JP5495054B2 - Method for producing aluminum silicate composite - Google Patents

Method for producing aluminum silicate composite Download PDF

Info

Publication number
JP5495054B2
JP5495054B2 JP2010152580A JP2010152580A JP5495054B2 JP 5495054 B2 JP5495054 B2 JP 5495054B2 JP 2010152580 A JP2010152580 A JP 2010152580A JP 2010152580 A JP2010152580 A JP 2010152580A JP 5495054 B2 JP5495054 B2 JP 5495054B2
Authority
JP
Japan
Prior art keywords
aluminum silicate
aluminum
aqueous solution
producing
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010152580A
Other languages
Japanese (ja)
Other versions
JP2012012267A (en
Inventor
亮介 中西
雅喜 前田
耕治 田尻
恵一 犬飼
奈津子 小塚
智恵子 鈴木
正哉 鈴木
勝宏 月村
英里 酒寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010152580A priority Critical patent/JP5495054B2/en
Publication of JP2012012267A publication Critical patent/JP2012012267A/en
Application granted granted Critical
Publication of JP5495054B2 publication Critical patent/JP5495054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

本発明は、次世代の産業を支える重要な基盤技術として、実用化が強く期待されているナノテクノロジーの技術分野において、その特異な形状に起因する微細構造により、高比表面積、高細孔容積、イオン交換能、及び吸着能等に優れた物理化学的な特性を示し、革新的な機能性材料としての応用が期待されているアルミニウムケイ酸塩複合体の製造方法に関するものであり、特に、中湿度領域において優れた水蒸気吸放湿特性を有するアルミニウムケイ酸塩複合体の製造方法、及び該アルミニウムケイ酸塩複合体を有効成分とする高性能吸着剤の製造方法に関するものである。   The present invention has a high specific surface area, a high pore volume due to the fine structure resulting from its unique shape in the technical field of nanotechnology, which is expected to be put to practical use as an important basic technology supporting the next generation industry. The present invention relates to a method for producing an aluminum silicate composite that exhibits excellent physicochemical properties such as ion exchange capacity and adsorption capacity, and is expected to be applied as an innovative functional material. The present invention relates to a method for producing an aluminum silicate composite having excellent moisture absorption and desorption characteristics in a medium humidity region, and a method for producing a high-performance adsorbent containing the aluminum silicate composite as an active ingredient.

ナノサイズのチューブ状アルミニウムケイ酸塩は、例えば、天然において、イモゴライトとして産出するが、このイモゴライトは、土壌中に存在し、主に火山灰由来の土壌に産する。また、天然のイモゴライトは、類縁鉱物であるアロフェンと並んで、土壌における養分や水分の移動及び植物への供給、更に、有害な汚染物質の集積や残留等に対して影響を与えるものである。このチューブ状アルミニウムケイ酸塩は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和珪酸アルミニウムであって、外径が2.2〜2.8nm、内径が0.5〜1.2nm、長さが10nm〜数μmのチューブ状の形態を有し、天然には、火山灰及び軽石等の降下火山噴出物を母材とする土壌に分布している粘土成分である。   Nano-sized tubular aluminum silicate is naturally produced as imogolite, for example, but this imogolite is present in the soil and is mainly produced in soil derived from volcanic ash. Natural imogolite, along with allophane, a related mineral, affects nutrients and moisture in soil, supply to plants, and accumulation and residue of harmful pollutants. This tubular aluminum silicate is composed of silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as the main constituent elements, and is a hydrated silicic acid assembled with a number of Si-O-Al bonds. Aluminum having an outer diameter of 2.2 to 2.8 nm, an inner diameter of 0.5 to 1.2 nm, a length of 10 nm to several μm, and naturally has volcanic ash, pumice, etc. It is a clay component distributed in the soil that uses the fall volcano ejecta as a base material.

プロトイモゴライトは、イモゴライトの前駆体物質であり、水溶液中に分散したこの前駆体を100℃程度で加熱することによりイモゴライトとなる。それゆえイモゴライト形成過程途中の加熱前の前駆体物質をプロトイモゴライトと呼ぶ。プロトイモゴライトは、イモゴライトの構造に由来する性質を有しているため、29Si固体NMRでは、イモゴライトと同じ−78ppmにピークを示し、ケイ素はOH−Si−(OAl)の配位を有している。そのため水蒸気吸着特性においてもイモゴライトとプロトイモゴライトとは相対湿度20%以下における吸着挙動がほぼ同じであり、プロトイモゴライトは結晶性のイモゴライトのように比較的長いチューブ状の形態にまでは成長していないが、イモゴライトの構造をそれなりに有していると考えられている。それゆえプロトイモゴライトにおいても、低湿度領域においてはイモゴライトと同様な吸着剤の性質を有している。イモゴライトおよびプロトイモゴライトともに、合成時のSi/Al比は0.35〜0.55である(特許文献1〜3)。 Protoimogolite is a precursor substance of imogolite, and when this precursor dispersed in an aqueous solution is heated at about 100 ° C., it becomes imogolite. Therefore, the precursor material before heating in the process of forming imogolite is called protomogolite. Protoimogolite has a property derived from the structure of imogolite. Therefore, 29 Si solid state NMR shows the same peak at −78 ppm as imogolite, and silicon has a coordination of OH—Si— (OAl) 3. ing. Therefore, in terms of water vapor adsorption characteristics, imogolite and protomogolite have almost the same adsorption behavior at a relative humidity of 20% or less, and protomogolite has not grown to a relatively long tubular form like crystalline imogolite. However, it is thought that it has the structure of imogolite. Therefore, Protoimogolite also has an adsorbent property similar to that of imogolite in the low humidity region. In both imogolite and protomogolite, the Si / Al ratio during synthesis is 0.35 to 0.55 (Patent Documents 1 to 3).

