JP4533822B2 - Nonaqueous electrolyte battery and negative electrode active material - Google Patents

Nonaqueous electrolyte battery and negative electrode active material Download PDF

Info

Publication number
JP4533822B2
JP4533822B2 JP2005243361A JP2005243361A JP4533822B2 JP 4533822 B2 JP4533822 B2 JP 4533822B2 JP 2005243361 A JP2005243361 A JP 2005243361A JP 2005243361 A JP2005243361 A JP 2005243361A JP 4533822 B2 JP4533822 B2 JP 4533822B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
lithium
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005243361A
Other languages
Japanese (ja)
Other versions
JP2007059213A (en
Inventor
朋和 森田
則雄 高見
浩貴 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005243361A priority Critical patent/JP4533822B2/en
Publication of JP2007059213A publication Critical patent/JP2007059213A/en
Application granted granted Critical
Publication of JP4533822B2 publication Critical patent/JP4533822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン非水電解質電池および負極活物質に係わる。   The present invention relates to a lithium ion non-aqueous electrolyte battery and a negative electrode active material.

本発明者らは、微細な一酸化珪素と炭素質物とを複合化し焼成すると、微結晶シリコンがシリコンと強固に結合するシリコン酸化物相に包含された状態で炭素質物中に分散した複合体粒子を得られ、高容量化およびサイクル特性の向上を達成できることを見出し特許文献1に開示した。   The inventors of the present invention have disclosed a composite particle in which fine silicon monoxide and a carbonaceous material are combined and fired and dispersed in the carbonaceous material in a state in which microcrystalline silicon is included in a silicon oxide phase that is firmly bonded to silicon. And found that it is possible to achieve higher capacity and improved cycle characteristics.

ここで、Li2SiO3、Li4SiO4等のリチウム含有酸化物を分散させた負極活物質を用いてリチウムイオンの輸送を促進させることが知られている(特許文献2参照。)。
特開2004-119176公報 特開2005-11801公報
Here, it is known that the transport of lithium ions is promoted using a negative electrode active material in which a lithium-containing oxide such as Li2SiO3 or Li4SiO4 is dispersed (see Patent Document 2).
JP2004-119176 JP2005-11801

本発明者が鋭意研究した結果、この複合体粒子は、次に示す理由から、初回充放電効率に劣ることがわかった。複合体粒子では、主としてリチウム吸蔵を行うシリコンは、リチウムとの反応性の高いシリコン酸化物相に包含されている。初回充電時において、リチウムイオンは、シリコン酸化物相を拡散する際に、シリコン酸化物相と反応しリチウムシリケートを生成してしまう。リチウムシリケートに含まれるリチウムは、その後の充放電に寄与しない。   As a result of intensive studies by the present inventors, it was found that the composite particles were inferior in the initial charge / discharge efficiency for the following reasons. In the composite particles, silicon that mainly stores lithium is included in a silicon oxide phase that is highly reactive with lithium. At the time of the first charge, lithium ions react with the silicon oxide phase to generate lithium silicate when diffusing the silicon oxide phase. Lithium contained in the lithium silicate does not contribute to the subsequent charge / discharge.

本発明は、上記事情に鑑みて、初回充放電効率に優れた非水電解質電池および負極活物質を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a nonaqueous electrolyte battery and a negative electrode active material excellent in initial charge / discharge efficiency.

本発明の非水電解質電池は、外装部材と、外装部材内に収納された正極と、外装部材内に収納され、炭素質物と、炭素質物中に分散されたシリコン酸化物と、シリコン酸化物中に分散されたシリコンと、シリコン酸化物中に含まれLi4SiO4を主成分とするリチウムシリケート相と、を有する複合体粒子を備え、前記リチウムシリケート相は前記複合体粒子に対して0.05〜6wt%含有される負極と、外装部材内に充填された非水電解質と、を具備することを特徴とする。
The nonaqueous electrolyte battery of the present invention includes an exterior member, a positive electrode housed in the exterior member, a carbonaceous material housed in the exterior member, a silicon oxide dispersed in the carbonaceous material, and a silicon oxide comprising a silicon dispersed, and lithium silicate phase mainly composed of Li4SiO4 contained in the silicon oxide, and composite particles having a, 0.05 the lithium silicate phase with respect to the composite particles a negative electrode that will be contained 6 wt%, characterized by comprising a non-aqueous electrolyte filled in the package member.

本発明の非水電解質電池用負極活物質は、炭素質物と、炭素質物中に分散されたシリコン酸化物と、シリコン酸化物中に分散されたシリコンと、シリコン酸化物中に含まれLi4SiO4を主成分とするリチウムシリケート相とを有する複合体粒子とを備え、前記リチウムシリケート相は前記複合体粒子に対して0.05〜6wt%含有されることを特徴とする。
The negative electrode active material for a non-aqueous electrolyte battery of the present invention is mainly composed of a carbonaceous material, silicon oxide dispersed in the carbonaceous material, silicon dispersed in the silicon oxide, and Li4SiO4 contained in the silicon oxide. Composite particles having a lithium silicate phase as a component, and the lithium silicate phase is contained in an amount of 0.05 to 6 wt% with respect to the composite particles .

本発明は、初回充放電効率に優れた非水電解質電池および負極活物質を提供することができる。   The present invention can provide a nonaqueous electrolyte battery and a negative electrode active material excellent in initial charge / discharge efficiency.

以下に、本発明の各実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は発明の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. Each figure is a schematic diagram for promoting explanation and understanding of the invention, and its shape, dimensions, ratio, and the like are different from those of an actual device. However, these are in consideration of the following explanation and known techniques. The design can be changed as appropriate.

(第一の実施の形態)
第一の実施の形態に係る電池単体の一例について、図1、図2を参照してその構造を説明する。図1に、第一の実施の形態に係わる扁平型非水電解質二次電池の断面模式図を示す。図2は、図1のAで示した円で囲われた部分を詳細に表す部分断面模式図を示す。
(First embodiment)
The structure of an example of a single battery according to the first embodiment will be described with reference to FIGS. In FIG. 1, the cross-sectional schematic diagram of the flat type nonaqueous electrolyte secondary battery concerning 1st embodiment is shown. FIG. 2 is a partial cross-sectional schematic diagram showing in detail a portion surrounded by a circle shown by A in FIG.

図1に示すように、外装部材7には、扁平状の捲回電極群6が収納されている。捲回電極群6は、正極3と負極4をその間にセパレータ5を介在させて渦巻状に捲回された構造を有する。非水電解質は、捲回電極群6に保持されている。   As shown in FIG. 1, a flat wound electrode group 6 is accommodated in the exterior member 7. The wound electrode group 6 has a structure in which the positive electrode 3 and the negative electrode 4 are wound in a spiral shape with a separator 5 interposed therebetween. The nonaqueous electrolyte is held in the wound electrode group 6.

図2に示すように、捲回電極群6の最外周には負極4が位置しており、この負極4の内周側にセパレータ5、正極3、セパレータ5、負極4、セパレータ5、正極3、セパレータ5というように正極3と負極4がセパレータ5を介して交互に積層されている。負極4は、負極集電体4aと、負極集電体4aに担持された負極活物質含有層4bとを備えるものである。負極4の最外周に位置する部分では、負極集電体4aの片面のみに負極活物質含有層4bが形成されている。正極3は、正極集電体3aと、正極集電体3aに担持された正極活物質含有層3bとを備えるものである。   As shown in FIG. 2, the negative electrode 4 is located on the outermost periphery of the wound electrode group 6, and the separator 5, the positive electrode 3, the separator 5, the negative electrode 4, the separator 5, and the positive electrode 3 are disposed on the inner peripheral side of the negative electrode 4. The positive electrode 3 and the negative electrode 4 are alternately stacked with the separator 5 interposed therebetween, such as a separator 5. The negative electrode 4 includes a negative electrode current collector 4a and a negative electrode active material-containing layer 4b supported on the negative electrode current collector 4a. In the portion located on the outermost periphery of the negative electrode 4, the negative electrode active material-containing layer 4b is formed only on one surface of the negative electrode current collector 4a. The positive electrode 3 includes a positive electrode current collector 3a and a positive electrode active material-containing layer 3b supported on the positive electrode current collector 3a.

図1に示すように、帯状の正極端子1は、捲回電極群6の外周端近傍の正極集電体3aに電気的に接続されている。一方、帯状の負極端子2は、捲回電極群6の外周端近傍の負極集電体4aに電気的に接続されている。正極端子1及び負極端子2の先端は、外装部材7の同じ辺から外部に引き出されている。   As shown in FIG. 1, the strip-like positive electrode terminal 1 is electrically connected to the positive electrode current collector 3 a in the vicinity of the outer peripheral end of the wound electrode group 6. On the other hand, the strip-like negative electrode terminal 2 is electrically connected to the negative electrode current collector 4 a in the vicinity of the outer peripheral end of the wound electrode group 6. The tips of the positive electrode terminal 1 and the negative electrode terminal 2 are drawn out from the same side of the exterior member 7.

以下、負極、非水電解質、正極、セパレータ、外装部材、正極端子、負極端子について詳細に説明する。   Hereinafter, the negative electrode, the nonaqueous electrolyte, the positive electrode, the separator, the exterior member, the positive electrode terminal, and the negative electrode terminal will be described in detail.

1)負極
負極は、負極集電体と、負極集電体の片面若しくは両面に担持され、負極活物質、負極導電剤および結着剤を含む負極層とを有する。
1) Negative Electrode The negative electrode includes a negative electrode current collector and a negative electrode layer that is supported on one or both surfaces of the negative electrode current collector and includes a negative electrode active material, a negative electrode conductive agent, and a binder.

図7に示すように、負極活物質は、炭素質物と、炭素質物中に分散されたシリコン酸化物と、シリコン酸化物中に分散されたシリコンと、シリコン酸化物中に含まれたリチウムシリケート相と、を有する複合体粒子であることを特徴とする。なお、「分散」とは、母構造の中に複数の相が点在している状態を示す。   As shown in FIG. 7, the negative electrode active material includes a carbonaceous material, silicon oxide dispersed in the carbonaceous material, silicon dispersed in the silicon oxide, and a lithium silicate phase contained in the silicon oxide. And composite particles having the following characteristics. “Dispersed” indicates a state in which a plurality of phases are scattered in the matrix structure.

シリコン相は、多量のリチウムを挿入脱離することができ、負極活物質の容量を大きく増進させる。シリコン酸化物相の中にシリコン相が分散されていることにより、リチウムの挿入脱離に伴うシリコン相の膨張収縮を緩和して、活物質粒子の微粉化を防ぐことができる。シリコン酸化物相は、シリコン相と強固に結合し、微細化されたシリコン相を保持するバッファーとして粒子構造を維持できる。炭素質物相は、負極活物質として重要な導電性を確保することができる。   The silicon phase can insert and desorb a large amount of lithium, greatly increasing the capacity of the negative electrode active material. Since the silicon phase is dispersed in the silicon oxide phase, the expansion and contraction of the silicon phase associated with the insertion and desorption of lithium can be alleviated to prevent the active material particles from being pulverized. The silicon oxide phase can be firmly bonded to the silicon phase and maintain the particle structure as a buffer for holding the miniaturized silicon phase. The carbonaceous material phase can ensure conductivity that is important as a negative electrode active material.

