JP4290465B2 - Method for producing cerium-based abrasive mainly composed of cerium oxide - Google Patents

Method for producing cerium-based abrasive mainly composed of cerium oxide Download PDF

Info

Publication number
JP4290465B2
JP4290465B2 JP2003116806A JP2003116806A JP4290465B2 JP 4290465 B2 JP4290465 B2 JP 4290465B2 JP 2003116806 A JP2003116806 A JP 2003116806A JP 2003116806 A JP2003116806 A JP 2003116806A JP 4290465 B2 JP4290465 B2 JP 4290465B2
Authority
JP
Japan
Prior art keywords
classification
wet
roasting
abrasive
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003116806A
Other languages
Japanese (ja)
Other versions
JP2004323574A (en
Inventor
大作 小林
直義 望月
明 下河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003116806A priority Critical patent/JP4290465B2/en
Publication of JP2004323574A publication Critical patent/JP2004323574A/en
Application granted granted Critical
Publication of JP4290465B2 publication Critical patent/JP4290465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、酸化セリウムを主成分とするセリウム系研摩材の製造方法に関する。
【0002】
【従来の技術】
セリウム系研摩材(以下、単に研摩材ともいう)は、例えば、次のようにして製造されている。まず、バストネサイト精鉱などの原料を用意して適当な大きさに粉砕(主に湿式粉砕)し、得られた粉砕品に必要に応じて鉱酸処理やフッ化処理などの化学処理を施す。その後、粉砕品または化学処理した粉砕品を、必要に応じて乾燥し、その後焙焼する。そして、得られた焙焼品を必要に応じて粉砕および/または分級するという製造方法である(特許文献1参照)。
【0003】
また、セリウム系研摩材は、ハードディスク等の磁気記録媒体用材料の研摩や液晶ディスプレイ(LCD)のガラス基板など、電気・電子機器製造の分野で広く用いられており、近年、より研摩速度が高く研摩効率が高いセリウム系研摩材が求められている。そして、製品の小型化や高密度化に伴い、より精密な仕上げ加工が可能なセリウム系研摩材が求められるようになっている。
【0004】
【特許文献1】
特開2002−180033号公報
【0005】
【発明が解決しようとする課題】
上述のような求めに応じるために、従来は、研摩材を製造する際、焙焼工程後の最終段階で乾式分級を行い研摩材中の粗粒子含有率を低減するようにしている。ところが、より研摩速度が高くかつ精密な仕上げが可能な研摩材が求められ、研摩材の(平均)粒径が小さくなるにしたがい、乾式分級による粗粒子の除去が難しくなってきている。
【0006】
また、粉砕条件を改善するなどして、より高い研摩速度や研摩精度を有する研摩材を製造するようにしている。例えば、粉砕工程における粉砕時間等の粉砕条件を適宜調節するような方法である。ところが、このようにして研摩材の研摩速度や研摩精度を向上させるにも限界がある。
【0007】
本発明は、このような問題点に鑑みてなされたものであり、酸化セリウムを主成分とするセリウム系研摩材であって、研摩速度や研摩精度などの研摩特性がより優れた研摩材の製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
このような課題を解決するため、本発明の発明者等は、原料粉砕工程によって得られる粉砕品中の未粉砕粒子の量や、当該未粉砕粒子が最終製品である研摩材に与える影響等を検討した。そして、これらの事項について検討する中で、次のような発明をするに至った。
【0009】
本発明は、原料を粉砕する湿式粉砕工程と、湿式粉砕工程後に行われる焙焼工程と、焙焼工程後に行われる粉砕工程とを有する、酸化セリウムを主成分とするセリウム系研摩材の製造方法において、焙焼工程の前に分級工程を行うことを特徴とする。
【0010】
焙焼工程前に分級工程を設けて、湿式粉砕によって得られた粉砕品を分級すると、粉砕品(原料)に含まれる粗粒子が効率良く除去される。例えば、従来のように焙焼後に乾式分級を行って粗粒子を除去するよりも粗粒子除去効率がよい。粗粒子が効率良く除去されると研摩材の生産性が向上する。また、焙焼工程前に湿式粉砕するようにすると、被研摩面における研摩傷の発生がより確実に防止されており、より高い研摩速度の研摩材が製造されるようになる。分級方法としては、風力分級などの乾式分級方法やスラリー状の粉砕品に対して行われるろ過分級などの湿式分級方法など種々の分級方法を用いることができる。
【0011】
本発明は、従来から用いられている原料に対して適用できるものである。そして、分級工程の前に行われる原料を粉砕する湿式粉砕工程、分級工程の後の焙焼工程や粉砕工程における粉砕や焙焼の方法としては、従来のものを用いることができる。
【0012】
原料としては、バストネサイト鉱、希土類炭酸塩、希土類酸化物など、焙焼すると酸化セリウムを主成分とする酸化希土になる従来の原料が用いられる。一般的には、原料中の「CeO(酸化セリウム)含有率/TREO(全希土酸化物含有率)」が40重量%以上の原料である。なお、バストネサイト鉱などの原料中、セリウムなどの希土類元素は必ずしも酸化物として存在しているわけではないが、TREO値などのように酸化物に換算した値を用いて希土類元素の含有率や含有量を特定することが行われている。
【0013】
