JP4070180B2 - Method for producing cerium-based abrasive - Google Patents

Method for producing cerium-based abrasive Download PDF

Info

Publication number
JP4070180B2
JP4070180B2 JP2001134150A JP2001134150A JP4070180B2 JP 4070180 B2 JP4070180 B2 JP 4070180B2 JP 2001134150 A JP2001134150 A JP 2001134150A JP 2001134150 A JP2001134150 A JP 2001134150A JP 4070180 B2 JP4070180 B2 JP 4070180B2
Authority
JP
Japan
Prior art keywords
raw material
cerium
abrasive
concentration
fluorine component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001134150A
Other languages
Japanese (ja)
Other versions
JP2002327171A (en
Inventor
秀彦 山▲崎▼
昭文 伊藤
義嗣 内野
和哉 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001134150A priority Critical patent/JP4070180B2/en
Publication of JP2002327171A publication Critical patent/JP2002327171A/en
Application granted granted Critical
Publication of JP4070180B2 publication Critical patent/JP4070180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セリウム系研摩材の製造方法に関し、特に、焙焼前に行なわれる原料を解砕する工程に特徴を有するセリウム系研摩材の製造方法に関する。
【0002】
【従来の技術】
セリウム系研摩材(以下、単に研摩材とも称する)は、従来から、光学レンズの研摩に多用されているが、近年、ハードディスク等の磁気記録媒体用ガラスや液晶ディスプレイ(LCD)のガラス基板といった電気・電子機器で用いられるガラス材料用の研摩材としても広く用いられている。
【0003】
セリウム系研摩材は、例えば、バストネサイト鉱や中国産複雑鉱をから得られるセリウム系希土類炭酸塩(以下、炭酸希土とも称する)、または炭酸希土を予め高温で仮焼することにより得られるセリウム系希土類酸化物(以下、酸化希土とも称する)を原料として、次のようにして製造される。まず、これらのセリウム系研摩材の原料(以下、単に原料ともいう)をアトライタ、ボールミル、ビーズミルなどの粉砕装置によって湿式粉砕し、その後、化学処理(湿式処理)を施して、濾過し、乾燥する。その後、加熱して焙焼することで原料粒子同士を適度に焼結させ、焼結後の原料を、上述したような粉砕装置を用いて乾式あるいは湿式で解砕(再粉砕)すると共に解砕後の原料を分級する。このようにすることで所望の粒径、粒度分布の研摩材を得ている。なお、ここでいう化学処理とは、焙焼時に異常粒成長の原因となるナトリウム等のアルカリ金属を除去する処理(鉱酸処理)のこと、およびセリウム系研摩材の研摩力(研摩速度)の確保や被研摩面の平滑性の確保を目的としてフッ素成分を添加する処理(フッ化処理)のことである。フッ素成分は被研摩材であるガラスと反応して被研摩面の平滑性を向上させる効果や研摩力を高める効果があるため、フッ化処理を行うことでこのような効果を得ることができる。
【0004】
【発明が解決しようとする課題】
ところで、研摩材製品には粗大粒子が含まれていないことが望ましい。これは、粗大粒子が被研摩面に傷をつける原因になるからである。また、例えば、高密度記録や高速読み書きに対応できる磁気記録媒体用ガラス基板の製造過程で行われる研摩工程では、ガラス基板の表面(被研摩面)の平滑性などについて、非常に高い精度が要求されており、この要求に対応する必要があるが、研摩材中の粗大粒子濃度が高いとガラス基板の表面に傷が発生しやすいく、平滑性などの要求に対応できない。したがって、この点からも研摩材には粗大粒子が含まれていないことが望まれる。
【0005】
また、研摩工程における研摩作業効率を考慮すると、研摩材製品としては、研摩力が高いものが望ましい。そして、高い研摩力を確保するためには、研摩材粒子の粒径が必要以上に小さくならないように粉砕する必要がある。
【0006】
ところが、従来の粉砕手段では、これらの条件を満足しようとしても限界がある。つまり、ボールミル、アトライタ、ビーズミルなどの粉砕装置を用いる従来の湿式粉砕によって、粗大粒子が少なくなるように粉砕するには、粉砕時間を長くする必要があるが、粉砕時間を長くすると、必要以上に粉砕された微粒子の生成量が増加するため、研摩材製品において、必要な研摩力を確保することが難しくなるのである。
【0007】
そこで、従来の研摩材では、研摩材製造時にフッ化処理を行ってフッ素成分を添加し、添加したフッ素成分の効果によって、必要な被研摩面の平滑性や研摩時の研摩力を確保している。上述したように、フッ素成分には、被研摩面の平滑性を向上させる効果や研摩力を高める効果があるからである。例えば、特開平9−183966号公報には、研摩材製品中のフッ素含有量が3重量%〜9重量%になるように、湿式粉砕粉砕後の原料スラリーにフッ素水溶液を撹拌しながら滴下して研摩材を製造する方法が開示されている。
【0008】
しかしながら、フッ素を添加して必要な平滑性や研摩力を確保すると、研摩材中のフッ素成分の濃度が高くなるため、研摩時に微粒の研摩材が被研摩面に付着しやすくなり、しかも被研摩面上に残留しやすくなるため、被研摩面の洗浄性が低下するという不具合がある。
【0009】
本発明は、以上のような背景の下になされたものであり、粗大粒子濃度がより低く、かつより高い研摩力が確保されており、しかも被研摩面の洗浄性に優れるセリウム系研摩材の製造方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
このような課題を解決するため、発明者等は、アトライタなどの粉砕装置を用いて最初に行われる原料を粉砕する工程に着目し、より粗大粒子濃度が低くなる粉砕条件や、より微粒の研摩粒子の濃度が低くなる粉砕条件について検討した。しかしながら、粗大粒子および微粒の研摩粒子の両方について、含有濃度をより低く抑えることができる粉砕条件は見出されなかった。
【0011】
そこで、発明者等は、従来の粉砕方法に拘泥することなく広く粉砕手段を検討した。その結果、アトライタなどの粉砕装置を用いて原料を粉砕しなくても、特定の原料を用いた場合には、フッ素成分を含有する溶液によって原料を粉砕できることを見出し、本発明に想到した。
【0012】
すなわち、本発明は、セリウム系研摩材の原料を粉砕する工程を有すると共に、粉砕後の原料を焙焼する工程および焙焼により得られる焙焼品を解砕する工程を有するセリウム系研摩材の製造方法において、セリウム系研摩材の原料として、セリウム系希土類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在するものが用いられており、原料を粉砕する工程は、原料とフッ素成分含有溶液とを混合してスラリー状態にすることにより該スラリー中の原料を粉砕する工程を有することを特徴とする。
【0013】
原料を粉砕する工程では、セリウム系希土類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在するものを原料として用い、この原料をスラリーの状態にすることにより、該スラリー中の原料を粉砕する。スラリーにする前の原料の大きさは、厳密に限られるものではないが、通常、平均粒径は、1000μm以下であり、この程度の大きさが好ましい。また、スラリーにおける固形成分の濃度も特に限定されるものではないが、通常の粉砕等で用いられる、固形成分が1重量%〜50重量%のスラリーが好ましい。
【0014】
