類金属のリン酸塩、アルカリ土類金属の有機酸塩、及びアルカリ金属の炭酸塩から選ばれる1種以上であることがより好ましい。
(lanthanum dissolution inhibitor)
The cerium-based abrasive of this embodiment may contain, in addition to the mixed rare earth abrasive particles, a lanthanum dissolution inhibitor that suppresses dissolution of lanthanum.
Lanthanum dissolution inhibitors include those that have the effect of converting lanthanum ions dissolved in water or water-soluble organic solvents into insoluble salts, etc. and precipitate them, and those that have the effect of fixing lanthanum ions through chelating action. Preferably.
Such lanthanum dissolution inhibitors include alkali metal carbonates, alkali metal phosphates, alkali metal hydroxides, alkali metal sulfates, alkali metal nitrates, alkali metal organic acid salts, alkali Earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal hydroxide salts, alkaline earth metal sulfates, alkaline earth metal nitrates, alkaline earth metal organic acid salts, Preferably, it is one or more selected from ammonium carbonate, ammonium phosphate, ammonium hydroxide salt, ammonium sulfate, ammonium nitrate, and ammonium organic acid salt, and the resulting salt is safe. From the viewpoint of properties, it is more preferable that the carbonate is one or more selected from alkaline earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal organic acid salts, and alkali metal carbonates.
 アルカリ金属としては、生成する塩の安全性の観点から、ナトリウム及びカリウムが好ましく、ナトリウムがより好ましい。
 アルカリ土類金属としては、同様の観点から、カルシウム及びマグネシウムが好ましい。
 ランタン溶解抑制剤としては、具体的には、第一リン酸カルシウム、第二リン酸カルシウム、水酸化カルシウム、炭酸カルシウム、グルコン酸カルシウム、クエン酸カルシウム炭酸水素ナトリウム、炭酸水素アンモニウム、第二リン酸マグネシウム、第二リン酸カルシウム等が好ましく、これらの中でも、より肌荒れ及び皮膚炎の発生を抑制し、生成する塩の安全性、並びに研磨面のスクラッチの発生を抑制する観点から、第二リン酸カルシウムがより好ましい。
 ランタン溶解抑制剤は、1種単独で用いても、2種以上を併用してもよい。
As the alkali metal, sodium and potassium are preferred, and sodium is more preferred, from the viewpoint of safety of the generated salt.
From the same viewpoint, calcium and magnesium are preferred as the alkaline earth metals.
Specifically, the lanthanum dissolution inhibitors include monocalcium phosphate, dibasic calcium phosphate, calcium hydroxide, calcium carbonate, calcium gluconate, calcium citrate, sodium bicarbonate, ammonium bicarbonate, dibasic magnesium phosphate, dibasic Calcium phosphate and the like are preferred, and among these, dibasic calcium phosphate is more preferred from the viewpoint of further suppressing the occurrence of rough skin and dermatitis, ensuring the safety of the produced salt, and suppressing the occurrence of scratches on the polished surface.
The lanthanum dissolution inhibitors may be used alone or in combination of two or more.
 また、ランタン溶解抑制剤の分子量は、より肌荒れ及び皮膚炎の発生を抑制する観点から、好ましくは50以上、より好ましくは75以上、さらに好ましくは100以上であり、好ましくは300以下、より好ましくは200以下、さらに好ましくは150以下である。分子量が300以下であると、ランタンイオンとの反応性が高く、ランタン溶解抑制効果が高いため好ましい。 In addition, the molecular weight of the lanthanum dissolution inhibitor is preferably 50 or more, more preferably 75 or more, even more preferably 100 or more, and preferably 300 or less, more preferably It is 200 or less, more preferably 150 or less. A molecular weight of 300 or less is preferable because it has high reactivity with lanthanum ions and a high lanthanum dissolution suppressing effect.
 本実施形態のセリウム系研磨材がランタン溶解抑制剤を含有する場合、セリウム系研磨材は、ランタン溶解抑制剤を予め含有している一剤型であってもよく、前記混合希土類研磨材粒子を含有する第一剤と、ランタン溶解抑制剤を含有する第二剤とを含有する二剤型であってもよい。 When the cerium-based abrasive of this embodiment contains a lanthanum dissolution inhibitor, the cerium-based abrasive may be a one-component type containing the lanthanum dissolution inhibitor in advance, and the mixed rare earth abrasive particles It may be a two-dose type containing a first part containing a lanthanum dissolution inhibitor and a second part containing a lanthanum dissolution inhibitor.
 前記セリウム系研磨材が、前記混合希土類研磨材粒子を含有する第一剤と、ランタン溶解抑制剤等を含有する第二剤と、を含有する二剤型である場合、前記第一剤中における混合希土類研磨材粒子の含有量は、研磨速度向上の観点から、好ましくは85.0質量%以上、より好ましくは90.0質量%以上、さらに好ましくは92.0質量%以上であり、肌荒れ及び皮膚炎の発生を抑制する観点から、好ましくは99.9質量%以下、より好ましくは99.5質量%以下、さらに好ましくは99.2質量%以下である。 When the cerium-based abrasive is a two-part type containing a first part containing the mixed rare earth abrasive particles and a second part containing a lanthanum dissolution inhibitor, etc., in the first part, The content of the mixed rare earth abrasive particles is preferably 85.0% by mass or more, more preferably 90.0% by mass or more, even more preferably 92.0% by mass or more, from the viewpoint of improving the polishing rate, and prevents rough skin and From the viewpoint of suppressing the occurrence of dermatitis, the content is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, even more preferably 99.2% by mass or less.
 セリウム系研磨材中におけるランタン溶解抑制剤の含有量は、一剤型及び二剤型の両方の場合において、混合希土類研磨材粒子100質量部に対して、コストの観点から、好ましくは0.95質量部以下、より好ましくは0.85質量部以下、さらに好ましくは0.75質量部以下である。また、肌荒れ及び皮膚炎の発生を抑制する観点から、好ましくは0.001質量部以上、より好ましくは0.01質量部以上、さらに好ましくは0.1質量部以上である。
 また、セリウム系研磨材中におけるランタン溶解抑制剤の含有量は、一剤型及び二剤型の両方の場合において、コストの観点から、好ましくは0.95質量%以下、より好ましくは0.90質量%以下、さらに好ましくは0.80質量%以下、よりさらに好ましくは0.70質量%以下である。また、肌荒れ及び皮膚炎の発生を抑制する観点から、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上、よりさらに好ましくは0.1質量%以上である。
である。
From the viewpoint of cost, the content of the lanthanum dissolution inhibitor in the cerium-based abrasive is preferably 0.95 parts by mass per 100 parts by mass of mixed rare earth abrasive particles in both one-part and two-part types. It is not more than 0.85 parts by mass, more preferably not more than 0.75 parts by mass. Further, from the viewpoint of suppressing the occurrence of rough skin and dermatitis, the amount is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and even more preferably 0.1 parts by mass or more.
In addition, from the viewpoint of cost, the content of the lanthanum dissolution inhibitor in the cerium-based abrasive is preferably 0.95% by mass or less, more preferably 0.90% by mass, in both one-part and two-part types. It is not more than 0.80% by mass, more preferably not more than 0.70% by mass, even more preferably not more than 0.70% by mass. In addition, from the viewpoint of suppressing the occurrence of rough skin and dermatitis, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more. % by mass or more.
It is.
(添加剤)
 本実施形態のセリウム系研磨材は、分散性向上、沈降防止、固化防止、安定性向上及び作業性向上等のために、添加剤として、例えば、エチレングリコール、ポリエチレングリコール等のグリコール類、ポリアクリル酸のナトリウム塩、ポリカルボン酸系ポリマー、ポリスルホン酸系ポリマー等の高分子分散剤、メチルセルロース、カルボキシメチルセルロース等のセルロースエーテル類、ポリビニルアルコール等の水溶性高分子、リン酸化合物等を添加してもよい。これらは、1種単独で用いても、2種以上を併用してもよい。添加剤を添加する場合、これらの中でも、より分散性向上、沈降防止、固化防止、安定性向上及び作業性向上の観点から、高分子分散剤、リン酸化合物、及びセルロースエーテル類が好ましい。
 高分子分散剤としては、例えば、ポリ(メタ)アクリル酸、ポリヒドロキシ(メタ)アクリル酸、(メタ)アクリル酸とマレイン酸とのコポリマー等の(メタ)アクリル酸コポリマー、オレフィンとマレイン酸とのコポリマー、マレイン酸とアリルアルコールのエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイド付加物とのコポリマー、アリルスルホン酸とマレイン酸とのコポリマー等、又は、これらのナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。これらの中でも、ポリアクリル酸、アクリル酸とマレイン酸とのコポリマー、又は、これらのアルカリ金属塩が好ましく、アクリル酸とマレイン酸とのコポリマー又はそのアルカリ金属塩がより好ましく、アクリル酸とマレイン酸とのコポリマーのナトリウム塩がさらに好ましい。
 リン酸化合物としては、例えば、トリポリリン酸、ピロリン酸、テトラメタリン酸、ヘキサメタリン酸、オルトリン酸、亜リン酸等の無機リン酸;アミノトリメチレンホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸等の有機ホスホン酸;又は、これらのナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。これらの中でも、トリポリリン酸、ピロリン酸、ヘキサメタリン酸、又は、これらのアルカリ金属塩が好ましく、トリポリリン酸ナトリウムがより好ましい。
(Additive)
The cerium-based abrasive material of this embodiment contains additives such as glycols such as ethylene glycol and polyethylene glycol, polyacrylate, etc., in order to improve dispersibility, prevent sedimentation, prevent solidification, improve stability, and improve workability. Even if sodium salts of acids, polymeric dispersants such as polycarboxylic acid polymers and polysulfonic acid polymers, cellulose ethers such as methylcellulose and carboxymethylcellulose, water-soluble polymers such as polyvinyl alcohol, and phosphoric acid compounds are added. good. These may be used alone or in combination of two or more. When adding additives, among these, polymer dispersants, phosphoric acid compounds, and cellulose ethers are preferred from the viewpoint of further improving dispersibility, preventing sedimentation, preventing solidification, improving stability, and improving workability.
