JP6426213B2 - Amorphous aluminum silicate and method for producing the same - Google Patents

Amorphous aluminum silicate and method for producing the same Download PDF

Info

Publication number
JP6426213B2
JP6426213B2 JP2017004736A JP2017004736A JP6426213B2 JP 6426213 B2 JP6426213 B2 JP 6426213B2 JP 2017004736 A JP2017004736 A JP 2017004736A JP 2017004736 A JP2017004736 A JP 2017004736A JP 6426213 B2 JP6426213 B2 JP 6426213B2
Authority
JP
Japan
Prior art keywords
aluminum silicate
amorphous aluminum
adsorption
relative humidity
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017004736A
Other languages
Japanese (ja)
Other versions
JP2017128499A (en
JP2017128499A5 (en
Inventor
和也 森本
和也 森本
和子 万福
和子 万福
亜衣 星野谷
亜衣 星野谷
鈴木 正哉
正哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JP2017128499A publication Critical patent/JP2017128499A/en
Publication of JP2017128499A5 publication Critical patent/JP2017128499A5/ja
Application granted granted Critical
Publication of JP6426213B2 publication Critical patent/JP6426213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、次世代の産業を支える重要な基盤技術として実用化が強く期待されているナノテクノロジーの技術分野において、その特異な形状に起因する微細構造により吸着能等に優れた特性を示し、革新的な機能性材料としての応用が期待されている物質に関するものであり、特に、中湿度領域にて優れた水蒸気吸放湿特性を有する非晶質アルミニウムケイ酸塩及びその製造方法に関するものである。   In the technical field of nanotechnology in which the present invention is strongly expected to be put to practical use as an important basic technology to support the next-generation industry, the fine structure resulting from its unique shape exhibits excellent characteristics such as adsorption ability, The present invention relates to a material expected to be applied as an innovative functional material, and in particular to an amorphous aluminum silicate having excellent water vapor absorption and release characteristics in a medium humidity region and a method for producing the same. is there.

ナノサイズの細孔を有する多孔質無機材料は、その特異な微細構造に基づいて、各種物質を吸着することができる特性を有することから、様々な用途に利用されている。また、多孔質無機材料は優れた水蒸気吸着性能を有することから、ヒートポンプ熱交換材、結露防止剤、自律的調湿材料などの応用が期待されている。
特に、デシカント空調では外気から導入される空気中の湿分を取り除くことが目的であるため、夏場の高湿度の空気からでも効率的に湿分を取り除けることが必要とされているばかりでなく、様々な空気の状態においても空気中の湿分を取り除く必要があるため、どの湿度領域においても水蒸気を吸着できる物質が求められている。
Porous inorganic materials having nano-sized pores are used for various applications because they have the property of being able to adsorb various substances based on their unique microstructure. Moreover, since porous inorganic materials have excellent water vapor adsorption performance, applications such as heat pump heat exchange materials, anti-condensing agents, and autonomous humidity control materials are expected.
In particular, since the purpose of desiccant air conditioning is to remove moisture in the air introduced from the outside air, it is not only necessary to be able to efficiently remove moisture even from summer high humidity air, Since it is necessary to remove moisture in the air under various air conditions, there is a need for a material that can adsorb water vapor in any humidity range.

その一方でデシカント空調においては、吸着した水蒸気を脱離させるために加熱した空気を送り込み再生を行うが、この送り込む再生空気の温度が高いと、空気を暖めるのに必要なエネルギーが余計にかかってしまう。これまでは再生空気の温度として80℃以上を必要としていたが、未利用熱源の利用等を考慮すると、60℃程度さらには40℃程度の低温の空気にて再生が可能な素材が求められている。   On the other hand, in desiccant air conditioning, heated air is sent to regenerate adsorbed steam to desorb adsorbed water, but if the temperature of the regenerated air to be sent in is high, extra energy is required to warm the air. I will. So far, the temperature of the regenerating air has been required to be 80 ° C or higher, but considering the utilization of unused heat sources, materials that can be regenerated with air at a low temperature of around 60 ° C and further around 40 ° C are required. There is.

上記背景の中、デシカント空調システムとしての性能向上のため、特に低温再生が可能な高性能水蒸気吸着剤の開発が行われた。そのような中で、非晶質アルミニウムケイ酸塩からなる物質(特許文献1、2参照)、及び非晶質アルミニウムケイ酸塩と低結晶性層状粘土鉱物との複合体からなる物質(特許文献3、4参照)が開発され、特に後者の、非晶質アルミニウムケイ酸塩と低結晶性層状粘土鉱物との複合体からなる物質では、従来の無機材料では達し得なかった、水蒸気吸着等温線における吸着時の相対湿度60%と脱離時の相対湿度10%の差において吸着量が30wt%以上の値を有し、かつ水蒸気吸着等温線において、相対湿度と水蒸気吸着量とが直線的な関係を有する無機材料が開発された。   In the above background, in order to improve the performance as a desiccant air conditioning system, development of a high performance water vapor adsorbent capable of particularly low temperature regeneration has been carried out. Under such circumstances, substances comprising amorphous aluminum silicate (see Patent Documents 1 and 2) and substances comprising a complex of amorphous aluminum silicate and low crystalline layered clay mineral 3, 4) have been developed, especially for the latter, which consist of a complex of amorphous aluminum silicate and low crystalline layered clay mineral, a water vapor adsorption isotherm which could not be achieved with conventional inorganic materials The adsorption amount has a value of 30 wt% or more between the relative humidity of 60% at adsorption and the relative humidity of 10% at desorption, and the relative humidity and the amount of adsorption of water vapor are linear in the water vapor adsorption isotherm. Inorganic materials having a relationship have been developed.