リチウムシリケート相は、主としてシリコン酸化物相中に含まれる。このため、初回充電時に生じるリチウムとシリコン酸化物によるリチウムシリケート合成反応を抑制でき、初回充放電効率を向上できる。   The lithium silicate phase is mainly contained in the silicon oxide phase. For this reason, the lithium silicate synthesis reaction by lithium and silicon oxide generated at the first charge can be suppressed, and the first charge / discharge efficiency can be improved.

リチウムシリケート相は、前記複合体粒子に対し0.05wt%以上6wt%以下の含有量であると好ましい。   The lithium silicate phase is preferably in a content of 0.05 wt% to 6 wt% with respect to the composite particles.

この範囲内において、初回充放電効率向上の効果が顕著となる。   Within this range, the effect of improving the initial charge / discharge efficiency becomes significant.

また、リチウムシリケート相の含有量は、前記複合体粒子に対し0.9wt%以上2.8wt%以下であると特に好ましい。この範囲では特にリチウムイオン伝導性の改善による大電流特性向上の効果が大きい。   Further, the content of the lithium silicate phase is particularly preferably 0.9 wt% or more and 2.8 wt% or less with respect to the composite particles. In this range, the effect of improving large current characteristics by improving lithium ion conductivity is particularly great.

リチウムシリケート相としては、Li2SiO3(斜方晶 orthorhombic)、Li4SiO4(単斜晶 Monoclinic)、Li2Si2O5、Li8SiO6等が挙げられる。   Examples of the lithium silicate phase include Li2SiO3 (orthorhombic orthorhombic), Li4SiO4 (monoclinic monoclinic), Li2Si2O5, Li8SiO6, and the like.

リチウムシリケート相は、Li4SiO4を主成分とすることが好ましい。   The lithium silicate phase is preferably composed mainly of Li4SiO4.

Li4SiO4は、特に化学的に安定であり、Li2SiO3などに対しリチウムイオン伝導性を有するため、活物質内のリチウム拡散を向上し、大電流特性を向上できるためである。   This is because Li4SiO4 is particularly chemically stable and has lithium ion conductivity with respect to Li2SiO3 and the like, so that lithium diffusion in the active material can be improved and large current characteristics can be improved.

なお、後述する製造方法を用いた場合、リチウムシリケート相の主成分は、Li4SiO4となる。これに対し、特許文献1に示す複合体粒子に対し充放電を行った場合、Li2SiO3を主成分とするリチウムシリケート相が生成する。   When the production method described later is used, the main component of the lithium silicate phase is Li4SiO4. On the other hand, when the composite particles shown in Patent Document 1 are charged and discharged, a lithium silicate phase mainly composed of Li2SiO3 is generated.

リチウムシリケート相は、複合体粒子の粉末X線回折測定から得られた回折パターン中に現れる該リチウムシリケートの回折ピークにより確認することができる。また、分散状態(サイズ、位置)は電子顕微鏡観察、エネルギー分散型けい光X線分析(EDX)、エネルギー分散型X線分光法(EDS)、電子線エネルギー損失スペクトル法(EELS)、 オージェ分光分析により直接観察することが可能である。   The lithium silicate phase can be confirmed by the diffraction peak of the lithium silicate appearing in the diffraction pattern obtained from the powder X-ray diffraction measurement of the composite particles. Dispersion state (size, position) is observed by electron microscope, energy dispersive X-ray fluorescence analysis (EDX), energy dispersive X-ray spectroscopy (EDS), electron beam energy loss spectrum method (EELS), Auger spectroscopic analysis Can be observed directly.

シリコン相は、リチウムを吸蔵放出する際の膨張収縮が大きく、この応力を緩和するためにできるだけ微細化されて分散されていることが好ましい。具体的には数nmのクラスターから、大きくても300nm以下のサイズで分散されていることが好ましい。   The silicon phase has a large expansion and contraction when occluding and releasing lithium, and it is preferable that the silicon phase be dispersed as finely as possible in order to relieve this stress. Specifically, it is preferably dispersed from a cluster of several nm to a size of 300 nm or less at the maximum.

シリコン酸化物相は、非晶質、結晶質などの構造が採用できるが、シリコン相に結合しこれを包含または保持する形で活物質粒子中に偏りなく分散されていることが好ましい。   The silicon oxide phase may have an amorphous or crystalline structure, but it is preferable that the silicon oxide phase is uniformly distributed in the active material particles so as to bind to and include or hold the silicon phase.

シリコン酸化物相のサイズは、50nm以上、5μm以下であることが好ましい。シリコン酸化物相はシリコン微粒子相を保持するが、SiO2は電子導電性が低いためシリコン酸化物相のサイズが大きくなると内部のシリコン微粒子相までの電子導電性を確保しづらくなる。その結果、容量が低下してしまう。さらに、酸化物相のサイズが大きいと、リチウムシリケート相の均一な分散が難しくなり添加の効果が低下する。また、小さすぎた場合にはシリコン相を保持する効果が低下し、その結果サイクル特性が低下してしまう。   The size of the silicon oxide phase is preferably 50 nm or more and 5 μm or less. The silicon oxide phase retains the silicon fine particle phase, but since SiO2 has low electronic conductivity, it becomes difficult to ensure the electronic conductivity to the internal silicon fine particle phase when the size of the silicon oxide phase is increased. As a result, the capacity is reduced. Furthermore, if the size of the oxide phase is large, it is difficult to uniformly disperse the lithium silicate phase, and the effect of addition is reduced. On the other hand, if it is too small, the effect of retaining the silicon phase is lowered, and as a result, the cycle characteristics are lowered.

炭素質物は、グラファイト、ハードカーボン、ソフトカーボン、アモルファス炭素またはアセチレンブラックが好ましい。好ましくは、グラファイト、あるいはグラファイトとハードカーボンの混合物が良い。グラファイトは、活物質の導電性を高める点で好ましい。ハードカーボンは、活物質全体を被覆し膨張収縮を緩和する効果が大きい。炭素質物はシリコン相、シリコン酸化物相を内包する形状となっていることが好ましい。   The carbonaceous material is preferably graphite, hard carbon, soft carbon, amorphous carbon, or acetylene black. Preferably, graphite or a mixture of graphite and hard carbon is good. Graphite is preferable in terms of increasing the conductivity of the active material. Hard carbon has a great effect of covering the entire active material and relaxing expansion and contraction. The carbonaceous material preferably has a shape including a silicon phase and a silicon oxide phase.

負極活物質の粒径は5μm以上100μm以下あるいは比表面積は0.5m2/g以上10m2/g以下であることが好ましい。活物質の粒径および比表面積はリチウムの挿入脱離反応の速度に影響し、負極特性に大きな影響をもつが、この範囲の値であれば安定して特性を発揮することができる。 The negative electrode active material preferably has a particle size of 5 μm to 100 μm, or a specific surface area of 0.5 m 2 / g to 10 m 2 / g. The particle size and specific surface area of the active material affect the rate of lithium insertion and desorption reaction, and have a great influence on the negative electrode characteristics. However, values within this range can stably exhibit the characteristics.

さらに、粒径が5μm以上25μm以下あるいは比表面積は1.5m2/g以上10m2/g以下であると、初回充電時にリチウムの活物質への拡散が進みやすく、活物質の利用率が高まる。しかしながら、この際、副反応であるリチウムとシリコン酸化物相の反応によるリチウムシリケート生成も起こりやすくなる。このため、本発明のリチウムシリケートを生成抑制による初回充放電効率の向上の効果が大きくなる。 Further, when the particle size is 5 μm or more and 25 μm or less or the specific surface area is 1.5 m 2 / g or more and 10 m 2 / g or less, diffusion of lithium to the active material is easy to proceed at the first charge, and the utilization rate of the active material is increased. . However, at this time, lithium silicate is easily generated due to the reaction between lithium and the silicon oxide phase, which is a side reaction. For this reason, the effect of the improvement of the first-time charge / discharge efficiency by the production | generation suppression of the lithium silicate of this invention becomes large.

また、負極活物質の粉末X線回折測定におけるSi(220)面の回折ピークの半値幅は、1.5°以上、8.0°以下であることが好ましい。1.5°以上であると、結晶粒が大であるほど顕著になる活物質の膨張収縮を回避しやすい。8.0°より大であると、シリコン相の生成が十分でなく残留しているSiOによりサイクル劣化が大きくなる。リチウムシリケート相はシリコン相の析出を促進するため、残留SiOの低減に効果がある。   Moreover, it is preferable that the half value width of the diffraction peak of Si (220) plane in the powder X-ray diffraction measurement of a negative electrode active material is 1.5 degree or more and 8.0 degrees or less. When the angle is 1.5 ° or more, the expansion and contraction of the active material, which becomes more noticeable as the crystal grains become larger, can be easily avoided. When the angle is larger than 8.0 °, the generation of the silicon phase is not sufficient, and the cycle deterioration is increased due to the remaining SiO. Since the lithium silicate phase promotes the precipitation of the silicon phase, it is effective in reducing residual SiO.

シリコン相、シリコン酸化物相、炭素質物の比率は、SiとCのモル比が0.2≦Si/C≦2の範囲であることが好ましい。シリコン相とシリコン酸化物相の量的関係はモル比が0.6≦シリコン相/シリコン酸化物≦1.5であることが、負極活物質として大きな容量と良好なサイクル特性を得ることができるため望ましい。   As for the ratio of the silicon phase, silicon oxide phase, and carbonaceous material, the molar ratio of Si and C is preferably in the range of 0.2 ≦ Si / C ≦ 2. The quantitative relationship between the silicon phase and the silicon oxide phase is that the molar ratio is 0.6 ≦ silicon phase / silicon oxide ≦ 1.5, so that a large capacity and good cycle characteristics can be obtained as the negative electrode active material. This is desirable.

次に、負極活物質の製造方法について説明する。   Next, the manufacturing method of a negative electrode active material is demonstrated.

負極活物質は、原料を固相あるいは液相における力学的処理、攪拌処理等により混合し、その後焼成処理を経て合成することができる。   The negative electrode active material can be synthesized by mixing raw materials by a mechanical treatment in a solid phase or a liquid phase, a stirring treatment, and the like, and then performing a firing treatment.

力学的な複合化処理としては、例えば、ターボミル、ボールミル、メカノフュージョン、ディスクミルなどを挙げることが出来る。   Examples of the dynamic compounding process include a turbo mill, a ball mill, a mechano-fusion, and a disk mill.

Si原料はSiOX(0.8≦X≦1.5)を用いることが好ましい。特にSiO(X ≒1)を用いることが、シリコン相とシリコン酸化物 相の量的関係を好ましい比率とする上で望ましい。 As the Si raw material, SiO x (0.8 ≦ X ≦ 1.5) is preferably used. In particular, the use of SiO (X ≒ 1) makes the silicon phase and silicon oxide It is desirable to make the quantitative relationship of the phases a desirable ratio.