本発明では、スラリーを調製する際に、溶液としてフッ素成分を含有している溶液を用いて原料をスラリーの状態にする。このような状態にすると、アトライタ、ボールミル、ビーズミルなど、原料を物理的に粉砕する従来の粉砕装置を用いなくても、溶液中のフッ素成分を利用して、スラリー中の原料(スラリー中の固形成分)を化学的に粉砕できる。そして、このようにして原料を粉砕すると、原料全体を、より均等に粉砕することができ、粗大粒子濃度および微粒子濃度のいずれもが低い状態に粉砕できる。
【0015】
粉砕後の原料中の粗大粒子濃度を低くすることができれば、研摩材製品中の粗大粒子濃度をより確実に低くすることができる。研摩材中の粗大粒子濃度が低くなれば、粗大粒子を原因とする被研摩面における傷発生がより確実に防止されると共に、被研摩面の平滑性が向上する。また、原料全体を均等に粉砕でき、粉砕後の原料中の微粒子濃度が低い状態になるように粉砕できれば、研摩材を構成する各研摩材粒子の粒径が平均的な粒径により揃った状態になるので、研摩速度が向上する。
【0016】
必要な平滑性や研摩速度が確保されれば、さらにフッ素成分を添加してこれらの性能を確保する必要がなくなるため、研摩材製品中のフッ素成分濃度の低減が可能になる。そして、フッ素成分濃度を低減することで、被研摩面の洗浄性を向上させることが可能になる。また、近年は、年々高水準の環境対策が要求されるようになりつつあり、フッ素成分濃度についてもより低い濃度が要求されるようになると考えられるところ、本発明によれば、研摩材中のフッ素成分濃度をより低減できるため、より確実にこのような要求に対応できる。
【0017】
このような好結果が得られるのは、ここでいう化学的な粉砕方法は、従来の物理的な粉砕方法と異なり、原料の全体を均等に粉砕できるからであると考えられる。
【0018】
アトライタなどの粉砕装置による従来の物理的な粉砕は、ボール等の粉砕媒体を強制的に運動させて粉砕媒体どうしを衝突させることで原料を粉砕するものであり、粉砕が行われる原料と行われない原料とが生ずる。このようなことから、粉砕が不足している原料が生じて粗大粒子が残存する一方で、過剰な粉砕が行われて微粒子が生成されることになると考えられる。これに対し、ここでいう化学的な粉砕は、スラリー全体に均等に存在する液体中のフッ素成分によって原料(スラリー中の固形成分)を粉砕する方法であり、原料全体を均等に粉砕することができる。したがって、粗大粒子の残存を防止しつつ微粒子の生成をも防止でき、原料(スラリー中の固形成分)の全体を均等に粉砕できると考えられるのである。
【0019】
なお、スラリーの調製に用いる溶液としては、例えば、水溶性フッ化物を含有するフッ化水素水溶液、フッ化アンモニウムなどを挙げることができる。また、粉砕においては、スラリーの溶液中のフッ素成分を利用した化学的な粉砕と、従来からある物理的な粉砕とを併用することができ、併用によって、より効率的な粉砕を行うことも可能である。併用する場合は、化学的な粉砕を、従来の物理的な粉砕の前に行うか同時に行うのが好ましい。物理的な粉砕後に化学的な粉砕を行うと、物理的に粉砕された原料をさらに化学的に粉砕することとなり、原料中の微粒子濃度を低減する目的が果たせないためである。
【0020】
ところで、化学的な粉砕を行う場合に、できるだけ迅速に粉砕を行うには、スラリーの溶液中のフッ素成分濃度は高い方がよい。ところが、フッ素成分濃度を高くし過ぎると、最終的に製造される研摩材製品中のフッ素成分濃度を低くすることが難しくなる。粉砕後の焙焼により原料中のフッ素成分が原料中から逃げるため、これにより原料中のフッ素成分濃度を減少させることができるが、後述するように、焙焼本来の目的との関係で、フッ素成分濃度の調節に必要十分な焙焼を行うことができるとは限らないからである。他方、スラリーの溶液中のフッ素成分濃度が低すぎると化学的な粉砕が進みにくくなる。
【0021】
そこで、フッ素含有溶液を用いて粉砕する工程におけるスラリーの溶液中のフッ素成分濃度について検討した。その結果、フッ素成分濃度が希薄な溶液によって化学的な粉砕が可能であることが解った。具体的には、スラリーの溶液中のフッ素成分濃度の最大値は、0.001mol/L〜1.0mol/Lが好ましいことが解った。
【0022】
溶液中のフッ素成分濃度の最大値の上限を1.0mol/Lに限るのは、これを超えると、研摩材製品のフッ素成分濃度を低く抑えることが難しくなるからである。なお、原料を化学的に粉砕する効果は、スラリーの溶液中にフッ素成分が含まれていれば得られると考えられるが、粉砕工程における生産性(粉砕効率)を確保する観点に立つと、フッ素成分濃度は、0.001mol/L以上が好ましい。
【0023】
ところで、フッ素溶液による粉砕工程では、原料の粉砕が進むにつれて、固形成分中の希土類元素と溶液中のフッ素成分とが反応して不溶性のフッ化希土になることから、溶液中のフッ素成分濃度は次第に低下する。この場合、粉砕の途中でフッ素成分を新たに添加しなくても、スラリーの溶液中にフッ素成分が存在する限り粉砕は進行するが、随時フッ素成分を添加してもよい。スラリーの溶液中のフッ素成分濃度を高めることにより、あるいは一定に保つことによって、より均等な粉砕を実現できると共に粉砕時間をより短時間にすることができるからである。
【0024】
ただし、フッ素成分含有溶液を添加し過ぎると、溶液中のフッ素成分濃度の最大値が上述の範囲を逸脱しない場合でも、研摩材製品中に含まれるフッ素成分濃度を低くすることが難しくなる。研摩材中のフッ素濃度を低くすることができなければ洗浄性が低下する。この点について、検討した結果、フッ素成分含有溶液を用いてスラリー中の原料を粉砕する工程の後に得られる原料のフッ素成分濃度が、0.01重量%〜4.0重量%であれば良好な研摩材を容易に製造できることが解った。粉砕後の原料のフッ素成分濃度がこの範囲に収まるようにすれば、粉砕の途中でフッ素成分を添加するしないに拘わらず、研摩材製品中のフッ素成分濃度が確実に制限され、洗浄性に優れる研摩材をより確実に製造できる。ここでいう原料のフッ素成分濃度は、原料や研摩材製品におけるTREO(全希土酸化物含有量)に対するフッ素元素含有量の重量比率である。このようにTREOを基準に用いるのは、炭酸希土を含有する原料や研摩材原料が、焙焼によりその重量が減少するという性質を有しており、原料の重量を基準にしてフッ素成分濃度を規定したのでは、焙焼の前後でフッ素成分濃度を必ずしも正確に比較できないからである。
【0025】
また、上述したように、本発明では、原料として、セリウム系希土類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在するものを用いる。化学的な粉砕によれば、スラリー中のフッ素成分によって原料を粗大粒子濃度および微粒子濃度が極めて低い状態に粉砕できるが、これは、主に炭酸希土との関係で生ずる効果であると考えられるからである。
【0026】
なお、「セリウム系希土類」とは、TREOに占める酸化セリウム(CeO2)の割合が30重量%以上であるもののことであり、通常の研摩材製造では、この値が40重量%〜99重量%の範囲にあるものが用いられている。また「セリウム系希土類炭酸塩」とは、「セリウム系希土類」水溶液から炭酸根を含有する沈殿剤によって得られるものである。例えばセリウム系希土類水溶液として塩化希土を、また沈殿剤として炭酸アンモニウムを例示することができる。そして、「セリウム系希土類酸化物」とは、セリウム系希土類炭酸塩を焙焼して酸化させたものである。
【0027】
そこで、本発明のセリウム系研摩材の製造方法で用いる原料として好ましい範囲について、セリウム系研摩材用原料の強熱減量(以下、LOI(Loss On Ignition)ともいう。)という物性に着目して検討した。LOIとは、対象物を強熱した際の重量減少率のことである。その値は炭酸希土で約30重量%〜40重量%、また完全に酸化された酸化希土の場合は0重量%である。つまり、LOIが解れば、化学的な粉砕との関連が深いと考えられる炭酸希土の原料中に占める割合が解るのである。
【0028】
セリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在する原料を対象として検討した結果、1000℃で1時間加熱した場合の強熱減量が1.0重量%〜40重量%であるセリウム系研摩材用の原料が好ましいことが解った。LOIが1.0重量%より小さくなるレベルまで炭酸希土の割合が低くなると、粉砕時に、原料を水溶性フッ化物により化学的に粉砕する効果がほとんど得られなくなると考えられる。なお、通常はLOIが0.5重量%未満のものを酸化希土と称している。
【0029】