さらに合成時のSi/Al比を0.7〜1.0にし、脱塩処理後150℃で2日加熱をすると、非晶質物質と低結晶性粘土との複合体が形成される。この複合体は、非晶質含水アルミニウムケイ酸塩と粘土の複合体からなることから、HAS(Hydroxyl Aluminum Silicate)と粘土(Clay)にちなんで以下ハスクレイとして示す。また合成時のSi/Al比を0.7〜1.0にし、脱塩処理後100℃で2日加熱をすると、この物質についても水蒸気および二酸化炭素の吸着性能に非常に優れている。この物質については100℃で30日以上加熱すると非晶質含水アルミニウムケイ酸塩と粘土の複合体となることから、ハスクレイ前駆体とする(特許文献4参照)。   Further, when the Si / Al ratio at the time of synthesis is set to 0.7 to 1.0 and heating is performed at 150 ° C. for 2 days after the desalting treatment, a complex of an amorphous substance and a low crystalline clay is formed. Since this composite is composed of a composite of amorphous hydrated aluminum silicate and clay, it will be referred to as HASClay after HAS (Hydroxyl Aluminate Silicate) and clay (Clay). Further, when the Si / Al ratio at the time of synthesis is set to 0.7 to 1.0 and heating is performed at 100 ° C. for 2 days after the desalting treatment, this substance is also very excellent in the adsorption performance of water vapor and carbon dioxide. Since this substance becomes a complex of amorphous hydrated aluminum silicate and clay when heated at 100 ° C. for 30 days or more, it is designated as a clay precursor (see Patent Document 4).

このような、ナノサイズのチューブ状アルミニウムケイ酸塩であるイモゴライトおよびその前駆体であるプロトイモゴライト、さらにはハスクレイおよびハスクレイ前駆体の特異な形状及び物性は、工業的にも有用であると考えられる。すなわち、イモゴライトおよびその前駆体であるプロトイモゴライト、さらにはハスクレイおよびハスクレイ前駆体は、その特異な微細構造に基づいて、各種物質を吸着することができる特性を有することから、例えば、有害汚染物質吸着剤、脱臭剤、さらには二酸化炭素やメタンなどのガス貯蔵剤等としての利用可能性については、従来から言及されている。また、優れた水蒸気吸着性能を有することから、ヒートポンプ熱交換材、結露防止剤、自律的調湿材料などの応用として期待されている。   Such unique shapes and physical properties of imogolite, which is a nano-sized tubular aluminum silicate, and its precursor, protomogolite, as well as Hassley and Hassley precursor, are considered to be useful industrially. . In other words, imogolite and its precursor protomoygolite, as well as husclay and husclay precursor, have characteristics that can adsorb various substances on the basis of its unique fine structure. Conventionally, it has been mentioned that it can be used as an agent, a deodorizing agent, and a gas storage agent such as carbon dioxide and methane. In addition, since it has excellent water vapor adsorption performance, it is expected to be applied as a heat pump heat exchange material, anti-condensation agent, autonomous humidity control material and the like.

特に、デシカント空調では外気から導入される空気中の湿分を取り除くことが目的であるため、夏場の高湿度の空気からでも効率的に湿分を取り除けることが必要とされており、そのためデシカント空調において求められる吸着剤は、一般的に相対湿度が10%程度から60%における吸着量が多いことであるとされている。
そのような中で、チューブ状アルミニウムケイ酸塩およびハスクレイの上記特性を失わずに、工業的に安価で大量に合成することが求められており、イモゴライト、非晶質イモゴライトおよびプロトイモゴライト、さらにはハスクレイおよびハスクレイ前駆体の特異な細孔を利用した吸着剤の開発が行なわれてきた。
In particular, desiccant air conditioning is intended to remove moisture in the air introduced from the outside air, so it is necessary to efficiently remove moisture even from high humidity air in summer. In general, it is said that the adsorbent required in is a large amount of adsorption at a relative humidity of about 10% to 60%.
Under such circumstances, there is a demand for industrially inexpensive and large-scale synthesis without losing the above properties of tubular aluminum silicates and husclays, including imogolite, amorphous imogolite and prototomogolite, Adsorbents have been developed using the unique pores of Hassley and Hassley precursors.

しかしながら、従来の製造方法によれば、イモゴライトおよび非晶質イモゴライトを大量に製造するには、イモゴライトがSi同士の重合を含まないことからモノケイ酸塩水溶液を出発物質として用いる必要性があった。またアルミニウム源についても、アルミニウムの13量体からなるケギンポリマーがイモゴライトの生成を阻害するため硫酸アルミニウムを出発物質として用いることはなかった(特許文献1〜4参照)。   However, according to the conventional production method, in order to produce imogolite and amorphous imogolite in large quantities, it was necessary to use a monosilicate aqueous solution as a starting material because imogolite does not include polymerization of Si. As for the aluminum source, aluminum sulfate was not used as a starting material because the Keggin polymer consisting of a 13-mer of aluminum inhibits the formation of imogolite (see Patent Documents 1 to 4).

