JP4538626B2 - Method for producing tubular aluminum silicate having fine pores - Google Patents

Method for producing tubular aluminum silicate having fine pores Download PDF

Info

Publication number
JP4538626B2
JP4538626B2 JP2004068075A JP2004068075A JP4538626B2 JP 4538626 B2 JP4538626 B2 JP 4538626B2 JP 2004068075 A JP2004068075 A JP 2004068075A JP 2004068075 A JP2004068075 A JP 2004068075A JP 4538626 B2 JP4538626 B2 JP 4538626B2
Authority
JP
Japan
Prior art keywords
aluminum silicate
tubular
tubular aluminum
solution
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004068075A
Other languages
Japanese (ja)
Other versions
JP2005255449A (en
Inventor
正哉 鈴木
麻起子 鈴木
純子 本田
恵一 犬飼
雅喜 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004068075A priority Critical patent/JP4538626B2/en
Publication of JP2005255449A publication Critical patent/JP2005255449A/en
Application granted granted Critical
Publication of JP4538626B2 publication Critical patent/JP4538626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

本発明は、吸着能に優れた微細孔を有するチューブ状アルミニウムケイ酸塩の製造方法及びそれを用いる吸着剤に関するものである。より詳しくは、本発明は、高い表面活性による吸着機能、水との親和性あるいはイオン交換能に優れ、高比表面積と多量の微細孔及びその形態を利用することにより、ヒートポンプ熱交換材、天然ガスの貯蔵、生活環境の湿度を自律的に制御する湿度調節材、有害汚染物質の吸着材や脱臭材または速乾性乾燥剤等に応用可能なチューブ状アルミニウムケイ酸からなる吸着剤に関するものである。   The present invention relates to a method for producing a tubular aluminum silicate having fine pores excellent in adsorption ability and an adsorbent using the same. More specifically, the present invention is superior in adsorption function due to high surface activity, affinity with water or ion exchange capacity, and by utilizing a high specific surface area, a large amount of micropores and the form thereof, a heat pump heat exchange material, natural It relates to an adsorbent composed of tubular aluminum silicate that can be applied to gas storage, humidity control materials that autonomously control humidity in the living environment, adsorbents and deodorizers of harmful pollutants, or quick-drying desiccants. .

チューブ状のアルミニウムケイ酸塩は、天然においてイモゴライトとして産出するが、天然のイモゴライトを産出する土壌の地域は限られているばかりでなく、産出量も極めて少ないことが知られている。このような背景の下に、特定の無機物質溶液を用いて高純度のチューブ状アルミニウムケイ酸塩、なかでも非晶質なチューブ状アルミニウムケイ酸塩を合成する方法が検討され、すでに開発されている(例えば、参考文献1〜3参照)。   Tubular aluminum silicate is naturally produced as imogolite, but it is known that not only the area of soil producing natural imogolite is limited, but also the production is extremely small. Against this background, a method for synthesizing high-purity tubular aluminum silicates, especially amorphous tubular aluminum silicates, using specific inorganic substance solutions has been studied and has already been developed. (For example, see References 1-3).

上記の合成法は確立されているものの、チューブ状アルミニウムケイ酸塩を得るには、無機ケイ素化合物溶液と無機アルミニウム化合物溶液を混合して調整した溶液中から、チューブの伸長反応の阻害要因となる共存イオンを取り除いた後、材料形態を前駆体からチューブ状に成長させるには、100℃で2日間の加熱処理を要するという問題があった。   Although the above synthesis method has been established, in order to obtain a tubular aluminum silicate, it becomes an inhibiting factor for the tube elongation reaction from a solution prepared by mixing an inorganic silicon compound solution and an inorganic aluminum compound solution. After removing the coexisting ions, there is a problem that heat treatment at 100 ° C. for 2 days is required to grow the material form from the precursor into a tube shape.