しかしながら、この後者の非晶質アルミニウムケイ酸塩と低結晶性層状粘土鉱物との複合体からなる物質では、水蒸気吸着等温線における吸着時の相対湿度60%と脱離時の相対湿度10%の差において吸着量が30wt%を超えるものの、180℃での合成において18時間、或いは、120℃での合成においても2日の加熱時間を要することから、安価に合成することができないという問題があった。
一方、前者の非晶質アルミニウムケイ酸塩からなる物質では、100℃以下の低温での合成が可能なため、安価に大量に合成が可能であるものの、水蒸気吸着等温線における吸着時の相対湿度60%と脱離時の相対湿度10%の差において吸着量が20wt%を超えることはなかった。
However, in this latter substance consisting of a complex of amorphous aluminum silicate and low crystalline layered clay mineral, the relative humidity at adsorption 60% and the relative humidity 10% at adsorption in the water vapor adsorption isotherm Although the amount of adsorption exceeds 30 wt%, there is a problem that it can not be synthesized inexpensively because 18 hours for synthesis at 180 ° C, or two days for synthesis at 120 ° C is required. The
On the other hand, the former material consisting of amorphous aluminum silicate can be synthesized at a low temperature of 100 ° C or less, so it can be synthesized inexpensively in large quantities, but the relative humidity at the time of adsorption in the water vapor adsorption isotherm The adsorption amount did not exceed 20 wt% at a difference of 60% and a relative humidity of 10% at the time of desorption.

特開2008−179533号公報JP, 2008-179533, A 国際公開第2010/026975号International Publication No. 2010/026975 国際公開第2009/084632号WO 2009/084623 特開2012−12267号公報JP 2012-12267 A

本発明は、以上のような事情に鑑みてなされたものであり、従来と同等の低コストでの合成が可能であり、かつ中湿度領域において優れた水蒸気吸着性能を有する非晶質アルミニウムケイ酸塩及びその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and can be synthesized at the same low cost as the conventional one, and is an amorphous aluminum silicate having excellent water vapor adsorption performance in the medium humidity range. It is an object of the present invention to provide a salt and a method for producing the same.

本発明者らは、上記目的を達成すべく検討を重ねた結果、原料に水ガラスを用いるとともに、水ガラスと硫酸アルミを混合した際のpHを制御することによって、CP/MAS法による29Si固体NMRスペクトルにおいてOH−Si−(OAl)に起因するピークと、そのピークから12ppm小さいピークを有する新規な非晶質アルミニウムケイ酸塩を、安価に大量に製造できること、及び得られた新規な非晶質アルミニウムケイ酸塩が中湿度領域において優れた水蒸気吸着性能を有することを見いだした。 As a result of repeated investigations to achieve the above object, the present inventors used water glass as a raw material, and controlled the pH when mixing water glass and aluminum sulfate, whereby 29 Si by CP / MAS method was obtained. It is possible to inexpensively produce a large amount of novel amorphous aluminum silicate having a peak attributed to OH-Si- (OAl) 3 and a peak 12 ppm smaller than the peak in solid-state NMR spectrum, and the obtained novel It has been found that amorphous aluminum silicate has excellent water vapor adsorption performance in the medium humidity range.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりである。
[1]i/Alモル比が0.7〜1.3で、かつCP/MAS法による29Si固体NMRスペクトルにおいてOH−Si−(OAl)に起因するピークと、そのピークから12ppm小さいピークを有する非晶質アルミニウムケイ酸塩。
[2]吸着時の相対湿度60%における吸着量と、脱着時の相対湿度10%における吸着量との差が20wt%以上の水蒸気吸着性能を有することを特徴とする前記[1]に記載の非晶質アルミニウムケイ酸塩。
[3]水ガラスと硫酸アルミニウム水溶液を、Si/Alモル比が0.7〜1.3かつ混合時のpHが3.5〜4.8となるように混合し、攪拌した後、これにアルカリを添加してpH6〜10に調整し、脱塩処理および70℃以上130℃以下での加熱処理を行うことを特徴とする非晶質アルミニウムケイ酸塩の製造方法。
[4]前記[1]又は[2]に記載の非晶質アルミニウムケイ酸塩を有効成分とする吸着剤。
[5]前記[1]又は[2]に記載の非晶質アルミニウムケイ酸塩を有効成分とするデシカント空調用吸着剤。
The present invention has been completed based on these findings and is as follows.
[1] S i / Al molar ratio of 0.7 to 1.3, and a peak due to OH-Si- (OAl) 3 in 29 Si solid state NMR spectrum by CP / MAS method, small 12ppm from its peak Amorphous aluminum silicate having a peak.
[2] The water vapor adsorption performance according to the above [1], which has a water vapor adsorption performance in which the difference between the adsorption amount at 60% relative humidity at adsorption and the adsorption amount at 10% relative humidity at desorption is 20 wt% or more. Amorphous aluminum silicate.
[3] Water glass and an aqueous solution of aluminum sulfate are mixed and stirred so that the Si / Al molar ratio is 0.7 to 1.3 and the pH at mixing is 3.5 to 4.8. A method for producing an amorphous aluminum silicate, comprising adding an alkali to adjust to pH 6 to 10, performing desalting treatment and heat treatment at 70 ° C. or more and 130 ° C. or less.
[4] An adsorbent comprising the amorphous aluminum silicate according to [1] or [2] as an active ingredient.
[5] An adsorbent for desiccant air conditioning comprising the amorphous aluminum silicate according to the above [1] or [2] as an active ingredient.

本発明においては、水ガラスと硫酸アルミニウムを原料に用い、さらに水ガラスと硫酸アルミニウム水溶液を混合した際のpHを制御することにより、中湿度領域において優れた吸着挙動を有する新規な非晶質アルミニウムケイ酸塩を安価に提供することができる。そして、本発明の方法により得られた非晶質ケイ酸アルミニウム塩は、従来の非晶質ケイ酸アルミニウム塩より高性能な水蒸気吸着性能を有し、特に、優れた性能を有するデシカント空調用吸着剤を提供することができる。   In the present invention, novel amorphous aluminum having excellent adsorption behavior in the medium humidity range by using water glass and aluminum sulfate as raw materials and further controlling the pH when water glass and aluminum sulfate aqueous solution are mixed. Silicate can be provided inexpensively. And, the amorphous aluminum silicate obtained by the method of the present invention has a higher water vapor adsorption performance than the conventional amorphous aluminum silicate, and in particular, an adsorption for desiccant air conditioning having an excellent performance. Agents can be provided.