原料等の湿式粉砕方法としては、ボールミルやビーズミル、アトライタなどの媒体ミルを用いる粉砕方法が好ましく、粉砕粒度としては、D50(平均粒径)が10μm以下が好ましい。なお、このような粉砕方法を用いれば、粉砕媒体を小さくすることでD50を0.1μmまたはこれ以下にできる。また、焙焼工程における焙焼条件としては、焙焼温度は800℃〜1200℃、焙焼時間は0.5時間〜24時間が好ましい。焙焼方法としては、例えば、ロータリーキルン、プッシャー炉、静置炉、電気炉等の焙焼設備を用いる方法を挙げることができる。
【0014】
焙焼工程によって得られる焙焼品は粉砕される。焙焼後の粉砕工程では、乾式粉砕、湿式粉砕のいずれの方法を用いることも可能である。粉砕方法としては、種々の方法を用いることが可能であるが、例えば、先に説明したボールミルやビーズミル、アトライタなどの媒体ミルを用いる粉砕方法が好ましい。湿式粉砕を用いる場合は、湿式粉砕後、焙焼工程前に湿式分級工程を設けた場合と同様、湿式粉砕工程後に分級工程、特に湿式分級工程を設けてもよい。そして、湿式分級工程で得られた粗粒子を再度湿式粉砕工程へ供用するなどしてより高品質の粉砕品を得るようにすることが可能である。また、焙焼工程後、粉砕工程前に、必要に応じて解砕工程を行ってもよい。解砕を行うと、より効率良くそしてより高い精度でその後の粉砕を行うことができる。
【0015】
なお、本発明に係るセリウム系研摩材の製造方法において、必要に応じて鉱酸処理やフッ化処理などの化学処理を行ってもよい。例えば、塩酸等を用いた鉱酸処理を行って原料中のアルカリ金属やアルカリ土類金属を除去したり、フッ化水素酸やフッ化アンモニウム等を用いたフッ化処理を行って原料をフッ化したりする処理を行ってもよい。これらの処理は、焙焼工程前に行われる粉砕工程や分級工程の前後、あるいはこれらの工程で湿式粉砕や湿式分級が用いられる場合は湿式粉砕工程中や湿式分級工程中に行われる。このように、処理時期は特に限定されるものではないが、原料全体に均一に処理を施すという観点では、粉砕工程後がより好ましい。
【0016】
また、湿式粉砕工程後、焙焼工程前に行う分級工程としては、湿式分級が好ましい。そして、湿式分級を用いる場合は、粗粒子として除去する粒子の大きさや分級効率などに応じて、分級対象である粉砕品のスラリー濃度を調整しておくことが好ましい。湿式粉砕工程においては固形物のスラリー濃度は70重量%程度以下であればよいが、50重量%以下が好ましいことが解ったからである。そして、例えばシックナー方式のような静置分離方式で粗粒子を除去する場合、固形物のスラリー濃度は15重量%以下がより好ましく、10重量%以下がさらに好ましい。また、フィルター方式で粗粒子を除去する場合、固形物のスラリー濃度は20重量%以下がより好ましい。さらに、遠心力による湿式サイクロン方式で粗粒子を除去する場合、固形物のスラリー濃度は30重量%〜50重量%がより好ましく、35重量%〜45重量%がさらに好ましい。なお、スラリー濃度は1.0重量%以上が好ましい。スラリー濃度を低くするほど、粗粒子として除去される粒子の大きさをより小さくできるが、スラリー濃度が1.0重量%より低いと生産性が低く、産業上のメリットが低いからである。
【0017】
湿式分級条件についてさらに検討した結果、粉砕品のスラリー中に、ヘキサメタリン酸ナトリウム,ポリアクリル酸アンモニウムなどの分散剤等を添加したり、スラリーの温度を高めたりしてスラリー粘度を低下させると、生産性(分級効率)が向上することが解った。そして、分級対象である粉砕品スラリーの粘度を低くすると、良好に分級できるスラリー濃度の上限値が高くなることが解った。例えば、分級方法としてシックナー方式を用いる場合、添加剤を添加して粘度低下させることでスラリー濃度が25重量%以下(より好ましくは20重量%以下)の粉砕品スラリーを良好に分級でき、温度を40℃まで加熱することでスラリー濃度が25重量%以下(より好ましくは20重量%以下)の粉砕品スラリーを良好に分級でき、添加剤を添加し且つ40℃まで加熱することでスラリー濃度が35重量%以下(より好ましくは30重量%以下)の粉砕品スラリーを良好に分級できることが解った。
【0018】
湿式分級を行った場合、分級によって得られたスラリーは、噴霧乾燥工程を経た後、またはろ過工程および乾燥工程を経た後、焙焼工程へ供用される。その際、乾燥工程後、焙焼工程前に乾式分級工程を設けてもよい。
【0019】
また、焙焼品に含まれる粗粒子の含有量をさらに低下させたい場合は、焙焼工程前に湿式分級などの分級を行った上で、さらに焙焼工程の後に、湿式分級工程を行ってもよい。このようにして粗粒子の含有率をより低下させると、被研摩面における研摩傷の発生がさらに確実に防止され、さらに高い研摩速度が得られる。焙焼工程後に行う湿式分級方法は、特に限定されるものではないが、焙焼工程前の湿式分級同様、例えばシックナー方式のような静置分離方式で粗粒子を除去する方法、カートリッジフィルター等を用いるフィルター方式で粗粒子を除去する方法、遠心力による湿式サイクロン方式で粗粒子を除去する方法などが好ましい。
【0020】
【発明の実施の形態】
以下、本発明に係るセリウム系研摩材の製造方法の好適な実施形態を説明する。
【0021】
第1実施形態
原料として、TREOが70重量%、「CeO/TREO」が60重量%である炭酸希土(セリウム系希土類炭酸塩)を用意した。なお、D50(平均粒径)は約50μmであった。そして、この原料と純水を重量比「2:1」で混合し、ボールミル(ジルコニア製粉体媒体、媒体直径1.2mm)を用いて湿式粉砕を行い、D50が1.0μmの原料スラリーを調製した。なお、D50の測定にはレーザー回折式粒度分布計SALD2000(株式会社島津製作所製)を用いた。
【0022】
調製した原料スラリーを水で希釈して固形分(原料)の濃度が40重量%のスラリーを得た。次に、固形分重量の0.5重量%に相当するヘキサメタリン酸ナトリウムを分散剤として添加した後、湿式サイクロンによる湿式分級機(パークロン TR10−3型、村田工業株式会社製)を用いて分級を行い粗粒子を除去した。そして、粗粒子が除去されたスラリーをろ過・洗浄してナトリウム成分を除去した後、乾燥し、得られた乾燥品を電気炉を用いて温度1000℃で6時間焙焼した。焙焼後、得られた焙焼品をハンマーミルを用いて解砕した。そして、得られた解砕品を空気分級機で乾式分級してセリウム系研摩材粉末を得た。
【0023】