原料のLOIの測定は、JIS−K−0067(1992年、日本規格協会)に準拠して行った。簡単に説明すると、まず原料から採取した少量の原料を105℃で1時間加熱(予備乾燥)して十分に乾燥させた後るつぼに入れ、その重量を0.1mgの桁まで測定した。その後、これらを電気炉中で1000℃、1時間加熱して乾燥雰囲気下で放冷した後、再び原料入りのるつぼの重量を測定し、両重量測定における重量差に基づいて強熱減量を求めた。本発明において強熱減量を1000℃で1時間加熱した後に測定することにしたのは、希土塩の場合、500℃以上の加熱で強熱減量の値が安定し始めることが実験的に確認されており、1000℃での加熱が最も安定的な指標として適用可能であるという考えに基づくものである。
【0030】
ところで、セリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在する原料を大別すると、セリウム系希土類炭酸塩を焙焼することによって得られる原料と、セリウム系希土類炭酸塩とセリウム系希土類酸化物とを混合させることで得られる原料とがあるが、前者の原料の方が粉砕性により優れており、前者の原料を用いた方が研摩材製品の粗大粒子濃度がより低くなるため、より好ましい。つまり、後者の原料には、硬くて粉砕しにくい酸化希土が混合されているため、粉砕が進みにくく、粗大粒子濃度が高くなりやすいと考えられる。これに対し、前者の原料は、原料全体を適度に焙焼してLOIを調節したものであり、炭酸希土を完全に焙焼することにより得られる酸化希土の焼成が防止されているので、粗大粒子濃度がより低減しやすいと考えられる。
【0031】
原料を粉砕する工程が終了すると、従来の技術で説明したような通常の製造工程と同様の工程を行って研摩材を製造する。具体的には、まず必要に応じて化学処理(湿式処理)を施し、濾過して乾燥する。その後、焙焼して、解砕(再粉砕)を行う。湿式粉砕によって解砕する場合で、スラリー状態の研摩材を製造する場合は、この解砕を完了した時点で研摩材が製造される。また、それ以外の場合は、通常、解砕後の原料を分級して所望の粒径、粒度分布の研摩材を得る。
【0032】
原料中のフッ素成分濃度の調節は、原料を粉砕する工程においてスラリーの調製に用いる溶液中のフッ素濃度を調節することで行われるほか、研摩材を粉砕する工程後の焙焼によっても行われる。焙焼により原料中のフッ素成分を飛ばすことができるからである。ただし、焙焼工程は、最終的に製造しようとする研摩材の粒径との関係で、研摩材原料粒子が適当な大きさに粒成長するように、原料を焙焼するものであるため、原料中のフッ素成分濃度が適当な値になるような焙焼条件(温度や時間)を常に選択できるとは限らない。したがって、研摩材中のフッ素成分濃度を確実に低くするには、原料を粉砕する工程において原料中のフッ素濃度を極力低減させておく必要がある。この点、本発明によれば、原料を粉砕する工程におけるフッ素成分濃度を低くすることができ、またフッ化処理も必要ないので、焙焼前の原料中のフッ素成分濃度を低く抑えることができ、焙焼後の原料や研摩材製品中のフッ素成分濃度を容易かつ確実に上述の範囲に収めることができる。
【0033】
ここまで説明してきたような研摩材の製造方法によれば、粗大粒子濃度および微粒子濃度が低い研摩材を容易に製造できるが、検討の結果、本発明に係るセリウム系研摩材の製造方法によって製造された研摩材の中でも、研摩材中のTREOに対するフッ素元素含有率が0.01重量%〜3.0重量%であるものが、被研摩面の平滑性および洗浄性に優れており、研摩時の傷発生が少なく、しかも研摩力が高い研摩材であることが解った。なお、研摩材製品中のフッ素成分濃度は、研摩材製品におけるTREOに対するフッ素元素含有量の重量比率である。フッ素成分濃度が0.01重量%以下のものは被研摩面の平滑性に劣り、一方、3.0重量%を超えるものは洗浄性に劣るからである。また、高い平面性が要求される電子材料用ガラス基板研摩用途としては、特に洗浄性に優れる研摩材が要求される。このような用途には、研摩材中のフッ素成分濃度が特に低い0.01重量%〜1.0重量%のものが好適である。
【0034】
【発明の実施の形態】
以下、本発明の好適な実施の形態を説明する。
【0035】
第1実施形態:セリウム系研摩材原料として、TREOが69.5重量%であって、TREOに占める酸化セリウム(CeO2)が60重量%、TREOに占めるフッ素成分の含有量が0.02重量%である炭酸希土を用いた。なお、原料の平均粒径は約500μmであった。また、原料のLOIは30重量%であった。LOIの測定方法は、上述した通りであり、その説明を省略する。
【0036】
この原料2kgと、フッ化水素(HF)濃度が0.01mol/Lである水溶液2Lとを混合して、固形成分含有率が50重量%であるスラリーを調製した。
【0037】
このスラリーを常温下(20℃)で1時間撹拌し、その後、直径4mmのボールが10kg投入されたアトライタ(三井三池製作所(株)製 MA−1SE)を用いて3時間、湿式粉砕を行った。粉砕後、固形成分を濾過してケーキを得た後、このケーキを乾燥させて、焙焼(850℃)し、解砕を行い、その後、10μm以上の粒子を除く分級を行って、平均粒径が1.0μmのセリウム系研摩材製品を得た。なお、各実施形態および比較例は全て、平均粒径が1.0μmのセリウム系研摩材を製造するものであり、各実施形態および比較例では、この目標との関係で、原料が適当な粒径まで粒成長するように焙焼を行うと共に必要な解砕がなされるように解砕している。
【0038】
第1実施形態をはじめ、後述の実施形態および比較例では、撹拌終了時のスラリーの固形成分および最終的に得られた研摩材について、フッ素成分濃度を測定した。また、撹拌終了時および湿式粉砕終了時の原料と最終的に得られた研摩材製品について、粗大粒子濃度(粒径10μm以上の粒子の濃度)を測定した。
【0039】
フッ素成分濃度の測定:フッ素成分濃度測定方法は、「JIS−K−0102 34」に記載のフッ素化合物測定方法(イオン電極法)に準拠したもの(フッ素が微量の場合にはイオンクロマトグラフ法による測定を併用)であり、その説明を省略する。結果を表1に示す。
【0040】
粗大粒子濃度の測定:粗大粒子濃度の測定は以下のようにして行った。測定対象について、固形成分の重量が200gに相当する量を秤量採取し、これを分散剤として0.1重量%のヘキサメタリン酸ナトリウムを含有する水溶液に分散させ2分間攪拌しスラリーを製造した。このスラリーを孔径10μmのマイクロシーブで濾過し、篩上の残滓を回収した。回収した残滓を再度0.1重量%ヘキサメタリン酸ナトリウム溶液に分散させスラリー化した。このとき、分散は超音波攪拌を1分間行っている。そして、スラリーを孔径10μmのマイクロシーブで濾過した。この回収残滓の再スラリー化、濾過は2回行って粗大粒子を回収した。その後、この粗大粒子を十分乾燥させた後秤量し、この粗大粒子重量から粗大粒子濃度を求めた。
【0041】
第2〜5実施形態および比較例1〜比較例3:第1実施形態で用いた原料と同じ原料を用い、スラリー調製に用いる水溶液中のフッ化水素濃度を変化させて原料を粉砕する工程を行った。各実施形態におけるフッ素濃度を表1に示す。これ以外の研摩材製造条件は、第1実施形態と同じであった。
【0042】
【表1】

Figure 0004070180
【0043】
比較例3では、フッ素成分を含有しない水溶液(純水)を用いてスラリーを調製したが、撹拌後に得られた原料は粗大粒子濃度が極め高いものであった。これに対し、第1実施形態によれば、撹拌後に粗大粒子濃度の低い原料が得られた。つまり、フッ素成分濃度が0.001mol/L以上の水溶液を用いてスラリーを調製することにより、溶液中に含有するフッ素成分を利用した化学的な粉砕を行うことができることが解った。また、最終的に得られる研摩材製品中の粗大粒子濃度も比較例3と比べて抑制されており、研摩材中の粗大粒子濃度を低減する効果を有することも解った。なお、0.001mol/L以下の濃度でも溶液中にフッ素成分が含有されていれば粉砕効果は得られるが、必要な粉砕を行うには時間がかかることが解った。また、撹拌操作は、スラリー中のフッ素成分を利用した化学的な粉砕が促進されると考えられるので、粉砕効率を向上させるためには好ましい。
【0044】
第2実施形態から第5実施形態の結果に示されるように、スラリー調製に用いた溶液中のフッ素濃度を高めていくと、撹拌後あるいは粉砕工程後に得られる原料の粗大粒子濃度を低減できることが解った。この一方で、比較例1から解るように、スラリー調製に用いる水溶液中のフッ素成分濃度が5.0mol/Lになると、研摩材製品中の粗大粒子濃度がかえって高くなることが解った。溶液中のフッ素濃度を高くすると、化学的な粉砕は促進され、粉砕後に得られる原料中の粗大粒子濃度は低減するが、原料中のフッ素濃度が高くなる。この結果、焙焼時の粒成長が促進され過ぎ、研摩材製品中の粗大粒子濃度がかえって高くなるからであると考えられる。