Examples of polymeric dispersants include poly(meth)acrylic acid, polyhydroxy(meth)acrylic acid, (meth)acrylic acid copolymers such as copolymers of (meth)acrylic acid and maleic acid, and copolymers of olefin and maleic acid. Examples include copolymers, copolymers of maleic acid and allyl alcohol with alkylene oxide adducts such as ethylene oxide and propylene oxide, copolymers of allylsulfonic acid and maleic acid, and alkali metal salts thereof such as sodium salts and potassium salts. It will be done. Among these, polyacrylic acid, a copolymer of acrylic acid and maleic acid, or an alkali metal salt thereof is preferable, a copolymer of acrylic acid and maleic acid or an alkali metal salt thereof is more preferable, and a copolymer of acrylic acid and maleic acid or an alkali metal salt thereof is more preferable. Even more preferred is the sodium salt of a copolymer of .
Examples of phosphoric acid compounds include inorganic phosphoric acids such as tripolyphosphoric acid, pyrophosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, orthophosphoric acid, and phosphorous acid; aminotrimethylenephosphonic acid, and 1-hydroxyethylidene-1,1-diphosphonic acid. , organic phosphonic acids such as ethylenediaminetetramethylenephosphonic acid and diethylenetriaminepentamethylenephosphonic acid; or alkali metal salts thereof such as sodium salts and potassium salts. Among these, tripolyphosphoric acid, pyrophosphoric acid, hexametaphosphoric acid, or alkali metal salts thereof are preferred, and sodium tripolyphosphate is more preferred.
 セリウム系研磨材が添加剤を含む場合、混合希土類研磨材粒子100質量部に対する添加剤の含有量は、分散性向上、沈降防止、固化防止、安定性向上及び作業性向上の観点から、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.3質量部以上、よりさらに好ましくは0.5質量部以上であり、コストの観点から、好ましくは10.0質量部以下、より好ましくは5.0質量部以下、さらに好ましくは3.0質量部以下である。
 また、セリウム系研磨材が添加剤を含む場合、セリウム系研磨材中における添加剤の含有量は、分散性向上、沈降防止、固化防止、安定性向上及び作業性向上の観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上、よりさらに好ましくは0.5質量%以上であり、コストの観点から、好ましくは10.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは3.0質量%以下である。
When the cerium-based abrasive contains an additive, the content of the additive relative to 100 parts by mass of the mixed rare earth abrasive particles is preferably from the viewpoint of improving dispersibility, preventing sedimentation, preventing solidification, improving stability, and improving workability. The amount is 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, even more preferably 0.3 parts by mass or more, even more preferably 0.5 parts by mass or more, and from the viewpoint of cost, preferably 10.0 parts by mass or more. It is not more than 5.0 parts by mass, more preferably not more than 3.0 parts by mass.
Further, when the cerium-based abrasive contains an additive, the content of the additive in the cerium-based abrasive is preferably 0 from the viewpoint of improving dispersibility, preventing sedimentation, preventing solidification, improving stability, and improving workability. .01% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.3% by mass or more, even more preferably 0.5% by mass or more, and from the viewpoint of cost, preferably 10.0% by mass. % or less, more preferably 5.0% by mass or less, still more preferably 3.0% by mass or less.
[セリウム系研磨材の製造方法]
 セリウム系研磨材の製造方法は特に限定されるものではないが、具体的には、混合軽希土化合物を調製する工程(1)と、混合軽希土化合物から、混合酸化希土原料を製造する工程(2)と、前記混合酸化希土原料を、湿式粉砕後、焼成、解砕及び分級し、混合希土類研磨材粒子を得る工程(3)とを経ることにより、セリウム系研磨材を製造することが好ましい。また、より肌荒れ及び皮膚炎の発生を抑制する観点から、前記工程(3)の後に、さらにランタン溶解抑制剤を添加混合する、またはランタン溶解抑制剤を含有する第二剤を調製する工程(4)を経ることにより、セリウム系研磨材を製造することがより好ましい。ここで言う「混合」も、上述した混合希土類研磨材粒子の「混合」と同義である。
 以下、各工程を順に説明する。
[Method for manufacturing cerium-based abrasive]
The method for producing the cerium-based abrasive is not particularly limited, but specifically includes the step (1) of preparing a mixed light rare earth compound, and the production of a mixed rare earth oxide raw material from the mixed light rare earth compound. A cerium-based abrasive is produced through step (2) of wet-pulverizing the mixed rare earth oxide raw material, followed by firing, crushing, and classification to obtain mixed rare earth abrasive particles. It is preferable to do so. In addition, from the viewpoint of further suppressing the occurrence of rough skin and dermatitis, a step (4) of further adding and mixing a lanthanum dissolution inhibitor after the step (3), or preparing a second agent containing a lanthanum dissolution inhibitor (4) ) It is more preferable to produce a cerium-based abrasive. "Mixing" here is also synonymous with "mixing" of the mixed rare earth abrasive particles described above.
Each step will be explained in order below.
(工程(1))
 工程(1)では、混合軽希土化合物を調製する。
 混合軽希土化合物の調製方法は、特に限定されるものではない。混合軽希土化合物は、例えば、希土類元素を含む鉱石から希土類元素以外の不純物成分及び中重希土を化学的処理により分離して低減させることにより得られる。混合軽希土化合物としては、アルカリ金属、アルカリ土類金属及び放射性物質等の非希土類成分の不純物成分、並びに中重希土の含有量が低減されているものが好ましい。
 なお、本明細書において、中重希土とは、Pmより原子番号が大きい希土類元素を指し、中重希土以外の希土類元素を軽希土と言うものとする。
 希土類元素を含む鉱石としては、例えば、Ceを多く含む、天然のモナザイトやバストネサイト等の原料鉱石から得られる希土精鉱等が好適に用いられる。
(Step (1))
In step (1), a mixed light rare earth compound is prepared.
The method for preparing the mixed light rare earth compound is not particularly limited. The mixed light rare earth compound can be obtained, for example, by separating and reducing impurity components other than rare earth elements and medium and heavy rare earths from an ore containing rare earth elements by chemical treatment. The mixed light rare earth compound is preferably one in which the content of impurity components such as alkali metals, alkaline earth metals, and non-rare earth components such as radioactive substances, as well as the content of medium and heavy rare earths is reduced.
In this specification, medium-heavy rare earth refers to a rare earth element having an atomic number larger than Pm, and rare earth elements other than medium-heavy rare earth are referred to as light rare earth.
As the ore containing rare earth elements, for example, rare earth concentrate obtained from raw material ores such as natural monazite and bastnasite, which contain a large amount of Ce, are preferably used.
 混合軽希土化合物の調製において、不純物成分の含有量を低減させる化学的処理方法としては、硫酸焙焼が一般的な方法である。硫酸焙焼は、粉砕された前記原料鉱石を硫酸とともに焙焼して硫酸塩(硫酸希土)を生成し、この硫酸塩を水に溶解して硫酸希土溶液とし、不溶物である不純物成分をろ過等により除去する方法である。混合軽希土化合物中の不純物成分の含有量は、1.0質量%以下にまで低減されることが好ましい。
 また、中重希土の含有量を低減させる化学的処理方法としては、例えば、前記硫酸焙焼後の硫酸希土溶液に炭酸塩を加えて、粗炭酸希土とした後、これに塩酸を加えて、混合塩化希土水溶液とし、有機溶媒を用いて溶媒抽出することにより行うことができる。溶媒抽出においては、必要に応じて、抽出の程度の調整や添加剤等の使用等の公知の方法を用いて、セリウム、ランタン及びその他の軽希土の各含有量を調整することができる。混合軽希土化合物中の中重希土の含有量は、1.0質量%以下にまで低減されることが好ましい。
In the preparation of mixed light rare earth compounds, sulfuric acid roasting is a common chemical treatment method for reducing the content of impurity components. In sulfuric acid roasting, the pulverized raw material ore is roasted with sulfuric acid to produce sulfate (rare earth sulfate), and this sulfate is dissolved in water to form a rare earth sulfate solution, which removes impurity components that are insoluble matter. This method removes the substances by filtration or the like. The content of impurity components in the mixed light rare earth compound is preferably reduced to 1.0% by mass or less.
In addition, as a chemical treatment method for reducing the content of medium and heavy rare earth, for example, carbonate is added to the sulfuric acid rare earth solution after the sulfuric acid roasting to obtain crude rare earth carbonate, and then hydrochloric acid is added to this. In addition, it can be carried out by preparing a mixed rare earth chloride aqueous solution and performing solvent extraction using an organic solvent. In the solvent extraction, the contents of cerium, lanthanum, and other light rare earths can be adjusted as necessary using known methods such as adjusting the degree of extraction and using additives. The content of medium and heavy rare earths in the mixed light rare earth compound is preferably reduced to 1.0% by mass or less.