本発明者らは、以上のような事情に鑑み、従来よりも低コストでの合成が可能であり、かつ中湿度領域において優れた水蒸気吸着性能を有する非晶質アルミニウムケイ酸塩を製造する方法を達成すべく検討を重ねた結果、従来合成できないとされていた水ガラスと硫酸アルミニウム水溶液を用い、高性能な水蒸気吸着剤を開発することに成功した(特許文献5)。しかしながら、前述の非晶質含水アルミニウムケイ酸塩と粘土の複合体からなるハスクレイについては、安価な水ガラスと硫酸アルミニウム水溶液を用いては製造することができていなかった。   In view of the circumstances as described above, the present inventors have produced a method for producing an amorphous aluminum silicate that can be synthesized at a lower cost than the prior art and has an excellent water vapor adsorption performance in a medium humidity region. As a result of repeated studies to achieve the above, the inventors succeeded in developing a high-performance water vapor adsorbent using water glass and an aluminum sulfate aqueous solution, which had been considered impossible to synthesize conventionally (Patent Document 5). However, it has not been possible to produce a lotus clay composed of a composite of the above-described amorphous hydrous aluminum silicate and clay using inexpensive water glass and an aluminum sulfate aqueous solution.

特開2001−064010号公報JP 2001-0664010 A 特開2004−059330号公報JP 2004-059330 A 特開2008−179533号公報JP 2008-179533 A 国際公開第2009/084632号International Publication No. 2009/084632 国際公開第2010/026975号International Publication No. 2010/026975

本発明は、以上のような事情に鑑みてなされたものであって、従来よりも低コストでの合成が可能であり、かつ中湿度領域において優れた水蒸気吸着性能及び優れた二酸化炭素吸着性能を有するアルミニウムケイ酸塩複合体(ハスクレイ)及び該複合体からなる高性能吸着剤の製造方法を、提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, can be synthesized at a lower cost than conventional, and has excellent water vapor adsorption performance and excellent carbon dioxide adsorption performance in a medium humidity region. It is an object of the present invention to provide an aluminum silicate composite (hasclay) having a high-performance adsorbent comprising the composite.

本発明者らは、上記目的を達成すべく検討を重ねた結果、水ガラスとアルミニウム水溶液のSi/Al比を特定な値にすることにより、従来のアルミニウムケイ酸塩複合体(ハスクレイ)においては、合成できないとされていた水ガラスと硫酸アルミニウムから高性能な水蒸気吸着剤を開発することに成功し、従来の製造方法に比べて高濃度での、アルミニウムケイ酸塩複合体(ハスクレイ)の製造ができるという知見を得た。また、同時に、従来のアルミニウムケイ酸塩複合体及び該複合体からなる高性能吸着剤においては、加熱工程の前に遠心分離等により脱塩工程を必要としていたが、脱塩工程を経ずに、高性能な水蒸気吸着剤が得られることが判明した。   As a result of repeated investigations to achieve the above object, the present inventors have made the Si / Al ratio of water glass and aluminum aqueous solution to a specific value, so that in the conventional aluminum silicate complex (husclay) Succeeded in developing a high-performance water vapor adsorbent from water glass and aluminum sulfate, which could not be synthesized, and produced aluminum silicate complex (husclay) at a higher concentration than conventional production methods I got the knowledge that I can. At the same time, the conventional aluminum silicate complex and the high-performance adsorbent composed of the complex require a desalting step by centrifugation or the like before the heating step, but without the desalting step. It has been found that a high-performance water vapor adsorbent can be obtained.

本発明はこれらの知見に基づいて完成に至ったものであり、上記課題を解決するための本発明は、以下のとおりである。
[1]低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体の製造方法であって、
水ガラスとアルミニウム水溶液をSi/Al比が0.8より大きく、1.6以下となるように混合し、これに酸又はアルカリを添加してpH6〜10に調製した後、脱塩処理工程なしに95℃以上で加熱することを特徴とするアルミニウムケイ酸塩複合体の製造方法。
[2]前記アルミニウム水溶液として、硫酸アルミニウム水溶液を用いることを特徴とする請求項1に記載のアルミニウムケイ酸塩複合体の製造方法。
[3]低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を有効成分とする吸着剤の製造方法であって、
水ガラスとアルミニウム水溶液をSi/Al比が0.8より大きく、1.6以下となるように混合し、これに酸又はアルカリを添加してpH6〜10に調製した後、脱塩処理工程なしに95℃以上で加熱することにより、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を得ることを特徴とする高性能吸着剤の製造方法。
[4]前記アルミニウム水溶液として、硫酸アルミニウム水溶液を用いることを特徴とする請求項3に記載の高性能吸着剤の製造方法。
[5]前記高性能吸着剤が、デシカント空調用吸着剤であることを特徴する請求項4に記載の高性能吸着剤の製造方法。
The present invention has been completed based on these findings, and the present invention for solving the above problems is as follows.
[1] A method for producing an aluminum silicate composite comprising a low crystalline layered clay mineral and an amorphous aluminum silicate,
Water glass and aluminum aqueous solution are mixed so that Si / Al ratio is larger than 0.8 and 1.6 or less, and after adding acid or alkali to adjust to pH 6-10, there is no desalting treatment step A method for producing an aluminum silicate complex, characterized by heating to 95 ° C. or higher.
[2] The method for producing an aluminum silicate complex according to [1], wherein an aluminum sulfate aqueous solution is used as the aluminum aqueous solution.
[3] A method for producing an adsorbent comprising an aluminum silicate complex composed of a low crystalline layered clay mineral and amorphous aluminum silicate as an active ingredient,
Water glass and aluminum aqueous solution are mixed so that Si / Al ratio is larger than 0.8 and 1.6 or less, and after adding acid or alkali to adjust to pH 6-10, there is no desalting treatment step A method for producing a high-performance adsorbent characterized in that an aluminum silicate complex comprising a low crystalline layered clay mineral and an amorphous aluminum silicate is obtained by heating to 95 ° C. or higher.
[4] The method for producing a high performance adsorbent according to claim 3, wherein an aluminum sulfate aqueous solution is used as the aluminum aqueous solution.
[5] The method for producing a high-performance adsorbent according to claim 4, wherein the high-performance adsorbent is a desiccant air-conditioning adsorbent.