実施例1:本実施例では、焙焼前の湿式分級における湿式サイクロン分級機の分級点を5μmに設定した。なお、湿式サイクロン分級機は、原料供給口から送入されたスラリーをサイクロン内壁に沿って高速で回転させてスラリー中の粒子を分級するものであり、サイクロンの上側のミドルノズルのさらに上側のトップノズルを経てスラリー中の微粒子が排出され、ミドルノズルを経て中間径の粒子が排出され、サイクロンの下側のボトムノズルを経て粗粒子が排出される。本実施形態ではボトムノズルから粗粒子を排出させることで分級を行った。そして、主にスラリーの流速およびボトムノズル径を調節することによって分級点を調節し設定した。なお、原料供給口におけるスラリーの供給圧は0.6MPa、スラリーの流速は11L(リットル)/min、ボトムノズル径は2mmであった。また、焙焼後の乾式分級において空気分級機の分級点を5μmに設定した。空気分級機の分級点は空気の流速と回転数で設定される。
【0024】
実施例2:本実施例では、焙焼後の分級を行わなかった。これ以外の研摩材製造条件は実施例1と同じであったので説明を省略する。
【0025】
実施例3:本実施例では、焙焼後の分級工程として湿式分級を行った。まず、焙焼後の解砕によって得られた解砕品と純水を混合・撹拌して、固形分(原料)の濃度が40重量%のスラリーを調製し、このスラリーについて湿式分級を行った。湿式分級では、焙焼前の湿式分級と同様、湿式サイクロン分級機を用い、分級点を5μmに設定した。また、分級後、分級によって得られた微粒側研摩材を含むスラリーを濾過して得た研摩材を乾燥し、解砕してセリウム系研摩材を得た。解砕方法は焙焼直後の解砕と同様ハンマーミルを用いる方法であった。これ以外の研摩材製造条件は実施例1と同じであった。
【0026】
比較例1:本比較例では、分散剤を添加しなかった。そして焙焼前に湿式分級を行わなかった。これ以外の研摩材製造条件は実施例1と同じであった。
【0027】
比較例2:本比較例では、分散剤を添加しなかった。そして焙焼前に湿式分級を行わなかった。また焙焼品を粉砕して得た粉砕品に対する分級工程において、分級点を4μmに設定した。これ以外の研摩材製造条件は実施例1と同じであった。
【0028】
比較例3:本比較例では、分散剤を添加しなかった。そして焙焼前に湿式分級を行わなかった。また焙焼品を粉砕して得た粉砕品に対する分級工程において、分級点を6μmに設定した。これ以外の研摩材製造条件は実施例1と同じであった。
【0029】
実施例および比較例で得られたセリウム系研摩材について、粗粒子濃度、研摩速度、研摩傷の発生および生産性の評価を行った。各評価項目の評価方法を以下に示し、評価結果を表1に示す。
【0030】
粗粒子濃度測定
まず、実施例および比較例で得られたセリウム系研摩材のうちの200gと、分散剤として0.1%のヘキサメタリン酸ナトリウムを含有する水溶液とを混合してスラリーを調製した。そして、スラリーを一定時間静置させた後、上澄み液を抜き取って当該上澄み液から粗粒子を回収するという作業を繰り返して、所定の粒径以上の大きさの粒子(粗粒子)を回収した。その後、回収した粒子を十分乾燥させた後秤量し、この粗大粒子重量から粗大粒子濃度を求めた。なお、第1実施形態では5μm以上の粒径の粒子を回収し、後述の第2実施形態では10μm以上の粒径の粒子を、また第3実施形態では2μm以上の粒径の粒子をそれぞれ回収した。
【0031】
研摩試験
各実施例及び比較例で得られたセリウム系研摩材について、研摩試験機(台東精機(株)社製:HSP−21型)を用いて研摩試験を行った。まず、研摩材(研摩材スラリー)と純水とを用いて研摩材の濃度が15重量%の研摩材スラリーを調製した。そして、この研摩材スラリーとポリウレタン製の研摩パッドとを用いて、平面ガラス(φ65mm)の表面を、研摩圧力5.9kPa(0.06kg/cm)、研摩機の回転数100rpm、研摩材スラリーの循環量5リットル/分で10分間研摩した。
【0032】
研摩速度の評価
研摩前後のガラス質量の減少量に基づき研摩値を求めた(研摩速度を評価した)。そして、表1では比較例1、表2では比較例4、表3では比較例5の各研摩材を用いた場合の減少量を基準(研摩値100)とした。
【0033】
傷評価
研摩終了後、純水で被研摩面を洗浄し、無塵状態で乾燥させた被研摩面について傷評価を行った。傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法でガラス表面を観察し、大きな傷および微細な傷の数を点数化し、100点を満点として減点評価する方式で行った。
【0034】
生産性の評価
研摩材の生産性を、生産されるセリウム系研摩材の歩留まりに基づいて評価した。なお、ここでいう歩留まりは、研摩材原料中のTREO重量に対する最終的に得られた研摩材の重量の割合である。
【0035】
【表1】

Figure 0004290465
【0036】
実施例1と比較例1を比較すると、実施例1は、焙焼後の乾式分級前の状態において、既に粗粒子濃度が低かった。この点は、焙焼後の乾式分級条件が同じであるにも拘わらず、実施例1の研摩材の方が粗粒子濃度が著しく低いことからも解る。また、実施例1と比較例1のように原料や焙焼条件等の基本的な研摩材製造条件が同じである場合、得られる研摩材が大粒径であるほど研摩速度はより高くなると考えられるところ、実施例1は比較例1に比べて研摩速度が高いことから、実施例1の研摩材は大粒径の研摩粒子をより多く含み小粒径の研摩粒子がより少ないことが解った。以上の結果より、実施例1のように焙焼前に湿式分級を行うと、小粒径の粒子が減少して粗粒子濃度が低く抑えられることが解った。
【0037】
そして、実施例1の方が傷が発生しにくかった。粗粒子濃度が低いからであると考えられる。粗粒子濃度が低くなると、研摩圧力が同じであっても研摩材の被研摩面への接触がより均一になり、より微粒の研摩材を用いても研摩速度が向上すると考えられる。また、実施例1の方が分級歩留まりが高く生産性に優れていた。
【0038】
また、実施例1と比較例2では、得られた研摩材の粗粒子濃度に差はなかったが、実施例1は、研摩材の生産性(歩留まり)が著しく高く、研摩速度、傷防止性能ともに優れていた。この結果、焙焼工程前に湿式分級を行わなくても、焙焼後に行う分級の分級点をより小粒径の値に設定すれば、粗粒子濃度を焙焼前に湿式分級を行う場合と同程度まで下げることはできるが、研摩材の生産性が著しく低下し、研摩速度、傷防止性能ともに低下することが解った。そして、比較例3は、焙焼後に行う分級の分級点をより大粒径の値に設定したものであり、比較例2に比べると研摩速度および生産性が優れていたが、実施例1との比較では、粗粒子濃度、研摩速度、傷評価、生産性の全ての項目で劣っていた。