また、従来の加熱合成により得られたイモゴライトは、その水蒸気吸着特性において、相対湿度0から20%の低湿度領域及び90から100%の高湿度領域においては、優れた吸着特性を有しているものの、中湿度領域における吸着量の差異が約10%程度と吸着量は非常に小さいという問題があった。   In addition, imogolite obtained by conventional heat synthesis has excellent adsorption characteristics in the water vapor adsorption characteristics in a low humidity range of 0 to 20% relative humidity and a high humidity range of 90 to 100%. However, there is a problem that the amount of adsorption is very small, that is, the difference in the amount of adsorption in the medium humidity region is about 10%.

特開2001−64010号公報JP 2001-64010 A 特開2001−220129号公報Japanese Patent Laid-Open No. 2001-220129 特開2004−059330号公報JP 2004-059330 A

本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、広範な湿度領域において多様な物質を迅速に吸着及び脱着できる良好なチューブ状アルミニウムケイ酸塩を、低コストで容易に製造する方法を提供することにある。また、本発明の他の目的は、特に中湿度領域において吸着量の差が大きいチューブ状アルミニウムケイ酸塩からなる吸着剤を提供することにある。さらに本発明の他の目的は、高い表面活性により吸着能や水との親和性あるいはイオン交換能に優れており、かつ高比表面積と多量の微細孔を有するチューブ状アルミニウムケイ酸塩からなる吸着剤を提供することにある。   The present invention has been made in view of the above-described actual situation in the prior art. That is, an object of the present invention is to provide a method for easily producing a good tubular aluminum silicate capable of rapidly adsorbing and desorbing various substances in a wide range of humidity at a low cost. Another object of the present invention is to provide an adsorbent comprising a tubular aluminum silicate having a large difference in the amount of adsorption, particularly in a medium humidity region. Furthermore, another object of the present invention is an adsorption comprising a tubular aluminum silicate having a high specific surface area and excellent water affinity or ion exchange capacity, and having a high specific surface area and a large number of fine pores. It is to provide an agent.

本発明者らは、良好な吸着能を有するチューブ状アルミニウムケイ酸塩の簡易な合成法の開発に向けて鋭意研究を重ねた結果、チューブ状アルミニウムケイ酸塩を合成するには、前駆体溶液を室温でエージングすることにより吸着能に優れたチューブ状アルミニウムケイ酸塩が得られることを見出し、本発明を完成するに至った。   As a result of intensive research aimed at developing a simple method for synthesizing a tubular aluminum silicate having good adsorption ability, the present inventors have synthesized a precursor solution to synthesize a tubular aluminum silicate. It was found that a tubular aluminum silicate excellent in adsorption ability can be obtained by aging at room temperature, and the present invention has been completed.

すなわち、本発明は、無機ケイ素化合物溶液と無機アルミニウム化合物溶液を混合してアルミニウムケイ酸塩を形成させた後、脱塩処理して得られるアルミニウムケイ酸塩の分散溶液を室温で、2〜24時間エージングさせることを特徴とする微細孔を有するチューブ状アルミニウムケイ酸塩の製造方法である。 That is, according to the present invention, an inorganic silicon compound solution and an inorganic aluminum compound solution are mixed to form an aluminum silicate, and then an aluminum silicate dispersion obtained by desalting is performed at room temperature at 2 to 24. It is a manufacturing method of the tubular aluminum silicate which has a micropore characterized by carrying out time aging.

また、本発明は、無機ケイ素化合物溶液と無機アルミニウム化合物溶液を混合してアルミニウムケイ酸塩を形成させた後、脱塩処理して得られたアルミニウムケイ酸塩の分散溶液を室温で、2〜24時間エージングさせる際のエージング時間を調節することにより、得られるチューブ状アルミニウムケイ酸塩の長さを制御することを特徴とする微細孔を有するチューブ状アルミニウムケイ酸塩の製造方法である。 The present invention also provides a dispersion solution of aluminum silicate obtained by mixing an inorganic silicon compound solution and an inorganic aluminum compound solution to form an aluminum silicate, followed by desalting treatment at room temperature , By adjusting the aging time at the time of aging for 24 hours, it is the manufacturing method of the tubular aluminum silicate which has a micropore characterized by controlling the length of the tubular aluminum silicate obtained.