実施例1、実施例2で得られた生成物の粉末X線回折図形を示す図。FIG. 2 shows powder X-ray diffraction patterns of the products obtained in Example 1 and Example 2. 実施例1、実施例2、比較例1および比較例2の水蒸気吸着等温線を示す図。The figure which shows the water vapor adsorption isotherm of Example 1, Example 2, the comparative example 1, and the comparative example 2. FIG. 実施例1で得られた生成物のCP/MAS法による29Si固体NMRスペクトルを示す図。2 shows a 29 Si solid state NMR spectrum of the product obtained in Example 1 by CP / MAS method. FIG. 比較例1で得られた生成物のCP/MAS法による29Si固体NMRスペクトルを示す図。FIG. 16 shows a 29 Si solid state NMR spectrum of the product obtained in Comparative Example 1 by CP / MAS method. 実施例3における、水ガラスと硫酸アルミニウム水溶液を混合した際のpHと水蒸気吸着性能の関係を示す図。FIG. 16 is a graph showing the relationship between pH and water vapor adsorption performance when water glass and an aqueous solution of aluminum sulfate are mixed in Example 3. 実施例4における、Si/Alモル比と水蒸気吸着性能の関係を示す図。FIG. 16 is a graph showing the relationship between the Si / Al molar ratio and the water vapor adsorption performance in Example 4. 実施例5における、水酸化ナトリウム水溶液滴下後のpHと水蒸気吸着性能の関係を示す図。FIG. 16 is a graph showing the relationship between pH and water vapor adsorption performance after dropping a sodium hydroxide aqueous solution in Example 5.

次に、本発明について更に詳細に説明する。
本発明の非晶質アルミニウムケイ酸塩は、CP/MAS法による29Si固体NMRスペクトルにおいてOH−Si−(OAl)に起因するピークと、そのピークから12ppm小さいピークを有するものであり、吸着時の相対湿度60%と脱離時の相対湿度10%の差において吸着量が20wt%以上の優れた水蒸気吸着性能を有している。
Next, the present invention will be described in more detail.
The amorphous aluminum silicate of the present invention has a peak attributed to OH-Si- (OAl) 3 and a peak 12 ppm smaller than the peak in the 29 Si solid state NMR spectrum by the CP / MAS method, and is adsorbed It has an excellent water vapor adsorption performance with an adsorption amount of 20 wt% or more at a difference between relative humidity of 60% at the time of relative humidity of 10% at the time of desorption.

本発明における上記の非晶質アルミニウムケイ酸塩は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和ケイ酸アルミニウムである。
本発明では、この非晶質アルミニウムケイ酸塩を、水ガラスと硫酸アルミニウム水溶液からなる溶液を混合して、ケイ素とアルミニウムの重合化と加熱熟成および脱塩処理を施すことにより製造するものである。
In the present invention, the above-mentioned amorphous aluminum silicate is composed of silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as main constituent elements, and is assembled by a large number of Si-O-Al bonds. Hydrated aluminum silicate.
In the present invention, this amorphous aluminum silicate is produced by mixing a solution consisting of water glass and an aqueous solution of aluminum sulfate and subjecting silicon and aluminum to polymerization, heat aging and desalting treatment. .

本発明では、合成により得られる非晶質アルミニウムケイ酸塩が、水蒸気吸着等温線における吸着時の相対湿度60%と脱離時の相対湿度10%の差において吸着量が20wt%以上の水蒸気を吸着する性能を有することが必要であるばかりでなく、安価な試薬から低コストで合成されることが必要である。
本発明者らが鋭意検討を重ねた結果、原料として安価な試薬からなる水ガラスと硫酸アルミニウムを用い、水ガラスと硫酸アルミニウム水溶液をSi/Alモル比が0.7〜1.3かつ混合時のpHが3.5〜4.8となるように混合し、攪拌した後、これにアルカリを添加してpH6〜10に調整し、脱塩処理及び70℃以上130℃以下での加熱処理を行うことにより、水蒸気吸着等温線における吸着時の相対湿度60%と脱離時の相対湿度10%の差において吸着量が20wt%以上となる非晶質アルミニウムケイ酸塩が得られる。
In the present invention, the amorphous aluminum silicate obtained by synthesis is a water vapor having an adsorption amount of 20 wt% or more in the difference between the relative humidity of 60% during adsorption and the relative humidity of 10% during desorption in the water vapor adsorption isotherm. Not only is it necessary to have the ability to adsorb, but it also needs to be synthesized at low cost from inexpensive reagents.
As a result of intensive investigations by the present inventors, using water glass and aluminum sulfate consisting of inexpensive reagents as raw materials, Si / Al molar ratio of water glass and aluminum sulfate aqueous solution is 0.7 to 1.3 when mixing The mixture is mixed so that the pH of the mixture is 3.5 to 4.8, and after stirring, an alkali is added thereto to adjust the pH to 6 to 10, and the desalting treatment and the heat treatment at 70.degree. C. or more and 130.degree. By carrying out the reaction, an amorphous aluminum silicate having an adsorption amount of 20 wt% or more is obtained at a difference between relative humidity 60% at adsorption and relative humidity 10% at desorption in the water vapor adsorption isotherm.

本発明においては、水ガラスと硫酸アルミニウム水溶液を、ケイ素/アルミニウムモル比が0.7〜1.、好ましくは0.9〜1.2であり、かつ混合時のpHが3.5〜4.8となるように混合することが必要である。
上記の所定の範囲になるように混合するための方法は特に限定されないが、水ガラス及び硫酸アルミニウムについて、それぞれ所定の濃度の溶液となるように溶液を調製した後、これらを混合するのが好ましい。
具体的には、硫酸アルミニウムについては、純水に溶解させることにより、所定の濃度の水溶液を調製する。また、水ガラスについては、該硫酸アルミニウム水溶液と混合した際に、pHが3.5〜4.8となるように、純水及び/又は水酸化ナトリウムにて希釈させるか、あるいは純水で濃度調整した水酸化ナトリウム水溶液にて希釈させることにより、所定の濃度の溶液を調製する。
In the present invention, water glass and an aqueous solution of aluminum sulfate are used at a silicon / aluminum molar ratio of 0.7 to 1. It is necessary to mix so that it is 3 , preferably 0.9 to 1.2, and the pH at the time of mixing is 3.5 to 4.8.
Although the method for mixing so as to be within the predetermined range described above is not particularly limited, it is preferable to prepare a solution so as to be each a predetermined concentration solution for water glass and aluminum sulfate, and then mix these. .
Specifically, aluminum sulfate is dissolved in pure water to prepare an aqueous solution of a predetermined concentration. Moreover, about water glass, when it mixes with this aluminum sulfate aqueous solution, it is made to dilute with pure water and / or sodium hydroxide so that pH may be set to 3.5-4.8, or concentration with pure water A solution of a predetermined concentration is prepared by diluting with the adjusted aqueous sodium hydroxide solution.