【0039】
実施例2は、焙焼前の湿式分級だけを行い、焙焼後の分級を行わなかった例である。この実施例2と比較例3を比較する。比較例3は焙焼後の乾式分級だけを行い、焙焼前の湿式分級を行わなかった例である。両者を比べると、粗粒子濃度は同じであるが、それ以外の研摩速度、傷評価、生産性の全ての項目において実施例2が優れていた。この結果、研摩材製造時に1回だけ分級を行うのであれば、焙焼前に行った方が極めて好ましいことが解った。また、実施例3のように、焙焼工程後の分級を湿式分級によって行うと、粗粒子濃度が極めて低く、十分に高い研摩速度が確保されており、しかも研摩傷の発生が防止され、生産性の高い極めて高品質のセリウム系研摩材が得られることが解った。
【0040】
第2実施形態
第1実施形態と同じ条件の原料と純水を重量比「2:1」で混合し、ボールミル(スチール製粉体媒体、媒体直径3.0mm)を用いて湿式粉砕を行い、D50が2.0μmの原料スラリーを調製した。調製した原料スラリーを水で希釈して固形分(原料)の濃度が40重量%のスラリーを得た。次に、固形分重量の0.5重量%に相当するヘキサメタリン酸ナトリウムを分散剤として添加した後、カートリッジフィルターによる湿式分級によって粗粒子を除去した。そして、粗粒子が除去されたスラリーをろ過・洗浄してナトリウム成分を除去した後、乾燥し、得られた乾燥品を電気炉を用いて温度1000℃で6時間焙焼した。焙焼後、得られた焙焼品をハンマーミルを用いて解砕した。そして、得られた解砕品を空気分級機で乾式分級してセリウム系研摩材粉末を得た。
【0041】
実施例:焙焼前に行ったカートリッジフィルターによる湿式分級でのフィルターのメッシュ(ふるいの目開き)は10μmであった。また、焙焼品を粉砕して得た粉砕品に対する分級工程における分級点は10μmであった。
【0042】
比較例4:本比較例では、分散剤を添加しなかった。そして焙焼前に湿式分級を行わなかった。これ以外の研摩材製造条件は実施例と同じであった。
【0043】
実施例および比較例4で得られたセリウム系研摩材についての、粗粒子濃度、研摩速度、研摩傷の発生および生産性を表2に示す。
【0044】
【表2】
Figure 0004290465
【0045】
表2に示されるように、実施例と比較例4では、生産性は比較例4がやや劣る程度であったが、これ以外の項目については実施例2の方が著しく優れていた。この結果、焙焼工程前に湿式分級を行うと、生産性を確実に維持しつつ、粗粒子濃度を著しく低下でき、しかも研摩速度や傷評価をも著しく向上できることが解った。
【0046】
第3実施形態
第1実施形態と同じ条件の原料と純水を重量比「2:1」で混合し、ボールミル(ジルコニア製粉体媒体、媒体直径0.8mm)を用いて湿式粉砕を行い、D50が0.5μmの原料スラリーを調製した。調製した原料スラリーを水で希釈して固形分(原料)の濃度が40重量%のスラリーを得た。次に、固形分重量の0.5重量%に相当するヘキサメタリン酸ナトリウムを分散剤として添加した後、第1実施形態同様、湿式サイクロンによる湿式分級によって粗粒子を除去した。そして、粗粒子が除去されたスラリーをろ過・洗浄してナトリウム成分を除去した後、乾燥し、得られた乾燥品を電気炉を用いて温度1000℃で6時間焙焼した。焙焼後、得られた焙焼品をハンマーミルを用いて解砕した。そして、得られた解砕品を空気分級機で乾式分級してセリウム系研摩材粉末を得た。
【0047】
実施例:焙焼前の湿式分級において湿式サイクロン分級機の分級点を2μmに設定した。また焙焼後の乾式分級において空気分級機の分級点を2μmに設定した。
【0048】
比較例5:本比較例では、分散剤を添加せず、焙焼前に湿式分級を行わなかった。これ以外の研摩材製造条件は実施例と同じであった。
【0049】
実施例および比較例5で得られたセリウム系研摩材についての、粗粒子濃度、研摩速度、研摩傷の発生および生産性を表3に示す。
【0050】
【表3】
Figure 0004290465
【0051】
また、実施例と比較例5では、実施例3の方が粗粒子濃度が著しく低かった。この結果、焙焼工程前に湿式分級を行うと、粗粒子濃度を確実に低下できることが解った。そして、表1〜表3の結果から解るように、どのような(平均)粒径の研摩材を製造する場合であっても焙焼工程前に湿式分級を行うと粗粒子濃度を著しく低下できることが解った。
【0052】
【発明の効果】
以上のように本発明によれば、より粗粒子濃度が低く、研摩速度や傷評価などの研摩特性に優れる研摩材を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cerium-based abrasive mainly composed of cerium oxide.
[0002]
[Prior art]
A cerium-based abrasive (hereinafter also simply referred to as an abrasive) is manufactured, for example, as follows. First, prepare raw materials such as bust nesite concentrate and pulverize them to an appropriate size (mainly wet pulverization), and then subject the resulting pulverized products to chemical treatment such as mineral acid treatment and fluorination treatment. Apply. Thereafter, the pulverized product or the chemically treated pulverized product is dried as necessary, and then roasted. And it is a manufacturing method of grind | pulverizing and / or classifying the obtained roasted product as needed (refer patent document 1).