また、SiOXの形状は塊状でも良いが、処理時間短縮のため細かい粉末であること好ましく、粒径は平均して100μm以下 0.5μm以上であることが好ましい。平均粒径が100μmを超えると、粒子中心部ではシリコン相を絶縁体のシリコン酸化物 相が厚く覆うこととなり、活物質のリチウム挿入脱離反応が阻害される恐れがある。一方、平均粒径を0.5μm未満にすると、表面積が大きくなるため、粒子表面がシリコン酸化物 になって組成が不安定となる可能性がある。 The shape of SiO x may be a lump, but it is preferably a fine powder for shortening the processing time, and the average particle size is preferably 100 μm or less and 0.5 μm or more. When the average particle size exceeds 100 μm, the silicon phase becomes an insulator silicon oxide at the center of the particle. The phase is thickly covered, and the lithium insertion / extraction reaction of the active material may be inhibited. On the other hand, when the average particle size is less than 0.5 μm, the surface area increases, so the particle surface becomes silicon oxide. The composition may become unstable.

有機材料としては、グラファイト、コークス、低温焼成炭、ピッチなどの炭素材料および炭素材料前駆体のうち少なくとも一方を用いることが出来る。特に、ピッチなど加熱により溶融するものはミル処理中に溶融して複合化が良好に進まないため、コークス・グラファイトなど溶融しないものと混合して使用すると良い。   As the organic material, at least one of a carbon material such as graphite, coke, low-temperature calcined charcoal, and pitch and a carbon material precursor can be used. In particular, a material that melts by heating, such as pitch, is melted during the milling process and does not proceed well into a composite state.

リチウムシリケートを生成するためには、炭酸リチウム、酸化リチウム、水酸化リチウム、シュウ酸リチウム、塩化リチウムなどのリチウム塩を原料として用いることができる。この後の熱処理により、シリコン酸化物相とリチウム塩とが固体反応し、リチウムシリケートが生成する。   In order to produce lithium silicate, lithium salts such as lithium carbonate, lithium oxide, lithium hydroxide, lithium oxalate, and lithium chloride can be used as a raw material. By the subsequent heat treatment, the silicon oxide phase and the lithium salt react with each other to produce lithium silicate.

複合化処理の運転条件は機器ごとにことなるが、十分に粉砕・複合化が進行するまで行なうことが好ましい。しかしながら、複合化の際に出力を上げすぎる、あるいは時間を掛けすぎるとSiとCが反応してLiの挿入反応に対し不活性なSiCが生成する。そのため、処理の条件は、粉砕・複合化が十分進行し、かつSiCの生成が起こらない適度な条件を定める必要がある。   The operating conditions for the compounding process are different for each device, but it is preferable to carry out the process until the comminution and compounding sufficiently proceed. However, if the output is increased too much or too much time is required for the composite, Si and C react to generate SiC that is inactive with respect to the Li insertion reaction. For this reason, it is necessary to determine an appropriate condition for the processing so that the pulverization / combination sufficiently proceeds and the generation of SiC does not occur.

また、リチウムシリケートはシリコン酸化物相に分散されて形成されることが好ましいため、第一の複合化処理において、SiOXとリチウム塩との複合化を行い、第二の複合化処理においてさらに炭素原料との複合化を行うこともできる。 In addition, since lithium silicate is preferably formed dispersed in a silicon oxide phase, SiO x and lithium salt are combined in the first composite treatment, and carbon is further added in the second composite treatment. Compounding with raw materials can also be performed.

次の工程として、複合化処理によって得られた粒子に炭素被覆を行う。被覆に用いる材料としては、ピッチ、樹脂、ポリマーなど不活性雰囲気下で加熱されて炭素質物となるものを用いることが出来る。具体的には石油ピッチ、メソフェーズピッチ、フラン樹脂、セルロース、ゴム類など1200℃程度の焼成でよく炭化されるものが好ましい。これは焼成処理の項で後述するが、1400℃より高い温度では焼成を行うことができないためである。被覆方法は、モノマー中に複合体粒子を分散した状態で重合し固化したものを炭化焼成に供する。または、ポリマーを溶媒中に溶解し、複合体粒子を分散したのち溶媒を蒸散し得られた固形物を炭化焼成に供する。また、炭素被覆に用いる別の方法としてCVDによる炭素被覆を行うこともできる。この方法は800〜1000℃に加熱した試料上に不活性ガスをキャリアガスとして気体炭素源を流し、試料表面上で炭化させる方法である。この場合、炭素源としてはベンゼン、トルエン、スチレンなどを用いることができる。また、CVDによる炭素被覆を行った際、試料は800〜1000℃で加熱されるため、次に述べる焼成工程は必ずしも行わなくてもよい。   As the next step, the particles obtained by the composite treatment are coated with carbon. As a material used for coating, a material that is heated in an inert atmosphere such as pitch, resin, or polymer to become a carbonaceous material can be used. Specifically, those which are often carbonized by firing at about 1200 ° C. such as petroleum pitch, mesophase pitch, furan resin, cellulose, rubbers are preferable. This is because the firing cannot be performed at a temperature higher than 1400 ° C. as will be described later in the section of the firing treatment. In the coating method, the polymerized and solidified composite particles dispersed in a monomer are subjected to carbonization firing. Alternatively, the solid is obtained by dissolving the polymer in a solvent, dispersing the composite particles, and then evaporating the solvent, and subjecting it to carbonization firing. Moreover, carbon coating by CVD can be performed as another method used for carbon coating. This method is a method in which a gaseous carbon source is flowed on a sample heated to 800 to 1000 ° C. using an inert gas as a carrier gas and carbonized on the sample surface. In this case, benzene, toluene, styrene or the like can be used as the carbon source. In addition, since the sample is heated at 800 to 1000 ° C. when carbon coating is performed by CVD, the firing step described below is not necessarily performed.

炭化焼成は、Ar中等の不活性雰囲気下にて行なわれる。炭化焼成においては、ポリマーまたはピッチが炭化されると共に、SiOxは不均化反応によりSiとSiO2の2相に分離する。x=1のとき反応は下の式(1)で表される。 The carbonization firing is performed in an inert atmosphere such as in Ar. In the carbonization firing, the polymer or pitch is carbonized, and SiOx is separated into two phases of Si and SiO 2 by a disproportionation reaction. When x = 1, the reaction is represented by the following formula (1).

2SiO → Si +SiO2 ・・・(1)
この不均化反応は800℃より高温で進行し、微小なシリコン相とSiO相に分離する。反応温度が上がるほどシリコン相の結晶は大きくなり、Si(220)のピークの半値幅は小さくなる。好ましい範囲の半値幅が得られる焼成温度は850℃〜1600℃の範囲である。また、不均化反応により生成したSiは1400℃より高い温度では炭素と反応してSiCに変化する。SiCはリチウムの挿入に対して全く不活性であるためSiCが生成すると活物質の容量は低下する。従って、炭化焼成の温度は850℃以上1400℃以下であることが好ましく、さらに好ましくは900℃以上1100℃以下である。焼成時間は、1時間から12時間程度の間であることが好ましい。
2SiO → Si + SiO 2 (1)
The disproportionation reaction proceeds at a temperature higher than 800 ° C., separates the fine silicon phase and SiO 2 phase. As the reaction temperature increases, the crystal of the silicon phase increases and the half width of the Si (220) peak decreases. The firing temperature at which a half width in the preferred range is obtained is in the range of 850 ° C to 1600 ° C. Further, Si produced by the disproportionation reaction reacts with carbon at a temperature higher than 1400 ° C. and changes to SiC. Since SiC is completely inactive with respect to insertion of lithium, the capacity of the active material is reduced when SiC is generated. Therefore, the temperature for carbonization firing is preferably 850 ° C. or higher and 1400 ° C. or lower, more preferably 900 ° C. or higher and 1100 ° C. or lower. The firing time is preferably between about 1 hour and 12 hours.

以上のような合成方法により、負極活物質が得られる。炭化焼成後の生成物は各種ミル、粉砕装置、グラインダー等を用いて粒径、比表面積等を調製してもよい。   A negative electrode active material is obtained by the synthesis method as described above. The product after the carbonization firing may be prepared in terms of particle size, specific surface area, etc. using various mills, pulverizers, grinders and the like.

集電性能を高め、集電体との接触抵抗を抑えるための負極導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。   Examples of the negative electrode conductive agent for improving the current collecting performance and suppressing the contact resistance with the current collector include acetylene black, carbon black, and graphite.

負極活物質と負極導電剤を結着させるための結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジェンゴム等が挙げられる。   Examples of the binder for binding the negative electrode active material and the negative electrode conductive agent include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene butadiene rubber, and the like.

負極活物質層の厚さは1.0〜150μmの範囲であることが望ましい。従って負極集電体の両面に担持されている場合は負極活物質層の合計の厚さは20〜300μmの範囲となる。片面の厚さのより好ましい範囲は30〜100μmである。この範囲であると大電流放電特性とサイクル寿命は大幅に向上する。   The thickness of the negative electrode active material layer is desirably in the range of 1.0 to 150 μm. Therefore, when the negative electrode current collector is supported on both surfaces, the total thickness of the negative electrode active material layer is in the range of 20 to 300 μm. A more preferable range of the thickness of one side is 30 to 100 μm. Within this range, the large current discharge characteristics and cycle life are greatly improved.

負極活物質、負極導電剤及び結着剤の配合比については、負極活物質は70重量%以上96重量%以下、負極導電剤は2重量%以上28重量%以下、結着剤は2重量%以上28重量%以下の範囲にすることが好ましい。負極導電剤量が2重量%未満であると、負極層の集電性能が低下し、非水電解質二次電池の大電流特性が低下する。また、結着剤量が2重量%未満であると、負極層と負極集電体の結着性が低下し、サイクル特性が低下する。一方、高容量化の観点から、負極導電剤及び結着剤は各々28重量%以下であることが好ましい。   Regarding the mixing ratio of the negative electrode active material, the negative electrode conductive agent, and the binder, the negative electrode active material is 70% by weight to 96% by weight, the negative electrode conductive agent is 2% by weight to 28% by weight, and the binder is 2% by weight. It is preferable to be in the range of 28% by weight or less. When the amount of the negative electrode conductive agent is less than 2% by weight, the current collecting performance of the negative electrode layer is deteriorated, and the large current characteristics of the nonaqueous electrolyte secondary battery are deteriorated. On the other hand, when the amount of the binder is less than 2% by weight, the binding property between the negative electrode layer and the negative electrode current collector is lowered, and the cycle characteristics are lowered. On the other hand, from the viewpoint of increasing the capacity, the negative electrode conductive agent and the binder are each preferably 28% by weight or less.

負極集電体は、負極活物質のLi吸蔵放出電位にて電気化学的に安定である銅、ニッケルもしくはステンレスが好ましい。負極集電体の厚さは5〜20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。   The negative electrode current collector is preferably copper, nickel, or stainless steel that is electrochemically stable at the Li insertion / release potential of the negative electrode active material. The thickness of the negative electrode current collector is desirably 5 to 20 μm. This is because within this range, the electrode strength and weight reduction can be balanced.