水ガラス中のケイ素の濃度は1〜3000mmol/Lで、硫酸アルミニウム水溶液中のアルミニウムの濃度は1〜3000mmol/Lであるが、好適な濃度としては1〜1500mmol/Lのケイ素化合物溶液と、1〜1500mmol/Lのアルミニウム化合物溶液を混合することが好ましい。   The concentration of silicon in the water glass is 1 to 3000 mmol / L, and the concentration of aluminum in the aluminum sulfate aqueous solution is 1 to 3000 mmol / L, but a preferred concentration is 1 to 1500 mmol / L of a silicon compound solution, It is preferable to mix a -1500 mmol / L aluminum compound solution.

こうして調製された所定濃度の水ガラスの水溶液と硫酸アルミニウム水溶液を混合時のpHが3.5〜4.8となるように混合した後、均一な溶液が得られるまで攪拌を行う。
攪拌後、この溶液をアルカリにてpH6〜10に調製し、脱塩処理及び70℃以上130℃以下で加熱熟成させる加熱処理を行い、乾燥させた固形分が本目的の非晶質アルミニウムケイ酸塩である。
After mixing the aqueous solution of the water glass of the predetermined concentration thus prepared and the aqueous solution of aluminum sulfate so that the pH at the time of mixing becomes 3.5 to 4.8, stirring is performed until a uniform solution is obtained.
After stirring, this solution is adjusted to pH 6 to 10 with alkali, subjected to desalting treatment and heat treatment to heat and age at 70 ° C. or more and 130 ° C. or less, and the dried solid content is an amorphous aluminum silicate for this purpose. It is salt.

本発明における脱塩処理とは、生成物の洗浄により溶液中の共存イオンを取り除く処理であり、その方法は特に限定されないが、好ましくは、脱水及び/又は洗浄により行う方法が好ましい。具体的には、遠心分離やフィルタープレスなどで、固形分と溶液とに分離させることにより、相当量の塩を含んだ溶液として塩を取り除くことができる。また、遠心分離における洗浄としては、この操作の際に分離された固形分に純水を加え、攪拌し再度遠心分離を行うことにより、さらに固形分に含まれる塩の量が減少するとともに、その分の塩を溶液として取り除くことができる。
また、本発明において、前記脱塩処理及び前記加熱処理の工程は、その順序と回数は限定されるわけではなく、例えば、脱塩処理工程→加熱処理工程、又は加熱処理工程→脱塩処理工程のみならず、脱塩処理工程→加熱処理工程→脱塩処理工程なども含まれる。
The desalting treatment in the present invention is a treatment for removing the coexisting ions in the solution by washing the product, and the method is not particularly limited, but preferably, a method of dehydration and / or washing is preferable. Specifically, the salt can be removed as a solution containing a considerable amount of salt by separating the solid content and the solution by centrifugation, a filter press, or the like. Further, as washing in centrifugation, pure water is added to the solid content separated in this operation, and the mixture is stirred and centrifuged again to further reduce the amount of salt contained in the solid content and Minutes of salt can be removed as a solution.
Further, in the present invention, the order and number of steps of the desalting treatment and the heat treatment are not limited, and for example, the desalting treatment step → the heat treatment step or the heat treatment step → the desalting treatment step Not only the desalting process → the heat treatment process → the desalting process, etc. are included.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
Si濃度が1.00mol/Lになるように、水ガラスを20%水酸化ナトリウム水溶液で希釈した水ガラス溶液100mLを調製した。また、これとは別に、硫酸アルミニウムを純水に溶解させ、Al濃度が0.95mol/Lの硫酸アルミニウム水溶液100mLを調製した。次に、水ガラス溶液に硫酸アルミニウム水溶液を混合し、攪拌機にて撹拌した。このときのケイ素/アルミニウムモル比は1.05、攪拌30分後のpHは3.9であった。更に、この混合溶液に、20%水酸化ナトリウム水溶液13.8mLを添加しpHを7.5とした。このようにして生成させた懸濁液を遠心分離にて2回脱塩処理を行った。脱塩処理後回収物を純水に分散させ全体で200mLとなるようにした後、1時間攪拌し懸濁液を作成した。この調整した懸濁液を200mLの密閉容器に移し替え、恒温槽にて98℃で16時間加熱を行った。反応後遠心分離により2回脱塩処理後、60℃で1日乾燥させた。
Next, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited at all by the following examples.
Example 1
A water glass solution was diluted with a 20% aqueous sodium hydroxide solution to prepare 100 mL of a water glass solution so that the Si concentration was 1.00 mol / L. Separately, aluminum sulfate was dissolved in pure water to prepare 100 mL of an aqueous solution of aluminum sulfate having an Al concentration of 0.95 mol / L. Next, an aqueous solution of aluminum sulfate was mixed with the water glass solution and stirred with a stirrer. At this time, the silicon / aluminum molar ratio was 1.05, and the pH after 30 minutes of stirring was 3.9. Furthermore, 13.8 mL of 20% aqueous sodium hydroxide solution was added to this mixed solution to adjust the pH to 7.5. The suspension thus produced was desalted twice by centrifugation. The recovered product after desalting treatment was dispersed in pure water to make the total volume 200 mL, and then stirred for 1 hour to prepare a suspension. The adjusted suspension was transferred to a 200 mL closed vessel and heated in a thermostat at 98 ° C. for 16 hours. After the reaction, the mixture was desalted twice by centrifugation and dried at 60 ° C. for 1 day.