【0045】
第6〜9実施形態および比較例4:第1実施形態で用いた原料を600℃〜800℃で所定時間仮焼してLOIを所定の値に調節した原料を用いた。各実施形態の原料のLOIは表2に示すとおりである。これ以外の研摩材製造条件は第4実施形態と同じであったので、その説明を省略する。
【0046】
第10および第11実施形態:スラリーを調製する際に用いる、フッ素含有水溶液として、フッ化アンモニウム(NH4F)水溶液を用いた。これ以外の研摩材製造条件は、第10実施形態は第4実施形態と同じであり、第11実施形態形態は、第8実施形態と同じであった。
【0047】
【表2】
Figure 0004070180
【0048】
各実施形態の結果から解るように、原料のLOIが1.0重量%以上の場合に、撹拌(化学的な粉砕)後に得られる原料および研摩材製品中の粗大粒子濃度が低くなるという結果が得られた。これに対し、比較例4に示されるように、LOIが0.5重量%の原料を用いた場合は、撹拌処理(化学的な粉砕)によっては粗大粒子濃度を低くすることはできなかった。したがって、セリウム系研摩材の原料としては、セリウム系希土類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在するものが好ましく、より具体的にはLOIが、1.0重量%以上であるものが好ましいことが解った。このような結果になるのは、スラリー中のフッ素成分が粗大粒子を粉砕する効果は、主に炭酸希土に対する効果だからであると考えられる。また、LOIの上限値は特に限定されることはなく、原料として入手可能な炭酸希土原料のLOIの上限値である40重量%以下であれば好ましいことが解った。ただし、スラリー中のフッ素成分濃度の調製を正確に行うためには、原料はできるだけ安定した物性のものが好ましい。この点を考慮すると、原料のLOIは30重量%以下がより好ましい。
【0049】
研摩試験:各実施形態及び比較例により得られたスラリー状態のセリウム系研摩材について研摩試験を行い、研摩値の測定および研摩面の状態評価(傷評価)を行った。研摩試験では、高速研摩試験機を試験装置として用い、65mmφの平面パネル用ガラスを被研摩材とし、このガラスをポリウレタン製の研摩パッドを用いて研摩した。研摩試験では、得られた研摩材をさらに水に分散させてスラリー濃度が10重量%の研摩材スラリーを調製した。研摩条件は、調製した研摩材スラリーを5ml/minの速度で供給し、研摩面に対する圧力を15.7kg/cm2に設定し、研摩試験機の回転速度を1000rpmに設定するというものであった。研摩後のガラス材料は、純水で洗浄し無塵状態で乾燥させた。
【0050】
研摩値の評価:上述の研摩試験において、研摩前後のガラス重量を測定することにより求められたガラス重量の減少量に基づいて、研摩値を求めた。したがって、研摩値が大きいほど研摩力が高いということになる。ここでは、第1実施形態の研摩材を用いて研摩した場合の研摩値を基準(100)とした。
【0051】
傷の評価:被研摩面の状態を評価したものである。被研摩面の傷の有無および研摩材粒子の研摩面への残存の有無を基準として傷の評価を行った。具体的には、研摩後のガラスの表面に30万ルクスのハロゲンランプを照射し、反射法にてガラス表面を観察して、傷の程度(大きさ)を見極めて点数化し、100点満点からの減点方式にて評価点を定めた。試験の結果を表3に示す。
【0052】
洗浄性の評価:各実施形態および比較例で得られたセリウム系研摩材を用いて研摩した被研摩面を洗浄することを想定して、研摩材の洗浄性試験を行った。試験では、光学顕微鏡観察用のガラス製プレパレートであって超音波洗浄によって洗浄し乾燥したものを用意した。そして、セリウム系研摩材を水に分散させて、濃度10重量%の研摩材スラリーを得た。この研摩材スラリーに用意したプレパラートを浸漬し、その後引き上げて乾燥機で十分に乾燥させてプレパラート表面に研摩材を付着させ、洗浄性試験用の試験片を得た。なお、乾燥時のプレパラート雰囲気の温度は50℃とした。そして、得られた試験片をビーカー内の純水に浸漬させた状態で、超音波洗浄を5分間行った。洗浄後、プレパラートをビーカー内から取り出して、純水にて流水洗浄した。そして、流水洗浄後のプレパラートの表面を光学顕微鏡にて観察し、表面に残存している研摩材粒子の残存量を評価した。評価結果を表3に示す。
【0053】
【表3】
Figure 0004070180
【0054】
表から解るように、各実施形態の研摩材について、研摩値、傷および洗浄性の全ての項目について、良好な結果が得られた。これに対して、比較例1の研摩材は、研摩力には優れているが、傷評価および洗浄性は悪かった。これは、粉砕終了時のフッ素成分濃度が高くなり、粒成長が進みやすい状態になったため、粗大粒子濃度が高くなったことと、粗大粒子の生成を抑制するため十分な焙焼を行うことができず、焙焼によりフッ素濃度を低減できなかったことが原因であると考えられる。比較例2の研摩材も比較例1のものと同様の傾向を示したが、洗浄性はやや改善されており、これはフッ素成分濃度が低いことによるものであると考えられるが、洗浄性が十分に改善されたレベルには達していなかった。フッ素を添加していない比較例3の研摩材は、研摩値、傷、洗浄性の全てにおいて評価が低く、これらについて必要な性能を確保するにはフッ素成分が必要であることが解った。そして、比較例4の研摩材は、傷評価が低かった。比較例4は原料に酸化希土を用いたため、原料の粉砕が進まず、粗大粒子の残存量が増大したため、このようは評価になったものと考えられる。
【0055】
この結果、原料と、上述した範囲のフッ素成分濃度を有する溶液とを混合してスラリーを調製し、これによって原料を化学的に粉砕すれば、研摩値、傷、洗浄性などの全てにおいて良好な特性を有するセリウム系研摩材を容易に製造できることが解った。
【0056】
そして、研摩材製品中のフッ素濃度は、0.01重量%〜3.0重量%が好ましいことが解った。また、撹拌処理終了後の原料中のフッ素成分濃度を0.01重量%〜4.0重量%にすれば、研摩材製品中のフッ素濃度を3.0重量%以下にすることができ、好ましいことが解った(表1参照)。さらに、この試験の結果から、より高い平面性が要求され、より洗浄性に優れる研摩材が必要になる電子材料用ガラス基板研摩用途としては、フッ素成分濃度が1.0重量%以下のものがより好適であることが解った。また、撹拌処理終了後の原料中のフッ素成分濃度を3.0重量%以下にすれば、研摩材製品中のフッ素濃度を1.0重量%以下にすることができ、好ましいことが解った(表1参照)。
【0057】
【発明の効果】
以上の説明から解るように、本発明によれば、粗大粒子の含有濃度がより低く、かつより高い研摩力が確保されており、しかも被研摩面の洗浄性に優れるセリウム系研摩材を製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a cerium-based abrasive, and more particularly to a method for manufacturing a cerium-based abrasive characterized by a step of pulverizing a raw material performed before roasting.
[0002]
[Prior art]
Cerium-based abrasives (hereinafter, also simply referred to as “abrasives”) have been widely used for polishing optical lenses. In recent years, electrical recording materials such as glass for magnetic recording media such as hard disks and glass substrates for liquid crystal displays (LCDs) have been used. -Widely used as an abrasive for glass materials used in electronic equipment.