さらに、本発明は、無機ケイ素化合物溶液と無機アルミニウム化合物溶液を混合してアルミニウムケイ酸塩を形成させた後、脱塩処理して得られるアルミニウムケイ酸塩の分散溶液を室温で、2〜24時間でエージングさせて得られた微細孔を有するチューブ状アルミニウムケイ酸塩からなることを特徴とする吸着剤である。この吸着剤は、特に相対湿度30〜80%の中湿度領域の吸着に有用である。 Furthermore, the present invention provides an aluminum silicate dispersion solution obtained by mixing an inorganic silicon compound solution and an inorganic aluminum compound solution to form an aluminum silicate, followed by desalting treatment at room temperature , 2-24. An adsorbent comprising a tubular aluminum silicate having micropores obtained by aging over time . This adsorbent is particularly useful for adsorption in a medium humidity region with a relative humidity of 30 to 80%.

本発明の微細孔を有するチューブ状アルミニウムケイ酸塩は、ナノメーター径の多量の微細孔を有する中空状無機物質からなるものであって、水分子、低分子量の無機物質及び有機物質などを、多量に素早く吸着及び脱着する吸着剤として使用できることから、湿度調節などの水分の調整、有害物質の除去、吸着される物質の貯蔵及び乾燥剤などとして広範な産業分野に利用できるものである。また、本発明の製法によれば、上記した優れた吸着特性等を有するチューブ状アルミニウムケイ酸塩を安価に合成することができる。   The tubular aluminum silicate having micropores of the present invention is composed of a hollow inorganic substance having a large amount of micrometer-sized micropores, and includes water molecules, low molecular weight inorganic substances and organic substances, Since it can be used as an adsorbent that quickly adsorbs and desorbs in large quantities, it can be used in a wide range of industrial fields as moisture adjustment such as humidity adjustment, removal of harmful substances, storage of adsorbed substances, and desiccants. Moreover, according to the manufacturing method of this invention, the tubular aluminum silicate which has the above-mentioned outstanding adsorption | suction characteristic etc. can be synthesize | combined cheaply.

以下、本発明について詳細に説明する。
本発明方法により得られるチューブ状アルミニウムケイ酸塩は、アルミニウムケイ酸塩、特に非晶質のアルミニウムケイ酸塩により形成されている管状構造体であって、通常、外径2.2〜2.8nm、内径0.5〜1.2nm、長さ1nm乃至数μmのチューブ状中空体、好ましくは1〜200nmのチューブ状中空体からなり、そのチューブ状体は多量のナノメーター(nm)径の微細孔を有するものである。その微細孔の直径としては、0.5〜5.0nm、好ましくは0.5〜2.0nmである。
この管状構造体は、水分子などが出入りできる多量の微細孔を有する多孔体であるうえに、表面活性が高く、表面積が大きいことなどから良好な吸着能及び脱着能を有し、また水との親和性及びイオン交換能に優れていることから、ヒートポンプ熱交換材、生活環境の湿度を自律的に制御する湿度調節材、天然ガスの貯蔵、有害汚染物質の吸着材、脱臭材及び速乾性の乾燥剤等に応用可能である。
Hereinafter, the present invention will be described in detail.
The tubular aluminum silicate obtained by the method of the present invention is a tubular structure formed of aluminum silicate, particularly amorphous aluminum silicate, and generally has an outer diameter of 2.2 to 2. It consists of a tubular hollow body of 8 nm, an inner diameter of 0.5 to 1.2 nm, and a length of 1 nm to several μm, preferably a tubular hollow body of 1 to 200 nm, and the tubular body has a large amount of nanometer (nm) diameter. It has fine pores. The diameter of the micropore is 0.5 to 5.0 nm, preferably 0.5 to 2.0 nm.
This tubular structure is a porous body having a large amount of micropores through which water molecules and the like can enter and exit, has a high surface activity, and has a large surface area, so that it has a good adsorption capacity and desorption capacity. Heat pump heat exchange materials, humidity control materials that autonomously control humidity in the living environment, natural gas storage, adsorbents of harmful pollutants, deodorizing materials, and quick-drying It can be applied to other desiccants.