(実施例2)
Si濃度が1.00mol/Lになるように、水ガラスを20%水酸化ナトリウム水溶液で希釈した水ガラス溶液100mLを調製した。また、これとは別に、硫酸アルミニウムを純水に溶解させ、Al濃度が0.95mol/Lの硫酸アルミニウム水溶液100mLを調製した。次に、水ガラス溶液に硫酸アルミニウム水溶液を混合し、攪拌機にて撹拌した。このときのケイ素/アルミニウムモル比は1.05、攪拌30分後のpHは3.9であった。更に、この混合溶液に、20%水酸化ナトリウム水溶液13.8mLを添加しpHを7.5とした。このようにして生成させた懸濁液を遠心分離にて2回脱塩処理を行った。脱塩処理後回収物を純水に分散させ全体で200mLとなるようにした後、1時間攪拌し懸濁液を作成した。この調整した懸濁液のうち70mLを、100mL用テフロン(登録商標)製容器に測り取った後、ステンレス製回転反応容器に設置し120℃で3時間加熱を行った。反応後遠心分離により2回脱塩処理後、60℃で1日乾燥させた。
(Example 2)
A water glass solution was diluted with a 20% aqueous sodium hydroxide solution to prepare 100 mL of a water glass solution so that the Si concentration was 1.00 mol / L. Separately, aluminum sulfate was dissolved in pure water to prepare 100 mL of an aqueous solution of aluminum sulfate having an Al concentration of 0.95 mol / L. Next, an aqueous solution of aluminum sulfate was mixed with the water glass solution and stirred with a stirrer. At this time, the silicon / aluminum molar ratio was 1.05, and the pH after 30 minutes of stirring was 3.9. Furthermore, 13.8 mL of 20% aqueous sodium hydroxide solution was added to this mixed solution to adjust the pH to 7.5. The suspension thus produced was desalted twice by centrifugation. The recovered product after desalting treatment was dispersed in pure water to make the total volume 200 mL, and then stirred for 1 hour to prepare a suspension. After 70 mL of the adjusted suspension was measured in a 100 mL Teflon (registered trademark) container, it was placed in a stainless steel rotary reaction container and heated at 120 ° C. for 3 hours. After the reaction, the mixture was desalted twice by centrifugation and dried at 60 ° C. for 1 day.

(比較例1)
Si濃度が1.00mol/Lになるように、純水で希釈した水ガラス溶液100mLを調製した。また、これとは別に、硫酸アルミニウムを純水に溶解させ、Al濃度が0.95mol/Lの硫酸アルミニウム水溶液100mLを調製した。次に、水ガラス溶液に硫酸アルミニウム水溶液を混合し、攪拌機にて撹拌した。このときのケイ素/アルミニウムモル比は1.05、攪拌30分後のpHは3.3であった。更に、この混合溶液に、20%水酸化ナトリウム水溶液36.4mLを添加しpHを7.5とした。このようにして生成させた懸濁液を遠心分離にて2回脱塩処理を行った。脱塩処理後回収物を純水に分散させ全体で200mLとなるようにした後、1時間攪拌を行い懸濁液を作成した。この調整した懸濁液を200mLの密閉容器に移し替え、恒温槽にて98℃で16時間加熱を行った。反応後遠心分離により2回洗浄後、60℃で1日乾燥させた。
(Comparative example 1)
100 mL of a water glass solution diluted with pure water was prepared such that the Si concentration was 1.00 mol / L. Separately, aluminum sulfate was dissolved in pure water to prepare 100 mL of an aqueous solution of aluminum sulfate having an Al concentration of 0.95 mol / L. Next, an aqueous solution of aluminum sulfate was mixed with the water glass solution and stirred with a stirrer. At this time, the silicon / aluminum molar ratio was 1.05, and the pH after 30 minutes of stirring was 3.3. Furthermore, 36.4 mL of 20% aqueous sodium hydroxide solution was added to this mixed solution to adjust the pH to 7.5. The suspension thus produced was desalted twice by centrifugation. After desalting treatment, the recovered product was dispersed in pure water to make the total volume 200 mL, and then stirred for 1 hour to prepare a suspension. The adjusted suspension was transferred to a 200 mL closed vessel and heated in a thermostat at 98 ° C. for 16 hours. After the reaction, it was washed twice by centrifugation and dried at 60 ° C. for 1 day.

(比較例2)
比較例2として、上記特許文献1(特開2008−179533号公報)にて示された物質について、以下のように、本発明の製造方法に準拠して合成を行った。
Si濃度が、0.4mol/Lになるように、純水で希釈したオルトケイ酸ナトリウム水溶液2000mLを調製した。また、これとは別に、塩化アルミニウムを純水に溶解させ、Al濃度が0.47mol/Lの塩化アルミニウム水溶液2000mLを調製した。次に、塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を混合し、攪拌機にて撹拌した。このときのケイ素/アルミニウムモル比は0.85であり、攪拌30分後のpHは3.6であった。更に、この混合溶液に、5N水酸化ナトリウム水溶液20mLを添加しpHを7とした。この溶液を室温下で30分攪拌した後、5Lの密閉容器に移し替え、恒温槽にて95℃で1日間加熱を行った。こうして非晶質アルミニウムケイ酸塩を含む水溶液を得た。冷却後、遠心分離により4回洗浄後、60℃で乾燥を行った。
(Comparative example 2)
As the comparative example 2, it synthesize | combined based on the manufacturing method of this invention about the substance shown by the said patent document 1 (Unexamined-Japanese-Patent No. 2008-179533) as follows.
2000 mL of an aqueous solution of sodium orthosilicate diluted with pure water was prepared such that the Si concentration was 0.4 mol / L. Separately, aluminum chloride was dissolved in pure water to prepare 2000 mL of an aqueous solution of aluminum chloride having an Al concentration of 0.47 mol / L. Next, an aqueous solution of aluminum chloride and an aqueous solution of sodium orthosilicate were mixed and stirred by a stirrer. The silicon / aluminum molar ratio at this time was 0.85, and the pH after 30 minutes of stirring was 3.6. Further, 20 mL of 5 N aqueous sodium hydroxide solution was added to this mixed solution to adjust the pH to 7. The solution was stirred at room temperature for 30 minutes, transferred to a 5 L closed vessel, and heated in a thermostat at 95 ° C. for 1 day. Thus, an aqueous solution containing amorphous aluminum silicate was obtained. After cooling, the resultant was washed 4 times by centrifugation and then dried at 60 ° C.