負極は、例えば、負極活物質、負極導電剤及び結着剤を汎用されている溶媒に懸濁し作製したスラリーを、負極集電体に塗布し、乾燥し、負極層を作製した後、プレスを施すことにより作製される。その他、負極活物質、負極導電剤及び結着剤をペレット状に形成し、負極層として用いても良い。   The negative electrode is prepared by, for example, applying a slurry prepared by suspending a negative electrode active material, a negative electrode conductive agent, and a binder in a commonly used solvent to a negative electrode current collector, drying the negative electrode layer, and then forming a negative electrode layer. It is produced by applying. In addition, the negative electrode active material, the negative electrode conductive agent, and the binder may be formed in a pellet shape and used as the negative electrode layer.

2)非水電解質
非水電解質としては、電解質を有機溶媒に溶解することにより調整される液状非水電解質、液状電解質と高分子材料を複合化したゲル状非水電解質等が挙げられる。
2) Non-aqueous electrolyte Examples of the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent, a gel non-aqueous electrolyte obtained by combining a liquid electrolyte and a polymer material, and the like.

液状非水電解質は、電解質を0.5mol/l以上2.5mol/l以下の濃度で有機溶媒に溶解することにより、調製される。   The liquid non-aqueous electrolyte is prepared by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / l or more and 2.5 mol / l or less.

電解質としては、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミトリチウム[LiN(CFSO]等のリチウム塩、あるいはこれらの混合物を挙げることができる。高電位でも酸化し難いものであることが好ましく、LiPFが最も好ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluorometa. Examples thereof include lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimitolithium [LiN (CF 3 SO 2 ) 2 ], or a mixture thereof. It is preferable that it is difficult to oxidize even at a high potential, and LiPF 6 is most preferable.

有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート等の環状カーボネートや、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)等の環状エーテルや、ジメトキシエタン(DME)、ジエトエタン(DEE)等の鎖状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)等の単独若しくは混合溶媒を挙げることができる。   Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). And cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX), chain ethers such as dimethoxyethane (DME) and dietoethane (DEE), γ-butyrolactone (GBL), acetonitrile ( AN), sulfolane (SL) and the like alone or in combination.

高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等を挙げることができる。   Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), and the like.

なお、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。   As the nonaqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.

常温溶融塩(イオン性融体)は、有機物カチオンとアニオンの組合せからなる有機塩の内、常温(15℃〜25℃)で液体として存在しうる化合物を指す。常温溶融塩としては、単体で液体として存在する常温溶融塩、電解質と混合させることで液体となる常温溶融塩、有機溶媒に溶解させることで液体となる常温溶融塩等が挙げられる。なお、一般に、非水電解質電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に、4級アンモニウム骨格を有する。   The room temperature molten salt (ionic melt) refers to a compound that can exist as a liquid at room temperature (15 ° C. to 25 ° C.) among organic salts composed of a combination of an organic cation and an anion. Examples of the room temperature molten salt include a room temperature molten salt that exists alone as a liquid, a room temperature molten salt that becomes a liquid when mixed with an electrolyte, and a room temperature molten salt that becomes a liquid when dissolved in an organic solvent. In general, the melting point of a room temperature molten salt used for a nonaqueous electrolyte battery is 25 ° C. or less. The organic cation generally has a quaternary ammonium skeleton.

高分子固体電解質は、電解質を高分子材料に溶解し固体化し調製する。   The polymer solid electrolyte is prepared by dissolving an electrolyte in a polymer material and solidifying it.

無機固体電解質は、リチウムイオン伝導性を有する固体物質である。   The inorganic solid electrolyte is a solid material having lithium ion conductivity.

3)正極
正極は、正極集電体と、正極集電体の片面若しくは両面に担持され、正極活物質、正極導電剤及び結着剤を含む正極活物質含有層とを有する。
3) Positive Electrode The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer that is supported on one or both surfaces of the positive electrode current collector and includes a positive electrode active material, a positive electrode conductive agent, and a binder.

正極活物質としては、酸化物、硫化物、ポリマー等が挙げられる。   Examples of the positive electrode active material include oxides, sulfides, and polymers.

例えば、酸化物としては、Liを吸蔵した二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、及び、リチウムマンガン複合酸化物(例えばLixMn2O4またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoyO2)、リチウムマンガンコバルト複合酸化物(例えばLiMnyCo1-yO2)、スピネル型リチウムマンガンニッケル複合酸化物(LixMn2-yNiyO4)、オリビン構造を有するリチウムリン酸化物(LixFePO4、LixFe1-yMnyPO4、LixCoPO4等)、硫酸鉄(Fe2(SO4)3)、バナジウム酸化物(例えばV2O5)、リチウムニッケルコバルトマンガン複合酸化物等が挙げられる。 For example, as the oxide, manganese dioxide (MnO 2 ) occluded Li, iron oxide, copper oxide, nickel oxide, and lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), lithium Nickel composite oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (for example, LiMn y Co 1-y O 2 ), spinel-type lithium manganese nickel composite oxide (Li x Mn 2-y Ni y O 4 ), lithium phosphorus oxide having an olivine structure (Li x FePO 4 , Li x Fe 1- y Mn y PO 4, Li x CoPO 4 , etc.), iron sulfate (Fe 2 (SO 4) 3), vanadium oxide (e.g. V 2 O 5), and lithium-nickel-cobalt-manganese composite oxide and the like.

例えば、ポリマーとしては、ポリアニリンやポリピロール等の導電性ポリマー材料、ジスルフィド系ポリマー材料等が挙げられる。その他に、イオウ(S)、フッ化カーボン等も使用できる。   For example, examples of the polymer include conductive polymer materials such as polyaniline and polypyrrole, and disulfide polymer materials. In addition, sulfur (S), carbon fluoride, etc. can be used.

高い正極電圧が得られる正極活物質としては、リチウムマンガン複合酸化物(LixMn2O4)、リチウムニッケル複合酸化物(LixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(LixNi1-yCoyO2)、スピネル型リチウムマンガンニッケル複合酸化物(LixMn2-yNiyO4)、リチウムマンガンコバルト複合酸化物(LixMnyCo1-yO2)、リチウムリン酸鉄(LixFePO4)、リチウムニッケルコバルトマンガン複合酸化物等が挙げられる。なお、x、yは0〜1の範囲であることが好ましい。 As positive electrode active materials that can obtain a high positive electrode voltage, lithium manganese composite oxide (Li x Mn 2 O 4 ), lithium nickel composite oxide (Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), Lithium nickel cobalt composite oxide (Li x Ni 1-y Co y O 2 ), spinel type lithium manganese nickel composite oxide (Li x Mn 2-y Ni y O 4 ), lithium manganese cobalt composite oxide (Li x Mn y Co 1-y O 2 ), lithium iron phosphate (Li x FePO 4 ), lithium nickel cobalt manganese composite oxide, and the like. X and y are preferably in the range of 0 to 1.

特に、リチウムニッケル複合酸化物を含むことが好ましい。リチウムニッケル複合酸化物の初期効率は、負極活物質の初期効率に近いためである。   In particular, it is preferable to include a lithium nickel composite oxide. This is because the initial efficiency of the lithium nickel composite oxide is close to the initial efficiency of the negative electrode active material.

中でも、常温溶融塩を含む非水電解質を用いる際には、リチウムリン酸鉄、LixVPO4F、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物を用いることが、サイクル寿命の観点から好ましい。これは、上記正極活物質と常温溶融塩との反応性が少なくなるためである。 Among them, when using a non-aqueous electrolyte containing a room temperature molten salt, it is possible to use lithium iron phosphate, Li x VPO 4 F, lithium manganese composite oxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, It is preferable from the viewpoint of cycle life. This is because the reactivity between the positive electrode active material and the room temperature molten salt is reduced.

また、一次電池用の正極活物質には、例えば、二酸化マンガン、酸化鉄、酸化銅、硫化鉄、フッ化カーボンなどが挙げられる。   Examples of the positive electrode active material for the primary battery include manganese dioxide, iron oxide, copper oxide, iron sulfide, and carbon fluoride.

正極活物質の一次粒子径は、100nm以上1μm以下であると好ましい。100nm以上であると、工業生産上扱いやすい。1μm以下であると、リチウムイオンの固体内拡散をスムーズに進行させることができる。   The primary particle diameter of the positive electrode active material is preferably 100 nm or more and 1 μm or less. It is easy to handle in industrial production as it is 100 nm or more. When the thickness is 1 μm or less, diffusion of lithium ions in the solid can proceed smoothly.

正極活物質の比表面積は、0.1m2/g以上10m2/g以下であることが好ましい。0.1m2/g以上であると、リチウムイオンの吸蔵・放出サイトを十分に確保できる。10m2/g以下であると、工業生産上扱いやすく、良好な充放電サイクル性能を確保できる。 The specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more and 10 m 2 / g or less. When it is 0.1 m 2 / g or more, sufficient lithium ion storage / release sites can be secured. When it is 10 m 2 / g or less, it is easy to handle in industrial production, and good charge / discharge cycle performance can be secured.

集電性能を高め、集電体との接触抵抗を抑えるための正極導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等の炭素質物を挙げることができる。   Examples of the positive electrode conductive agent for improving the current collecting performance and suppressing the contact resistance with the current collector include carbonaceous materials such as acetylene black, carbon black, and graphite.

正極活物質と正極導電剤を結着させるための結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム等が挙げられる。   Examples of the binder for binding the positive electrode active material and the positive electrode conductive agent include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.

正極活物質層の片面の厚さは1.0μm〜150μmの範囲であることが、電池の大電流放電特性とサイクル寿命の保持の点から望ましい。従って正極集電体の両面に担持されている場合は正極活物質層の合計の厚さは20μm〜300μmの範囲となることが望ましい。片面のより好ましい範囲は30μm〜120μmである。この範囲であると大電流放電特性とサイクル寿命は向上する。   The thickness of one surface of the positive electrode active material layer is preferably in the range of 1.0 μm to 150 μm from the viewpoint of maintaining the large current discharge characteristics and cycle life of the battery. Accordingly, when the positive electrode current collector is supported on both surfaces, the total thickness of the positive electrode active material layer is desirably in the range of 20 μm to 300 μm. A more preferable range on one side is 30 μm to 120 μm. Within this range, large current discharge characteristics and cycle life are improved.