(工程(2))
 工程(2)では、混合軽希土化合物から、混合酸化希土原料を製造する。
 混合軽希土化合物から、混合酸化希土原料を製造する方法は、特に限定されるものではない。混合酸化希土原料は、例えば、混合軽希土化合物と、炭酸ナトリウムや重炭酸アンモニウム等を用いて、炭酸塩である混合炭酸希土を製造し、混合炭酸希土を焼成することにより得られる。
 混合炭酸希土を焼成して混合酸化希土原料を得る際の焼成温度は、混合炭酸希土の組成に応じて適宜調整されるが、500~1200℃であることが好ましく、より好ましくは600~1100℃、さらに好ましくは700~1000℃である。焼成時間は、0.5~48時間であることが好ましく、より好ましくは1~40時間、さらに好ましくは1.5~30時間である。焼成雰囲気は、大気雰囲気中であることが好ましい。
 混合酸化希土原料は、焼成後に、機械的な方法で解砕して、所望の粒径の粒子に調整してもよい。
(Step (2))
In step (2), a mixed rare earth oxide raw material is produced from the mixed light rare earth compound.
The method for producing the mixed rare earth oxide raw material from the mixed light rare earth compound is not particularly limited. The mixed rare earth oxide raw material is obtained by, for example, producing mixed rare earth carbonate, which is a carbonate, using a mixed light rare earth compound, sodium carbonate, ammonium bicarbonate, etc., and then firing the mixed rare earth carbonate. .
The firing temperature when firing the mixed rare earth carbonate to obtain the mixed rare earth oxide raw material is adjusted appropriately depending on the composition of the mixed rare earth carbonate, but is preferably 500 to 1200°C, more preferably 600°C. ~1100°C, more preferably 700~1000°C. The firing time is preferably 0.5 to 48 hours, more preferably 1 to 40 hours, and still more preferably 1.5 to 30 hours. The firing atmosphere is preferably an air atmosphere.
After firing, the mixed rare earth oxide raw material may be crushed by a mechanical method to adjust it to particles having a desired particle size.
 なお、混合酸化希土原料は、市販もされており、市販品を用いてもよい。混合酸化希土原料は、例えば、混合炭酸希土や混合モノオキシ炭酸希土、混合シュウ酸希土、混合水酸化希土等の混合軽希土化合物を焼成することにより得ることができることから、市販品の混合酸化希土原料中には、その製造原料である混合炭酸希土や混合モノオキシ炭酸希土、混合シュウ酸希土等が残存している場合もある。 Note that the mixed rare earth oxide raw material is also commercially available, and commercially available products may be used. Mixed rare earth oxide raw materials can be obtained by firing mixed light rare earth compounds such as mixed rare earth carbonate, mixed monooxy rare earth carbonate, mixed rare earth oxalate, and mixed rare earth hydroxide, and are therefore commercially available. In the mixed rare earth oxide raw material of the product, mixed rare earth carbonate, mixed rare earth monooxycarbonate, mixed rare earth oxalate, etc., which are the manufacturing raw materials, may remain in the mixed rare earth oxide raw material of the product.
(工程(3))
 工程(3)は、前記混合酸化希土原料を、湿式粉砕後、焼成、解砕及び分級し、混合希土類研磨材粒子を得る。
 湿式粉砕は、均質な混合希土類研磨材粒子を得る観点から、湿式ボールミル等の媒体ミルを用いて行うことが好ましい。分散媒としては、水、水溶性有機溶媒等が好適に用いられる。
 湿式粉砕後、乾燥、焼成、解砕、及び分級することにより、混合希土類研磨材粒子が得られる。
 乾燥、焼成、解砕及び分級は、従来の混合希土類研磨材粒子の製造において適用される方法と同様に行うことができる。
(Step (3))
In step (3), the mixed rare earth oxide raw material is wet-pulverized, then fired, crushed, and classified to obtain mixed rare earth abrasive particles.
Wet pulverization is preferably carried out using a media mill such as a wet ball mill from the viewpoint of obtaining homogeneous mixed rare earth abrasive particles. As the dispersion medium, water, water-soluble organic solvents, etc. are preferably used.
After wet pulverization, mixed rare earth abrasive particles are obtained by drying, firing, crushing, and classifying.
Drying, calcination, crushing and classification can be carried out in a manner similar to that applied in the production of conventional mixed rare earth abrasive particles.
 また、焼成により被焼成物原料を十分に反応させる観点から、焼成温度は、600~1200℃であることが好ましく、より好ましくは650~1150℃、さらに好ましくは700~1100℃である。目標設定温度での焼成時間は、好ましくは0.1~10時間、より好ましくは0.5~6時間、さらに好ましくは0.5~4時間である。焼成雰囲気は、大気中であることが好ましい。 In addition, from the viewpoint of sufficiently reacting the raw material of the object to be fired by firing, the firing temperature is preferably 600 to 1200°C, more preferably 650 to 1150°C, and still more preferably 700 to 1100°C. The firing time at the target temperature is preferably 0.1 to 10 hours, more preferably 0.5 to 6 hours, and even more preferably 0.5 to 4 hours. The firing atmosphere is preferably air.
 研磨速度向上の観点から、混合希土類研磨材粒子にフッ素原子を含有させる場合がある。その場合には、フッ素原子を含有させる方法は特に限定されるものではないが、混合酸化希土原料に混合フッ化希土原料を混合し、湿式粉砕後、焼成、解砕及び分級し、混合希土類研磨材粒子を得る方法が好ましい。 From the viewpoint of improving the polishing rate, mixed rare earth abrasive particles may contain fluorine atoms. In that case, the method of incorporating fluorine atoms is not particularly limited, but the mixed fluorinated rare earth raw material is mixed with the mixed rare earth oxide raw material, wet-pulverized, calcined, crushed and classified, and then mixed. Preferred are methods for obtaining rare earth abrasive particles.
 混合フッ化希土原料を得る方法は、特に限定されるものではないが、例えば、前記混合軽希土化合物に、フッ酸、フッ化アンモニウムまたは酸性フッ化アンモニウム等のフッ化物をフッ素源として添加し、熱処理することにより得ることができる。前記熱処理は、均質で研磨特性に優れたセリウム系研磨材を得る観点から、400℃以下であることが好ましい。なお、熱処理雰囲気は、大気中であることが好ましい。熱処理時間は、0.1~10時間であることが好ましく、より好ましくは0.5~5時間、さらに好ましくは1.0~4時間である。焼成雰囲気は、大気雰囲気中であることが好ましい。
 混合酸化希土原料に混合フッ化希土原料を混合して混合希土類研磨材粒子を得る方法は、フッ化アンモニウムやフッ酸等のフッ化物を直接混合酸化希土原料に添加して混合希土類研磨材粒子を得る方法よりも、安全かつ低コストであり、フッ素を含む混合希土類研磨材粒子を容易に得ることができる。
The method for obtaining the mixed rare earth fluoride raw material is not particularly limited, but for example, a fluoride such as hydrofluoric acid, ammonium fluoride, or acidic ammonium fluoride is added to the mixed light rare earth compound as a fluorine source. It can be obtained by heat treatment. The temperature of the heat treatment is preferably 400° C. or lower from the viewpoint of obtaining a cerium-based abrasive that is homogeneous and has excellent polishing properties. Note that the heat treatment atmosphere is preferably in the air. The heat treatment time is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours, and still more preferably 1.0 to 4 hours. The firing atmosphere is preferably an air atmosphere.
A method of obtaining mixed rare earth abrasive particles by mixing a mixed fluorinated rare earth raw material with a mixed rare earth oxide raw material is to add fluorides such as ammonium fluoride or hydrofluoric acid directly to the mixed rare earth oxide raw material to obtain mixed rare earth polishing. This method is safer and lower cost than the method of obtaining raw material particles, and can easily obtain mixed rare earth abrasive particles containing fluorine.
 前記混合フッ化希土原料中のTREOは、好ましくは75質量%以上、より好ましくは80質量%以上、さらに好ましくは82質量%以上である。また、前記混合フッ化希土原料は、含有する全希土類元素のうちセリウムを主成分とするものであることが好ましい。TREO中におけるセリウムの酸化物換算量含有量(CeO量/TREO)は、55.0質量%以上であることが好ましく、研磨速度向上の観点から、より好ましくは60.0質量%以上、さらに好ましくは62.0質量%以上、よりさらに好ましくは64.0質量%以上である。また、CeO量/TREOは、Ce以外の希土類元素の含有量を確保し、研磨面の表面欠陥の発生を抑制する観点から、好ましくは90.0質量%以下、より好ましくは80.0質量%以下、さらに好ましくは75.0質量%以下、さらにより好ましくは70.0質量%以下である。 TREO in the mixed rare earth fluoride raw material is preferably 75% by mass or more, more preferably 80% by mass or more, and even more preferably 82% by mass or more. Further, it is preferable that the mixed rare earth fluoride raw material contains cerium as a main component among all rare earth elements contained. The cerium oxide equivalent content ( CeO2 amount/TREO) in TREO is preferably 55.0% by mass or more, more preferably 60.0% by mass or more from the viewpoint of improving the polishing rate, and further Preferably it is 62.0% by mass or more, and even more preferably 64.0% by mass or more. In addition, from the viewpoint of ensuring the content of rare earth elements other than Ce and suppressing the occurrence of surface defects on the polished surface, the amount of CeO2 /TREO is preferably 90.0% by mass or less, more preferably 80.0% by mass. % or less, more preferably 75.0% by mass or less, even more preferably 70.0% by mass or less.