実施例1および実施例2で得られた生成物について、粉末X線回折による測定を行った。
図1に、実施例1および実施例2で得られた生成物の粉末X線回折図形を示す。図1に見られるように、2θ=26°と40°付近にブロードなピークが見られ、非晶質アルミニウムケイ酸塩に特徴的なピークが観察された。
この結果から実施例1および実施例2の物質は非晶質物質であることが確認された。
The products obtained in Example 1 and Example 2 were measured by powder X-ray diffraction.
The powder X-ray diffraction patterns of the products obtained in Example 1 and Example 2 are shown in FIG. As shown in FIG. 1, broad peaks were observed around 2θ = 26 ° and 40 °, and peaks characteristic of amorphous aluminum silicate were observed.
From this result, it was confirmed that the substances of Example 1 and Example 2 were amorphous substances.

実施例1および実施例2で得られた生成物について、走査型電子顕微鏡装置に設置されているエネルギー分散型X線分光法により組成分析を行ったところ、実施例1のSi/Alモル比は1.05、実施例2のSi/Alモル比は1.06と、溶液混合時のSi/Alモル比とほぼ同じであることが確認された。   The products obtained in Example 1 and Example 2 were subjected to compositional analysis by energy dispersive X-ray spectroscopy installed in a scanning electron microscope, and the Si / Al molar ratio of Example 1 was It was confirmed that the Si / Al molar ratio of 1.05 and Example 2 is 1.06, which is substantially the same as the Si / Al molar ratio at the time of mixing the solution.

実施例1、実施例2、比較例1、及び比較例2にて得られた生成物において、日本ベル社製Belsorp−Aquaにより測定を行った水蒸気吸着等温線から水蒸気吸着評価を行った。図2に、その結果を示す。
図2に示すように、本発明における実施例1の非晶質アルミニウムケイ酸塩は、吸着時の相対湿度60%時の吸着量が43.0wt%であり、脱着時の相対湿度10%の吸着量が19.0wt%であるので、相対湿度10〜60%において24.0wt%の水蒸気吸着量を有していた。
また実施例2の非晶質アルミニウムケイ酸塩は、吸着時の相対湿度60%時の吸着量が33.0wt%であり、脱着時の相対湿度10%の吸着量が12.9wt%であるので、相対湿度10〜60%において20.1wt%の水蒸気吸着量を有していた。
これに対し、比較例1の非晶質アルミニウムケイ酸塩は、吸着時の相対湿度60%時の吸着量が21.6wt%であり、脱着時の相対湿度10%の吸着量が15.9wt%であるので、相対湿度10〜60%において5.7wt%の水蒸気吸着量を有しており、また比較例2の非晶質アルミニウムケイ酸塩は、吸着時の相対湿度60%時の吸着量が34.9、脱着時の相対湿度10%の吸着量が16.8wt%であるので、相対湿度10〜60%において18.1wt%の水蒸気吸着量を有していた。
本実施例の結果、本発明の方法により得られた非晶質アルミニウムケイ酸塩は、相対湿度10〜60%において、従来の非晶質アルミニウムケイ酸塩では得られなかった大きな水蒸気吸着量を有しており、その理由は不明はであるが、従来の非晶質アルミニウムケイ酸塩とは明らかに異なるものが得られていることが示された。
In the products obtained in Example 1, Example 2, Comparative Example 1, and Comparative Example 2, the water vapor adsorption evaluation was performed from the water vapor adsorption isotherm measured by Belsorp-Aqua manufactured by Nippon Bell Co., Ltd. The results are shown in FIG.
As shown in FIG. 2, the amorphous aluminum silicate according to Example 1 of the present invention has an adsorption amount of 43.0 wt% at 60% relative humidity and 10% relative humidity at desorption. Since the adsorption amount was 19.0 wt%, it had a water vapor adsorption amount of 24.0 wt% at a relative humidity of 10 to 60%.
The amorphous aluminum silicate of Example 2 has an adsorption amount of 33.0 wt% at 60% relative humidity during adsorption, and an adsorption amount of 10% relative humidity at desorption of 12.9 wt%. Therefore, it had a water vapor adsorption of 20.1 wt% at a relative humidity of 10 to 60%.
On the other hand, the amorphous aluminum silicate of Comparative Example 1 has an adsorption amount of 21.6 wt% at 60% relative humidity during adsorption, and an adsorption amount of 10% relative humidity at desorption of 15.9 wt%. %, So that it has a water vapor adsorption amount of 5.7 wt% at a relative humidity of 10 to 60%, and the amorphous aluminum silicate of Comparative Example 2 adsorbs at a relative humidity of 60% during adsorption. Since the amount was 34.9 and the adsorption amount at a relative humidity of 10% at desorption was 16.8 wt%, it had a water vapor adsorption amount of 18.1 wt% at a relative humidity of 10 to 60%.
As a result of this example, the amorphous aluminum silicate obtained by the method of the present invention has a large amount of water vapor adsorption which could not be obtained by the conventional amorphous aluminum silicate at a relative humidity of 10 to 60%. Although it is unclear, the reason is clearly different from the conventional amorphous aluminum silicate.