本発明においては、水ガラスと硫酸アルミニウムをSi/Al比が0.8より大きく、1.6以下となるように混合することにより、中湿度領域において優れた吸着挙動を有する、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を安価に提供することができるとともに、従来の製造方法に比べて高濃度での、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体の製造を可能にするものである。そして、本発明の方法により得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体は、高性能な水蒸気吸着性能を有し、特に、優れた性能を有するデシカント空調用吸着剤を提供することができる。   In the present invention, by mixing water glass and aluminum sulfate so that the Si / Al ratio is larger than 0.8 and 1.6 or less, it has a low crystalline layer shape having an excellent adsorption behavior in a medium humidity region. An aluminum silicate complex composed of a clay mineral and an amorphous aluminum silicate can be provided at a low cost, and a low crystalline layered clay mineral and an amorphous material at a higher concentration than conventional production methods. This makes it possible to produce an aluminum silicate composite composed of aluminum silicate. The aluminum silicate composite composed of the low crystalline lamellar clay mineral and the amorphous aluminum silicate obtained by the method of the present invention has a high performance water vapor adsorption performance, and in particular, excellent performance. The adsorbent for desiccant air conditioning which has can be provided.

実施例1の粉末X線回折図形を示す図。The figure which shows the powder X-ray-diffraction figure of Example 1. FIG. 実施例2の粉末X線回折図形を示す図。The figure which shows the powder X-ray-diffraction figure of Example 2. 実施例1、実施例2および比較例の水蒸気吸着等温線を示す図。The figure which shows the water vapor | steam adsorption isotherm of Example 1, Example 2, and a comparative example. 実施例2における、Si/Alモル比と水蒸気吸着性能の関係を示す図。The figure which shows the relationship between Si / Al molar ratio and water vapor | steam adsorption performance in Example 2. FIG.

次に、本発明について更に詳細に説明する。
低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和ケイ酸アルミニウムである。
本発明では、この低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を、水ガラスと硫酸アルミニウム水溶液からなる溶液を混合し、ケイ素とアルミニウムの重合化そして加熱熟成後に脱塩処理を施すことにより製造することを特徴とするものである。
Next, the present invention will be described in more detail.
An aluminum silicate composite composed of a low crystalline layered clay mineral and an amorphous aluminum silicate has silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as main constituent elements, It is a hydrated aluminum silicate assembled with a number of Si-O-Al bonds.
In the present invention, an aluminum silicate complex composed of this low crystalline layered clay mineral and amorphous aluminum silicate is mixed with a solution composed of water glass and an aluminum sulfate aqueous solution, and polymerization and heating of silicon and aluminum are performed. It is characterized by being produced by subjecting to desalting after aging.

本発明では、合成により得られる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体が、相対湿度10〜60%において30wt%以上の水蒸気を吸着する性能を有することが必要であるばかりでなく、従来公知のチューブ状アルミニウムケイ酸塩であるイモゴライトや非晶質イモゴライト、さらにはハスクレイとは異なり、さらに安価な試薬から合成されることが必要である。
すなわち、本発明者らが鋭意検討を重ねた結果、従来のイモゴライトあるいはプロトイモゴライトさらにはハスクレイにおけるSi源及びAl源となる試薬を、Si源についてはモノケイ酸であるオルトケイ酸ナトリウムから水ガラスに、Al源については塩化アルミニウムから硫酸アルミニウムに換えることにより、安価で且つ高濃度での製造が可能となることが判明したものであり、両試薬からなる出発溶液を混合し、この混合溶液を酸又はアルカリによりpH6〜10に調製した後、加熱することにより、相対湿度10〜60%において優れた吸湿挙動を有する物質を提供しうる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体が得られる。
In the present invention, an aluminum silicate complex composed of a low crystalline layered clay mineral and an amorphous aluminum silicate obtained by synthesis has the ability to adsorb 30 wt% or more of water vapor at a relative humidity of 10 to 60%. In addition to imogolite, amorphous imogolite, and even husclay, which are conventionally known tubular aluminum silicates, it is necessary to synthesize from a cheaper reagent.
That is, as a result of repeated extensive studies by the present inventors, the conventional imogolite or prototomogolite, or the reagent that becomes the Si source and the Al source in the lotus clay, for the Si source, from sodium orthosilicate, which is monosilicate, to the water glass, Regarding the Al source, it has been found that it is possible to produce it at a low cost and at a high concentration by changing from aluminum chloride to aluminum sulfate. The starting solution consisting of both reagents is mixed, and this mixed solution is mixed with acid or Aluminum comprising an amorphous aluminum silicate and a low crystalline layered clay mineral that can provide a material having an excellent hygroscopic behavior at a relative humidity of 10 to 60% after being adjusted to pH 6 to 10 with an alkali A silicate complex is obtained.