 また、前記混合フッ化希土原料中のフッ素原子含有量は、好ましくは10~30質量%、より好ましくは15~30質量%、さらに好ましくは20~30質量%である。
 混合酸化希土原料に添加される混合フッ化希土原料の量は、製造するセリウム系研磨材に要求されるフッ素原子含有量に応じて適宜決定される。優れた研磨特性を得る観点から、混合酸化希土原料と混合フッ化希土原料の合計100質量%に対して、混合フッ化希土原料の量が、1~40質量%となるように添加されることが好ましく、より好ましくは3~35質量%、さらに好ましくは5~30質量%である。
Further, the fluorine atom content in the mixed rare earth fluoride raw material is preferably 10 to 30% by mass, more preferably 15 to 30% by mass, and still more preferably 20 to 30% by mass.
The amount of the mixed rare earth fluoride raw material added to the mixed rare earth oxide raw material is appropriately determined depending on the fluorine atom content required for the cerium-based abrasive to be manufactured. From the viewpoint of obtaining excellent polishing properties, the amount of the mixed rare earth fluoride raw material is added in an amount of 1 to 40% by mass relative to the total of 100% by mass of the mixed rare earth oxide raw material and the mixed rare earth fluoride raw material. The amount is preferably 3 to 35% by weight, and even more preferably 5 to 30% by weight.
(工程(4))
 工程(4)は、工程(3)の後、工程(3)で得られた混合希土類研磨材粒子にランタン溶解抑制剤を添加混合する、またはランタン溶解抑制剤を含有する第二剤を調製する。
 本実施形態においては、セリウム系研磨材が一剤型の場合、工程(4)を経ず、混合希土類研磨材粒子をそのままセリウム系研磨材としてもよいし、工程(3)で得られた混合希土類研磨材粒子に、ランタン溶解抑制剤を添加混合して、セリウム系研磨材としてもよい。また、必要に応じて、ランタン溶解抑制剤と共に添加剤を添加混合してもよい。
 混合の方法は、特に限定されるものではなく、例えば、バッチ式撹拌機等の撹拌機で混合してもよく、また、ボールミルやビーズミル等の媒体ミルを用いて混合してもよい。
 本実施形態においては、セリウム系研磨材が二剤型の場合、工程(4)により、ランタン溶解抑制剤を含有する第二剤を調製する。
 本実施形態においては、セリウム系研磨材が前記混合希土類研磨材粒子を含有する第一剤と、ランタン溶解抑制剤を含有する第二剤とを含有する二剤型の場合、前記混合希土類研磨材粒子を含有する第一剤と、ランタン溶解抑制剤を含有する第二剤とに分けて準備し、研磨液製造時に、第一剤と第二剤を混合してもよい。
 前記第二剤には、ランタン溶解抑制剤の他、水、水溶性有機溶媒、添加剤等が含まれていてもよく、含まれていなくてもよい。
(Step (4))
Step (4) is, after step (3), adding and mixing a lanthanum dissolution inhibitor to the mixed rare earth abrasive particles obtained in step (3), or preparing a second agent containing a lanthanum dissolution inhibitor. .
In the present embodiment, when the cerium-based abrasive is a one-component type, the mixed rare earth abrasive particles may be directly used as the cerium-based abrasive without going through step (4), or the mixed rare earth abrasive particles obtained in step (3) may be used as the cerium-based abrasive. A cerium-based abrasive may be obtained by adding and mixing a lanthanum dissolution inhibitor to rare earth abrasive particles. Further, if necessary, additives may be added and mixed together with the lanthanum dissolution inhibitor.
The mixing method is not particularly limited, and for example, the mixture may be mixed using a stirrer such as a batch type stirrer, or may be mixed using a medium mill such as a ball mill or a bead mill.
In this embodiment, when the cerium-based abrasive is a two-part type, a second part containing a lanthanum dissolution inhibitor is prepared in step (4).
In this embodiment, when the cerium-based abrasive is a two-part type containing a first part containing the mixed rare earth abrasive particles and a second part containing a lanthanum dissolution inhibitor, the mixed rare earth abrasive A first part containing particles and a second part containing a lanthanum dissolution inhibitor may be prepared separately, and the first part and second part may be mixed at the time of manufacturing the polishing liquid.
The second agent may or may not contain water, a water-soluble organic solvent, additives, etc. in addition to the lanthanum dissolution inhibitor.
[研磨液]
 本実施形態の研磨液は、上記のようなセリウム系研磨材と、水及び水溶性有機溶媒から選ばれる1種以上を含有する。前記研磨液は、より肌荒れ及び皮膚炎の発生を抑制する観点から、ランタン溶解抑制剤を含有することが好ましい。また、前記研磨液は、セリウム系研磨材、水及び水溶性有機溶媒から選ばれる1種以上、及びランタン溶解抑制剤以外の成分を含有してもよい。
 本実施形態の研磨液は、人体の皮膚への付着により発生する肌荒れや皮膚炎等が抑制された研磨液である。
[Polishing liquid]
The polishing liquid of this embodiment contains the above-mentioned cerium-based abrasive and one or more selected from water and a water-soluble organic solvent. The polishing liquid preferably contains a lanthanum dissolution inhibitor from the viewpoint of further suppressing the occurrence of rough skin and dermatitis. Further, the polishing liquid may contain components other than a cerium-based abrasive, one or more selected from water and a water-soluble organic solvent, and a lanthanum dissolution inhibitor.
The polishing liquid of this embodiment is a polishing liquid that suppresses skin roughness, dermatitis, etc. caused by adhesion to human skin.
 前記研磨液は、良好な研磨性能を発揮させる観点、また、コストの観点から、研磨液中におけるセリウム系研磨材の含有量が、0.1~40.0質量%の範囲内で使用されることが好ましく、より好ましくは1.0~35.0質量%、さらに好ましくは3.0~30.0質量%、よりさらに好ましくは5.0~20.0質量%である。
 なお、前記研磨液は、研磨対象や研磨装置の仕様等を考慮して、該研磨液の調製時に、必要に応じて、研磨性能を妨げない範囲内において、例えば、pH調整剤、消泡剤、防錆剤等の添加剤が添加されたものであってもよい。
The polishing liquid is used in such a manner that the content of the cerium-based abrasive in the polishing liquid is in the range of 0.1 to 40.0% by mass from the viewpoint of exhibiting good polishing performance and from the viewpoint of cost. It is preferably from 1.0 to 35.0% by weight, even more preferably from 3.0 to 30.0% by weight, even more preferably from 5.0 to 20.0% by weight.
In addition, the polishing liquid may be added with, for example, a pH adjuster or an antifoaming agent, if necessary, within a range that does not impede the polishing performance, when preparing the polishing liquid, taking into account the polishing target and the specifications of the polishing apparatus. , an additive such as a rust preventive agent may be added.
 前記研磨液は、特に、光ディスクや磁気ディスク用のガラス基板、液晶ディスプレイ用のガラス基板、カラーフィルターやフォトマスク用のガラス基板、光学レンズ用のガラス基板等、各種ガラス材及びガラス製品の仕上げ研磨に好適に用いられる。 The polishing liquid is particularly suitable for final polishing of various glass materials and glass products, such as glass substrates for optical disks and magnetic disks, glass substrates for liquid crystal displays, glass substrates for color filters and photomasks, and glass substrates for optical lenses. It is suitably used for.
[研磨液の製造方法]
 本発明の研磨液の製造方法は、上記のようなセリウム系研磨材と、水及び水溶性有機溶媒から選ばれる1種以上を含有する研磨液を製造する方法である。
 本発明の一態様において、研磨液の製造方法は、前記セリウム系研磨材と、前記水及び前記水溶性有機溶媒から選ばれる1種以上と、を混合してスラリー化する工程(I)を含む。この場合、前記セリウム系研磨材は、前記ランタン溶解抑制剤を含有するものであってもよく、含有しないものであってもよい。
[Manufacturing method of polishing liquid]
The method for producing a polishing liquid of the present invention is a method for producing a polishing liquid containing the above-mentioned cerium-based abrasive and one or more selected from water and a water-soluble organic solvent.
In one aspect of the present invention, the method for producing a polishing liquid includes a step (I) of mixing the cerium-based abrasive and one or more selected from the water and the water-soluble organic solvent to form a slurry. . In this case, the cerium-based abrasive may or may not contain the lanthanum dissolution inhibitor.
 なお、セリウム系研磨材が、混合希土類研磨材粒子を含有する第一剤と、ランタン溶解抑制剤を含有する第二剤とを含有する二剤型である場合、前記セリウム系研磨材として、第一剤と第二剤を用いて工程(I)を行う。 In addition, when the cerium-based abrasive is a two-part type containing a first part containing mixed rare earth abrasive particles and a second part containing a lanthanum dissolution inhibitor, the cerium-based abrasive is Step (I) is performed using the first agent and the second agent.
 工程(I)において、スラリー化する方法は特に限定されるものではないが、例えば、撹拌機で混合してスラリー化してもよく、また、湿式ボールミルや、アトライター、ビーズミル等の粉砕機を用いてスラリー化してもよい。 In step (I), the method of making the slurry is not particularly limited, but for example, it may be made into a slurry by mixing with a stirrer, or it may be made using a grinder such as a wet ball mill, an attritor, or a bead mill. It may also be made into a slurry.