正極活物質、正極導電剤及び結着剤の配合比については、正極活物質は80重量%以上95重量%以下、正極導電剤は3重量%以上18重量%以下、結着剤は2重量%以上17重量%以下の範囲にすることが好ましい。正極導電剤については、3重量%以上であることにより上述した効果を発揮することができ、18重量%以下であることにより、高温保存下での正極導電剤表面での非水電解質の分解を低減することができる。結着剤については、2重量%以上であることにより十分な電極強度が得られ、17重量%以下であることにより、電極の絶縁体の配合量を減少させ、内部抵抗を減少できる。   Regarding the compounding ratio of the positive electrode active material, the positive electrode conductive agent, and the binder, the positive electrode active material is 80% by weight to 95% by weight, the positive electrode conductive agent is 3% by weight to 18% by weight, and the binder is 2% by weight. It is preferable to be in the range of 17% by weight or less. With respect to the positive electrode conductive agent, the effect described above can be exhibited by being 3% by weight or more, and by being 18% by weight or less, decomposition of the nonaqueous electrolyte on the surface of the positive electrode conductive agent under high temperature storage can be achieved. Can be reduced. When the amount of the binder is 2% by weight or more, sufficient electrode strength can be obtained, and when the amount is 17% by weight or less, the blending amount of the electrode insulator can be reduced and the internal resistance can be reduced.

正極は、例えば、正極活物質、正極導電剤及び結着剤を適当な溶媒に懸濁し、この懸濁し作製したスラリーを、正極集電体に塗布し、乾燥し、正極活物質含有層を作製した後、プレスを施すことにより作製される。その他、正極活物質、正極導電剤及び結着剤をペレット状に形成し、正極活物質含有層として用いても良い。   For the positive electrode, for example, a positive electrode active material, a positive electrode conductive agent, and a binder are suspended in a suitable solvent, and this suspended slurry is applied to a positive electrode current collector and dried to produce a positive electrode active material-containing layer. Then, it is manufactured by applying a press. In addition, the positive electrode active material, the positive electrode conductive agent, and the binder may be formed in a pellet shape and used as the positive electrode active material-containing layer.

前記正極集電体は、アルミニウム箔若しくはアルミニウム合金箔が好ましい。   The positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil.

アルミニウム箔およびアルミニウム合金箔の厚さは、5μm以上20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素、などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。   The thickness of the aluminum foil and the aluminum alloy foil is 5 μm or more and 20 μm or less, more preferably 15 μm or less. The purity of the aluminum foil is preferably 99% or more. As the aluminum alloy, an alloy containing elements such as magnesium, zinc and silicon is preferable. On the other hand, the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less.

4)セパレータ
セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、またはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を挙げることができる。中でも、ポリエチレン又はポリプロピレンからなる多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能であり、安全性向上の観点から好ましい。
4) Separator Examples of the separator include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), and a synthetic resin nonwoven fabric. Among these, a porous film made of polyethylene or polypropylene is preferable from the viewpoint of improving safety because it can be melted at a constant temperature to interrupt the current.

5)外装部材
外装部材としては、肉厚0.2mm以下のラミネートフィルムや、肉厚0.5mm以下の金属製容器が挙げられる。金属製容器の肉厚は、0.2mm以下であるとより好ましい。
5) Exterior member Examples of the exterior member include a laminate film having a thickness of 0.2 mm or less and a metal container having a thickness of 0.5 mm or less. The wall thickness of the metal container is more preferably 0.2 mm or less.

形状としては、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型等が挙げられる。なお、無論、携帯用電子機器等に積載される小型電池の他、二輪乃至四輪の自動車等に積載される大型電池でも良い。   Examples of the shape include a flat type, a square type, a cylindrical type, a coin type, a button type, a sheet type, and a laminated type. Of course, in addition to a small battery mounted on a portable electronic device or the like, a large battery mounted on a two-wheel to four-wheel automobile or the like may be used.

ラミネートフィルムは、金属層と金属層を被覆する樹脂層とからなる多層フィルムである。軽量化のために、金属層はアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、金属層を補強するためのものであり、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子を用いることができる。ラミネートフィルムは、熱融着によりシールを行うことにより成形する。   The laminate film is a multilayer film composed of a metal layer and a resin layer covering the metal layer. In order to reduce the weight, the metal layer is preferably an aluminum foil or an aluminum alloy foil. The resin layer is for reinforcing the metal layer, and a polymer such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET), or the like can be used. The laminate film is formed by sealing by heat sealing.

金属製容器は、アルミニウムまたはアルミニウム合金等が挙げられる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロム等の遷移金属の含有量は1%以下にすることが好ましい。これにより、高温環境下での長期信頼性、放熱性を飛躍的に向上させることが可能となる。   Examples of the metal container include aluminum or an aluminum alloy. As the aluminum alloy, an alloy containing elements such as magnesium, zinc and silicon is preferable. On the other hand, the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less. Thereby, it becomes possible to dramatically improve long-term reliability and heat dissipation in a high temperature environment.

6)負極端子
負極端子は、上述の負極活物質のLi吸蔵放出電位にて電気化学的に安定であり、かつ導電性を備える材料から形成することができる。具体的には、銅、ニッケル、ステンレスが挙げられる。接触抵抗を低減するために、負極集電体と同様の材料が好ましい。
6) Negative electrode terminal The negative electrode terminal can be formed from a material that is electrochemically stable at the Li storage / release potential of the negative electrode active material described above and that has conductivity. Specific examples include copper, nickel, and stainless steel. In order to reduce the contact resistance, the same material as the negative electrode current collector is preferable.

7)正極端子
正極端子は、リチウムイオン金属に対する電位が3V以上5V以下の範囲における電気的安定性と導電性とを備える材料から形成することができる。具体的には、Mg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金、アルミニウムが挙げられる。接触抵抗を低減するために、正極集電体と同様の材料が好ましい。
7) Positive electrode terminal The positive electrode terminal can be formed from a material having electrical stability and electrical conductivity in a range where the potential with respect to the lithium ion metal is 3 V or more and 5 V or less. Specific examples include aluminum alloys and aluminum containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si. In order to reduce the contact resistance, the same material as the positive electrode current collector is preferable.

第一の実施形態に係る非水電解質電池は、前述した図1及び図2に示す構成のものに限らず、例えば、図3及び図4に示す構成にすることができる。図3は第一の実施形態に係る別の扁平型非水電解質二次電池を模式的に示す部分切欠斜視図で、図4は図3のB部の拡大断面図である。   The nonaqueous electrolyte battery according to the first embodiment is not limited to the configuration shown in FIGS. 1 and 2 described above, and can be configured, for example, as shown in FIGS. FIG. 3 is a partially cutaway perspective view schematically showing another flat type nonaqueous electrolyte secondary battery according to the first embodiment, and FIG. 4 is an enlarged cross-sectional view of a portion B in FIG.

図3に示すように、ラミネートフィルム製の外装部材8内には、積層型電極群9が収納されている。積層型電極群9は、図4に示すように、正極3と負極4とをその間にセパレータ5を介在させながら交互に積層した構造を有する。正極3は複数枚存在し、それぞれが正極集電体3aと、正極集電体3aの両面に担持された正極活物質含有層3bとを備える。負極4は複数枚存在し、それぞれが負極集電体4aと、負極集電体4aの両面に担持された負極活物質含有層4bとを備える。それぞれの負極4の負極集電体4aは、一辺が正極3から突出している。正極3から突出した負極集電体4aは、帯状の負極端子2に電気的に接続されている。帯状の負極端子2の先端は、外装部材8から外部に引き出されている。また、ここでは図示しないが、正極3の正極集電体3aは、負極集電体4aの突出辺と反対側に位置する辺が負極4から突出している。負極4から突出した正極集電体3aは、帯状の正極端子1に電気的に接続されている。帯状の正極端子1の先端は、負極端子2とは反対側に位置し、外装部材8の辺から外部に引き出されている。   As shown in FIG. 3, a laminated electrode group 9 is housed in an exterior member 8 made of a laminate film. As shown in FIG. 4, the stacked electrode group 9 has a structure in which the positive electrodes 3 and the negative electrodes 4 are alternately stacked with separators 5 interposed therebetween. There are a plurality of positive electrodes 3, each including a positive electrode current collector 3 a and a positive electrode active material-containing layer 3 b supported on both surfaces of the positive electrode current collector 3 a. A plurality of negative electrodes 4 are present, each including a negative electrode current collector 4a and a negative electrode active material-containing layer 4b supported on both surfaces of the negative electrode current collector 4a. One side of the negative electrode current collector 4 a of each negative electrode 4 protrudes from the positive electrode 3. The negative electrode current collector 4 a protruding from the positive electrode 3 is electrically connected to the strip-shaped negative electrode terminal 2. The tip of the strip-like negative electrode terminal 2 is drawn out from the exterior member 8 to the outside. Although not shown here, the positive electrode current collector 3 a of the positive electrode 3 has a side protruding from the negative electrode 4 on the side opposite to the protruding side of the negative electrode current collector 4 a. The positive electrode current collector 3 a protruding from the negative electrode 4 is electrically connected to the belt-like positive electrode terminal 1. The front end of the belt-like positive electrode terminal 1 is located on the opposite side to the negative electrode terminal 2 and is drawn out from the side of the exterior member 8.

(第二の実施の形態)
第二の実施の形態に係る電池パックは、第一の実施の形態に係る電池単体を複数有する。各々の電池単体は電気的に直列もしくは並列に配置され、組電池を為している。
(Second embodiment)
The battery pack according to the second embodiment has a plurality of single batteries according to the first embodiment. Each battery unit is electrically arranged in series or in parallel to form an assembled battery.

電池単体には、図1または図3に示す扁平型電池を使用することができる。   The flat battery shown in FIG. 1 or FIG. 3 can be used for a single battery.

図5の電池パックにおける電池単体21は、図1に示す扁平型非水電解質電池から構成されている。複数の電池単体21は、正極端子1と負極端子2が突出している向きを一つに揃えて厚さ方向に積層されている。図6に示すように、電池単体21は、直列に接続されて組電池22をなしている。組電池22は、図5に示すように、粘着テープ23によって一体化されている。   The battery unit 21 in the battery pack of FIG. 5 is composed of a flat type non-aqueous electrolyte battery shown in FIG. The plurality of battery units 21 are stacked in the thickness direction with the direction in which the positive electrode terminal 1 and the negative electrode terminal 2 protrude are aligned. As shown in FIG. 6, the battery units 21 are connected in series to form an assembled battery 22. As shown in FIG. 5, the assembled battery 22 is integrated by an adhesive tape 23.

正極端子1および負極端子2が突出する側面に対しては、プリント配線基板24が配置されている。プリント配線基板24には、図6に示すように、サーミスタ25、保護回路26および外部機器への通電用の端子27が搭載されている。   A printed wiring board 24 is disposed on the side surface from which the positive electrode terminal 1 and the negative electrode terminal 2 protrude. As shown in FIG. 6, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing external devices are mounted on the printed wiring board 24.

図5及び図6に示すように、組電池22の正極側配線28は、プリント配線基板24の保護回路26の正極側コネクタ29に電気的に接続されている。組電池22の負極側配線30は、プリント配線基板24の保護回路26の負極側コネクタ31に電気的に接続されている。   As shown in FIGS. 5 and 6, the positive electrode side wiring 28 of the assembled battery 22 is electrically connected to the positive electrode side connector 29 of the protection circuit 26 of the printed wiring board 24. The negative electrode side wiring 30 of the assembled battery 22 is electrically connected to the negative electrode side connector 31 of the protection circuit 26 of the printed wiring board 24.