水ガラスと硫酸アルミニウム水溶液を上記の所定の範囲になるように混合するために、水ガラスを純水にて希釈させ、硫酸アルミニウムについては純水に溶解させることにより、それぞれ所定の濃度の溶液を調製する。相対湿度が60%において優れた吸着挙動を示すには、ケイ素/アルミニウム比は0.8より大きく、1.6以下、好ましくは、1.0より大きく、1.5以下となるように混合することが必要である。水ガラス中のケイ素の濃度は1〜2000mmol/Lで、硫酸アルミニウム水溶液中のアルミニウムの濃度は1〜2000mmol/Lであるが、好適な濃度としては1〜1000mmol/Lのケイ素化合物溶液と、1〜1000mmol/Lのアルミニウム化合物溶液を混合することが好ましい。これらの比率及び濃度に基づいて、水ガラス溶液中に硫酸アルミニウム水溶液を混合し、酸又はアルカリにてpH6〜10に調製して、95〜250℃にて加熱した後、生成物を脱塩処理(洗浄)により、溶液中の共存イオンを取り除き、乾燥させた固形分が本目的の低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体である。   In order to mix the water glass and the aluminum sulfate aqueous solution so as to be in the above predetermined range, the water glass is diluted with pure water, and the aluminum sulfate is dissolved in pure water, so that a solution having a predetermined concentration is obtained. Prepare. In order to exhibit excellent adsorption behavior at a relative humidity of 60%, the silicon / aluminum ratio is greater than 0.8 and less than or equal to 1.6, preferably greater than 1.0 and less than or equal to 1.5. It is necessary. The concentration of silicon in the water glass is 1 to 2000 mmol / L, and the concentration of aluminum in the aqueous aluminum sulfate solution is 1 to 2000 mmol / L, but suitable concentrations are 1 to 1000 mmol / L of the silicon compound solution, 1 It is preferable to mix a ~ 1000 mmol / L aluminum compound solution. Based on these ratios and concentrations, an aqueous aluminum sulfate solution is mixed in a water glass solution, adjusted to pH 6 to 10 with acid or alkali, heated at 95 to 250 ° C., and then desalted. The solid content obtained by removing the coexisting ions in the solution by (washing) and drying is an aluminum silicate complex composed of the low crystalline layered clay mineral and amorphous aluminum silicate for this purpose.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
Si源として360mmol/Lの水ガラス水溶液50mLと、Al源として380mmol/Lの塩化アルミニウム水溶液50mLを用いた。塩化アルミニウム水溶液に水ガラス水溶液を加え、約10分間攪拌を行った。このときのSi/Al比は0.95である。攪拌後、1Nの水酸化ナトリウム水溶液を1mL/分の速さで滴下し、pHが7程度になるまで添加した。水酸化ナトリウム水溶液の滴下量は5mLであった。このようにして生成させた前駆体懸濁液に、45mLの純水を加えて撹拌を10分行い、前駆体懸濁液を作成した。
調整した150mLの低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体前駆体懸濁液を、100mL用テフロン(登録商標)製容器に75mL測り取った後、ステンレス製回転反応容器に設置し、180℃で18時間加熱を行った。反応後、遠心分離にて2回洗浄し、60℃で1日乾燥させた。
EXAMPLES Next, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited at all by the following examples.
Example 1
As a Si source, 50 mL of a 360 mmol / L aqueous glass solution and 50 mL of a 380 mmol / L aluminum chloride aqueous solution as an Al source were used. A water glass aqueous solution was added to the aluminum chloride aqueous solution and stirred for about 10 minutes. The Si / Al ratio at this time is 0.95. After stirring, 1N aqueous sodium hydroxide solution was added dropwise at a rate of 1 mL / min, and added until the pH reached about 7. The amount of sodium hydroxide aqueous solution added was 5 mL. 45 mL of pure water was added to the precursor suspension thus generated and stirred for 10 minutes to prepare a precursor suspension.
After measuring 75 mL of the prepared 150 mL low crystalline lamellar clay mineral and amorphous aluminum silicate complex precursor suspension consisting of amorphous aluminum silicate in a 100 mL Teflon (registered trademark) container, stainless steel was measured. It installed in the rotation reaction container made, and it heated at 180 degreeC for 18 hours. After the reaction, it was washed twice by centrifugation and dried at 60 ° C. for 1 day.