 本発明の他の態様において、研磨液の製造方法は、前記セリウム系研磨材と、前記ランタン溶解抑制剤と、前記水及び前記水溶性有機溶媒から選ばれる1種以上と、を混合してスラリー化する工程(II)を含む。この場合、前記セリウム系研磨材は、前記ランタン溶解抑制剤を含有するものであってもよく、含有しないものであってもよい。
 工程(II)におけるスラリー化する方法は、前記工程(I)におけるスラリー化する方法と同様である。
In another aspect of the present invention, the method for producing a polishing liquid comprises mixing the cerium-based abrasive, the lanthanum dissolution inhibitor, and one or more selected from the water and the water-soluble organic solvent to form a slurry. (II). In this case, the cerium-based abrasive may or may not contain the lanthanum dissolution inhibitor.
The method of making a slurry in step (II) is the same as the method of making a slurry in step (I).
 本発明のさらに他の態様において、研磨液の製造方法は、前記セリウム系研磨材と、前記水及び前記水溶性有機溶媒から選ばれる1種以上と、を混合してスラリー化する工程(III)と、前記工程(III)で得られたスラリーに、前記ランタン溶解抑制剤を添加混合する工程(IV)を含む。前記セリウム系研磨材は、前記ランタン溶解抑制剤を含有するものであってもよく、含有しないものであってもよい。
 工程(III)におけるスラリー化する方法は、前記工程(I)におけるスラリー化する方法と同様である。
In yet another aspect of the present invention, the method for producing a polishing liquid includes a step (III) of mixing the cerium-based polishing material and one or more selected from the water and the water-soluble organic solvent to form a slurry. and a step (IV) of adding and mixing the lanthanum dissolution inhibitor to the slurry obtained in the step (III). The cerium-based abrasive may or may not contain the lanthanum dissolution inhibitor.
The method of making a slurry in step (III) is the same as the method of making a slurry in step (I).
[ガラス研磨方法]
 本発明のガラス研磨方法は、上記のような研磨液を用いて研磨を行う方法である。
 前記ガラス研磨方法は、前記研磨液を用いること以外、特に限定されるものではなく、公知の研磨装置等を用いた方法を適用することができる。前記研磨液は、例えば、片面研磨機や両面研磨機で、ガラス材の鏡面研磨等の仕上げ研磨する際に公知の方法で使用することができる。
[Glass polishing method]
The glass polishing method of the present invention is a method of polishing using the above polishing liquid.
The glass polishing method is not particularly limited other than using the polishing liquid, and a method using a known polishing device or the like can be applied. The polishing liquid can be used in a known manner when performing final polishing such as mirror polishing of a glass material using, for example, a single-sided polisher or a double-sided polisher.
 以下、本発明を、実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。
 なお、混合酸化希土原料の調製、混合フッ化希土原料の調製、実施例、及び比較例におけるTREO、TREO中における各希土類元素の酸化物換算含有量(CeO量/TREO、La量/TREO、Nd量/TREO、Pr11量/TREO)、及びフッ素原子含有量は、以下のようにして求めた。
〔TREO〕
 測定試料を酸溶解した溶液に、アンモニア水を添加した。生成した沈殿物を、ろ過、洗浄してアルカリ金属を除去した後、再び酸溶解した。この溶液にシュウ酸を添加し、生成した沈殿物を大気中で、800℃で2時間焼成して、重量法にてTREOを求めた。なお、混合希土類研磨材粒子のTREOは「焼成後得られた全希土類酸化物質量/酸溶解処理前の混合希土類研磨材粒子質量」から得られ、セリウム研磨材のTREOは「焼成後得られた全希土類酸化物質量/酸溶解処理前のセリウム研磨材質量」から得られる。
〔TREO中における各希土類元素の酸化物換算含有量〕
 測定試料を酸溶解し、ICP-AES法で測定された各希土類元素量を、酸化物として換算した値のTREOに対する値を算出することにより求めた。
〔フッ素原子含有量〕
 測定試料をアルカリ溶融して温水抽出し、フッ素イオン計(株式会社堀場製作所製;イオン電極法)で測定した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples.
In addition, TREO in the preparation of the mixed rare earth oxide raw material, the preparation of the mixed fluoride rare earth raw material, Examples, and Comparative Examples, the oxide equivalent content of each rare earth element in TREO ( CeO2 amount/TREO, La2O The fluorine atom content was determined as follows.
[TREO]
Aqueous ammonia was added to a solution in which the measurement sample was dissolved in acid. The generated precipitate was filtered and washed to remove alkali metals, and then dissolved in acid again. Oxalic acid was added to this solution, and the resulting precipitate was calcined in the air at 800° C. for 2 hours, and TREO was determined by gravimetric method. The TREO of the mixed rare earth abrasive particles is obtained from "the total amount of rare earth oxide obtained after firing/the mass of the mixed rare earth abrasive particles before acid dissolution treatment", and the TREO of the cerium abrasive is obtained from "the total amount of rare earth oxide obtained after firing/the mass of the mixed rare earth abrasive particles before acid dissolution treatment". It is obtained from the formula: total amount of rare earth oxide substances/mass of cerium abrasive material before acid dissolution treatment.
[Oxide equivalent content of each rare earth element in TREO]
The measurement sample was dissolved in acid, and the amount of each rare earth element measured by the ICP-AES method was determined by calculating the value of the value converted as an oxide relative to TREO.
[Fluorine atom content]
The measurement sample was melted with an alkali, extracted with hot water, and measured with a fluorine ion meter (manufactured by Horiba, Ltd.; ion electrode method).
[混合酸化希土原料の調製]
(混合酸化希土原料A)
 TREOを47質量%、中重希土を酸化物換算で2質量%、ネオジムを酸化物換算で8質量%含有する原料鉱石(希土精鉱)を、硫酸培焼法及び溶媒抽出法により処理し、希土類元素以外の不純物成分を1質量%以下、中重希土を酸化物換算で1質量%以下に低減して、希土類元素の含有量を調整した混合軽希土化合物を得た。この混合軽希土化合物は、TREO中におけるセリウムの酸化物換算([CeO2])含有量(CeO2量/TREO)が64.7質量%、ランタンの酸化物換算([La23])含有量(La23量/TREO)が34.1質量%、ネオジムの酸化物換算([Nd23])含有量(Nd23量/TREO)が0.6質量%、プラセオジムの酸化物換算([Pr611])含有量(Pr611量/TREO)が0.2質量%であった。
 この混合軽希土化合物を、重炭酸アンモニウムで処理し、混合炭酸希土を得た。なお、混合炭酸希土は、TREOが49質量%であった。
 この混合炭酸希土を、焼成炉にて大気中で、800℃で10時間熱処理し、混合酸化希土原料Aを得た。混合酸化希土原料AのTREO、CeO2量/TREO、La23量/TREO、Nd23量/TREO、及びPr611量/TREOを表1に示す。
[Preparation of mixed rare earth oxide raw material]
(Mixed rare earth oxide raw material A)
Raw material ore (rare earth concentrate) containing 47% by mass of TREO, 2% by mass of medium-heavy rare earths in terms of oxides, and 8% by mass of neodymium in terms of oxides was processed by sulfuric acid incubation method and solvent extraction method. A mixed light rare earth compound with an adjusted content of rare earth elements was obtained by reducing impurity components other than rare earth elements to 1% by mass or less and medium and heavy rare earths to 1% by mass or less in terms of oxides. This mixed light rare earth compound has a cerium oxide equivalent ([CeO 2 ]) content (CeO 2 amount/TREO) of 64.7% by mass in TREO and a lanthanum oxide equivalent ([La 2 O 3 ] ) content (La 2 O 3 amount/TREO) is 34.1% by mass, neodymium oxide equivalent ([Nd 2 O 3 ]) content (Nd 2 O 3 amount/TREO) is 0.6% by mass, The praseodymium oxide equivalent ([Pr 6 O 11 ]) content (Pr 6 O 11 amount/TREO) was 0.2% by mass.
This mixed light rare earth compound was treated with ammonium bicarbonate to obtain a mixed rare earth carbonate. Note that the mixed rare earth carbonate had a TREO content of 49% by mass.
This mixed rare earth carbonate was heat treated at 800° C. for 10 hours in the atmosphere in a firing furnace to obtain a mixed rare earth oxide raw material A. Table 1 shows the TREO, amount of CeO 2 /TREO, amount of La 2 O 3 /TREO, amount of Nd 2 O 3 /TREO, and amount of Pr 6 O 11 /TREO of mixed rare earth oxide raw material A.
(混合酸化希土原料B~E)
 混合酸化希土原料Aの調製と同様に、混合軽希土化合物を用いて、その処理条件及び混合炭酸希土の熱処理条件を調整することにより、混合酸化希土原料B~Eをそれぞれ調製した。混合酸化希土原料B~EのTREO、CeO2量/TREO、La23量/TREO、Nd23量/TREO、及びPr611量/TREOを表1に示す。
(Mixed rare earth oxide raw materials B to E)
In the same way as in the preparation of mixed rare earth oxide raw material A, mixed rare earth oxide raw materials B to E were prepared by using a mixed light rare earth compound and adjusting the treatment conditions thereof and the heat treatment conditions of mixed rare earth carbonate. . Table 1 shows the TREO, CeO 2 amount/TREO, La 2 O 3 amount/TREO, Nd 2 O 3 amount/TREO, and Pr 6 O 11 amount/TREO of the mixed rare earth oxide raw materials B to E.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[混合フッ化希土原料の調製]
(混合フッ化希土原料F)
 混合軽希土化合物に、フッ酸を加えて混合した後、大気中にて400℃で2時間熱処理し、混合フッ化希土原料Fを得た。この混合フッ化希土原料FのTREO、CeO2量/TREO、及びフッ素含有量を表2に示す。
[Preparation of mixed fluorinated rare earth raw materials]
(Mixed fluorinated rare earth raw material F)
After adding and mixing hydrofluoric acid to the mixed light rare earth compound, the mixture was heat-treated at 400° C. for 2 hours in the air to obtain a mixed rare earth fluoride raw material F. Table 2 shows the TREO, CeO 2 amount/TREO, and fluorine content of this mixed rare earth fluoride raw material F.