[0003]
The cerium-based abrasive is obtained, for example, by pre-calcining a cerium-based rare earth carbonate (hereinafter also referred to as carbonated rare earth) obtained from bust nesite or Chinese complex ore at a high temperature. The cerium-based rare earth oxide (hereinafter, also referred to as rare earth oxide) is used as a raw material, and is manufactured as follows. First, these cerium-based abrasive raw materials (hereinafter also simply referred to as raw materials) are wet-ground by a pulverizer such as an attritor, ball mill, or bead mill, and then subjected to chemical treatment (wet treatment), filtered and dried. . Thereafter, the raw material particles are appropriately sintered by heating and roasting, and the sintered raw material is pulverized (reground) dry or wet using a pulverizer as described above and crushed. Classify later raw materials. In this way, an abrasive having a desired particle size and particle size distribution is obtained. The chemical treatment here refers to a treatment (mineral acid treatment) for removing alkali metals such as sodium that cause abnormal grain growth during roasting, and a polishing power (polishing rate) of a cerium-based abrasive. This is a treatment (fluorination treatment) in which a fluorine component is added for the purpose of ensuring or smoothing the polished surface. Since the fluorine component has an effect of improving the smoothness of the surface to be polished and an effect of increasing the polishing force by reacting with the glass as the material to be polished, such an effect can be obtained by performing the fluorination treatment.
[0004]
[Problems to be solved by the invention]
By the way, it is desirable that the abrasive product does not contain coarse particles. This is because coarse particles cause damage to the polished surface. Also, for example, in the polishing process performed in the process of manufacturing a glass substrate for magnetic recording media that can handle high-density recording and high-speed reading / writing, extremely high accuracy is required for the smoothness of the surface of the glass substrate (surface to be polished). However, it is necessary to meet this requirement. However, if the coarse particle concentration in the abrasive is high, the surface of the glass substrate is not easily damaged, and the requirement for smoothness cannot be met. Therefore, it is desirable from this point that the abrasive does not contain coarse particles.
[0005]
In consideration of the polishing work efficiency in the polishing process, it is desirable that the abrasive product has a high polishing power. And in order to ensure high polishing force, it is necessary to grind so that the particle size of abrasive particles may not become unnecessarily small.
[0006]
However, the conventional pulverization means has a limit even if it tries to satisfy these conditions. In other words, it is necessary to increase the pulverization time in order to pulverize so that coarse particles are reduced by conventional wet pulverization using a pulverizer such as a ball mill, an attritor, or a bead mill. Since the production amount of the pulverized fine particles increases, it becomes difficult to secure a necessary polishing force in the abrasive product.
[0007]
Therefore, with conventional abrasives, a fluorine component is added during the production of the abrasive and a fluorine component is added. The effect of the added fluorine component ensures the required smoothness of the surface to be polished and the polishing force during polishing. Yes. As described above, the fluorine component has the effect of improving the smoothness of the surface to be polished and the effect of increasing the polishing force. For example, in JP-A-9-183966, an aqueous solution of fluorine is dropped into a raw slurry after wet pulverization and stirring so that the fluorine content in the abrasive product is 3 to 9% by weight. A method for producing an abrasive is disclosed.
[0008]
However, if the necessary smoothness and polishing force are ensured by adding fluorine, the concentration of the fluorine component in the polishing material increases, so that the fine abrasive material tends to adhere to the surface to be polished during polishing, and the surface to be polished is also polished. Since it tends to remain on the surface, there is a problem that the cleanability of the surface to be polished is lowered.
[0009]
The present invention has been made under the background as described above, and is a cerium-based abrasive that has a lower coarse particle concentration, a higher polishing force, and excellent cleanability of the surface to be polished. It is an object to provide a manufacturing method.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, the inventors focused on the process of pulverizing the raw material first performed using a pulverizer such as an attritor, and the pulverization conditions for reducing the coarse particle concentration and the finer particle polishing. The pulverization conditions for reducing the particle concentration were investigated. However, for both coarse particles and fine abrasive particles, no grinding conditions were found that could keep the content concentration lower.
[0011]
Therefore, the inventors have extensively studied pulverizing means without being bound by the conventional pulverizing method. As a result, the present inventors have found that the raw material can be pulverized with a solution containing a fluorine component when a specific raw material is used without pulverizing the raw material using a pulverizer such as an attritor.
[0012]
That is, the present invention has a step of pulverizing the raw material of the cerium-based abrasive, and a step of roasting the pulverized raw material and a step of pulverizing the roasted product obtained by the roasting. In the production method, as the raw material of the cerium-based abrasive, cerium-based rare earth carbonate or a mixture of cerium-based rare earth carbonate and cerium-based rare earth oxide is used. It has the process of grind | pulverizing the raw material in this slurry by mixing with a fluorine component containing solution and making it a slurry state, It is characterized by the above-mentioned.
[0013]
In the step of pulverizing the raw material, cerium-based rare earth carbonate or a mixture of cerium-based rare earth carbonate and cerium-based rare earth oxide is used as a raw material. Grind the raw material. The size of the raw material before making the slurry is not strictly limited, but usually the average particle size is 1000 μm or less, and this size is preferable. Further, the concentration of the solid component in the slurry is not particularly limited, but a slurry having a solid component of 1 wt% to 50 wt%, which is used in normal pulverization or the like, is preferable.
[0014]
In this invention, when preparing a slurry, a raw material is made into the state of a slurry using the solution containing a fluorine component as a solution. In such a state, the raw materials in the slurry (solids in the slurry) can be obtained by utilizing the fluorine component in the solution without using a conventional pulverizer such as an attritor, ball mill, or bead mill. Ingredient) can be chemically pulverized. When the raw material is pulverized in this manner, the entire raw material can be pulverized more uniformly, and both the coarse particle concentration and the fine particle concentration can be pulverized.
[0015]
If the coarse particle concentration in the raw material after pulverization can be lowered, the coarse particle concentration in the abrasive product can be lowered more reliably. When the coarse particle concentration in the polishing material is lowered, the generation of scratches on the surface to be polished due to the coarse particles is more reliably prevented, and the smoothness of the surface to be polished is improved. In addition, if the entire raw material can be uniformly pulverized and the fine particle concentration in the raw material after pulverization can be pulverized, the particle size of each abrasive particle constituting the abrasive is aligned with the average particle size Therefore, the polishing speed is improved.
[0016]
If the necessary smoothness and polishing speed are ensured, it is not necessary to add these fluorine components to ensure these performances, so that the fluorine component concentration in the abrasive product can be reduced. And by reducing the fluorine component concentration, it becomes possible to improve the cleanability of the polished surface. Further, in recent years, a high level of environmental measures has been required year by year, and it is considered that a lower concentration is also required for the fluorine component concentration. Since the fluorine component concentration can be further reduced, it is possible to meet such a request more reliably.
[0017]
The reason why such a good result is obtained is that the chemical pulverization method here is different from the conventional physical pulverization method because the whole raw material can be uniformly pulverized.
[0018]
Conventional physical pulverization using a pulverizer such as an attritor pulverizes a raw material by forcibly moving a pulverizing medium such as a ball so that the pulverizing media collide with each other. No raw material is produced. For this reason, it is considered that raw materials that are insufficiently pulverized and coarse particles remain, while excessive pulverization is performed to generate fine particles. On the other hand, the chemical pulverization referred to here is a method of pulverizing the raw material (solid component in the slurry) with the fluorine component in the liquid that exists evenly in the entire slurry. it can. Therefore, it is considered that the generation of fine particles can be prevented while preventing the remaining coarse particles, and the entire raw material (solid component in the slurry) can be uniformly pulverized.
[0019]
In addition, as a solution used for preparation of a slurry, hydrogen fluoride aqueous solution, ammonium fluoride, etc. containing a water-soluble fluoride can be mentioned, for example. In addition, in the pulverization, chemical pulverization using a fluorine component in the slurry solution and conventional physical pulverization can be used in combination, and more efficient pulverization can be performed by the combined use. It is. When used in combination, it is preferable to perform chemical pulverization before or simultaneously with conventional physical pulverization. When chemical pulverization is performed after physical pulverization, the physically pulverized raw material is further chemically pulverized, and the purpose of reducing the concentration of fine particles in the raw material cannot be achieved.
[0020]
By the way, when chemical pulverization is performed, in order to perform pulverization as quickly as possible, the fluorine component concentration in the slurry solution should be high. However, if the fluorine component concentration is too high, it is difficult to reduce the fluorine component concentration in the finally produced abrasive product. Since the fluorine component in the raw material escapes from the raw material by roasting after pulverization, this can reduce the concentration of the fluorine component in the raw material, but as described later, in relation to the original purpose of roasting, This is because roasting necessary and sufficient for adjusting the component concentration cannot always be performed. On the other hand, if the fluorine component concentration in the slurry solution is too low, chemical pulverization is difficult to proceed.