本発明のチューブ状アルミニウムケイ酸塩の製法において、原料としては無機ケイ素化合物と無機アルミニウム化合物が用いられる。ケイ素源として使用される試剤は、モノケイ酸化合物であればよく、具体的にはオルトケイ酸ナトリウム、メタケイ酸ナトリウム、無定形コロイド状二酸化ケイ素(エアロジルなど)などが好適なものとして挙げられる。一方、上記ケイ酸塩分子と結合させるアルミニウム源としては、アルミニウムイオンであればよく、具体的には、塩化アルミニウム、硝酸アルミニウムなどのアルミニウム化合物が挙げられる。これらのケイ素源及びアルミニウム源は、上記の化合物に限定されるものではなく、それらと同効のものであれば同様に使用可能である。   In the method for producing the tubular aluminum silicate of the present invention, an inorganic silicon compound and an inorganic aluminum compound are used as raw materials. The reagent used as the silicon source may be a monosilicate compound, and specific examples thereof include sodium orthosilicate, sodium metasilicate, amorphous colloidal silicon dioxide (such as Aerosil) and the like. On the other hand, the aluminum source to be bonded to the silicate molecule may be an aluminum ion, and specifically includes aluminum compounds such as aluminum chloride and aluminum nitrate. These silicon sources and aluminum sources are not limited to the above compounds, and can be used in the same manner as long as they have the same effect.

本発明においては、これらの原料をそれぞれ適切な水溶液に溶解させ、所定の濃度の溶液を調整する。次に、これらの溶液を混合して反応させるが、その際、任意の比率で混合してもチューブ状アルミニウムケイ酸塩の前駆体の形成に問題はないが、好適にはケイ素/アルミニウム比は0.5〜1.0になるように混合する。ケイ素化合物溶液及びアルミニウム化合物溶液の濃度は、如何なる濃度からの合成でも前駆体は生成するが、好適な濃度としては、1〜500mmol/lのケイ素化合物溶液と1〜1000mmol/lのアルミニウム化合物溶液を混合することが好ましい。   In the present invention, each of these raw materials is dissolved in an appropriate aqueous solution to prepare a solution having a predetermined concentration. Next, these solutions are mixed and reacted. At that time, even if they are mixed at an arbitrary ratio, there is no problem in the formation of the tubular aluminum silicate precursor, but preferably the silicon / aluminum ratio is Mix to 0.5-1.0. The concentrations of the silicon compound solution and the aluminum compound solution are the precursors produced by synthesis from any concentration, but suitable concentrations include 1 to 500 mmol / l silicon compound solution and 1 to 1000 mmol / l aluminum compound solution. It is preferable to mix.

このアルミニウム化合物溶液にケイ素化合物溶液を混合した後、アルカリ性溶液を滴下し、弱酸性から中性付近にpHを調整し、チューブ状アルミニウムケイ酸塩の前駆体を形成させる。その後、遠心分離、ろ過などの機械的あるいは化学的手段を用いて溶液中に共存するイオン類を除去する脱塩処理を行う。   After mixing the silicon compound solution with this aluminum compound solution, an alkaline solution is dropped, and the pH is adjusted from weakly acidic to near neutral to form a tubular aluminum silicate precursor. Thereafter, desalting is performed to remove ions coexisting in the solution using mechanical or chemical means such as centrifugation and filtration.

前駆体の生成工程において、中和反応に用いるアルカリ性溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニアなどの溶液が挙げられる。また、前駆体を分散させる酸性溶液としては、塩酸、硫酸、硝酸、過塩素酸などが挙げられる。チューブ状アルミニウムケイ酸塩は、好適には溶液のpHが3〜6程度の範囲で合成される。   Examples of the alkaline solution used for the neutralization reaction in the precursor generation step include solutions of sodium hydroxide, potassium hydroxide, ammonia, and the like. Examples of the acidic solution in which the precursor is dispersed include hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like. The tubular aluminum silicate is preferably synthesized in the range where the pH of the solution is about 3-6.