(混合フッ化希土原料G~I)
 混合フッ化希土原料Fの調製と同様に、混合軽希土化合物を用いてその処理条件を調整することにより、混合フッ化希土原料G~Iをそれぞれ調整した。混合フッ化希土原料G~IのTREO、CeO2量/TREO、フッ素含有量を表2に示す。
(Mixed fluorinated rare earth raw materials G to I)
Similarly to the preparation of mixed rare earth fluoride raw material F, mixed rare earth fluoride raw materials G to I were each prepared by adjusting the treatment conditions using a mixed light rare earth compound. Table 2 shows the TREO, CeO 2 amount/TREO, and fluorine content of the mixed rare earth fluoride raw materials G to I.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[セリウム系研磨材の製造]
 セリウム系研磨材を下記の実施例及び比較例により製造した。
 下記実施例及び比較例において用いた添加剤の詳細を以下に示す。
 ・添加剤1:トリポリリン酸ナトリウム(関東化学株式会社):分子量300超
 ・添加剤2:ポリアクリル酸のナトリウム塩「ポイズ530」(花王株式会社):分子量300超
・添加剤3:アクリル酸とマレイン酸のコポリマーのナトリウム塩「ポイズ521」(花王株式会社):分子量300超
 ・添加剤4:カルボキシメチルセルロース(関東化学株式会社):分子量300超
 ・添加剤5:結晶性セルロース「セルロース微結晶」(関東化学株式会社):分子量300超
[Manufacture of cerium-based abrasive]
Cerium-based abrasives were manufactured according to the following Examples and Comparative Examples.
Details of the additives used in the following Examples and Comparative Examples are shown below.
・Additive 1: Sodium tripolyphosphate (Kanto Kagaku Co., Ltd.): Molecular weight over 300 ・Additive 2: Sodium salt of polyacrylic acid "Poise 530" (Kao Corporation): Molecular weight over 300 ・Additive 3: Acrylic acid and Maleic acid copolymer sodium salt “Poise 521” (Kao Corporation): Molecular weight over 300 ・Additive 4: Carboxymethylcellulose (Kanto Kagaku Co., Ltd.): Molecular weight over 300 ・Additive 5: Crystalline cellulose “Cellulose microcrystals” (Kanto Kagaku Co., Ltd.): Molecular weight over 300
(実施例1)
 水1000kgと、前記混合酸化希土原料A及び前記混合フッ化希土原料F(質量比76:24)の合計1400kgとを、スラリータンクで撹拌混合した後、湿式ボールミル(媒体:直径5mmジルコニア製ボール)にて17時間混合粉砕することにより、均一な混合溶液を得た。
 この混合溶液を、ロータリーキルンに投入し、大気中にて700℃で1時間乾燥後、960℃で4時間焼成した。得られた焼成体を放冷後、解砕、分級し、混合希土類研磨材粒子を得た。混合希土類研磨粒子に、ランタン溶解抑制剤として第二リン酸カルシウムを、混合希土類研磨材粒子100質量部に対して0.1質量部となる量を添加及び攪拌機で混合してセリウム系研磨材を製造した。
(Example 1)
After stirring and mixing 1,000 kg of water and a total of 1,400 kg of the mixed rare earth oxide raw material A and the mixed rare earth fluoride raw material F (mass ratio 76:24) in a slurry tank, a wet ball mill (media: 5 mm diameter zirconia A uniform mixed solution was obtained by mixing and pulverizing for 17 hours using a ball.
This mixed solution was put into a rotary kiln, dried in the atmosphere at 700°C for 1 hour, and then fired at 960°C for 4 hours. The obtained fired body was left to cool, then crushed and classified to obtain mixed rare earth abrasive particles. A cerium-based abrasive was produced by adding dibasic calcium phosphate as a lanthanum dissolution inhibitor to the mixed rare earth abrasive particles in an amount of 0.1 part by mass per 100 parts by mass of the mixed rare earth abrasive particles and mixing with a stirrer. .
(実施例2~25及び比較例1~5) 
 実施例1において、混合酸化希土原料、混合フッ化希土原料、焼成温度、ランタン溶解抑制剤、添加剤1~5を、表3及び4に記載のとおりとしたこと以外は同様にして、セリウム系研磨材を製造した。
(Examples 2 to 25 and Comparative Examples 1 to 5)
In the same manner as in Example 1, except that the mixed rare earth oxide raw material, mixed rare earth fluoride raw material, firing temperature, lanthanum dissolution inhibitor, and additives 1 to 5 were as shown in Tables 3 and 4, A cerium-based abrasive was manufactured.
[混合希土類研磨材粒子及びセリウム系研磨材の物性測定]
 上記のとおり製造した混合希土類研磨材子及びセリウム系研磨材について、以下に示す物性測定を行った。これらの物性測定結果を、下記表3及び4に示す。
[Measurement of physical properties of mixed rare earth abrasive particles and cerium-based abrasive]
The following physical properties were measured for the mixed rare earth abrasive particles and cerium-based abrasive particles produced as described above. The results of these physical property measurements are shown in Tables 3 and 4 below.
(粒度分布D50
 分散剤を含む純水にセリウム系研磨材または混合希土類研磨材粒子を分散させ、測定試料を調整し、マイクロトラック粒度分布計「MT3300II」(日機装株式会社製)にて、レーザー回折散乱法により、セリウム系研磨材の粒度分布測定を行い、累積体積50%での粒子径(D50)を求めた。
(Particle size distribution D50 )
Disperse cerium-based abrasive or mixed rare earth abrasive particles in pure water containing a dispersant, prepare a measurement sample, and use a Microtrac particle size distribution meter "MT3300II" (manufactured by Nikkiso Co., Ltd.) by laser diffraction scattering method. The particle size distribution of the cerium-based abrasive was measured, and the particle diameter (D 50 ) at a cumulative volume of 50% was determined.
(比表面積)
 JIS R 1626:1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 (3.5)一点法」に準拠して、セリウム系研磨材または混合希土類研磨材粒子の比表面積を測定した。吸着質気体には窒素を用いた。
(Specific surface area)
Cerium-based abrasive or mixed rare earth abrasive in accordance with "6.2 Flow method (3.5) Single point method" of JIS R 1626:1996 (Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method) The specific surface area of the material particles was measured. Nitrogen was used as the adsorbent gas.
[セリウム系研磨材の評価]
 上記実施例及び比較例で製造したセリウム系研磨材について、以下に示す評価を行った。これらの評価結果を、下記表5にまとめて示す。
[Evaluation of cerium-based abrasives]
The following evaluations were performed on the cerium-based abrasives manufactured in the above Examples and Comparative Examples. These evaluation results are summarized in Table 5 below.
(溶解イオン分析)
 セリウム系研磨材を水に分散させた際の、ランタン、フッ素、及び塩素の水への溶解量をICP分析及びIC分析により算出した。
〔ICP分析及びIC分析用試料の作製〕
 100mLポリエチレン容器に、スラリー成分として前記セリウム系研磨材10g及び純水40gを入れると共にビーズとして粒径が1mmのジルコニアビーズ130gを入れ、ボールミル架台を用いて、容器回転数210rpmにて30分間、前記セリウム系研磨材の粉砕処理を行い、混合溶液を得た。
 得られた混合溶液を20mL採取し、目開きが0.45μmのメンブレンフィルター「SLHN033NS」(日本ミリポア株式会社製)でろ過した後、さらに目開きが0.025μmのメンブレンフィルター「VSWP02500」(日本ミリポア株式会社製)をシリンジホルダーに取り付けたものを用いてろ過して、分析用試料を作製した。なお、分析試料作製後48時間以内のものを用い、ICP及びIC分析を行った。
(Dissolved ion analysis)
When the cerium-based abrasive was dispersed in water, the amounts of lanthanum, fluorine, and chlorine dissolved in water were calculated by ICP analysis and IC analysis.
[Preparation of samples for ICP analysis and IC analysis]
In a 100 mL polyethylene container, 10 g of the cerium-based abrasive material and 40 g of pure water were added as slurry components, and 130 g of zirconia beads with a particle size of 1 mm were added as beads. A cerium-based abrasive was pulverized to obtain a mixed solution.
20 mL of the resulting mixed solution was collected and filtered through a membrane filter "SLHN033NS" (manufactured by Nippon Millipore Co., Ltd.) with an opening of 0.45 μm, and then a membrane filter "VSWP02500" (manufactured by Nippon Millipore Co., Ltd.) with an opening of 0.025 μm. Co., Ltd.) attached to a syringe holder to prepare a sample for analysis. Note that ICP and IC analyzes were performed using samples prepared within 48 hours after preparation.