[0021]
Then, the fluorine component density | concentration in the solution of the slurry in the process grind | pulverized using a fluorine-containing solution was examined. As a result, it was found that chemical pulverization is possible with a solution having a thin fluorine component concentration. Specifically, it was found that the maximum value of the fluorine component concentration in the slurry solution is preferably 0.001 mol / L to 1.0 mol / L.
[0022]
The upper limit of the maximum value of the fluorine component concentration in the solution is limited to 1.0 mol / L because if it exceeds this, it is difficult to keep the fluorine component concentration of the abrasive product low. The effect of chemically pulverizing the raw material is considered to be obtained if a fluorine component is contained in the slurry solution. From the viewpoint of securing productivity (grinding efficiency) in the pulverization process, The component concentration is preferably 0.001 mol / L or more.
[0023]
By the way, in the pulverization process using a fluorine solution, as the pulverization of the raw material proceeds, the rare earth element in the solid component reacts with the fluorine component in the solution to become an insoluble rare earth fluoride. Gradually decreases. In this case, even if a fluorine component is not newly added in the middle of pulverization, the pulverization proceeds as long as the fluorine component is present in the slurry solution, but a fluorine component may be added as needed. This is because by increasing the concentration of the fluorine component in the slurry solution or keeping it constant, more uniform pulverization can be realized and the pulverization time can be shortened.
[0024]
However, if the fluorine component-containing solution is added too much, it becomes difficult to reduce the concentration of the fluorine component contained in the abrasive product even if the maximum value of the fluorine component concentration in the solution does not deviate from the above range. If the fluorine concentration in the abrasive cannot be lowered, the cleaning performance is lowered. As a result of studying this point, it is good if the fluorine component concentration of the raw material obtained after the step of pulverizing the raw material in the slurry using the fluorine component-containing solution is 0.01 wt% to 4.0 wt%. It was found that the abrasive could be easily manufactured. If the fluorine component concentration of the raw material after pulverization falls within this range, the fluorine component concentration in the abrasive product is surely limited regardless of whether or not the fluorine component is added during the pulverization, and the cleaning property is excellent. Abrasive materials can be manufactured more reliably. The fluorine component concentration of the raw material here is the weight ratio of the fluorine element content to the TREO (total rare earth oxide content) in the raw material or the abrasive product. Thus, TREO is used as a standard because the weight of raw materials containing rare earth carbonate and abrasive materials is reduced by roasting, and the fluorine component concentration is based on the weight of the raw materials. This is because the fluorine component concentrations cannot always be accurately compared before and after roasting.
[0025]
Further, as described above, in the present invention, cerium-based rare earth carbonate or a mixture of cerium-based rare earth carbonate and cerium-based rare earth oxide is used as a raw material. According to chemical pulverization, the raw material can be pulverized to a state in which the coarse particle concentration and the fine particle concentration are extremely low by the fluorine component in the slurry. Because.
[0026]
The “cerium-based rare earth” means cerium oxide (CeO) in TREO. 2 ) Is 30% by weight or more, and in the production of normal abrasives, the value is in the range of 40% to 99% by weight. The “cerium-based rare earth carbonate” is obtained from a “cerium-based rare earth” aqueous solution by a precipitant containing a carbonate radical. For example, rare earth chloride can be exemplified as a cerium-based rare earth aqueous solution, and ammonium carbonate can be exemplified as a precipitant. The “cerium-based rare earth oxide” is obtained by roasting and oxidizing a cerium-based rare earth carbonate.
[0027]
Accordingly, a preferable range as a raw material used in the method for producing a cerium-based abrasive according to the present invention is examined by paying attention to a physical property called ignition loss (hereinafter also referred to as LOI (Loss On Ignition)) of a raw material for a cerium-based abrasive. did. LOI is a weight reduction rate when an object is ignited. The value is about 30 to 40% by weight in the rare earth carbonate, and 0% in the case of the completely oxidized rare earth. That is, if the LOI is understood, the proportion of the rare earth carbonate, which is considered to be deeply related to chemical pulverization, can be understood.
[0028]
As a result of studying raw materials in which cerium-based rare earth carbonate and cerium-based rare earth oxide are mixed, cerium-based polishing whose ignition loss when heated at 1000 ° C. for 1 hour is 1.0 wt% to 40 wt% It has been found that raw materials for the materials are preferred. When the ratio of the rare earth carbonate is reduced to a level where the LOI is smaller than 1.0% by weight, it is considered that the effect of chemically crushing the raw material with the water-soluble fluoride is hardly obtained at the time of crushing. In addition, normally, those having an LOI of less than 0.5% by weight are called oxidized rare earths.
[0029]
The LOI of the raw material was measured according to JIS-K-0067 (1992, Japanese Standards Association). Briefly, first, a small amount of raw material collected from the raw material was heated at 105 ° C. for 1 hour (preliminary drying) and sufficiently dried, then placed in a crucible, and the weight was measured to the order of 0.1 mg. After that, after heating them in an electric furnace at 1000 ° C. for 1 hour and allowing them to cool in a dry atmosphere, the weight of the crucible containing the raw material is measured again, and the ignition loss is obtained based on the weight difference between the two weight measurements. It was. In the present invention, the ignition loss was measured after heating for 1 hour at 1000 ° C. In the case of rare earth salts, it was experimentally confirmed that the value of ignition loss began to stabilize after heating at 500 ° C or higher. It is based on the idea that heating at 1000 ° C. is applicable as the most stable index.
[0030]
By the way, the raw materials in which cerium-based rare earth carbonate and cerium-based rare earth oxide are mixed are roughly classified. However, the former raw material is more excellent in grindability, and the former raw material is more preferable because the coarse particle concentration of the abrasive product is lower. . That is, since the latter raw material is mixed with hard rare earth oxide that is difficult to pulverize, pulverization is difficult to proceed, and the coarse particle concentration is likely to increase. On the other hand, the former raw material is obtained by appropriately roasting the entire raw material and adjusting the LOI, and the firing of the rare earth oxide obtained by completely roasting the rare earth carbonate is prevented. It is considered that the coarse particle concentration is more likely to be reduced.
[0031]
When the process of pulverizing the raw material is completed, an abrasive is manufactured by performing the same process as the normal manufacturing process as described in the prior art. Specifically, first, chemical treatment (wet treatment) is performed as necessary, followed by filtration and drying. Thereafter, it is roasted and crushed (reground). When crushing by wet pulverization and producing an abrasive in a slurry state, the abrasive is produced when the crushing is completed. In other cases, the material after pulverization is usually classified to obtain an abrasive having a desired particle size and particle size distribution.
[0032]
The fluorine component concentration in the raw material is adjusted by adjusting the fluorine concentration in the solution used for preparing the slurry in the step of pulverizing the raw material, and also by roasting after the step of pulverizing the abrasive. This is because the fluorine component in the raw material can be skipped by roasting. However, in the roasting process, the raw material is roasted so that the abrasive raw material particles grow to an appropriate size in relation to the particle size of the abrasive to be finally produced. It is not always possible to select roasting conditions (temperature and time) such that the fluorine component concentration in the raw material becomes an appropriate value. Therefore, in order to reliably reduce the fluorine component concentration in the abrasive, it is necessary to reduce the fluorine concentration in the raw material as much as possible in the step of pulverizing the raw material. In this regard, according to the present invention, the fluorine component concentration in the raw material crushing step can be lowered, and no fluorination treatment is required, so the fluorine component concentration in the raw material before roasting can be kept low. The fluorine component concentration in the raw material and the abrasive product after roasting can be easily and reliably within the above range.
[0033]
According to the method for producing an abrasive as described so far, it is possible to easily produce an abrasive having a low coarse particle concentration and a low fine particle concentration. However, as a result of investigation, the abrasive is produced by the method for producing a cerium-based abrasive according to the present invention. Among the polished abrasives, those having a fluorine element content with respect to TREO in the abrasive of 0.01 wt% to 3.0 wt% are excellent in smoothness and cleanability of the polished surface. It was found that this was an abrasive with less scratching and high polishing power. The fluorine component concentration in the abrasive product is the weight ratio of the fluorine element content to TREO in the abrasive product. This is because the fluorine component concentration of 0.01% by weight or less is inferior in the smoothness of the surface to be polished, whereas the fluorine component concentration exceeding 3.0% by weight is inferior in the cleanability. In addition, as a glass substrate polishing application for electronic materials that requires high flatness, an abrasive that is particularly excellent in cleanability is required. For such applications, those having a particularly low fluorine component concentration in the abrasive of 0.01 wt% to 1.0 wt% are suitable.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0035]
First embodiment : As a cerium-based abrasive raw material, TREO is 69.5% by weight, and cerium oxide (CeO) in TREO 2 ) Was 60% by weight, and a rare earth carbonate containing 0.02% by weight of the fluorine component in TREO was used. The average particle size of the raw material was about 500 μm. The LOI of the raw material was 30% by weight. The LOI measurement method is as described above, and the description thereof is omitted.