実施例1、比較例にて得られた生成物において、29Si固体NMR測定を行った。
実施例1のCP/MAS法による29Si固体NMRスペクトルを図3に、比較例のCP/MAS法による29Si固体NMRスペクトルを図4に示す。実施例1で得られた物質において−76ppm、−88ppm付近に見られた。一方、比較例2で得られた物質においては−76ppmおよび−84ppm付近にピークが見られた。
この−76ppmに見られるピークは、OH−Si−(OAl)に起因するものであり、実施例1のピークは、OH−Si−(OAl)に起因するスペクトルの他に、このスペクトルよりも12ppm小さいピークを有している。一方比較例2においてはOH−Si−(OAl)に起因するピークと、このスペクトルより8ppm小さいピークが見られた。
In the products obtained in Example 1 and Comparative Example 2 , 29 Si solid state NMR measurement was performed.
The 29 Si solid state NMR spectrum by CP / MAS method of Example 1 is shown in FIG. 3, and the 29 Si solid state NMR spectrum by CP / MAS method of Comparative Example 2 is shown in FIG. In the substance obtained in Example 1, it was observed at around -76 ppm and -88 ppm. On the other hand, in the material obtained in Comparative Example 2, peaks were observed at around -76 ppm and -84 ppm.
The peak observed at -76 ppm is attributable to OH-Si- (OAl) 3 , and the peak of Example 1 is different from the spectrum attributable to OH-Si- (OAl) 3 from the spectrum Also have a 12 ppm smaller peak. On the other hand, in Comparative Example 2, a peak attributed to OH-Si- (OAl) 3 and a peak 8 ppm smaller than this spectrum were observed.

また、比較例2の特許文献1には、得られた非晶質アルミニウムケイ酸塩が、OH−Si−(OAl)に起因する−78ppmのスペクトル(なお、特許文献1に記載の「−78」と、実施例1及び比較例1における「−76」の差は、測定に用いた基準の違いによるものと判断される。)と、これよりも9ppm小さいピークを有することが記載されており、前記の実施例1で得られたものとは異なることがわかる。 In addition, in Patent Document 1 of Comparative Example 2, the obtained amorphous aluminum silicate has a spectrum of −78 ppm attributed to OH—Si— (OAl) 3 (in addition, “− The difference between “78” and “−76” in Example 1 and Comparative Example 1 is judged to be due to the difference in the standard used for the measurement.) And it is described that it has a peak 9 ppm smaller than this. It can be seen that it differs from the one obtained in Example 1 above.

(実施例3)
本実施例では、実施例1の非晶質アルミニウムケイ酸塩の製造方法において、水ガラスと硫酸アルミニウム水溶液を混合した際のpHを、pH3.3〜5.0の範囲にて条件を変えて実験を行い、得られた生成物の評価を行った。
生成物の評価は、水蒸気吸着評価試験により行った。評価方法は、秤量瓶に約0.3gの試料を入れ、100℃で1時間乾燥させた際の重量を乾燥重量とし、その後25℃相対湿度60%における恒温恒湿槽に1時間入れ水蒸気を吸着させた後の吸着量から、水蒸気吸着率を求めた。なおpH5.0の条件では、混合後溶液が固まってしまい、実験が不可能であった。
実施例3の結果を図5に示す。図5に示すように水酸化ナトリウム水溶液添加後のpHが3.5〜4.8において、高い水蒸気吸着性能を有することが示された。
(Example 3)
In this example, in the method for producing the amorphous aluminum silicate of Example 1, the pH when mixing the water glass and the aluminum sulfate aqueous solution is changed in the range of pH 3.3 to 5.0. An experiment was conducted to evaluate the obtained product.
The evaluation of the product was performed by the water vapor adsorption evaluation test. The evaluation method is to put a sample of about 0.3 g in a weighing bottle, dry the weight at 100 ° C for 1 hour as the dry weight, and then place it in a thermostatic chamber at 25 ° C relative humidity 60% for 1 hour with steam. The water vapor adsorption rate was determined from the amount of adsorption after adsorption. Under the condition of pH 5.0, the solution solidified after mixing, and the experiment was impossible.
The results of Example 3 are shown in FIG. As shown in FIG. 5, it was shown that it had high water vapor adsorption performance at pH 3.5 to 4.8 after the addition of aqueous sodium hydroxide solution.

(実施例4)
本実施例では、実施例1の非晶質アルミニウムケイ酸塩の製造方法において、Si/Alのモル比を0.7〜1.6の範囲にて条件を変えて実験を行い、得られた生成物の評価を行った。生成物の評価は、実施例3と同じである。
実施例4の結果を図6に示す。図6に示すようにSi/Alモル比が0.7〜1.3、好ましくは0.9〜1.2において、高い水蒸気吸着性能を有することが示された。
(Example 4)
In this example, in the method for producing the amorphous aluminum silicate of Example 1, the experiment was performed by changing the conditions in the range of 0.7 to 1.6 of the molar ratio of Si / Al. The product was evaluated. The evaluation of the product is the same as in Example 3.
The results of Example 4 are shown in FIG. As shown in FIG. 6, it was shown that the Si / Al molar ratio is 0.7 to 1.3, preferably 0.9 to 1.2, and has high water vapor adsorption performance.

(実施例5)
本実施例では、実施例1の非晶質アルミニウムケイ酸塩の製造方法において、水酸化ナトリウム水溶液添加後のpHをpH4〜10の範囲にて条件を変えて実験を行い、得られた生成物の評価を行った。生成物の評価は、実施例3と同じである。
実施例5の結果を図7に示す。図7に示すように、水酸化ナトリウム水溶液添加後のpHが6〜10において、高い水蒸気吸着性能を有することが示された。
(Example 5)
In this example, in the method for producing the amorphous aluminum silicate of Example 1, the pH value after the addition of the aqueous solution of sodium hydroxide is changed in the range of pH 4 to 10, and the experiment is performed while changing the conditions. The evaluation of The evaluation of the product is the same as in Example 3.
The results of Example 5 are shown in FIG. As shown in FIG. 7, it was shown to have high water vapor adsorption performance at pH 6 to 10 after the addition of aqueous sodium hydroxide solution.