次に、その前駆体を含む溶液を、遠心分離、濾過または膜分離等の適宜の手段を用いて、溶液中の共存イオンを取り除いた(脱塩処理した)後、回収した前駆体を純水あるいは酸性水溶液に分散させる。その後、得られた前駆体の分散溶液を室温において攪拌させながら一定時間のエージング(熟成)を行うことにより、
固形分として目的とするチューブ状アルミニウムケイ酸塩を得ることができる。
その室温におけるエージングとしては、通常、20〜30℃において5分〜24時間、好ましくは〜6時間である。
このエージング時間の長さを調節することにより、得られるチューブ状アルミニウムケイ酸塩の長さを制御することができる。例えば、エージング時間を長くすると、チューブ長(管状体の長さ)を延長することができ、またその反対に、エージング時間を短くすると、短いチューブを得ることができることから、エージング時間を調節することにより、所望のチューブ長のものを適宜得ることができる。
Next, the coexisting ions in the solution are removed (desalted) from the solution containing the precursor using an appropriate means such as centrifugation, filtration or membrane separation, and the recovered precursor is purified with pure water. Alternatively, it is dispersed in an acidic aqueous solution. Then, by aging (aging) for a certain time while stirring the dispersion solution of the obtained precursor at room temperature,
The desired tubular aluminum silicate can be obtained as a solid content.
The aging at room temperature is usually from 20 minutes to 30 ° C. for 5 minutes to 24 hours, preferably 2 to 6 hours.
By adjusting the length of this aging time, the length of the obtained tubular aluminum silicate can be controlled. For example, if the aging time is lengthened, the tube length (tubular body length) can be extended, and conversely, if the aging time is shortened, a short tube can be obtained. Thus, a tube having a desired tube length can be appropriately obtained.

上記の方法で得られたチューブ状アルミニウムケイ酸塩は、多量の微細孔を持つチューブ状中空体であるから、各種物質の吸着剤として利用できるものであって、その優れた吸着性などの特性を活用し、物質の回収や貯蔵、除湿、水分の乾燥、有害物質の除去、可燃性物質の貯蔵及び脱臭などの広範な分野に使用可能である。   Since the tubular aluminum silicate obtained by the above method is a tubular hollow body having a large amount of fine pores, it can be used as an adsorbent for various substances, and has excellent characteristics such as adsorbability. Can be used in a wide range of fields such as collection and storage of substances, dehumidification, drying of moisture, removal of harmful substances, storage and deodorization of flammable substances.

そのうえ、本発明のチューブ状アルミニウムケイ酸塩は、相対湿度30から80%の中湿度領域において、相対湿度が高くなるにつれて吸着量が大きく増大するという吸着特性を有するものであり、具体的には、相対湿度80%と相対湿度30%における吸着量の差異は、約30%であり、かつ従来の加熱合成イモゴライトに比べて約2.5倍を吸着できる多量の微細孔を持つ管状構造体であって、例えば、生活環境において最適な湿度に調整する自律的調質材料等として有効に利用できるものである。   In addition, the tubular aluminum silicate of the present invention has an adsorption characteristic that the amount of adsorption greatly increases as the relative humidity increases in a medium humidity range of 30 to 80% relative humidity. The difference in the amount of adsorption between 80% relative humidity and 30% relative humidity is about 30%, and it is a tubular structure having a large number of micropores that can adsorb about 2.5 times as much as conventional heat-synthesized imogolite. Thus, for example, it can be effectively used as an autonomous tempering material that adjusts to the optimum humidity in the living environment.

以下、本発明を実施例及び比較例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these Examples .