[0003]
In addition, cerium-based abrasives are widely used in the field of manufacturing electrical and electronic equipment such as polishing of magnetic recording medium materials such as hard disks and glass substrates of liquid crystal displays (LCDs). There is a need for a cerium-based abrasive with high polishing efficiency. And with the miniaturization and high density of products, there has been a demand for cerium-based abrasives capable of more precise finishing.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-180033
[Problems to be solved by the invention]
In order to meet the above demand, conventionally, when manufacturing an abrasive, dry classification is performed at the final stage after the roasting step to reduce the content of coarse particles in the abrasive. However, a polishing material having a higher polishing speed and capable of precise finishing is required, and as the (average) particle size of the polishing material becomes smaller, it is difficult to remove coarse particles by dry classification.
[0006]
In addition, an abrasive having a higher polishing speed and polishing accuracy is produced by improving the grinding conditions. For example, a method of appropriately adjusting the grinding conditions such as the grinding time in the grinding process. However, there is a limit to improving the polishing speed and the polishing accuracy of the polishing material in this way.
[0007]
The present invention has been made in view of such problems, and is a cerium-based abrasive having cerium oxide as a main component, and manufacturing an abrasive having better polishing characteristics such as polishing speed and polishing accuracy. It is an object to provide a method.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, the inventors of the present invention, the amount of unground particles in the pulverized product obtained by the raw material pulverization step, the influence of the unground particles on the abrasive that is the final product, etc. investigated. And while studying these matters, the inventors came up with the following invention.
[0009]
The present invention provides a method for producing a cerium-based abrasive comprising cerium oxide as a main component, which includes a wet pulverization step for pulverizing raw materials, a roasting step performed after the wet pulverization step, and a pulverization step performed after the roasting step. In the present invention, a classification step is performed before the roasting step.
[0010]
When a classification step is provided before the roasting step and the pulverized product obtained by wet pulverization is classified, coarse particles contained in the pulverized product (raw material) are efficiently removed. For example, the coarse particle removal efficiency is better than the conventional method of performing dry classification after roasting to remove coarse particles. When coarse particles are efficiently removed, the productivity of the abrasive is improved. In addition, if wet pulverization is performed before the roasting process, the generation of abrasive scratches on the surface to be polished is more reliably prevented, and an abrasive with a higher polishing speed can be produced. As a classification method, various classification methods such as a dry classification method such as air classification and a wet classification method such as filtration classification performed on a slurry-like pulverized product can be used.
[0011]
The present invention can be applied to conventionally used raw materials. Conventional methods can be used as a wet pulverization step for pulverizing the raw material performed before the classification step, a roasting step after the classification step, and a pulverization or roasting method in the pulverization step.
[0012]
As raw materials, conventional raw materials such as bust nesite ores, rare earth carbonates, rare earth oxides, etc., which become rare earth oxides containing cerium oxide as a main component when roasted are used. In general, the “CeO 2 (cerium oxide) content / TREO (total rare earth oxide content)” in the raw material is 40% by weight or more. In addition, rare earth elements such as cerium do not necessarily exist as oxides in raw materials such as bust nesite ore, but the content of rare earth elements using values converted to oxides such as TREO values. And specifying the content.
[0013]
As a wet pulverization method for raw materials and the like, a pulverization method using a media mill such as a ball mill, a bead mill, or an attritor is preferable. As a pulverization particle size, D 50 (average particle size) is preferably 10 μm or less. If such a pulverization method is used, D 50 can be reduced to 0.1 μm or less by reducing the pulverization medium. Moreover, as roasting conditions in the roasting step, the roasting temperature is preferably 800 ° C to 1200 ° C, and the roasting time is preferably 0.5 hours to 24 hours. Examples of the roasting method include a method using roasting equipment such as a rotary kiln, a pusher furnace, a stationary furnace, and an electric furnace.
[0014]
The roasted product obtained by the roasting process is pulverized. In the pulverization step after roasting, either dry pulverization or wet pulverization can be used. Various methods can be used as the pulverization method. For example, the pulverization method using the above-described medium mill such as a ball mill, a bead mill, or an attritor is preferable. When wet pulverization is used, a classification step, particularly a wet classification step, may be provided after the wet pulverization step, as in the case where the wet classification step is provided after the wet pulverization and before the roasting step. The coarse particles obtained in the wet classification process can be used again in the wet pulverization process to obtain a higher quality pulverized product. Moreover, you may perform a crushing process as needed after a baking process and before a grinding | pulverization process. When pulverization is performed, subsequent pulverization can be performed more efficiently and with higher accuracy.
[0015]
In the method for producing a cerium-based abrasive according to the present invention, chemical treatment such as mineral acid treatment or fluorination treatment may be performed as necessary. For example, mineral acid treatment using hydrochloric acid or the like is performed to remove alkali metal or alkaline earth metal in the raw material, or fluorination treatment using hydrofluoric acid or ammonium fluoride is performed to fluorinate the raw material. May be performed. These treatments are performed before or after the pulverization step or classification step performed before the roasting step, or when wet pulverization or wet classification is used in these steps, during the wet pulverization step or during the wet classification step. As described above, the treatment time is not particularly limited, but after the grinding step is more preferable from the viewpoint of uniformly treating the entire raw material.
[0016]
Moreover, as a classification process performed after a wet grinding process and before a roasting process, wet classification is preferable. When wet classification is used, it is preferable to adjust the slurry concentration of the pulverized product to be classified according to the size of particles to be removed as coarse particles, classification efficiency, and the like. This is because, in the wet pulverization step, the slurry concentration of the solid material may be about 70% by weight or less, but it has been found that 50% by weight or less is preferable. For example, when removing coarse particles by a stationary separation method such as a thickener method, the solid concentration of the slurry is more preferably 15% by weight or less, and further preferably 10% by weight or less. Moreover, when removing coarse particles by a filter system, the slurry concentration of the solid is more preferably 20% by weight or less. Furthermore, when removing coarse particles by a wet cyclone method using centrifugal force, the solids slurry concentration is more preferably 30 wt% to 50 wt%, and even more preferably 35 wt% to 45 wt%. The slurry concentration is preferably 1.0% by weight or more. The lower the slurry concentration, the smaller the size of the particles removed as coarse particles. However, when the slurry concentration is lower than 1.0% by weight, the productivity is low and the industrial merit is low.