〔ICP分析〕
 得られた分析用試料10mLに、硝酸(濃度70質量%)と超純水を体積比1:1で混合した水溶液を10mL添加した後、超純水で100mLにメスアップし、ICP分析用試料を調整した。このICP分析用試料を、ICP発光分光分析装置「iCap7000Duo」(サーモフィッシャーサイエンティフィック株式会社製)を用いて333.749nmの波長の吸光度を測定し、ランタン原子の質量濃度(mg/L)を算出した。
[ICP analysis]
After adding 10 mL of an aqueous solution in which nitric acid (concentration 70% by mass) and ultrapure water were mixed at a volume ratio of 1:1 to the obtained 10 mL of the sample for analysis, the volume was diluted to 100 mL with ultrapure water, and the sample for ICP analysis was prepared. adjusted. The absorbance of this ICP analysis sample at a wavelength of 333.749 nm was measured using an ICP emission spectrometer "iCap7000Duo" (manufactured by Thermo Fisher Scientific Co., Ltd.), and the mass concentration (mg/L) of lanthanum atoms was determined. Calculated.
〔IC分析〕
 得られた分析用試料10mLを、超純水を用いて20倍に希釈し、IC分析用試料を調整した。このIC分析用試料を、イオンクロマトグラフシステム「ICS-1600」(サーモフィッシャーサイエンティフィック株式会社製)を用い、炭酸ナトリウム、炭酸水素ナトリウムを含む溶離液にて測定し、フッ素イオン、塩素イオンの質量濃度(mg/L)を算出した。
[IC analysis]
10 mL of the obtained sample for analysis was diluted 20 times with ultrapure water to prepare a sample for IC analysis. This sample for IC analysis was measured using an ion chromatography system "ICS-1600" (manufactured by Thermo Fisher Scientific Co., Ltd.) with an eluent containing sodium carbonate and sodium hydrogen carbonate, and fluorine ions and chloride ions were measured. Mass concentration (mg/L) was calculated.
(肌荒れ及び皮膚炎発生評価)
 実施例及び比較例で得られたセリウム系研磨材10gと純水40gを100mLポリエチレン容器に入れると共に、ビーズとして粒径が1mmのジルコニアビーズ130gを入れ、ボールミル架台を用いて、容器回転数210rpmにて30分間、前記セリウム系研磨材の粉砕処理を行い、セリウム系研磨材含有量が20質量%の混合溶液を得た。この混合液を用いて肌荒れ及び皮膚炎の発生を検証した。
 具体的には、被験者5人に被験物である前記研磨材スラリー0.2mlを絆創膏のガーゼ部に塗布し十分なじませた後、各人の前腕部内側に直接貼付し、30分経過後の皮膚表面の状態を観察した。肌荒れ及び皮膚炎が進行すると、痒みや紅斑が観察されるのに基づき、痒みや紅斑が全く確認されなければ変化なしとし、痒みがあったものをやや悪化、僅かに紅斑が確認されたものを悪化、紅斑がはっきり確認できるものを明らかに悪化として、下記の肌荒れ評価基準からスコアー化した。
 〔肌荒れ及び皮膚炎発生抑制効果判定基準〕
  0点:変化なし
  1点:やや悪化
  2点:悪化
  3点:明らかに悪化
(Evaluation of occurrence of rough skin and dermatitis)
10 g of the cerium-based abrasives obtained in Examples and Comparative Examples and 40 g of pure water were placed in a 100 mL polyethylene container, and 130 g of zirconia beads with a particle size of 1 mm were added as beads, and the container was rotated at 210 rpm using a ball mill stand. The cerium-based abrasive material was pulverized for 30 minutes to obtain a mixed solution containing 20% by mass of cerium-based abrasive material. This mixed solution was used to verify the occurrence of rough skin and dermatitis.
Specifically, 0.2 ml of the abrasive slurry, which is the test substance, was applied to the gauze part of a bandage on five subjects, and after it was thoroughly absorbed, it was applied directly to the inside of each person's forearm, and after 30 minutes had passed, The condition of the skin surface was observed. As rough skin and dermatitis progress, itching and erythema are observed.If no itching or erythema is observed, no change is considered, those with itching are considered to have worsened slightly, and those with slight erythema are considered to be no change. A case where deterioration or erythema could be clearly observed was regarded as clearly deterioration, and a score was given based on the following skin roughness evaluation criteria.
[Criteria for determining effectiveness in suppressing skin roughness and dermatitis]
0 points: No change 1 point: Slightly worse 2 points: Worse 3 points: Obviously worse
(研磨評価)
 上記実施例及び比較例で得られた各セリウム系研磨材を用い、セリウム系研磨材48gと純水272g、回転子φ8×40mmを500mlビーカーに入れ、「RS-1DN」アズワン株式会社製マグネチックスターラーREXIMを用い、回転数500rpmにて1時間攪拌することで、セリウム系研磨材含有量が15質量%の研磨材スラリーを調製した。この研磨材スラリーを用いて、下記の研磨条件で、TFT液晶ディスプレイ用無アルカリガラスの試料(50mm×50mm×厚さ1.1mm、研磨面積25cm2)を片面研磨機にて研磨し、研磨速度及び研磨傷について評価を行った。
 〔研磨条件〕
  研磨パッド :スウェードパッド
  下定盤回転数:260rpm
  研磨時圧力 :100g/cm2
  研磨時間  :20分間×3枚
(Polishing evaluation)
Using each of the cerium-based abrasives obtained in the above Examples and Comparative Examples, put 48g of cerium-based abrasives, 272g of pure water, and a rotor of φ8 x 40mm into a 500ml beaker, and place "RS-1DN" magnetic product manufactured by As One Co., Ltd. By stirring for 1 hour using a stirrer REXIM at a rotation speed of 500 rpm, an abrasive slurry having a cerium-based abrasive content of 15% by mass was prepared. Using this abrasive slurry, a sample of alkali-free glass for TFT liquid crystal displays (50 mm x 50 mm x thickness 1.1 mm, polishing area 25 cm 2 ) was polished with a single-sided polisher under the following polishing conditions, and the polishing speed was and polishing scratches were evaluated.
[Polishing conditions]
Polishing pad: Suede pad Lower surface plate rotation speed: 260 rpm
Pressure during polishing: 100g/cm 2
Polishing time: 20 minutes x 3 pieces
 各評価方法は以下のとおりである。
〔研磨速度〕
 試料1枚当たり5箇所での研磨前後の厚さをマイクロメーターで測定し、厚さの減少量の平均値(ΔT[μm])を求めた。試料3枚についての[ΔT/研磨時間(20分間)]の平均値を研磨速度とした。
〔研磨傷〕
 研磨後の試料を、微分干渉顕微鏡(オリンパス株式会社製「BX51M」)にて倍率50倍で試料の研磨面を観察して傷の本数を計測し、試料3枚についての平均値を求めた。
Each evaluation method is as follows.
[Polishing speed]
The thickness before and after polishing at five locations per sample was measured with a micrometer, and the average value of the amount of decrease in thickness (ΔT [μm]) was determined. The average value of [ΔT/polishing time (20 minutes)] for the three samples was taken as the polishing rate.
[Polishing scratches]
The polished surface of the polished sample was observed using a differential interference microscope ("BX51M" manufactured by Olympus Corporation) at a magnification of 50 times, the number of scratches was measured, and the average value for the three samples was determined.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、所定の方法により得られた混合液中におけるランタン溶解量が、40mg/L以下であるセリウム系研磨材(実施例1~25)は、肌荒れ及び皮膚炎の発生が抑制されたものであることが認められた。また、前記セリウム系研磨材を含む研磨液によれば、研磨傷の発生が抑制され、良好な研磨速度で研磨を行うことができることが認められた。

 
As can be seen from Table 5, the cerium-based abrasives (Examples 1 to 25) in which the amount of lanthanum dissolved in the mixed liquid obtained by the prescribed method was 40 mg/L or less suppressed the occurrence of rough skin and dermatitis. It was recognized that this was done. Furthermore, it has been found that the polishing liquid containing the cerium-based abrasive material suppresses the occurrence of polishing scratches and allows polishing to be performed at a good polishing rate.

Claims (16)

  1.  ランタン及びセリウムを含む混合希土類研磨材粒子を含有するセリウム系研磨材であって、
     全希土類元素の酸化物換算含有量(TREO)中における前記セリウムの酸化物換算含有量が55.0質量%以上であり、
     100mLポリエチレン容器に、前記セリウム系研磨材10g及び純水40gを入れると共にビーズとして粒径が1mmのジルコニアビーズ130gを入れ、ボールミル架台を用いて、容器回転数210rpmにて30分間、前記セリウム系研磨材の粉砕処理を行うことにより得られた混合液中におけるランタン溶解量が、40mg/L以下である、セリウム系研磨材。
    A cerium-based abrasive containing mixed rare earth abrasive particles containing lanthanum and cerium,
    The oxide equivalent content of the cerium in the total rare earth element oxide equivalent content (TREO) is 55.0% by mass or more,
    In a 100 mL polyethylene container, put 10 g of the cerium-based abrasive material and 40 g of pure water as well as 130 g of zirconia beads with a particle size of 1 mm as beads, and use a ball mill stand to perform the cerium-based polishing at the container rotation speed of 210 rpm for 30 minutes. A cerium-based abrasive material in which the amount of lanthanum dissolved in a liquid mixture obtained by pulverizing the material is 40 mg/L or less.