(実施例1)
SiO濃度が100mmol/lになるように、純水で希釈したオルトケイ酸ナトリウム水溶液125mlを調整した。またこれとは別に、塩化アルミニウムを純水に溶解させ、150mmol/l水溶液125mlを調整した。
次に、塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を混合し、マグネティックスターラーで撹拌した。このときのケイ素/アルミニウム比は0.67である。さらにこの混合溶液に1N水酸化ナトリウム水溶液22mlを滴下し、pHが6前後になるように調整した。
この溶液から遠心分離により前駆体を回収し、さらに純水で前駆体を3回遠心分離により洗浄した後、2lの純水中に分散させた。
この前駆体の懸濁液2lに5N塩酸を6ml加えた後、室温で2時間攪拌させることによりエージングを行った。その後、室温で約3日間乾燥させることによりチューブ状のアルミニウムケイ酸塩を得た。
Example 1
125 ml of sodium orthosilicate aqueous solution diluted with pure water was adjusted so that the SiO 2 concentration was 100 mmol / l. Separately from this, aluminum chloride was dissolved in pure water to prepare 125 ml of 150 mmol / l aqueous solution.
Next, the sodium orthosilicate aqueous solution was mixed with the aluminum chloride aqueous solution and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time is 0.67. Furthermore, 22 ml of 1N sodium hydroxide aqueous solution was dropped into this mixed solution to adjust the pH to around 6.
The precursor was recovered from this solution by centrifugation, and the precursor was further washed by centrifugation three times with pure water, and then dispersed in 2 l of pure water.
After adding 6 ml of 5N hydrochloric acid to 2 l of this precursor suspension, aging was performed by stirring at room temperature for 2 hours. Thereafter, the tube-shaped aluminum silicate was obtained by drying at room temperature for about 3 days.

得られたアルミニウムケイ酸塩(室温合成イモゴライト)は、図1に示したように、粉末X線回折において、イモゴライト特有のX線回折パターンを示した。また、その水蒸気吸着等温線は、図2に示したように、相対湿度30%において約14重量%、相対湿度80%において約42重量%の水蒸気を吸着していた。これに対し、従来の加熱合成イモゴライト(特開2004-59330号公報の実施例1で得られたもの、「従来例」とする。)は、相対湿度30%において約22重量%、相対湿度80%において約34重量%の水蒸気を吸着している。相対湿度30%と相対湿度80%における吸着量の差は、室温合成イモゴライトの方が、従来公知の加熱合成イモゴライトよりも約2.5倍の値を有していた。 The obtained aluminum silicate (room temperature synthetic imogolite) showed an X-ray diffraction pattern peculiar to imogolite in powder X-ray diffraction as shown in FIG. Further, as shown in FIG. 2, the water vapor adsorption isotherm adsorbed about 14% by weight of water vapor at 30% relative humidity and about 42% by weight at 80% relative humidity. In contrast, conventional heat-synthesized imogolite (obtained in Example 1 of JP-A-2004-59330, referred to as “conventional example” ) has a relative humidity of about 22% by weight and a relative humidity of 80%. % Adsorbs about 34% by weight of water vapor. The difference in adsorption amount between 30% relative humidity and 80% relative humidity was about 2.5 times higher for room temperature synthetic imogolite than for conventionally known heat synthesized imogolite.