[0017]
As a result of further examination on the wet classification conditions, if a slurry such as sodium hexametaphosphate or ammonium polyacrylate is added to the slurry of the pulverized product, or the slurry temperature is decreased to produce a product It was found that the property (classification efficiency) was improved. And it turned out that the upper limit of the slurry density | concentration which can be classified favorably will become high if the viscosity of the pulverized product slurry which is the classification object is made low. For example, when the thickener method is used as the classification method, a pulverized product slurry having a slurry concentration of 25% by weight or less (more preferably 20% by weight or less) can be well classified by adding an additive to reduce the viscosity, and the temperature can be reduced. By heating to 40 ° C., a pulverized product slurry having a slurry concentration of 25% by weight or less (more preferably 20% by weight or less) can be well classified, and by adding an additive and heating to 40 ° C., the slurry concentration is 35 It was found that the pulverized product slurry of not more than wt% (more preferably not more than 30 wt%) can be classified well.
[0018]
When the wet classification is performed, the slurry obtained by the classification is used for the roasting process after the spray drying process or after the filtration process and the drying process. In that case, you may provide a dry classification process after a drying process and before a roasting process.
[0019]
In addition, when it is desired to further reduce the content of coarse particles contained in the roasted product, after performing classification such as wet classification before the roasting process, further performing the wet classification process after the roasting process. Also good. When the content of coarse particles is further reduced in this way, the generation of abrasive scratches on the surface to be polished is more reliably prevented, and a higher polishing rate can be obtained. The wet classification method performed after the roasting step is not particularly limited, but, for example, a method of removing coarse particles by a stationary separation method such as a thickener method, a cartridge filter, etc., as in the wet classification before the roasting step. A method of removing coarse particles by a filter method used, a method of removing coarse particles by a wet cyclone method by centrifugal force, and the like are preferable.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the method for producing a cerium-based abrasive according to the present invention will be described.
[0021]
As a first embodiment <br/> material, TREO 70 wt%, "CeO 2 / TREO" was prepared rare earth carbonate (cerium rare earth carbonate) is 60 wt%. D 50 (average particle diameter) was about 50 μm. Then, this raw material and pure water are mixed at a weight ratio of “2: 1”, wet pulverized using a ball mill (powder medium made of zirconia, medium diameter 1.2 mm), and a raw slurry having a D 50 of 1.0 μm is obtained. Prepared. Incidentally, using a laser diffraction particle size distribution meter SALD2000 (manufactured by Shimadzu Corporation) for the measurement of D 50.
[0022]
The prepared raw material slurry was diluted with water to obtain a slurry having a solid content (raw material) concentration of 40% by weight. Next, after adding sodium hexametaphosphate corresponding to 0.5% by weight of the solid content as a dispersant, classification is performed using a wet classifier using a wet cyclone (Parklon TR10-3, manufactured by Murata Kogyo Co., Ltd.). To remove coarse particles. The slurry from which the coarse particles were removed was filtered and washed to remove the sodium component, and then dried, and the resulting dried product was roasted at a temperature of 1000 ° C. for 6 hours using an electric furnace. After roasting, the obtained roasted product was crushed using a hammer mill. The obtained crushed product was dry-classified with an air classifier to obtain a cerium-based abrasive powder.
[0023]
Example 1 In this example, the classification point of the wet cyclone classifier in the wet classification before roasting was set to 5 μm. The wet cyclone classifier classifies particles in the slurry by rotating the slurry fed from the raw material supply port along the inner wall of the cyclone at high speed, and the upper top of the middle nozzle on the upper side of the cyclone. Fine particles in the slurry are discharged through a nozzle, intermediate-sized particles are discharged through a middle nozzle, and coarse particles are discharged through a bottom nozzle below the cyclone. In this embodiment, classification is performed by discharging coarse particles from the bottom nozzle. The classification point was adjusted and set mainly by adjusting the flow rate of the slurry and the diameter of the bottom nozzle. The slurry supply pressure at the raw material supply port was 0.6 MPa, the slurry flow rate was 11 L (liter) / min, and the bottom nozzle diameter was 2 mm. Moreover, the classification point of the air classifier was set to 5 μm in the dry classification after roasting. The classification point of the air classifier is set by the air flow rate and the rotational speed.
[0024]
Example 2 : In this example, classification after roasting was not performed. Since the other abrasive production conditions were the same as in Example 1, description thereof was omitted.
[0025]
Example 3 In this example, wet classification was performed as a classification step after roasting. First, the crushed product obtained by crushing after roasting and pure water were mixed and stirred to prepare a slurry having a solid content (raw material) concentration of 40% by weight, and wet classification was performed on this slurry. In the wet classification, a wet cyclone classifier was used as in the wet classification before roasting, and the classification point was set to 5 μm. Moreover, after classification, the abrasive obtained by filtering the slurry containing the fine-grain side abrasive obtained by classification was dried and crushed to obtain a cerium-based abrasive. The crushing method was a method using a hammer mill as in the crushing immediately after roasting. The other abrasive production conditions were the same as in Example 1.
[0026]
Comparative Example 1 : In this comparative example, no dispersant was added. And wet classification was not performed before roasting. The other abrasive production conditions were the same as in Example 1.
[0027]
Comparative Example 2 : In this comparative example, no dispersant was added. And wet classification was not performed before roasting. In the classification process for the pulverized product obtained by pulverizing the roasted product, the classification point was set to 4 μm. The other abrasive production conditions were the same as in Example 1.
[0028]
Comparative Example 3 : In this comparative example, no dispersant was added. And wet classification was not performed before roasting. In the classification step for the pulverized product obtained by pulverizing the roasted product, the classification point was set to 6 μm. The other abrasive production conditions were the same as in Example 1.
[0029]
The cerium-based abrasives obtained in the examples and comparative examples were evaluated for coarse particle concentration, polishing speed, generation of abrasive scratches and productivity. The evaluation method for each evaluation item is shown below, and the evaluation results are shown in Table 1.