本発明は、中湿度領域において高性能な吸着性を有する非晶質アルミニウムケイ酸塩の製造方法に関するものであり、本発明の方法で得られた非晶質アルミニウムケイ酸塩は、自律的調湿調節剤やデシカント空調用の除湿剤として有用である。また、本発明は、上記特性を有する非晶質物質を、大量に、低コストでかつ容易に合成することを可能とするものである。   The present invention relates to a method for producing an amorphous aluminum silicate having high adsorptivity in the medium humidity range, and the amorphous aluminum silicate obtained by the method of the present invention has an autonomous adjustment. It is useful as a moisture control agent or a dehumidifying agent for desiccant air conditioning. In addition, the present invention makes it possible to easily synthesize, at low cost, a large amount of amorphous materials having the above-mentioned characteristics.

Claims (5)

i/Alモル比が0.7〜1.3で、かつCP/MAS法による29Si固体NMRスペクトルにおいてOH−Si−(OAl)に起因するピークと、そのピークから12ppm小さいピークを有する非晶質アルミニウムケイ酸塩。 In S i / Al molar ratio of 0.7 to 1.3, and has a peak due to OH-Si- (OAl) 3 in 29 Si solid state NMR spectrum by CP / MAS method, a 12ppm small peak from the peak Amorphous aluminum silicate. 吸着時の相対湿度60%における吸着量と、脱着時の相対湿度10%における吸着量との差が20wt%以上の水蒸気吸着性能を有することを特徴とする請求項1に記載の非晶質アルミニウムケイ酸塩。   The amorphous aluminum according to claim 1, characterized in that it has a water vapor adsorption performance in which the difference between the adsorption amount at relative humidity 60% at adsorption and the adsorption amount at relative humidity 10% at desorption is 20 wt% or more. Silicate. 水ガラスと硫酸アルミニウム水溶液を、Si/Alモル比が0.7〜1.3かつ混合時のpHが3.5〜4.8となるように混合し、攪拌した後、これにアルカリを添加してpH6〜10に調整し、脱塩処理及び70℃以上130℃以下での加熱処理を行うことを特徴とする非晶質アルミニウムケイ酸塩の製造方法。   Water glass and an aqueous solution of aluminum sulfate are mixed so that the Si / Al molar ratio is 0.7 to 1.3 and the pH at mixing is 3.5 to 4.8, and after stirring, an alkali is added thereto. And adjusting to pH 6 to 10, desalting treatment and heat treatment at 70 ° C. or more and 130 ° C. or less. 請求項1又は2に記載の非晶質アルミニウムケイ酸塩を有効成分とする吸着剤。 Adsorbent comprising as an active ingredient an amorphous aluminum silicate according to claim 1 or 2. 請求項1又は2に記載の非晶質アルミニウムケイ酸塩を有効成分とするデシカント空調用吸着剤。 Adsorbent for desiccant air conditioning as an active ingredient an amorphous aluminum silicate according to claim 1 or 2.
JP2017004736A 2016-01-14 2017-01-14 Amorphous aluminum silicate and method for producing the same Active JP6426213B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016005396 2016-01-14
JP2016005396 2016-01-14

Publications (3)

Publication Number Publication Date
JP2017128499A JP2017128499A (en) 2017-07-27
JP2017128499A5 JP2017128499A5 (en) 2018-09-20
JP6426213B2 true JP6426213B2 (en) 2018-11-21

Family

ID=59394498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004736A Active JP6426213B2 (en) 2016-01-14 2017-01-14 Amorphous aluminum silicate and method for producing the same

Country Status (1)

Country Link
JP (1) JP6426213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151066B1 (en) 2018-02-21 2020-09-02 주식회사 엘지화학 A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
JP6736072B2 (en) * 2018-10-24 2020-08-05 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities
CN109336122B (en) * 2018-12-06 2023-02-28 中国矿业大学(北京) Preparation method of aluminum silicate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674896B2 (en) * 2005-03-16 2011-04-20 協和化学工業株式会社 Aluminum silicate, method for producing the same, and method for purifying polyoxyalkylene polyol using the same
EP2322479A4 (en) * 2008-09-02 2013-07-03 Nat Inst Of Advanced Ind Scien Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
JP5397807B2 (en) * 2009-09-08 2014-01-22 日立化成株式会社 Synthetic smectite, method for producing the same, and composite film
KR101907048B1 (en) * 2011-03-11 2018-10-11 히타치가세이가부시끼가이샤 Aluminum silicate, metal ion adsorbent, and method for producing same
JP2014051408A (en) * 2012-09-06 2014-03-20 Hitachi Chemical Co Ltd Aluminum silicate
CN107530463A (en) * 2015-04-17 2018-01-02 东亚合成株式会社 Deodorant, deodorant compositions and deodorization processed goods
JP6761999B2 (en) * 2015-05-20 2020-09-30 国立研究開発法人産業技術総合研究所 A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.

Also Published As

Publication number Publication date
JP2017128499A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
Javadian et al. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies
Rida et al. Adsorption of methylene blue from aqueous solution by kaolin and zeolite
KR101907048B1 (en) Aluminum silicate, metal ion adsorbent, and method for producing same
WO2009084632A1 (en) Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2001526172A (en) Crystalline titanium molecular sieve zeolite with small pores and its use in gas separation processes
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP6426213B2 (en) Amorphous aluminum silicate and method for producing the same
CN117654436A (en) Zeolite adsorbents with high external surface area and uses thereof
CN116440858A (en) Zeolite adsorbents with high external surface area and uses thereof
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
CN105121356B (en) Use of zeolitic materials for removing mercury (+2) ions from liquid streams
JP2007314359A (en) Calcium carbonate/zeolite-based compound composite, its production method and article using the same
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP5495054B2 (en) Method for producing aluminum silicate composite
JP6656615B2 (en) Aluminum silicate composite and method for producing the same
JP2019127410A (en) Sulfuric acid-modified y-type zeolite and production method of the same
JP2011056494A (en) Water-soluble volatile organic compound adsorbent
Wang et al. Simple preparation of high concentration Nd3+-modified NaY zeolites with lower desorption activation energy of water
JP5354561B2 (en) Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same
JP5679317B2 (en) Method for producing volatile organic compound adsorbent
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP6317199B2 (en) Dehumidifier
JP2006334454A (en) Adsorbent using binderless zeolite molded body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180810

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6426213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250