(実施例2)
Si源として405mmol/Lの水ガラス水溶液100mLと、Al源として368mmol/Lの硫酸アルミニウム水溶液100mLを用いた。塩化アルミニウム水溶液に水ガラス水溶液を加え、約10分間攪拌を行った。このときのSi/Al比は1.10である。攪拌後、1Nの水酸化ナトリウム水溶液を1mL/分の速さで滴下し、pHが7程度になるまで添加した。水酸化ナトリウム水溶液の滴下量は3.1mLであった。このようにして生成させた前駆体懸濁液を遠心分離にて1回脱塩処理を行った。脱塩処理は遠心分離機を用いて、回転速度2000rpm、時間10分で行った。脱塩処理後前駆体を純水に分散させ全体で200mLとなるようにし、10分攪拌を行い前駆体懸濁液を作成した。
調整した200mLのイモゴライト前駆体懸濁液を、100mL用テフロン製容器に70mL測り取った後、ステンレス製回転反応容器に設置し、180℃で18時間加熱を行った。反応後、遠心分離にて2回洗浄し、60℃で1日乾燥させた。
(Example 2)
100 mL of a 405 mmol / L water glass aqueous solution was used as the Si source, and 100 mL of a 368 mmol / L aluminum sulfate aqueous solution was used as the Al source. A water glass aqueous solution was added to the aluminum chloride aqueous solution and stirred for about 10 minutes. The Si / Al ratio at this time is 1.10. After stirring, 1N aqueous sodium hydroxide solution was added dropwise at a rate of 1 mL / min, and added until the pH reached about 7. The dripping amount of the aqueous sodium hydroxide solution was 3.1 mL. The precursor suspension thus generated was subjected to desalting once by centrifugation. The desalting treatment was performed using a centrifuge at a rotational speed of 2000 rpm and a time of 10 minutes. After the desalting treatment, the precursor was dispersed in pure water to make a total of 200 mL, and stirred for 10 minutes to prepare a precursor suspension.
After measuring 70 mL of the adjusted 200 mL imogolite precursor suspension in a 100 mL Teflon container, it was placed in a stainless steel rotating reaction container and heated at 180 ° C. for 18 hours. After the reaction, it was washed twice by centrifugation and dried at 60 ° C. for 1 day.

(比較例)
比較例としては、上記特許文献4(国際公開2009/084632号)にて示された物質について、以下のように合成を行った。
Si源として360mmol/Lのオルトケイ酸ナトリウム水溶液100mLと、Al源として450mmol/Lの塩化アルミニウム水溶液100mLを用いた。塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を加え、約10分間攪拌を行った。このときのSi/Al比は0.80である。攪拌後、1Nの水酸化ナトリウム水溶液を1mL/分の速さで滴下し、pHが6程度になるまで添加した。水酸化ナトリウム水溶液の滴下量は6.0mLであった。このようにして生成させた前駆体懸濁液を遠心分離にて1回脱塩処理を行った。脱塩処理は遠心分離機を用いて、回転速度3000rpm、時間10分で行った。脱塩処理後前駆体を純水に分散させ全体で1Lとなるようにし、10分攪拌を行い、前駆体懸濁液を作成した。
調整した1Lのイモゴライト前駆体懸濁液を、100mL用テフロン製容器に70mL測り取った後、ステンレス製回転反応容器に設置し、120℃で2日間加熱を行った。反応後、遠心分離にて2回洗浄し、60℃で1日乾燥させた。
(Comparative example)
As a comparative example, the substance disclosed in Patent Document 4 (International Publication No. 2009/084632) was synthesized as follows.
100 mL of a 360 mmol / L sodium orthosilicate aqueous solution was used as the Si source, and 100 mL of a 450 mmol / L aluminum chloride aqueous solution was used as the Al source. A sodium orthosilicate aqueous solution was added to the aluminum chloride aqueous solution and stirred for about 10 minutes. The Si / Al ratio at this time is 0.80. After stirring, a 1N aqueous sodium hydroxide solution was added dropwise at a rate of 1 mL / min and added until the pH reached about 6. The dropping amount of the aqueous sodium hydroxide solution was 6.0 mL. The precursor suspension thus generated was subjected to desalting once by centrifugation. The desalting treatment was performed using a centrifuge at a rotational speed of 3000 rpm and a time of 10 minutes. After the desalting treatment, the precursor was dispersed in pure water so as to be 1 L in total, and stirred for 10 minutes to prepare a precursor suspension.
After measuring 70 mL of the adjusted 1 L imogolite precursor suspension in a 100 mL Teflon container, the suspension was placed in a stainless steel rotating reaction container and heated at 120 ° C. for 2 days. After the reaction, it was washed twice by centrifugation and dried at 60 ° C. for 1 day.

実施例1および実施例2で得られた生成物については、粉末X線回折による物質の同定を行った。
図1および図2に、実施例1および実施例2で得られた生成物の粉末X線回折図形を示す。図1および図2に見られるように、2θ=21、26、34、39°付近にブロードなピークが見られ、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体に特徴的なピークが観察された。
この結果から実施例1および2の物質は低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体であることが確認された。
一方、比較例1で得られた生成物の粉末X線回折図形も、2θ=21、26、34、39°付近にブロードなピークが見られ、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体であることが確認されたが、実施例2と比較して加熱後に生成した量は、比較例1では5分の1程度であった。
About the product obtained in Example 1 and Example 2, the substance was identified by powder X-ray diffraction.
1 and 2 show powder X-ray diffraction patterns of the products obtained in Examples 1 and 2. FIG. As shown in FIGS. 1 and 2, a broad peak is observed in the vicinity of 2θ = 21, 26, 34, 39 °, and an aluminum silicate composed of a low crystalline layered clay mineral and an amorphous aluminum silicate. A peak characteristic of the complex was observed.
From these results, it was confirmed that the materials of Examples 1 and 2 were aluminum silicate composites composed of a low crystalline layered clay mineral and amorphous aluminum silicate.
On the other hand, the powder X-ray diffraction pattern of the product obtained in Comparative Example 1 also shows a broad peak in the vicinity of 2θ = 21, 26, 34, 39 °, indicating that the low crystalline layered clay mineral and the amorphous aluminum silica Although it was confirmed that it was an aluminum silicate complex composed of an acid salt, the amount produced after heating compared with Example 2 was about 1/5 in Comparative Example 1.