[0030]
Coarse particle concentration measurement First, 200 g of the cerium-based abrasives obtained in the examples and comparative examples were mixed with an aqueous solution containing 0.1% sodium hexametaphosphate as a dispersant to form a slurry. Was prepared. Then, after allowing the slurry to stand for a certain period of time, the operation of drawing out the supernatant and recovering the coarse particles from the supernatant was repeated to collect particles (coarse particles) having a size larger than a predetermined particle size. Thereafter, the collected particles were sufficiently dried and weighed, and the coarse particle concentration was determined from the coarse particle weight. In the first embodiment, particles having a particle size of 5 μm or more are collected, in the second embodiment described later, particles having a particle size of 10 μm or more, and in the third embodiment, particles having a particle size of 2 μm or more are collected. did.
[0031]
Abrasive test The cerium-based abrasive obtained in each of Examples and Comparative Examples was subjected to a polishing test using a polishing tester (Taito Seiki Co., Ltd .: HSP-21 type). First, an abrasive slurry having an abrasive concentration of 15% by weight was prepared using an abrasive (abrasive slurry) and pure water. Then, using this polishing material slurry and a polishing pad made of polyurethane, the surface of the flat glass (φ65 mm) was subjected to a polishing pressure of 5.9 kPa (0.06 kg / cm 2 ), a rotation speed of the polishing machine of 100 rpm, and a polishing material slurry. Was polished for 10 minutes at a circulation rate of 5 liters / minute.
[0032]
Evaluation of polishing speed The polishing value was determined based on the amount of decrease in the glass mass before and after polishing (the polishing speed was evaluated). In Table 1, the amount of reduction when using the abrasives of Comparative Example 1, Table 2 of Comparative Example 4 and Table 3 of Comparative Example 5 was used as a reference (polishing value 100).
[0033]
Scratch evaluation After polishing, the surface to be polished was washed with pure water, and the surface to be polished was dried in a dust-free state and evaluated for scratches. Scratch evaluation was performed by observing the glass surface by a reflection method using a 300,000 lux halogen lamp as a light source, scoring the number of large scratches and fine scratches, and evaluating 100 points as a perfect score.
[0034]
Evaluation of productivity The productivity of the abrasive was evaluated based on the yield of the cerium-based abrasive produced. The yield here is the ratio of the weight of the abrasive material finally obtained to the weight of TREO in the abrasive material.
[0035]
[Table 1]
Figure 0004290465
[0036]
When Example 1 was compared with Comparative Example 1, Example 1 already had a low coarse particle concentration in the state before dry classification after roasting. This point can also be understood from the fact that the abrasive of Example 1 has a significantly lower coarse particle concentration in spite of the same dry classification conditions after roasting. Further, when the basic abrasive production conditions such as raw materials and roasting conditions are the same as in Example 1 and Comparative Example 1, the polishing rate is considered to be higher as the obtained abrasive has a larger particle size. As a result, since Example 1 has a higher polishing rate than Comparative Example 1, it was found that the polishing material of Example 1 contained more abrasive particles having a large particle size and fewer abrasive particles having a small particle size. . From the above results, it was found that when wet classification was performed before roasting as in Example 1, the particles with small particle size were reduced and the coarse particle concentration was kept low.
[0037]
And the direction of Example 1 was hard to generate | occur | produce a damage | wound. This is probably because the coarse particle concentration is low. When the coarse particle concentration is low, it is considered that the contact of the abrasive with the surface to be polished becomes more uniform even when the polishing pressure is the same, and the polishing rate is improved even when a finer abrasive is used. Further, Example 1 had a higher classification yield and excellent productivity.
[0038]
Further, in Example 1 and Comparative Example 2, there was no difference in the coarse particle concentration of the obtained abrasive, but Example 1 has significantly higher productivity (yield) of the abrasive, polishing speed, and scratch prevention performance. Both were excellent. As a result, even if wet classification is not performed before the roasting step, if the classification point of classification performed after roasting is set to a smaller particle size value, the coarse particle concentration is subjected to wet classification before roasting. Although it can be reduced to the same extent, it has been found that the productivity of the abrasive is significantly reduced, and that the polishing speed and the scratch prevention performance are both reduced. And in Comparative Example 3, the classification point for classification performed after roasting was set to a larger particle size value, and compared with Comparative Example 2, the polishing speed and productivity were excellent. In comparison, all the items of coarse particle concentration, polishing speed, scratch evaluation, and productivity were inferior.
[0039]
Example 2 is an example in which only wet classification before baking was performed and classification after baking was not performed. This Example 2 is compared with Comparative Example 3. Comparative Example 3 is an example in which only dry classification after roasting was performed and wet classification before roasting was not performed. When both were compared, the coarse particle concentration was the same, but Example 2 was superior in all other items of polishing speed, scratch evaluation, and productivity. As a result, it has been found that if classification is performed only once during the production of the abrasive, it is extremely preferable to perform the classification before baking. Further, as in Example 3, when the classification after the roasting process is performed by wet classification, the coarse particle concentration is extremely low, a sufficiently high polishing rate is ensured, and the generation of abrasive scratches is prevented, and production is performed. It was found that an extremely high quality cerium-based abrasive can be obtained.
[0040]
Second embodiment A raw material and pure water having the same conditions as in the first embodiment are mixed at a weight ratio of "2: 1" and wet pulverized using a ball mill (steel powder medium, medium diameter 3.0 mm). To prepare a raw material slurry having a D 50 of 2.0 μm. The prepared raw material slurry was diluted with water to obtain a slurry having a solid content (raw material) concentration of 40% by weight. Next, after adding sodium hexametaphosphate corresponding to 0.5% by weight of the solid content as a dispersant, coarse particles were removed by wet classification using a cartridge filter. The slurry from which the coarse particles were removed was filtered and washed to remove the sodium component, and then dried, and the resulting dried product was roasted at a temperature of 1000 ° C. for 6 hours using an electric furnace. After roasting, the obtained roasted product was crushed using a hammer mill. The obtained crushed product was dry-classified with an air classifier to obtain a cerium-based abrasive powder.
[0041]
Example 4 : The mesh (screen opening) of the filter in the wet classification using the cartridge filter performed before roasting was 10 μm. Moreover, the classification point in the classification process for the pulverized product obtained by pulverizing the roasted product was 10 μm.