[0036]
2 kg of this raw material and 2 L of an aqueous solution having a hydrogen fluoride (HF) concentration of 0.01 mol / L were mixed to prepare a slurry having a solid component content of 50% by weight.
[0037]
This slurry was stirred at room temperature (20 ° C.) for 1 hour, and then wet pulverized for 3 hours using an attritor (MA-1SE manufactured by Mitsui Miike Seisakusho Co., Ltd.) into which 10 kg of a 4 mm diameter ball was charged. . After pulverization, the solid component is filtered to obtain a cake, and then the cake is dried, roasted (850 ° C.), crushed, and then classified to remove particles of 10 μm or more. A cerium-based abrasive product having a diameter of 1.0 μm was obtained. Each embodiment and comparative example are all for producing a cerium-based abrasive having an average particle diameter of 1.0 μm. In each of the embodiments and comparative examples, the raw material is an appropriate grain in relation to this target. It is roasted so that it grows up to the diameter and crushed so that the necessary pulverization can be performed.
[0038]
In the following embodiments and comparative examples including the first embodiment, the fluorine component concentration was measured for the solid component of the slurry at the end of stirring and the finally obtained abrasive. Further, the coarse particle concentration (concentration of particles having a particle size of 10 μm or more) was measured for the raw material at the end of stirring and at the end of wet pulverization and the finally obtained abrasive product.
[0039]
Measurement of fluorine component concentration : The fluorine component concentration measurement method is based on the fluorine compound measurement method (ion electrode method) described in “JIS-K-0103 34” (when the amount of fluorine is very small, use the ion chromatographic method together) Yes, the description is omitted. The results are shown in Table 1.
[0040]
Coarse particle concentration measurement : The coarse particle concentration was measured as follows. For the measurement object, an amount corresponding to a solid component weight of 200 g was weighed and collected, dispersed in an aqueous solution containing 0.1 wt% sodium hexametaphosphate as a dispersant, and stirred for 2 minutes to produce a slurry. This slurry was filtered through a micro sieve having a pore diameter of 10 μm, and the residue on the sieve was collected. The collected residue was again dispersed in a 0.1 wt% sodium hexametaphosphate solution to form a slurry. At this time, the dispersion is performed by ultrasonic stirring for 1 minute. The slurry was filtered through a micro sieve having a pore size of 10 μm. The recovered residue was reslurried and filtered twice to collect coarse particles. Thereafter, the coarse particles were sufficiently dried and then weighed, and the coarse particle concentration was determined from the coarse particle weight.
[0041]
Second to fifth embodiments and Comparative Examples 1 to 3 : The same raw material as used in the first embodiment was used, and the raw material was pulverized by changing the concentration of hydrogen fluoride in the aqueous solution used for slurry preparation. Table 1 shows the fluorine concentration in each embodiment. The other abrasive production conditions were the same as in the first embodiment.
[0042]
[Table 1]
Figure 0004070180
[0043]
In Comparative Example 3, a slurry was prepared using an aqueous solution (pure water) that did not contain a fluorine component, but the raw material obtained after stirring had extremely high coarse particle concentration. On the other hand, according to the first embodiment, a raw material with a low coarse particle concentration was obtained after stirring. That is, it was found that chemical pulverization using a fluorine component contained in a solution can be performed by preparing a slurry using an aqueous solution having a fluorine component concentration of 0.001 mol / L or more. In addition, the coarse particle concentration in the finally obtained abrasive product was also suppressed as compared with Comparative Example 3, and it was also found that the coarse particle concentration in the abrasive was reduced. In addition, although the grinding | pulverization effect was acquired even if the density | concentration of 0.001 mol / L or less contains a fluorine component in a solution, it turned out that it takes time to perform required grinding | pulverization. The stirring operation is preferable for improving the pulverization efficiency because chemical pulverization using the fluorine component in the slurry is considered to be promoted.
[0044]
As shown in the results of the second to fifth embodiments, when the fluorine concentration in the solution used for slurry preparation is increased, the coarse particle concentration of the raw material obtained after stirring or after the pulverization step can be reduced. I understand. On the other hand, as can be seen from Comparative Example 1, it was found that when the fluorine component concentration in the aqueous solution used for slurry preparation was 5.0 mol / L, the coarse particle concentration in the abrasive product was increased. When the fluorine concentration in the solution is increased, chemical pulverization is promoted and the coarse particle concentration in the raw material obtained after pulverization is reduced, but the fluorine concentration in the raw material is increased. As a result, it is considered that the grain growth at the time of roasting is promoted too much and the coarse particle concentration in the abrasive product is rather high.
[0045]
Sixth to ninth embodiments and comparative example 4 : The raw material used in the first embodiment was calcined at 600 ° C. to 800 ° C. for a predetermined time to adjust the LOI to a predetermined value. The LOI of the raw material of each embodiment is as shown in Table 2. Since other abrasive production conditions were the same as those in the fourth embodiment, description thereof will be omitted.
[0046]
Tenth and eleventh embodiments : Ammonium fluoride (NH as an aqueous solution containing fluorine used for preparing the slurry Four F) An aqueous solution was used. Except for this, the tenth embodiment was the same as the fourth embodiment, and the eleventh embodiment was the same as the eighth embodiment.
[0047]
[Table 2]
Figure 0004070180
[0048]
As can be seen from the results of the embodiments, when the LOI of the raw material is 1.0% by weight or more, the result is that the coarse particle concentration in the raw material and the abrasive product obtained after stirring (chemical pulverization) is low. Obtained. On the other hand, as shown in Comparative Example 4, when a raw material having a LOI of 0.5% by weight was used, the coarse particle concentration could not be lowered by stirring treatment (chemical pulverization). Accordingly, as a raw material for the cerium-based abrasive, cerium-based rare earth carbonate or a mixture of cerium-based rare earth carbonate and cerium-based rare earth oxide is preferable. More specifically, LOI is 1.0% by weight. It has been found that the above is preferable. Such a result is considered to be because the effect that the fluorine component in the slurry crushes the coarse particles is mainly the effect on the rare earth carbonate. Further, the upper limit value of LOI is not particularly limited, and it has been found that it is preferably 40% by weight or less which is the upper limit value of LOI of a rare earth carbonated raw material available as a raw material. However, in order to accurately adjust the fluorine component concentration in the slurry, it is preferable that the raw materials have physical properties that are as stable as possible. Considering this point, the LOI of the raw material is more preferably 30% by weight or less.
[0049]
Polishing test : A polishing test was performed on the cerium-based abrasive in a slurry state obtained in each of the embodiments and comparative examples, and the polishing value was measured and the state of the polished surface was evaluated (scratch evaluation). In the polishing test, a high-speed polishing tester was used as a test apparatus, and 65 mmφ flat panel glass was used as the material to be polished, and this glass was polished using a polyurethane polishing pad. In the polishing test, the obtained abrasive was further dispersed in water to prepare an abrasive slurry having a slurry concentration of 10% by weight. The polishing conditions were such that the prepared abrasive slurry was supplied at a rate of 5 ml / min, and the pressure on the polishing surface was 15.7 kg / cm. 2 And the rotational speed of the polishing tester was set to 1000 rpm. The glass material after polishing was washed with pure water and dried in a dust-free state.
[0050]
Evaluation of polishing value : In the above-described polishing test, the polishing value was determined based on the amount of decrease in the glass weight determined by measuring the glass weight before and after polishing. Therefore, the larger the polishing value, the higher the polishing power. Here, the polishing value when polishing was performed using the polishing material of the first embodiment was used as the reference (100).