(比較例1)
SiO濃度が100mmol/lになるように、純水で希釈したオルトケイ酸ナトリウム水溶液125mlを調整した。またこれとは別に、塩化アルミニウムを純水に溶解させ、150mmol/l水溶液125mlを調整した。
次に、塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を混合し、マグネティックスターラーで撹拌した。このときのケイ素/アルミニウム比は0.67である。さらにこの混合溶液に1N水酸化ナトリウム水溶液22mlを滴下し、pHが6前後になるように調整した。
この溶液から遠心分離により前駆体を回収し、さらに純水で前駆体を3回遠心分離により洗浄した後、2lの純水中に分散させた。
この前駆体の懸濁液2lに5N塩酸を6ml加えた後、室温で10分間攪拌させることによりエージングを行った。その後、室温で約3日間乾燥させることにより非晶質なチューブ状のアルミニウムケイ酸塩を得た。
(Comparative Example 1)
125 ml of sodium orthosilicate aqueous solution diluted with pure water was adjusted so that the SiO 2 concentration was 100 mmol / l. Separately from this, aluminum chloride was dissolved in pure water to prepare 125 ml of 150 mmol / l aqueous solution.
Next, the sodium orthosilicate aqueous solution was mixed with the aluminum chloride aqueous solution and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time is 0.67. Further, 22 ml of 1N aqueous sodium hydroxide solution was added dropwise to this mixed solution to adjust the pH to around 6.
The precursor was recovered from this solution by centrifugation, and the precursor was further washed by centrifugation three times with pure water, and then dispersed in 2 l of pure water.
After adding 6 ml of 5N hydrochloric acid to 2 l of this precursor suspension, aging was performed by stirring for 10 minutes at room temperature. Then, amorphous tubular aluminum silicate was obtained by drying at room temperature for about 3 days.

得られたアルミニウムケイ酸塩(室温合成イモゴライト)は、図3に示したように、粉末X線回折において、イモゴライト特有のX線回折パターンを示した。また、その水蒸気吸着等温線は、図4に示したように、相対湿度20%において約9重量%、相対湿度95%において約13重量%の水蒸気を吸着していた。   The obtained aluminum silicate (room temperature synthetic imogolite) showed an X-ray diffraction pattern peculiar to imogolite in powder X-ray diffraction as shown in FIG. Further, as shown in FIG. 4, the water vapor adsorption isotherm adsorbed about 9% by weight of water vapor at 20% relative humidity and about 13% by weight at 95% relative humidity.

本発明は、広範な湿度領域の湿度調節に有用なアルミニウムケイ酸塩からなる高機能な無機質多孔質材料を容易に提供するものであって、工業的利用及び家庭的利用に好適な吸着剤として多様な分野に使用できるものである。   The present invention easily provides a highly functional inorganic porous material made of aluminum silicate useful for humidity control in a wide range of humidity, and is suitable as an adsorbent suitable for industrial use and domestic use. It can be used in various fields.

実施例1で得られたチューブ状アルミニウムケイ酸塩のX線回折図である。1 is an X-ray diffraction pattern of a tubular aluminum silicate obtained in Example 1. FIG. 実施例1と従来例で得られたチューブ状アルミニウムケイ酸塩(合成イモゴライト)の相対湿度と吸着量との関係を示すグラフである。It is a graph which shows the relationship between the relative humidity and adsorption amount of the tubular aluminum silicate (synthetic imogolite) obtained by Example 1 and the prior art example. 比較例1で得られたチューブ状アルミニウムケイ酸塩のX線回折図である。 2 is an X-ray diffraction diagram of a tubular aluminum silicate obtained in Comparative Example 1. FIG. 比較例1で得られたチューブ状アルミニウムケイ酸塩の相対湿度と吸着量との関係を示すグラフである。 6 is a graph showing the relationship between the relative humidity and the amount of adsorption of the tubular aluminum silicate obtained in Comparative Example 1 .

Claims (5)