サーミスタ25は、電池単体21の温度を検知するためのもので、検知信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路と外部機器への通電用端子との間のプラス側配線31a及びマイナス側配線31bを遮断できる。所定の条件とは、例えば、サーミスタの検出温度が所定温度以上になったとき、電池単体21の過充電、過放電、過電流等を検知したとき等である。この検知方法は、個々の電池単体21もしくは電池単体21全体について行われる。個々の電池単体21を検知する場合、電池電圧を検知してもよいし、正極電位もしくは負極電位を検知してもよい。後者の場合、個々の電池単体21中に参照極として用いるリチウム電極が挿入される。図6の場合、電池単体21それぞれに電圧検知のための配線32を接続し、これら配線32を通して検知信号が保護回路26に送信される。   The thermistor 25 is for detecting the temperature of the battery unit 21, and the detection signal is transmitted to the protection circuit 26. The protection circuit 26 can cut off the plus side wiring 31a and the minus side wiring 31b between the protection circuit and a terminal for energization to an external device under a predetermined condition. The predetermined condition is, for example, when the detected temperature of the thermistor becomes equal to or higher than a predetermined temperature, or when overcharge, overdischarge, overcurrent, or the like of the battery unit 21 is detected. This detection method is performed for each individual battery unit 21 or the entire battery unit 21. When detecting each battery unit 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each battery unit 21. In the case of FIG. 6, wiring 32 for voltage detection is connected to each battery unit 21, and a detection signal is transmitted to the protection circuit 26 through these wirings 32.

第2の実施形態の場合、電池電圧の検知による正極もしくは負極電位の制御に優れるため、保護回路が電池電圧のみを検知する場合に特に適合する。   In the case of the second embodiment, since the control of the positive or negative electrode potential by detecting the battery voltage is excellent, this is particularly suitable when the protection circuit detects only the battery voltage.

組電池22について、正極端子1および負極端子2が突出する側面以外の三側面には、ゴムもしくは樹脂からなる保護シート33が配置される。正極端子1および負極端子2が突出する側面とプリント配線基板24との間には、ゴムもしくは樹脂からなるブロック状の保護ブロック34が配置される。   In the assembled battery 22, a protective sheet 33 made of rubber or resin is disposed on three side surfaces other than the side surface from which the positive electrode terminal 1 and the negative electrode terminal 2 protrude. Between the side surface from which the positive electrode terminal 1 and the negative electrode terminal 2 protrude and the printed wiring board 24, a block-shaped protection block 34 made of rubber or resin is disposed.

この組電池22は、各保護シート33、保護ブロック34およびプリント配線基板24と共に収納容器35に収納される。すなわち、収納容器35の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート33が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池22は、保護シート33及びプリント配線基板24で囲まれた空間内に位置する。収納容器35の上面には、蓋36が取り付けられる。   The assembled battery 22 is stored in a storage container 35 together with the protective sheets 33, the protective blocks 34, and the printed wiring board 24. That is, the protective sheet 33 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 35, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction. The assembled battery 22 is located in a space surrounded by the protective sheet 33 and the printed wiring board 24. A lid 36 is attached to the upper surface of the storage container 35.

なお、組電池22の固定には、粘着テープ23に代えて、熱収縮テープを用いても良い。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、該熱収縮チューブを熱収縮させて組電池を結束させる。   In addition, instead of the adhesive tape 23, a heat shrink tape may be used for fixing the assembled battery 22. In this case, protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the assembled battery.

なお、図5,6に示した電池単体21は直列に接続されているが、電池容量を増大させるためには並列に接続しても良い。無論、組み上がった電池パックを直列、並列に接続することもできる。   5 and 6 are connected in series, but may be connected in parallel to increase the battery capacity. Of course, the assembled battery packs can be connected in series and in parallel.

また、電池パックの態様は用途により適宜変更される。   Moreover, the aspect of a battery pack is changed suitably by a use.

第二の実施の形態の電池パックの用途としては、大電流特性が望まれるものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、車載用が好適である。   As a use of the battery pack according to the second embodiment, one in which a large current characteristic is desired is preferable. Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like. In particular, the vehicle-mounted one is suitable.

以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載される実施例に限定されるものでない。   Examples will be described below, but the present invention is not limited to the examples described below unless the gist of the present invention is exceeded.

(実施例1)
遊星ボールミル(FRITSCH社製型番P−5)を用いて、次のような原料組成、ボールミル運転条件、焼成条件により合成を行なった。
Example 1
Using a planetary ball mill (model number P-5, manufactured by FRITSCH), synthesis was performed using the following raw material composition, ball mill operating conditions, and firing conditions.

ボールミルの際には容積が250mlのステンレス製容器と10mmφのボールを用いた。原料には平均粒径が45μmのSiO粉末を10gと、塩化リチウムを0.01g用い、周波数150rpm、処理時間3hで混合した。さらに炭素材料として平均粒径が6μmの黒鉛粉末を10gを加え、120rpmで18h処理を行った。   In the ball mill, a stainless steel container having a volume of 250 ml and a ball of 10 mmφ were used. As raw materials, 10 g of SiO powder having an average particle diameter of 45 μm and 0.01 g of lithium chloride were mixed at a frequency of 150 rpm and a treatment time of 3 h. Furthermore, 10 g of graphite powder having an average particle diameter of 6 μm was added as a carbon material, and the resultant was treated at 120 rpm for 18 hours.

ボールミル処理により得られた混合物を、次のような方法でハードカーボンと複合化した。フルフリルアルコール5.0gとエタノール10gと水0.125gの混合液に複合体粒子を3g加え混練した。さらにフルフリルアルコールの重合触媒となる希塩酸を0.2g加え室温で放置して複合体粒子を得た。   The mixture obtained by the ball mill treatment was combined with hard carbon by the following method. 3 g of the composite particles were added to a mixed liquid of 5.0 g of furfuryl alcohol, 10 g of ethanol and 0.125 g of water and kneaded. Further, 0.2 g of dilute hydrochloric acid serving as a polymerization catalyst for furfuryl alcohol was added and allowed to stand at room temperature to obtain composite particles.

得られた炭素複合体を1000℃で3h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて、リチウムシリケート相を0.05wt%有する複合体粒子からなる負極活物質を得た。   The obtained carbon composite was calcined at 1000 ° C. for 3 hours in Ar gas, cooled to room temperature, pulverized and passed through a 30 μm diameter sieve, and a negative electrode active comprising composite particles having a lithium silicate phase of 0.05 wt%. Obtained material.

(実施例2)
原料の塩化リチウムの量を0.2gとした他は実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を、実施例1と同条件で焼成し負極活物質を得た。
(Example 2)
Silicon monoxide-carbon composite particles composited in the same manner as in Example 1 except that the amount of raw material lithium chloride was 0.2 g were fired under the same conditions as in Example 1 to obtain a negative electrode active material. .

(実施例3)
原料の塩化リチウムの量を0.6gとした他は実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を、実施例1と同条件で焼成し負極活物質を得た。
(Example 3)
Silicon monoxide-carbon composite particles composited in the same manner as in Example 1 except that the amount of raw material lithium chloride was 0.6 g were fired under the same conditions as in Example 1 to obtain a negative electrode active material. .

(実施例4)
原料の塩化リチウムの量を1.35gとした他は実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を、実施例1と同条件で焼成し負極活物質を得た。
Example 4
The silicon monoxide-carbon composite particles composited in the same manner as in Example 1 except that the amount of the raw material lithium chloride was 1.35 g were fired under the same conditions as in Example 1 to obtain a negative electrode active material. .

(比較例1)
リチウム塩を加えずに実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を実施例1と同条件で焼成処理し、活物質を得た。
(Comparative Example 1)
The silicon monoxide-carbon composite particles composited by the same method as in Example 1 without adding a lithium salt were fired under the same conditions as in Example 1 to obtain an active material.

(比較例2)
比較例1で得た複合体粒子に、Li2SiO3粉末1.5gを加え遊星ボールミルを用いて周波数100rpm、処理時間2hで複合化して、表面にリチウムシリケート相を備える負極活物質を得た。
(Comparative Example 2)
To the composite particles obtained in Comparative Example 1, 1.5 g of Li 2 SiO 3 powder was added and compounded using a planetary ball mill at a frequency of 100 rpm and a treatment time of 2 h to obtain a negative electrode active material having a lithium silicate phase on the surface. .

(比較例3)
原料に、平均粒径が5μmのSi粉末を3.2gと、シリカ粉末(SiO)6.8gと塩化リチウム(LiCl)を0.60gを用い、周波数150rpm、処理時間3hで混合した。さらに炭素材料として平均粒径が6μmの黒鉛粉末を10gを加え、120rpmで18h処理を行った。さらに実施例1と同条件でフルフリルアルコールの添加、焼成を行い、Si、SiO2、リチウムシリケート相がCマトリックス中に単純に分散された負極活物質を得た。
(Comparative Example 3)
As raw materials, 3.2 g of Si powder having an average particle diameter of 5 μm, 6.8 g of silica powder (SiO 2 ), and 0.60 g of lithium chloride (LiCl) were mixed at a frequency of 150 rpm and a processing time of 3 hours. Further, 10 g of graphite powder having an average particle diameter of 6 μm was added as a carbon material, and the treatment was performed at 120 rpm for 18 hours. Further, furfuryl alcohol was added and baked under the same conditions as in Example 1 to obtain a negative electrode active material in which Si, SiO 2 and lithium silicate phases were simply dispersed in the C matrix.

実施例1において得られた活物質について、充放電試験、X線回折測定を行い、充放電特性および物性を評価した。   The active material obtained in Example 1 was subjected to charge / discharge test and X-ray diffraction measurement to evaluate charge / discharge characteristics and physical properties.

(充放電試験)
得られた試料に平均径6μのグラファイト30wt%、ポリフッ化ビニリデン12wt%を分散媒としてN-メチルピロリドンを用いて混練し、厚さ12μmの銅箔上に塗布して圧延した後、100℃で12時間真空乾燥し試験電極とした。対極および参照極を金属Li、電解液を1MLiPFのEC・DEC(体積比1:2)溶液とした電池をアルゴン雰囲気中で作製した。
(Charge / discharge test)
The obtained sample was kneaded with N-methylpyrrolidone as a dispersion medium with 30 wt% graphite having an average diameter of 6 μm and 12 wt% polyvinylidene fluoride, rolled onto a 12 μm thick copper foil, and then heated at 100 ° C. It was vacuum-dried for 12 hours to obtain a test electrode. A battery in which the counter electrode and the reference electrode were metallic Li and the electrolyte was an EC / DEC (volume ratio 1: 2) solution of 1M LiPF 6 was produced in an argon atmosphere.

充放電試験の条件は、参照極と試験電極間の電位差0.01Vまで1mA/cmの電流密度で充電、さらに0.01Vで8時間の定電圧充電を行い、放電は1mA/cmの電流密度で1.5Vまで行った。 The charging / discharging test was performed by charging at a current density of 1 mA / cm 2 up to a potential difference of 0.01 V between the reference electrode and the test electrode, and further performing a constant voltage charging at 0.01 V for 8 hours, and discharging at 1 mA / cm 2 . The current density was up to 1.5V.