[0042]
Comparative Example 4: In this comparative example, no dispersant was added. And wet classification was not performed before roasting. The other abrasive production conditions were the same as in Example 4 .
[0043]
Table 2 shows the coarse particle concentration, the polishing rate, the occurrence of polishing flaws, and the productivity of the cerium-based abrasives obtained in Example 4 and Comparative Example 4.
[0044]
[Table 2]
Figure 0004290465
[0045]
As shown in Table 2, in Example 4 and Comparative Example 4, the productivity was slightly inferior to that of Comparative Example 4, but Example 2 was remarkably superior for other items. As a result, it has been found that if wet classification is performed before the roasting step, the coarse particle concentration can be remarkably reduced while the productivity is reliably maintained, and the polishing rate and scratch evaluation can be significantly improved.
[0046]
Third embodiment A raw material and pure water having the same conditions as in the first embodiment are mixed at a weight ratio of "2: 1" and wet pulverized using a ball mill (zirconia powder medium, medium diameter 0.8 mm). To prepare a raw slurry having a D 50 of 0.5 μm. The prepared raw material slurry was diluted with water to obtain a slurry having a solid content (raw material) concentration of 40% by weight. Next, after adding sodium hexametaphosphate corresponding to 0.5% by weight of the solid content as a dispersant, coarse particles were removed by wet classification using a wet cyclone as in the first embodiment. The slurry from which the coarse particles were removed was filtered and washed to remove the sodium component, and then dried, and the resulting dried product was roasted at a temperature of 1000 ° C. for 6 hours using an electric furnace. After roasting, the obtained roasted product was crushed using a hammer mill. The obtained crushed product was dry-classified with an air classifier to obtain a cerium-based abrasive powder.
[0047]
Example 5 : In the wet classification before roasting, the classification point of the wet cyclone classifier was set to 2 μm. In the dry classification after roasting, the classification point of the air classifier was set to 2 μm.
[0048]
Comparative Example 5: In this comparative example, no dispersant was added, and wet classification was not performed before roasting. The other abrasive production conditions were the same as in Example 5 .
[0049]
Table 3 shows the coarse particle concentration, the polishing rate, the occurrence of polishing flaws, and the productivity of the cerium-based abrasives obtained in Example 5 and Comparative Example 5.
[0050]
[Table 3]
Figure 0004290465
[0051]
Moreover, in Example 5 and Comparative Example 5, the coarse particle concentration was significantly lower in Example 3. As a result, it has been found that when wet classification is performed before the roasting step, the coarse particle concentration can be reliably reduced. And as can be seen from the results in Tables 1 to 3, the coarse particle concentration can be significantly reduced when wet classification is performed before the roasting step, even when producing an abrasive with any (average) particle size. I understand.
[0052]
【The invention's effect】
As described above, according to the present invention, it is possible to produce an abrasive having a lower coarse particle concentration and excellent polishing characteristics such as polishing speed and scratch evaluation.

Claims (2)

原料を粉砕する湿式粉砕工程と、湿式粉砕工程後に行われる焙焼工程と、焙焼工程後に行われる粉砕工程とを有する、酸化セリウムを主成分とするセリウム系研摩材の製造方法において、
湿式粉砕工程は、原料の平均粒径D 50 が10μm以下となるように粉砕し、
焙焼工程の前に、粉砕した原料を含むスラリー中にヘキサメタリン酸ナトリウムまたはポリアクリル酸アンモニウムの分散剤を添加して湿式分級を行うことを特徴とするセリウム系研摩材の製造方法。
In the method for producing a cerium-based abrasive comprising cerium oxide as a main component, having a wet pulverization step of pulverizing raw materials, a roasting step performed after the wet pulverization step, and a pulverization step performed after the roasting step,
Wet milling process, the average particle diameter D 50 of the raw material is pulverized so as to 10μm or less,
A method for producing a cerium-based abrasive, wherein wet classification is performed by adding a dispersant of sodium hexametaphosphate or ammonium polyacrylate to a slurry containing a pulverized raw material before the roasting step.
焙焼工程後に湿式分級工程を行う請求項に記載のセリウム系研摩材の製造方法。Cerium-based method for producing abrasive material according to claim 1 for wet classification step after the roasting step.
JP2003116806A 2003-04-22 2003-04-22 Method for producing cerium-based abrasive mainly composed of cerium oxide Expired - Lifetime JP4290465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116806A JP4290465B2 (en) 2003-04-22 2003-04-22 Method for producing cerium-based abrasive mainly composed of cerium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116806A JP4290465B2 (en) 2003-04-22 2003-04-22 Method for producing cerium-based abrasive mainly composed of cerium oxide

Publications (2)

Publication Number Publication Date
JP2004323574A JP2004323574A (en) 2004-11-18
JP4290465B2 true JP4290465B2 (en) 2009-07-08

Family

ID=33496904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116806A Expired - Lifetime JP4290465B2 (en) 2003-04-22 2003-04-22 Method for producing cerium-based abrasive mainly composed of cerium oxide

Country Status (1)

Country Link
JP (1) JP4290465B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502308B1 (en) * 2005-07-20 2010-03-15 Treibacher Ind Ag CEROXID BASE GLASS COIL AND METHOD FOR THE PRODUCTION THEREOF
JP5237542B2 (en) * 2006-10-03 2013-07-17 三井金属鉱業株式会社 Cerium oxide abrasive

Also Published As

Publication number Publication date
JP2004323574A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP3929481B2 (en) Cerium oxide-based abrasive, its production method and use
JP2007276055A (en) Method for regenerating cerium-based abrasive
WO2001088056A1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
JP4002740B2 (en) Method for producing cerium-based abrasive
JP3463999B1 (en) Manufacturing method of cerium-based abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP5237542B2 (en) Cerium oxide abrasive
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
CN111051463B (en) Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4070180B2 (en) Method for producing cerium-based abrasive
JP2008013689A (en) Raw material for cerium-based abrasive, method for producing cerium-based abrasive and cerium-based abrasive
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP3687898B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive produced using the method
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP2004175964A (en) Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP2002212544A (en) Method of producing cerium oxide polishing material and cerium oxide polishing material produced by the method
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive
JP3838871B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP2003306668A (en) Method for producing cerium-based polishing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250