(水蒸気吸着評価)
実施例1、実施例2および比較例で得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体について、日本ベル社製Belsorp18により測定を行った水蒸気吸着等温線から水蒸気吸着評価を行った。図3に、その結果を示す。
実施例1で得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体の吸着時における相対湿度60%における吸着量は48.1wt%であり、脱離時の相対湿度10%における吸着量は15.3wt%であり、両者の差は32.8wt%であった。
実施例2で得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体の吸着時における相対湿度60%における吸着量は45.6wt%であり、脱離時の相対湿度10%における吸着量は15.4wt%であり、両者の差は30.2wt%であった。
比較例で得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体の吸着時における相対湿度60%における吸着量は45.9wt%であり、脱離時の相対湿度10%における吸着量は15.5wt%であり、両者の差は30.4wt%であった。
以上より、Si源を水ガラス、Al源を硫酸アルミニウムに変えても、従来と同等の水蒸気吸着性能を有することが明らかとなった。
(Water vapor adsorption evaluation)
From the water vapor adsorption isotherm measured by Belsorb 18 manufactured by Nippon Bell Co., Ltd., for the composite composed of the low crystalline lamellar clay mineral and amorphous aluminum silicate obtained in Example 1, Example 2 and Comparative Example Adsorption evaluation was performed. FIG. 3 shows the result.
The amount of adsorption at the relative humidity of 60% at the time of adsorption of the composite composed of the low crystalline layered clay mineral and the amorphous aluminum silicate obtained in Example 1 is 48.1 wt%, and the relative humidity at the time of desorption. The amount of adsorption at 10% was 15.3 wt%, and the difference between the two was 32.8 wt%.
The amount of adsorption at a relative humidity of 60% at the time of adsorption of the composite composed of the low crystalline layered clay mineral and amorphous aluminum silicate obtained in Example 2 was 45.6 wt%, and the relative humidity at the time of desorption. The amount of adsorption at 10% was 15.4 wt%, and the difference between the two was 30.2 wt%.
The adsorption amount at a relative humidity of 60% at the time of adsorption of the composite composed of the low crystalline lamellar clay mineral and the amorphous aluminum silicate obtained in the comparative example is 45.9 wt%, and the relative humidity at the time of desorption is 10%. % Adsorption was 15.5 wt%, and the difference between the two was 30.4 wt%.
From the above, it has been clarified that even if the Si source is changed to water glass and the Al source is changed to aluminum sulfate, the water vapor adsorption performance is equivalent to that of the conventional one.

(実施例3)
本実施例では、実施例2の低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合の製造方法において、Si/Alのモル比を0.7〜1.7の範囲にて条件を変えて、得られた生成物の評価を行った。
生成物の評価は、水蒸気吸着評価試験により行った。評価方法は、秤量瓶に約0.3gの試料を入れ、100℃で1時間乾燥させた際の重量を乾燥重量とし、その後25℃相対湿度60%における恒温恒湿槽に1時間入れ水蒸気を吸着させた後の吸着量から、水蒸気吸着率を求めた。
実施例3の結果を図4に示す。図4のようにSi/Alモル比が0.8より大きく、1.6以下、好ましくは1.0より大きく、1.5以下において、高い水蒸気吸着性能を有することが示された。
Example 3
In this example, in the method for producing a composite composed of the low crystalline layered clay mineral and amorphous aluminum silicate of Example 2, the Si / Al molar ratio was set within the range of 0.7 to 1.7. The product obtained was evaluated at different temperatures.
The product was evaluated by a water vapor adsorption evaluation test. In the evaluation method, about 0.3 g of a sample is put in a weighing bottle, and the weight when dried at 100 ° C. for 1 hour is defined as a dry weight. Thereafter, the sample is placed in a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 60% for 1 hour. From the amount of adsorption after the adsorption, the water vapor adsorption rate was determined.
The results of Example 3 are shown in FIG. As shown in FIG. 4, when the Si / Al molar ratio is larger than 0.8 and 1.6 or less, preferably larger than 1.0 and 1.5 or less, it has been shown to have high water vapor adsorption performance.

本発明は、中湿度領域において高性能な吸着性を有する低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体の製造方法に関するものであり、本発明の方法で得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体は、自律的調湿調節剤やデシカント空調用の除湿剤、有害汚染物質吸着剤、脱臭剤、さらには二酸化炭素やメタンなどのガス貯蔵剤を提供するものとして有用である。また、本発明は、上記特性を有する非晶質物質を、大量に、低コストでかつ容易に合成することを可能とするものである。   The present invention relates to a method for producing a composite comprising a low crystalline layered clay mineral having high performance adsorptivity in a medium humidity region and an amorphous aluminum silicate, and the low yield obtained by the method of the present invention. Composites composed of crystalline layered clay minerals and amorphous aluminum silicates are used as autonomous humidity control agents, desiccant air conditioning dehumidifiers, harmful pollutant adsorbents, deodorizers, and carbon dioxide and methane. It is useful as a gas storage agent. The present invention also makes it possible to easily synthesize an amorphous substance having the above characteristics in large quantities at a low cost.