充放電試験において、充電容量および放電容量は、充電または放電の開始から終了するまでに流れた電気量とした。また、初回充放電効率は、1サイクル目の放電容量の、1サイクル目の充電容量に対する百分率として求めた。   In the charge / discharge test, the charge capacity and the discharge capacity were the amounts of electricity that flowed from the start to the end of charging or discharging. The initial charge / discharge efficiency was determined as a percentage of the discharge capacity at the first cycle to the charge capacity at the first cycle.

次に同様に参照極と試験電極間の電位差0.01Vまで1mA/cmの電流密度で充電、さらに0.01Vで8時間の定電圧充電を行い、放電を10mA/cmの電流密度で1.5Vまで行った。放電時の電流密度1mA/cmの際の容量に対する10mA/cm際の容量の比を比較して大電流特性を評価した。 Next, similarly, charging is performed at a current density of 1 mA / cm 2 until the potential difference between the reference electrode and the test electrode is 0.01 V, and further, constant voltage charging is performed at 0.01 V for 8 hours, and discharging is performed at a current density of 10 mA / cm 2. It went to 1.5V. Large current characteristics were evaluated by comparing the ratio of capacity at 10 mA / cm 2 to capacity at a current density of 1 mA / cm 2 during discharge.

また、参照極と試験電極間の電位差0.01Vまで1mA/cmの電流密度で充電、1mA/cmの電流密度で1.5Vまで放電するサイクルを100回行い1サイクル目に対する100サイクル目の放電容量の維持率を測定した。 In addition, the 100th cycle of the first cycle is performed by performing 100 cycles of charging at a current density of 1 mA / cm 2 to a potential difference of 0.01 V between the reference electrode and the test electrode and discharging to 1.5 V at a current density of 1 mA / cm 2. The discharge capacity retention rate was measured.

(X線回折測定)
得られた粉末試料について粉末X線回折測定を行い、Si(220)面のピークの半値幅を測定した。測定は株式会社マック・サイエンス社製X線回折測定装置(型式M18XHF22)を用い、以下の条件で行った。
(X-ray diffraction measurement)
Powder X-ray diffraction measurement was performed on the obtained powder sample, and the half width of the peak of the Si (220) plane was measured. The measurement was performed under the following conditions using an X-ray diffractometer (model M18XHF22) manufactured by Mac Science Co., Ltd.

対陰極:Cu
管電圧:50kv
管電流:300mA
走査速度:1°(2θ)/min
時定数:1sec
受光スリット:0.15mm
発散スリット:0.5°
散乱スリット:0.5°
回折パターンより、d=1.92Å(2θ=47.2°)に現れるSiの面指数(220)のピークの半値幅(°(2θ))を測定した。また、Si(220)のピークが活物質中に含有される他の物質のピークと重なりをもつ場合には、ピークを単離し半値幅を測定した。
Counter cathode: Cu
Tube voltage: 50 kv
Tube current: 300mA
Scanning speed: 1 ° (2θ) / min
Time constant: 1 sec
Receiving slit: 0.15mm
Divergent slit: 0.5 °
Scattering slit: 0.5 °
From the diffraction pattern, the half-value width (° (2θ)) of the peak of the Si plane index (220) appearing at d = 1.92 ° (2θ = 47.2 °) was measured. In addition, when the peak of Si (220) overlapped with the peaks of other substances contained in the active material, the peak was isolated and the half width was measured.

表1に、各実施例および比較例について、リチウムシリケート相の含有量と、評価結果と、を示す。

Figure 0004533822
Table 1 shows the content of the lithium silicate phase and the evaluation results for each example and comparative example.
Figure 0004533822

実施例1〜4と比較例1〜3とを比較すると、実施例1〜4の方が初回充放電容量効率に優れることがわかる。従って、複合体粒子中に、リチウムシリケート相を分散させると、初回充放電効率を向上できることがわかる。   Comparing Examples 1 to 4 and Comparative Examples 1 to 3, it can be seen that Examples 1 to 4 are more excellent in initial charge / discharge capacity efficiency. Therefore, it can be seen that the initial charge and discharge efficiency can be improved by dispersing the lithium silicate phase in the composite particles.

実施例2〜3と実施例1、4とを比較すると、実施例2〜3の方が大電流特性に優れることがわかる。従って、リチウムシリケート相の含有量は、0.9(wt%)以上2.8(wt%)以下であると好ましいことがわかる。   Comparing Examples 2 to 3 and Examples 1 and 4, it can be seen that Examples 2 to 3 are more excellent in large current characteristics. Therefore, it can be seen that the content of the lithium silicate phase is preferably 0.9 (wt%) or more and 2.8 (wt%) or less.

<リチウムシリケート相の同定>
比較例1と実施例2および3の焼成後の活物質について、XRD(マックサイエンス社 型番M18XHF22-SRA)を用いて、Cu-Kα線を使用したX線回折パターンを求めた。X線回折パターンを図8に示す。
<Identification of lithium silicate phase>
The active material of the sintered Example 1 and Comparative Example 2 and 3, using the XRD (Mac Science Corp. Part No. M18XHF 22 -SRA), was determined X-ray diffraction pattern using Cu-K [alpha line. An X-ray diffraction pattern is shown in FIG.

比較例1の試料のX線回折パターンにおいては、リチウムシリケートのピークは観察されなかったが、実施例2および3の試料において2θ=22°に回折ピークが観察された。このピークは、Li4SiO4の(-110)回折線に同定される。したがって、実施例2および3の複合体粒子は、リチウムシリケートとして主にLi4SiO4を含むことが分かる。   In the X-ray diffraction pattern of the sample of Comparative Example 1, no lithium silicate peak was observed, but in the samples of Examples 2 and 3, a diffraction peak was observed at 2θ = 22 °. This peak is identified in the (-110) diffraction line of Li4SiO4. Therefore, it can be seen that the composite particles of Examples 2 and 3 mainly contain Li4SiO4 as the lithium silicate.

比較例1の活物質について、前述した方法で電極を作製した段階、初充電を行った段階および初充電・初放電を行った段階にて、電極を取り出した。これらの電極について、同様に、X線回折パターンを求めた。電極には、大気との接触を防ぐためポリエチレンフィルムを被せて測定した。作成した段階の電極のX線回折パターンを図9下段に示す。初充電時の電極X線回折パターンを図9中段に示す。初放電時の電極X線回折パターンを図9上段に示す。   Regarding the active material of Comparative Example 1, the electrode was taken out at the stage where the electrode was produced by the method described above, the stage where the initial charge was performed, and the stage where the initial charge and initial discharge were performed. Similarly, X-ray diffraction patterns were obtained for these electrodes. The electrode was covered with a polyethylene film to prevent contact with the atmosphere. The lower part of FIG. 9 shows the X-ray diffraction pattern of the electrode at the stage of preparation. The electrode X-ray diffraction pattern at the time of initial charge is shown in the middle part of FIG. The upper part of FIG. 9 shows an electrode X-ray diffraction pattern at the time of initial discharge.

初充電後および初放電後の電極には2θ=19°に回折ピークが観察された。このピークは、Li2SiO2の(020)回折線に同定される。したがって、比較例1の複合体粒子は、リチウムを充電した際にLi2SiO3を主として生成することがわかる。   A diffraction peak was observed at 2θ = 19 ° on the electrode after the initial charge and after the initial discharge. This peak is identified in the (020) diffraction line of Li2SiO2. Therefore, it can be seen that the composite particles of Comparative Example 1 mainly generate Li2SiO3 when charged with lithium.

以上、本発明の実施の形態を説明したが、本発明はこれらに限られず、特許請求の範囲に記載の発明の要旨の範疇において様々に変更可能である。また、本発明は、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、上記実施形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to these, In the category of the summary of the invention as described in a claim, it can change variously. In addition, the present invention can be variously modified without departing from the scope of the invention in the implementation stage. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

第一の実施の形態に係わる扁平型非水電解質二次電池の断面模式図。The cross-sectional schematic diagram of the flat type nonaqueous electrolyte secondary battery concerning 1st embodiment. 図1のAで示した円で囲われた部分を詳細に表す部分断面模式図。The partial cross section schematic diagram showing in detail the part enclosed by the circle | round | yen shown by A of FIG. 第一の実施の形態に係わる別の扁平型非水電解質二次電池を模式的に示した部分切欠斜視図。The partial notch perspective view which showed typically another flat type nonaqueous electrolyte secondary battery concerning 1st embodiment. 図3のB部の拡大断面図。The expanded sectional view of the B section of FIG. 第二の実施形態に係る電池パックの分解斜視図。The disassembled perspective view of the battery pack which concerns on 2nd embodiment. 図5の電池パックの電気回路を示すブロック図。The block diagram which shows the electric circuit of the battery pack of FIG. 第一の実施の形態に係わる負極活物質の断面模式図。The cross-sectional schematic diagram of the negative electrode active material concerning 1st embodiment. 比較例1、実施例2および実施例3に係る複合体粒子のX線回折パターン。The X-ray-diffraction pattern of the composite particle which concerns on the comparative example 1, Example 2, and Example 3. FIG. 比較例1の放電時、充電時および使用前に係る負極活物質含有層のX線回折パターン。The X-ray-diffraction pattern of the negative electrode active material content layer which concerns on the time of discharge of the comparative example 1, the time of charge, and use.

符号の説明Explanation of symbols

1…正極端子、2…負極端子、3…正極、3a…正極集電体、3b…正極活物質含有層、4…負極、4a…負極集電体、4b…負極活物質含有層、5…セパレータ、6…捲回電極群、7,8…外装部材、9…積層電極群、21…電池単体、22…組電池、23…粘着テープ、24…プリント配線基板、28…正極側配線、29…正極側コネクタ、30…負極側配線、31…負極側コネクタ、33…保護ブロック、35…収納容器、36…蓋。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode terminal, 2 ... Negative electrode terminal, 3 ... Positive electrode, 3a ... Positive electrode collector, 3b ... Positive electrode active material content layer, 4 ... Negative electrode, 4a ... Negative electrode current collector, 4b ... Negative electrode active material content layer, 5 ... Separator, 6 ... wound electrode group, 7, 8 exterior member, 9 ... laminated electrode group, 21 ... single battery, 22 ... assembled battery, 23 ... adhesive tape, 24 ... printed wiring board, 28 ... positive side wiring, 29 ... positive electrode side connector, 30 ... negative electrode side wiring, 31 ... negative electrode side connector, 33 ... protective block, 35 ... storage container, 36 ... lid.