無機ケイ素化合物溶液と無機アルミニウム化合物溶液を混合してアルミニウムケイ酸塩を形成させた後、脱塩処理して得られるアルミニウムケイ酸塩の分散溶液を室温で、2〜24時間エージングさせることを特徴とする微細孔を有するチューブ状アルミニウムケイ酸塩の製造方法。 An inorganic silicon compound solution and an inorganic aluminum compound solution are mixed to form an aluminum silicate, and then an aluminum silicate dispersion obtained by desalting is aged at room temperature for 2 to 24 hours. A method for producing a tubular aluminum silicate having micropores. チューブ状アルミニウムケイ酸塩が、非晶質チューブ状アルミニウムケイ酸塩である請求項1に記載のチューブ状アルミニウムケイ酸塩の製造方法。   The method for producing a tubular aluminum silicate according to claim 1, wherein the tubular aluminum silicate is an amorphous tubular aluminum silicate. 無機ケイ素化合物溶液と無機アルミニウム化合物溶液を混合してアルミニウムケイ酸塩を形成させた後、脱塩処理して得られたアルミニウムケイ酸塩の分散溶液を室温で、2〜24時間エージングさせる際のエージング時間を調節することにより、得られるチューブ状アルミニウムケイ酸塩の長さを制御することを特徴とする微細孔を有するチューブ状アルミニウムケイ酸塩の製造方法。 After mixing an inorganic silicon compound solution and an inorganic aluminum compound solution to form an aluminum silicate, the aluminum silicate dispersion obtained by desalting is aged at room temperature for 2 to 24 hours. The manufacturing method of the tubular aluminum silicate which has a micropore characterized by controlling the length of the obtained tubular aluminum silicate by adjusting aging time. 請求項1の製造方法で得られた微細孔を有するチューブ状アルミニウムケイ酸塩からなることを特徴とする吸着剤。   An adsorbent comprising a tubular aluminum silicate having micropores obtained by the production method of claim 1. 相対湿度30〜80%の湿度領域における水蒸気の吸着に用いることを特徴とする請求項4に記載の吸着剤。」   The adsorbent according to claim 4, wherein the adsorbent is used for adsorption of water vapor in a humidity range of 30 to 80% relative humidity. "
JP2004068075A 2004-03-10 2004-03-10 Method for producing tubular aluminum silicate having fine pores Expired - Lifetime JP4538626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068075A JP4538626B2 (en) 2004-03-10 2004-03-10 Method for producing tubular aluminum silicate having fine pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068075A JP4538626B2 (en) 2004-03-10 2004-03-10 Method for producing tubular aluminum silicate having fine pores

Publications (2)

Publication Number Publication Date
JP2005255449A JP2005255449A (en) 2005-09-22
JP4538626B2 true JP4538626B2 (en) 2010-09-08

Family

ID=35081548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068075A Expired - Lifetime JP4538626B2 (en) 2004-03-10 2004-03-10 Method for producing tubular aluminum silicate having fine pores

Country Status (1)

Country Link
JP (1) JP4538626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240956A (en) * 2005-03-07 2006-09-14 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059330A (en) * 2002-07-25 2004-02-26 National Institute Of Advanced Industrial & Technology Tubular structure comprising amorphous aluminum silicate, method for manufacturing the same, and adsorbent using the tublar structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059330A (en) * 2002-07-25 2004-02-26 National Institute Of Advanced Industrial & Technology Tubular structure comprising amorphous aluminum silicate, method for manufacturing the same, and adsorbent using the tublar structure

Also Published As

Publication number Publication date
JP2005255449A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
Shi et al. High performance adsorbents based on hierarchically porous silica for purifying multicomponent wastewater
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
JP3146360B1 (en) Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
JP6426213B2 (en) Amorphous aluminum silicate and method for producing the same
JP4538626B2 (en) Method for producing tubular aluminum silicate having fine pores
JP4269050B2 (en) Method for producing aluminum silicate tubular structure
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP5495054B2 (en) Method for producing aluminum silicate composite
JPH08173797A (en) Adsorbent
JP5213111B2 (en) Aluminum silicate in which water molecules are regularly arranged and synthesis method thereof
JP5354561B2 (en) Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same
US20220370983A1 (en) Yolk-shell nanoparticles for the removal of h2s from gas streams
JP3945369B2 (en) Deodorant
JP3436470B2 (en) Deodorant
JP2014148433A (en) Amorphous iron silicate and synthesis method thereof
JP5283108B2 (en) Adsorbent for humidity sensor sensing and humidity control for electronic equipment
JP2019072686A (en) Steam absorbent and manufacturing method therefor
TWI314473B (en) High activity chemical filter, its preparation and use in removing hazard gas by adsorption
JP2021160975A (en) Indicator material and method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350