Claims (5)

低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体の製造方法であって、
水ガラスとアルミニウム水溶液をSi/Al比が0.8より大きく、1.6以下となるように混合し、これに酸又はアルカリを添加してpH6〜10に調製した後、脱塩処理工程なしに95℃以上で加熱することを特徴とするアルミニウムケイ酸塩複合体の製造方法。
A method for producing an aluminum silicate composite comprising a low crystalline layered clay mineral and an amorphous aluminum silicate,
Water glass and aluminum aqueous solution are mixed so that Si / Al ratio is larger than 0.8 and 1.6 or less, and after adding acid or alkali to adjust to pH 6-10, there is no desalting treatment step A method for producing an aluminum silicate complex, characterized by heating to 95 ° C. or higher.
前記アルミニウム水溶液として、硫酸アルミニウム水溶液を用いることを特徴とする請求項1に記載のアルミニウムケイ酸塩複合体の製造方法。   The method for producing an aluminum silicate complex according to claim 1, wherein an aluminum sulfate aqueous solution is used as the aluminum aqueous solution. 低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を有効成分とする吸着剤の製造方法であって、
水ガラスとアルミニウム水溶液をSi/Al比が0.8より大きく、1.6以下となるように混合し、これに酸又はアルカリを添加してpH6〜10に調製した後、脱塩処理工程なしに95℃以上で加熱することにより、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を得ることを特徴とする高性能吸着剤の製造方法。
A method for producing an adsorbent comprising, as an active ingredient, an aluminum silicate complex comprising a low crystalline layered clay mineral and amorphous aluminum silicate,
Water glass and aluminum aqueous solution are mixed so that Si / Al ratio is larger than 0.8 and 1.6 or less, and after adding acid or alkali to adjust to pH 6-10, there is no desalting treatment step A method for producing a high-performance adsorbent characterized in that an aluminum silicate complex comprising a low crystalline layered clay mineral and an amorphous aluminum silicate is obtained by heating to 95 ° C. or higher.
前記アルミニウム水溶液として、硫酸アルミニウム水溶液を用いることを特徴とする請求項3に記載の高性能吸着剤の製造方法。   The method for producing a high performance adsorbent according to claim 3, wherein an aluminum sulfate aqueous solution is used as the aluminum aqueous solution. 前記高性能吸着剤が、デシカント空調用吸着剤であることを特徴する請求項3又は4に記載の高性能吸着剤の製造方法。   The method for producing a high performance adsorbent according to claim 3 or 4, wherein the high performance adsorbent is a desiccant air conditioning adsorbent.
JP2010152580A 2010-07-05 2010-07-05 Method for producing aluminum silicate composite Active JP5495054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152580A JP5495054B2 (en) 2010-07-05 2010-07-05 Method for producing aluminum silicate composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152580A JP5495054B2 (en) 2010-07-05 2010-07-05 Method for producing aluminum silicate composite

Publications (2)

Publication Number Publication Date
JP2012012267A JP2012012267A (en) 2012-01-19
JP5495054B2 true JP5495054B2 (en) 2014-05-21

Family

ID=45599146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152580A Active JP5495054B2 (en) 2010-07-05 2010-07-05 Method for producing aluminum silicate composite

Country Status (1)

Country Link
JP (1) JP5495054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949205B (en) * 2014-04-29 2016-06-29 桂林理工大学 A kind of nanometer of mixed layer assembles preparation method and the application thereof of clay mineral material
JP6543209B2 (en) * 2016-03-24 2019-07-10 パナソニックホームズ株式会社 Humidity control material and humidity control system
CN109896529B (en) * 2019-03-20 2021-03-02 唐山顺浩环保科技有限公司 Production method for melting aluminum silicate mineral substance by microwave and microwave equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146360B1 (en) * 1999-08-30 2001-03-12 工業技術院長 Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions
JP3163360B1 (en) * 2000-02-09 2001-05-08 経済産業省産業技術総合研究所長 High concentration synthesis of tubular aluminum silicate by continuous addition of precursor
JP4113943B2 (en) * 2002-07-25 2008-07-09 独立行政法人産業技術総合研究所 Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP2006240956A (en) * 2005-03-07 2006-09-14 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
US7887770B2 (en) * 2006-12-27 2011-02-15 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
WO2008129968A1 (en) * 2007-04-13 2008-10-30 National Institute Of Advanced Industrial Science And Technology Carbon dioxide adsorbent capable of adsorption/desorption in dependence on pressure of atmospheric pressure or higher
JP5212992B2 (en) * 2007-12-27 2013-06-19 独立行政法人産業技術総合研究所 Aluminum silicate complex and high performance adsorbent comprising the complex
EP2322479A4 (en) * 2008-09-02 2013-07-03 Nat Inst Of Advanced Ind Scien Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same

Also Published As

Publication number Publication date
JP2012012267A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
Huang et al. Removal of p-nitrophenol by a water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: A comparative study
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
JP5495054B2 (en) Method for producing aluminum silicate composite
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
JP6426213B2 (en) Amorphous aluminum silicate and method for producing the same
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP4769927B2 (en) Method for producing silica adsorbent
JP5213111B2 (en) Aluminum silicate in which water molecules are regularly arranged and synthesis method thereof
JP5354561B2 (en) Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP5283108B2 (en) Adsorbent for humidity sensor sensing and humidity control for electronic equipment
JP6656615B2 (en) Aluminum silicate composite and method for producing the same
JP5665118B2 (en) Method for producing volatile organic compound adsorbent and volatile organic compound adsorbent produced by the method
JP6303791B2 (en) Method for producing strontium clinoptilolite
JP2012210560A (en) Method for manufacturing volatile organic compound adsorbent
JP4538626B2 (en) Method for producing tubular aluminum silicate having fine pores
Kozlova et al. The stability of sulfide sorbents based on silica in aqueous media. Part II. MCM-41 matrix
JP2014148433A (en) Amorphous iron silicate and synthesis method thereof
JP2008086965A (en) Improving method of adsorbent performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5495054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250