Claims (2)

外装部材と、
前記外装部材内に収納された正極と、
前記外装部材内に収納され、炭素質物と、前記炭素質物中に分散されたシリコン酸化物と、前記シリコン酸化物中に分散されたシリコンと、前記シリコン酸化物中に含まれLi4SiO4を主成分とするリチウムシリケート相と、を有する複合体粒子とを備え、前記リチウムシリケート相は前記複合体粒子に対して0.05〜6wt%含有される負極と、
前記外装部材内に充填された非水電解質と、
を具備することを特徴とする非水電解質電池。
An exterior member;
A positive electrode housed in the exterior member;
Housed in the exterior member, carbonaceous material, silicon oxide dispersed in the carbonaceous material, silicon dispersed in the silicon oxide, and Li4SiO4 contained in the silicon oxide as a main component A composite particle having a lithium silicate phase, and a negative electrode containing 0.05 to 6 wt% of the lithium silicate phase with respect to the composite particle;
A non-aqueous electrolyte filled in the exterior member;
A non-aqueous electrolyte battery comprising:
炭素質物と、
前記炭素質物中に分散されたシリコン酸化物と、
前記シリコン酸化物中に分散されたシリコンと、
前記シリコン酸化物中に含まれLi4SiO4を主成分とするリチウムシリケート相とを有する複合体粒子とを備え、前記リチウムシリケート相は前記複合体粒子に対して0.05〜6wt%含有されることを特徴とする非水電解質電池用負極活物質。
Carbonaceous materials,
Silicon oxide dispersed in the carbonaceous material;
Silicon dispersed in the silicon oxide;
Composite particles having a lithium silicate phase containing Li4SiO4 as a main component contained in the silicon oxide, wherein the lithium silicate phase is contained in an amount of 0.05 to 6 wt% with respect to the composite particles. A negative electrode active material for a nonaqueous electrolyte battery.
JP2005243361A 2005-08-24 2005-08-24 Nonaqueous electrolyte battery and negative electrode active material Active JP4533822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243361A JP4533822B2 (en) 2005-08-24 2005-08-24 Nonaqueous electrolyte battery and negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243361A JP4533822B2 (en) 2005-08-24 2005-08-24 Nonaqueous electrolyte battery and negative electrode active material

Publications (2)

Publication Number Publication Date
JP2007059213A JP2007059213A (en) 2007-03-08
JP4533822B2 true JP4533822B2 (en) 2010-09-01

Family

ID=37922515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243361A Active JP4533822B2 (en) 2005-08-24 2005-08-24 Nonaqueous electrolyte battery and negative electrode active material

Country Status (1)

Country Link
JP (1) JP4533822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468714B2 (en) * 2015-02-27 2019-11-05 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204867A4 (en) 2007-09-06 2012-06-06 Canon Kk Method for producing lithium ion storage/release material, lithium ion storage/release material, electrode structure using the material, and electricity storage device
KR101102651B1 (en) * 2007-11-19 2012-01-04 주식회사 엘지화학 Electrode active material for secondary battery and method for preparing the same
KR101126826B1 (en) * 2008-06-30 2012-03-23 삼성에스디아이 주식회사 Secondary battery
KR101042009B1 (en) * 2008-09-30 2011-06-16 한국전기연구원 Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
US8546019B2 (en) 2008-11-20 2013-10-01 Lg Chem, Ltd. Electrode active material for secondary battery and method for preparing the same
JP5369708B2 (en) * 2009-01-26 2013-12-18 旭硝子株式会社 Anode material for secondary battery and method for producing the same
JP5374705B2 (en) * 2009-09-02 2013-12-25 株式会社大阪チタニウムテクノロジーズ Method for producing SiOx
JP5464653B2 (en) * 2009-11-27 2014-04-09 日立マクセル株式会社 Non-aqueous secondary battery and manufacturing method thereof
WO2011077654A1 (en) * 2009-12-21 2011-06-30 株式会社豊田自動織機 Negative electrode active substance for nonaqueous secondary cell and method for producing the same
JP5759307B2 (en) * 2010-08-24 2015-08-05 積水化学工業株式会社 Carbon particle for electrode, negative electrode material for lithium ion secondary battery, and method for producing carbon particle for electrode
JP5729163B2 (en) * 2011-06-24 2015-06-03 トヨタ自動車株式会社 Negative electrode active material and method for producing negative electrode active material
KR101194911B1 (en) 2011-11-15 2012-10-25 주식회사 엘지화학 Electrode active material for secondary battery and method for preparing the same
WO2013129850A1 (en) * 2012-02-28 2013-09-06 주식회사 엘지화학 Electrode active material for lithium secondary battery and method for manufacturing same
JP6092885B2 (en) * 2012-09-27 2017-03-08 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
KR101610995B1 (en) 2012-11-30 2016-04-08 주식회사 엘지화학 Silicon based composite and manufacturing method thereof
JP6123430B2 (en) * 2013-03-29 2017-05-10 日本電気株式会社 Secondary battery and negative electrode active material
CN104620426B (en) * 2013-03-29 2018-03-02 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
JP6508870B2 (en) * 2013-08-14 2019-05-08 東ソー株式会社 Composite active material for lithium secondary battery and method of manufacturing the same
KR20200124329A (en) 2013-08-21 2020-11-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
US9929399B2 (en) 2013-10-29 2018-03-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
JP6474548B2 (en) * 2014-01-16 2019-02-27 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
JP6082355B2 (en) * 2014-02-07 2017-02-15 信越化学工業株式会社 Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6397262B2 (en) * 2014-02-07 2018-09-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
WO2015136922A1 (en) * 2014-03-14 2015-09-17 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2015145521A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Negative electrode active material for non-aqueous electrolyte cell, negative electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack
JP6181590B2 (en) * 2014-04-02 2017-08-16 信越化学工業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015177665A1 (en) * 2014-05-23 2015-11-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode active material and power storage device
EP3171432B1 (en) * 2014-07-15 2020-12-16 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
KR101777917B1 (en) 2014-08-26 2017-09-12 주식회사 엘지화학 Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
JP6833511B2 (en) 2014-09-03 2021-02-24 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP2016062829A (en) * 2014-09-19 2016-04-25 株式会社東芝 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2016062860A (en) * 2014-09-22 2016-04-25 株式会社東芝 Electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
CN105449201B (en) * 2015-01-28 2018-06-22 万向一二三股份公司 A kind of preparation method of power-type high vibration high density lithium iron phosphate composite material
US10312516B2 (en) 2015-01-28 2019-06-04 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016121321A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US10516153B2 (en) 2015-01-28 2019-12-24 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6685939B2 (en) 2015-01-28 2020-04-22 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10516158B2 (en) 2015-01-28 2019-12-24 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016152077A (en) * 2015-02-16 2016-08-22 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
CN107408682B (en) 2015-02-23 2021-03-19 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6386414B2 (en) * 2015-04-22 2018-09-05 信越化学工業株式会社 Anode active material for nonaqueous electrolyte secondary battery, method for producing the same, nonaqueous electrolyte secondary battery using the anode active material, and method for producing anode material for nonaqueous electrolyte secondary battery
JP2016219409A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219408A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101586816B1 (en) * 2015-06-15 2016-01-20 대주전자재료 주식회사 Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
KR101902071B1 (en) 2015-10-26 2018-11-02 주식회사 엘지화학 Negative electrode active particle and method for manufacturing the same
JP6507106B2 (en) * 2016-01-07 2019-04-24 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
JP7078346B2 (en) * 2016-02-15 2022-05-31 信越化学工業株式会社 Method for manufacturing negative electrode active material and lithium ion secondary battery
CN106816594B (en) * 2017-03-06 2021-01-05 贝特瑞新材料集团股份有限公司 Composite, preparation method thereof and application thereof in lithium ion secondary battery
KR102223723B1 (en) * 2017-05-12 2021-03-05 주식회사 엘지화학 Negative eletrode active material, negative electrode comprising the negative electrode material and lithium secondarty battery comprising the negative electrode
US20210013489A1 (en) * 2018-01-19 2021-01-14 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN110970600B (en) * 2018-09-28 2023-06-30 贝特瑞新材料集团股份有限公司 Lithium ion secondary battery negative electrode material, and preparation method and application thereof
JPWO2020129652A1 (en) * 2018-12-21 2021-11-04 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JP7458036B2 (en) * 2019-03-28 2024-03-29 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
EP4007013A4 (en) * 2019-07-31 2022-09-14 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111082028A (en) * 2019-12-31 2020-04-28 中南大学 High-capacity negative electrode material, preparation method and lithium ion battery
CN111710845A (en) * 2020-06-28 2020-09-25 贝特瑞新材料集团股份有限公司 Silica composite negative electrode material, preparation method thereof and lithium ion battery
CN116941082A (en) * 2021-02-26 2023-10-24 松下知识产权经营株式会社 Nonaqueous secondary battery
JPWO2022181365A1 (en) * 2021-02-26 2022-09-01
WO2023053631A1 (en) * 2021-09-30 2023-04-06 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7364125B2 (en) 2021-10-25 2023-10-18 Dic株式会社 Composite active materials for secondary batteries and secondary batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312518A (en) * 1998-04-28 1999-11-09 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2003160328A (en) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd Lithium-containing silicon oxide powder and method for production thereof
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery
JP2005011801A (en) * 2003-05-22 2005-01-13 Matsushita Electric Ind Co Ltd Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312518A (en) * 1998-04-28 1999-11-09 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2003160328A (en) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd Lithium-containing silicon oxide powder and method for production thereof
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery
JP2005011801A (en) * 2003-05-22 2005-01-13 Matsushita Electric Ind Co Ltd Lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468714B2 (en) * 2015-02-27 2019-11-05 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2007059213A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4533822B2 (en) Nonaqueous electrolyte battery and negative electrode active material
JP4504279B2 (en) Nonaqueous electrolyte battery and negative electrode active material
JP6524158B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, non-aqueous electrolyte secondary battery, battery pack and vehicle
JP4445447B2 (en) Nonaqueous electrolyte battery and battery pack
JP5095179B2 (en) Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
US8951448B2 (en) Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery
JP4249727B2 (en) Nonaqueous electrolyte battery and lithium titanium composite oxide
JP5230713B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP5305678B2 (en) Non-aqueous electrolyte battery and battery pack
JP5319899B2 (en) Non-aqueous electrolyte battery
JP4213687B2 (en) Nonaqueous electrolyte battery and battery pack
JP4950980B2 (en) Lithium titanium composite oxide for nonaqueous electrolyte battery and negative electrode active material for nonaqueous electrolyte battery
JP5401035B2 (en) Lithium ion secondary battery
JP5341837B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
JP6092073B2 (en) Battery active materials, non-aqueous electrolyte batteries, battery packs and automobiles
JP2009076468A (en) Nonaqueous electrolyte secondary battery
JP6416214B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery, battery pack, and method for producing non-aqueous electrolyte secondary battery active material
JP2017059302A (en) Electrode, nonaqueous electrolyte battery and battery pack
JPWO2016084200A1 (en) Battery active materials, non-aqueous electrolyte batteries, assembled batteries, battery packs and automobiles
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
WO2013140595A1 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and process for producing negative electrode active material for nonaqueous electrolyte secondary battery
JP2013251109A (en) Nonaqueous electrolyte battery, and battery pack
JP2012109279A (en) Negative electrode active material, nonaqueous electrolyte battery, and battery pack
JP4805691B2 (en) Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery and battery pack
JP5032038B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4533822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3