  2.  さらにランタン溶解抑制剤を含有する、請求項1に記載のセリウム系研磨材。 The cerium-based abrasive material according to claim 1, further comprising a lanthanum dissolution inhibitor.
  3.  前記混合希土希土類研磨材粒子を含有する第一剤と、
     ランタン溶解抑制剤を含有する第二剤と、
    を含有する二剤型である、請求項1に記載のセリウム系研磨材。
    a first agent containing the mixed rare earth rare earth abrasive particles;
    a second agent containing a lanthanum dissolution inhibitor;
    The cerium-based abrasive material according to claim 1, which is a two-component type abrasive material containing:
  4.  フッ素原子を0.1~10質量%含有する、請求項1に記載のセリウム系研磨材。 The cerium-based abrasive material according to claim 1, containing 0.1 to 10% by mass of fluorine atoms.
  5.  前記TREO中における前記ランタンの酸化物換算含有量が0.01~45.0質量%である、請求項1に記載のセリウム系研磨材。 The cerium-based abrasive material according to claim 1, wherein the content of the lanthanum in the TREO in terms of oxide is 0.01 to 45.0% by mass.
  6.  前記ランタン溶解抑制剤が、アルカリ金属の炭酸塩、アルカリ金属のリン酸塩、アルカリ金属の水酸化物塩、アルカリ金属の硫酸塩、アルカリ金属の硝酸塩、アルカリ金属の有機酸塩、アルカリ土類金属の炭酸塩、アルカリ土類金属のリン酸塩、アルカリ土類金属の水酸化物塩、アルカリ土類金属の硫酸塩、アルカリ土類金属の硝酸塩、アルカリ土類金属の有機酸塩、アンモニウムの炭酸塩、アンモニウムのリン酸塩、アンモニウムの水酸化物塩、アンモニウムの硫酸塩、アンモニウムの硝酸塩、及びアンモニウムの有機酸塩から選ばれる1種以上である、請求項2又は3に記載のセリウム系研磨材。 The lanthanum dissolution inhibitor may be an alkali metal carbonate, an alkali metal phosphate, an alkali metal hydroxide salt, an alkali metal sulfate, an alkali metal nitrate, an alkali metal organic acid salt, or an alkaline earth metal. carbonates, alkaline earth metal phosphates, alkaline earth metal hydroxide salts, alkaline earth metal sulfates, alkaline earth metal nitrates, alkaline earth metal organic acid salts, ammonium carbonate The cerium-based polishing according to claim 2 or 3, which is one or more selected from salts, ammonium phosphates, ammonium hydroxide salts, ammonium sulfates, ammonium nitrates, and ammonium organic acid salts. Material.
  7.  前記ランタン溶解抑制剤が、アルカリ土類金属の炭酸塩、アルカリ土類金属のリン酸塩、アルカリ土類金属の有機酸塩、及びアルカリ金属の炭酸塩から選ばれる1種以上である、請求項6に記載のセリウム系研磨材。 The lanthanum dissolution inhibitor is one or more selected from alkaline earth metal carbonates, alkaline earth metal phosphates, alkaline earth metal organic acid salts, and alkali metal carbonates. 6. The cerium-based abrasive material described in 6.
  8.  前記ランタン溶解抑制剤の分子量が300以下である、請求項2又は3に記載のセリウム系研磨材。 The cerium-based abrasive material according to claim 2 or 3, wherein the lanthanum dissolution inhibitor has a molecular weight of 300 or less.
  9.  前記混合希土類研磨材粒子100質量部に対して、前記ランタン溶解抑制剤を0.001~0.9質量部含む、請求項2又は3に記載のセリウム系研磨材。 The cerium-based abrasive according to claim 2 or 3, comprising 0.001 to 0.9 parts by mass of the lanthanum dissolution inhibitor based on 100 parts by mass of the mixed rare earth abrasive particles.
  10.  請求項1に記載のセリウム系研磨材と、水及び水溶性有機溶媒から選ばれる1種以上を含有する、研磨液。 A polishing liquid containing the cerium-based polishing material according to claim 1 and one or more selected from water and a water-soluble organic solvent.
  11.  請求項10に記載の研磨液の製造方法であって、
     前記セリウム系研磨材と、
     前記水及び前記水溶性有機溶媒から選ばれる1種以上と、
    を混合してスラリー化する工程(I)を含む、研磨液の製造方法。
    A method for producing a polishing liquid according to claim 10,
    the cerium-based abrasive;
    one or more selected from the water and the water-soluble organic solvent;
    A method for producing a polishing liquid, comprising a step (I) of mixing and forming a slurry.
  12.  前記セリウム系研磨材は、前記ランタン溶解抑制剤を含有する、請求項11に記載の研磨液の製造方法。 The method for producing a polishing liquid according to claim 11, wherein the cerium-based abrasive contains the lanthanum dissolution inhibitor.
  13.  請求項10に記載の研磨液の製造方法であって、
     前記セリウム系研磨材と、
     前記ランタン溶解抑制剤と、
     前記水及び前記水溶性有機溶媒から選ばれる1種以上と、
    を混合してスラリー化する工程(II)を含む、研磨液の製造方法。
    A method for producing a polishing liquid according to claim 10,
    the cerium-based abrasive;
    the lanthanum dissolution inhibitor;
    one or more selected from the water and the water-soluble organic solvent;
    A method for producing a polishing liquid, comprising a step (II) of mixing and forming a slurry.
  14.  請求項10に記載の研磨液の製造方法であって、
     前記セリウム系研磨材と、
     前記水及び前記水溶性有機溶媒から選ばれる1種以上と、
    を混合してスラリー化する工程(III)と、
     前記工程(III)で得られたスラリーに、
     前記ランタン溶解抑制剤を添加混合する工程(IV)を含む、研磨液の製造方法。
    A method for producing a polishing liquid according to claim 10,
    The cerium-based abrasive;
    one or more selected from the water and the water-soluble organic solvent;
    a step (III) of mixing to form a slurry;
    To the slurry obtained in the step (III),
    A method for producing a polishing liquid, comprising a step (IV) of adding and mixing the lanthanum dissolution inhibitor.
  15.  前記セリウム系研磨材は、前記溶解抑制剤を含有しない、請求項14に記載の研磨液の製造方法。 The method for producing a polishing liquid according to claim 14, wherein the cerium-based abrasive does not contain the dissolution inhibitor.
  16.  請求項10に記載の研磨液を用いて研磨を行う、ガラス研磨方法。

     
    A method for polishing glass, comprising polishing using the polishing liquid according to claim 10.

PCT/JP2023/025421 2022-07-12 2023-07-10 Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method WO2024014425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022111810 2022-07-12
JP2022-111810 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024014425A1 true WO2024014425A1 (en) 2024-01-18

Family

ID=89536763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025421 WO2024014425A1 (en) 2022-07-12 2023-07-10 Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method

Country Status (1)

Country Link
WO (1) WO2024014425A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035075A (en) * 1983-05-13 1985-02-22 ローヌ―プーラン・スペシアリテ・シミーク Novel cerium abrasive composition and manufacture
WO2002031079A1 (en) * 2000-10-06 2002-04-18 Mitsui Mining & Smelting Co.,Ltd. Abrasive material
JP2012524129A (en) * 2009-04-15 2012-10-11 ロディア チャイナ カンパニー、リミテッド Cerium-based particle composition and preparation thereof
JP2012219006A (en) * 2011-04-14 2012-11-12 Asahi Glass Co Ltd Method for producing glass product
WO2017051629A1 (en) * 2015-09-25 2017-03-30 昭和電工株式会社 Ceriuim-based abrasive material and process for producing same
WO2019049932A1 (en) * 2017-09-11 2019-03-14 昭和電工株式会社 Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035075A (en) * 1983-05-13 1985-02-22 ローヌ―プーラン・スペシアリテ・シミーク Novel cerium abrasive composition and manufacture
WO2002031079A1 (en) * 2000-10-06 2002-04-18 Mitsui Mining & Smelting Co.,Ltd. Abrasive material
JP2012524129A (en) * 2009-04-15 2012-10-11 ロディア チャイナ カンパニー、リミテッド Cerium-based particle composition and preparation thereof
JP2012219006A (en) * 2011-04-14 2012-11-12 Asahi Glass Co Ltd Method for producing glass product
WO2017051629A1 (en) * 2015-09-25 2017-03-30 昭和電工株式会社 Ceriuim-based abrasive material and process for producing same
WO2019049932A1 (en) * 2017-09-11 2019-03-14 昭和電工株式会社 Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent

Similar Documents

Publication Publication Date Title
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
JP6421887B2 (en) Method for producing cerium salt, cerium oxide and cerium-based abrasive
KR102090494B1 (en) Cerium abrasive and manufacturing method
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP4585991B2 (en) Cerium-based abrasive
WO2024014425A1 (en) Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3365993B2 (en) Cerium-based abrasives, raw materials therefor, and methods for producing them
JP5512962B2 (en) Cerium-based abrasive containing fluorine and sulfur
TW202408964A (en) Cerium-based abrasive materials, polishing fluids, manufacturing methods of polishing fluids, and glass grinding methods
JP7400956B2 (en) Cerium-based abrasive slurry stock solution and its manufacturing method, and polishing liquid
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP2005068312A (en) Fluorine-containing cerium-based abrasive and method for manufacturing the same
JP2002155269A (en) Method for producing cerium-based polish and cerium- based polish
JP3392399B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839597

Country of ref document: EP

Kind code of ref document: A1