[0051]
Scratch evaluation : The state of the polished surface is evaluated. The scratches were evaluated based on the presence or absence of scratches on the polished surface and the presence or absence of abrasive particles remaining on the polished surface. Specifically, the surface of the polished glass is irradiated with a 300,000 lux halogen lamp, the surface of the glass is observed by a reflection method, the degree (size) of the scratch is determined and scored from a maximum of 100 points. Evaluation points were determined using the deduction method. The results of the test are shown in Table 3.
[0052]
Detergency evaluation : Abrasive cleaning test was performed on the assumption that the polished surface polished with the cerium-based abrasive obtained in each of the embodiments and comparative examples was cleaned. In the test, a glass preparation for optical microscope observation, which was cleaned by ultrasonic cleaning and dried was prepared. Then, the cerium-based abrasive was dispersed in water to obtain an abrasive slurry having a concentration of 10% by weight. The prepared slide was immersed in this abrasive slurry, and then pulled up and sufficiently dried with a drier to adhere the abrasive to the surface of the prepared slide, thereby obtaining a test piece for a detergency test. In addition, the temperature of the preparation atmosphere at the time of drying was 50 degreeC. And the ultrasonic cleaning was performed for 5 minutes in the state which the obtained test piece was immersed in the pure water in a beaker. After washing, the preparation was taken out from the beaker and washed with pure water. Then, the surface of the prepared slide after washing with running water was observed with an optical microscope, and the remaining amount of abrasive particles remaining on the surface was evaluated. The evaluation results are shown in Table 3.
[0053]
[Table 3]
Figure 0004070180
[0054]
As can be seen from the table, good results were obtained for all items of the polishing value, scratches, and cleanability of the polishing material of each embodiment. On the other hand, the polishing material of Comparative Example 1 was excellent in polishing force, but was poor in scratch evaluation and cleanability. This is because the fluorine component concentration at the end of pulverization is high, and the grain growth is easy to proceed, so that the coarse particle concentration is high and sufficient roasting is performed to suppress the formation of coarse particles. This is considered to be because the fluorine concentration could not be reduced by roasting. The abrasive of Comparative Example 2 also showed the same tendency as that of Comparative Example 1, but the cleanability was somewhat improved, which is thought to be due to the low fluorine component concentration, but the cleanability was It did not reach a sufficiently improved level. The abrasive of Comparative Example 3 to which no fluorine was added was low in evaluation in all of the polishing value, scratches, and cleanability, and it was found that a fluorine component was necessary to ensure the necessary performance. And the abrasive of Comparative Example 4 had a low scratch evaluation. In Comparative Example 4, since rare earth oxide was used as the raw material, the raw material was not pulverized, and the remaining amount of coarse particles was increased. Therefore, this is considered to be evaluated.
[0055]
As a result, if a raw material and a solution having a fluorine component concentration in the above-mentioned range are mixed to prepare a slurry, and the raw material is chemically pulverized, the polishing value, scratches, detergency, etc. are all good. It has been found that a cerium-based abrasive having characteristics can be easily produced.
[0056]
And it turned out that 0.01 to 3.0 weight% of the fluorine concentration in an abrasive material product is preferable. Further, if the fluorine component concentration in the raw material after the stirring treatment is 0.01 wt% to 4.0 wt%, the fluorine concentration in the abrasive product can be reduced to 3.0 wt% or less, which is preferable. (See Table 1). Furthermore, as a result of this test, a glass substrate polishing application for electronic materials that requires a higher level of flatness and a polishing material that is more cleanable, has a fluorine component concentration of 1.0% by weight or less. It turns out that it is more suitable. Further, it was found that if the fluorine component concentration in the raw material after the stirring treatment was made 3.0% by weight or less, the fluorine concentration in the abrasive product could be made 1.0% by weight or less, which is preferable ( (See Table 1).
[0057]
【The invention's effect】
As can be seen from the above description, according to the present invention, it is possible to produce a cerium-based abrasive having a lower concentration of coarse particles, a higher polishing force, and an excellent cleanability of the surface to be polished. .

Claims (3)

セリウム系研摩材の原料を粉砕する工程を有すると共に、粉砕後の原料を焙焼する工程および焙焼により得られる焙焼品を解砕する工程を有し、
原料を粉砕する工程は、原料とフッ素成分含有溶液とを混合してスラリー状態にすることにより該スラリー中の原料を粉砕する化学的な粉砕と、粉砕媒体を強制的に運動させて粉砕媒体どうしを衝突させることで原料を粉砕する物理的な粉砕とを行うセリウム系研摩材の製造方法であって、
セリウム系研摩材の原料として、セリウム系希土類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系希土類酸化物とが混在するものが用いられており、
スラリーの溶液中のフッ素成分濃度の最大値を0.001mol/L〜1.0mol/Lとして化学的な粉砕を行った後に、物理的な粉砕を行うことを特徴とするセリウム系研摩材の製造方法。
With a step of pulverizing a raw material of cerium-based abrasive, have a step of crushing the roasted product obtained by the process and roasting roasting raw material after pulverization,
The step of pulverizing the raw material is performed by mixing the raw material and the fluorine component-containing solution into a slurry state to chemically pulverize the raw material in the slurry, and forcibly moving the pulverizing medium between the pulverizing media. A method for producing a cerium-based abrasive that physically pulverizes raw materials by colliding
As raw materials for cerium-based abrasives, cerium-based rare earth carbonates, or cerium-based rare earth carbonates and cerium-based rare earth oxides are used together,
Manufacture of a cerium-based abrasive characterized by physical pulverization after chemical pulverization with a maximum fluorine component concentration in the slurry solution of 0.001 mol / L to 1.0 mol / L Method.
フッ素成分含有溶液を用いてスラリー中の原料を粉砕する工程の後に得られる原料のフッ素成分濃度は、0.01重量%〜4.0重量%である請求項1に記載のセリウム系研摩材の製造方法。  2. The cerium-based abrasive according to claim 1, wherein the concentration of the fluorine component of the raw material obtained after the step of pulverizing the raw material in the slurry using the fluorine component-containing solution is 0.01 wt% to 4.0 wt%. Production method. セリウム系研摩材の原料は、1000℃で1時間加熱した場合の強熱減量が1.0重量%〜40重量%である請求項1又は請求項2に記載のセリウム系研摩材の製造方法。  The method for producing a cerium-based abrasive according to claim 1 or 2, wherein the raw material of the cerium-based abrasive has an ignition loss of 1.0 wt% to 40 wt% when heated at 1000 ° C for 1 hour.
JP2001134150A 2001-05-01 2001-05-01 Method for producing cerium-based abrasive Expired - Fee Related JP4070180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134150A JP4070180B2 (en) 2001-05-01 2001-05-01 Method for producing cerium-based abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134150A JP4070180B2 (en) 2001-05-01 2001-05-01 Method for producing cerium-based abrasive

Publications (2)

Publication Number Publication Date
JP2002327171A JP2002327171A (en) 2002-11-15
JP4070180B2 true JP4070180B2 (en) 2008-04-02

Family

ID=18981889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134150A Expired - Fee Related JP4070180B2 (en) 2001-05-01 2001-05-01 Method for producing cerium-based abrasive

Country Status (1)

Country Link
JP (1) JP4070180B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI332981B (en) * 2003-07-17 2010-11-11 Showa Denko Kk Method for producing cerium oxide abrasives and cerium oxide abrasives obtained by the method
JP5588114B2 (en) * 2009-03-25 2014-09-10 三井金属鉱業株式会社 Manufacturing method and processing method of cerium-based abrasive
CN103253694B (en) * 2013-05-19 2014-07-16 郭尧 Roasting process of lanthanum-cerium oxide rear-earth polishing powder
CN114539928A (en) * 2022-03-16 2022-05-27 深圳市瑞来稀土材料有限公司 Rare earth polishing powder for optical glass polishing treatment and preparation method thereof

Also Published As

Publication number Publication date
JP2002327171A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP4033440B2 (en) Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
KR100453802B1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
JP4002740B2 (en) Method for producing cerium-based abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP4070180B2 (en) Method for producing cerium-based abrasive
JP5259933B2 (en) Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP5237542B2 (en) Cerium oxide abrasive
JP2008001907A (en) Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
TW201917191A (en) Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP2007231158A (en) Cerium-based abrasive
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP4237957B2 (en) Quality evaluation method for cerium-based abrasive materials
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3986410B2 (en) Method for producing cerium-based abrasive slurry and cerium-based abrasive slurry obtained thereby
JP3838871B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4070180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees