JP4531022B2 - ビームスキャナ - Google Patents

ビームスキャナ Download PDF

Info

Publication number
JP4531022B2
JP4531022B2 JP2006223126A JP2006223126A JP4531022B2 JP 4531022 B2 JP4531022 B2 JP 4531022B2 JP 2006223126 A JP2006223126 A JP 2006223126A JP 2006223126 A JP2006223126 A JP 2006223126A JP 4531022 B2 JP4531022 B2 JP 4531022B2
Authority
JP
Japan
Prior art keywords
shaft
permanent magnet
respect
magnetic poles
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006223126A
Other languages
English (en)
Other versions
JP2008046460A (ja
Inventor
春男 呉
健一 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006223126A priority Critical patent/JP4531022B2/ja
Publication of JP2008046460A publication Critical patent/JP2008046460A/ja
Application granted granted Critical
Publication of JP4531022B2 publication Critical patent/JP4531022B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Facsimile Heads (AREA)

Description

本発明は、入射したビームを反射して走査することのできるミラーを備えるビームスキャナに関する。
半導体や電子部品に関連する分野では、電子機器、たとえば携帯電話などの情報通信端末の小型化、高機能化を実現するための部品の高密度実装が必要であり、高いスループットで、高密度の基板穴開け加工を行うシステムが求められている。
レーザビームを照射して加工を行なう場合、ガルバノミラー(回転ミラー)でビームを反射して走査するガルバノスキャナ(ビームスキャナ)を用いて照射位置を移動させる方法を採ると、高速な加工が可能になる。
したがって、レーザ加工の高速化、高精度化、高スループット化を実現するため、レーザ加工装置のキーコンポーネントとなるガルバノスキャナに対する要求が高まっている。
図8は、ガルバノスキャナを含むレーザ加工装置の概略図である。レーザ加工装置は、レーザ発振器12、第1ガルバノスキャナ20、第2ガルバノスキャナ24、fθレンズ6、及びステージ8を含んで構成される。第1及び第2ガルバノスキャナ20、24は、それぞれ回転ミラー20a、24aを備える。図示するようにXYZ直交座標系を画定するとき、第1ガルバノスキャナ20の回転ミラー20aは、たとえばZ軸に平行な軸の周囲を回転し、第2ガルバノスキャナ24の回転ミラー24aは、たとえばY軸に平行な軸の周囲を回転する。
レーザ発振器12が、たとえばXY平面に平行な方向に、パルスレーザビーム14を出射する。出射したパルスレーザビーム14は、第1ガルバノスキャナ20の回転ミラー20aでXY平面に平行な所定の方向に反射される。パルスレーザビーム14は、更に、第2ガルバノスキャナ24の回転ミラー24aで所定の方向に反射され、fθレンズ6を経て、ステージ8上に載置された加工対象物10に照射される。パルスレーザビーム14は、fθレンズ6により、加工対象物10の表面に対して垂直な方向に偏向して、加工対象物10に入射する。
第1及び第2ガルバノスキャナ20、24の回転ミラー20a、24aを回転し、レーザビーム14の進行方向を変えることによって、レーザビーム14が加工対象物10上を走査する。
図9は、ムービングコイル式ガルバノスキャナの概略を示す断面図である。ガルバノスキャナは、入射光を反射する回転ミラー33、回転ミラー33を先端に保持し、周囲に回転させる回転軸30、回転軸30を回転自在に支持する第1及び第2軸受31、32、回転軸30に固着されたコイル34、コイル34に電流を流したとき、回転ミラー33を回転させるトルクを発生させる永久磁石35及びヨーク36、並びに、回転ミラー33の回転角度を検出するための角度センサ37を含んで構成される。
永久磁石35とヨーク36とで作られた磁界の中に配置されたコイル34に電流を流したとき発生するトルクは、第1及び第2軸受31、32により支持された回転軸30に伝達され、回転ミラー33を回転させる。回転ミラー33の回転角度は、回転軸30の回転ミラー33とは反対側の端部に取り付けられた角度センサ37によって計測される。
前述したように、ガルバノスキャナの高速、高精度な駆動への要求が高まっている。しかしながら図9に示したガルバノスキャナにおいては、回転ミラー33、コイル34、角度センサ37が回転軸30に、直列的に配置されているため、回転軸30の捩れ変形による共振が発生しやすい。特に、回転軸30の両端に取り付けられている回転ミラー33と角度センサ37とは、回転軸30の捩れ変形による共振現象の主原因となり、回転ミラー33の高速駆動を妨げる。
また、回転軸30に捩れ変形が生じると、回転ミラー33の実際の回転角度と、角度センサ37による測定値との間にずれが生じ、レーザ照射位置の位置決め精度が低下する場合もある。
このような問題点を解決するため、回転軸の端部に、回転ミラーを直列に配置しない構成が提案されている(たとえば、特許文献1、2、及び3参照)。特許文献1には、ミラーの裏面に直接コイルを取り付ける構成のガルバノミラー装置が開示されている。また、特許文献2及び3には、ミラーの両端にコイルを配置する構成(それぞれミラー式光路偏向装置、及び、スキャナ装置)が開示されている。
これらの構成は、ミラーが大きい場合に、駆動に十分なトルクを発生させることは容易ではなく、また、高速、高精度の駆動には適さない。
特に、ミラーにコイルを直接取り付ける構成においては、コイルで発生した熱がミラーに伝達しやすく、その結果、ミラーで反射されたレーザビームの断面形状が劣化したり、位置決め精度が低下する恐れがある。このため、高速駆動に十分な電流を流せないという問題もある。
ムービングコイル式ガルバノスキャナは、回転子にコイルが配設され、固定子に永久磁石が配置される構成を有する。一方、回転子に永久磁石が配置され、固定子にコイルが配設された構成を備えるムービングマグネット式のガルバノスキャナも知られている(たとえば、特許文献4参照)。
特許文献4記載のガルバノスキャナ(ガルバノミラーアクチュエータ)は、ミラーを保持するミラー枠の裏面に、永久磁石を配置した構成を有する。この構成によれば、コイルで発生した熱のミラーへの伝導を防止することができる。しかし、ミラーが大きい場合には、駆動に十分なトルクを発生させることは容易ではない。
なお、コイルの巻数を増やすことで大トルク化を図ろうとする場合、コイルギャップも厚くなり、パーミアンス係数が小さくなって、永久磁石に減磁が生じるという問題がある。このため、コイルの巻数を増やすことは、高速、高精度駆動の要求に応えるものとはいえない。
特開平7−104207号公報 特開平6−331909号公報 特開2003−43405号公報 特開2000−81588号公報
本発明の目的は、高速で動作が可能なビームスキャナを提供することである。
また、高精度で動作が可能なビームスキャナを提供することである。
更に、安定な動作が可能なビームスキャナを提供することである。
本発明の一観点によれば、固定ベースと、前記固定ベースに、回転中心となる仮想直線の周囲に回転可能に支持されたシャフトであって、円筒を前記仮想直線に沿って、切り口が平面となるように切り取った形状部分を備えるシャフトと、前記シャフトの側面の、周方向に関して一部の領域に対向するように配置され、前記固定ベースに固定されたヨークであって、該シャフトの側面に対向する面から前記シャフトに向かって突出し、該シャフトの側面との間に間隙を画定し、該シャフトの回転方向に並ぶように配置された複数の磁極、及び、複数の凸部を含むヨークと、前記シャフトの切り取られた平面部分上に固定された反射鏡と、前記シャフトが回転方向に関して中立位置に静止しているとき、前記ヨーク側を向く前記シャフトの円筒側面に固定され、回転方向に並ぶように配置され、該シャフトの径方向に磁化された一対の永久磁石と、前記複数の磁極の各々に巻かれたコイルとを有し、前記複数の磁極は、それぞれ前記シャフトの回転中心となる仮想直線を含む中立平面に関して対称の関係になるように配置されており、前記複数の凸部は、それぞれ前記シャフトの回転中心となる仮想直線を含む中立平面に関して対称の関係になるように、かつ、前記シャフトが回転方向に関して中立位置に静止しているとき、前記永久磁石に対向するように配置され、更に、複数の前記凸部の各々は、回転方向に関して、相互に隣り合う2つの前記磁極の間に配置され、前記一対の永久磁石は、前記シャフトが中立位置に静止しているときに、前記中立平面に関して相互に対称の関係になるように配置されており、極性が相互に反対向きであり、前記コイルは、前記中立平面に関して対称の位置に配置される複数の前記磁極の前記シャフト側の端部が同一極性に励磁され、かつ、前記中立平面の一方の側に配置された、相互に隣り合う前記磁極の前記シャフト側の端部が反対極性に励磁されるように巻かれているビームスキャナが提供される。
このビームスキャナは、動作における高速性、高精度性、安定性を有するビームスキャナである。
本発明によれば、高速で動作が可能なビームスキャナを提供することができる。
また、高精度で動作が可能なビームスキャナを提供することができる。
更に、安定な動作が可能なビームスキャナを提供することができる。
本願発明者らは、先の出願(特願2006−163559)において、永久磁石の吸引力を利用した、新規な構造のビームスキャナを提案した。このビームスキャナは、大ミラーの駆動に充分なトルクを発生することができる。また、動作の高速性、高精度性を実現することができる。
図1(A)〜(C)、及び、図2を用いて、先の出願に係るビームスキャナを説明する。
図1(A)〜(C)は、先の出願の第1実施例によるガルバノスキャナを示す概略的な断面図である。
図1(A)を参照する。第1実施例によるガルバノスキャナは、磁性体で形成され、長さ方向に内部を貫く揺動軸Cが画定され、揺動軸Cの周囲に回転(自転)可能なシャフト52、シャフト52の径方向上部(光入射側)に取り付けられ、入射光を反射する平面ミラー51、シャフト52の径方向下部に固定された永久磁石53、永久磁石53とともに動力源(シャフト52を自転させる駆動トルクを発生させるトルク発生源)を構成する、磁性体で形成された突極形ヨーク62及びコイル61を含む。ミラー51は、シャフト52に関して、突極形ヨーク62とは反対側に配置される。
コイル61は、突極形ヨーク62に配設されており、突極形ヨーク62は固定ベース65に固着されている。固定ベース65は、実施例によるガルバノスキャナの固定的基準位置を定める。
シャフト52は、長さ方向に沿って離れた2点で、軸受け54a、54bを介して、固定ベース65に固着された軸受けホルダ64a、64bに、揺動軸Cの周囲を揺動(自転)自在に、支持されている。
シャフト52の長さ方向の一端部には、ストッパ55が取り付けられている。ストッパ55と、軸受けホルダ64aに固定されたストッパホルダ63とで、シャフト52の自転可能範囲を制限することができる。
また、ガルバノスキャナは、角度センサ42を含む。角度センサ42は、シャフト52の、ストッパ55が取り付けられた端部とは反対側の端部に固着されたスケール42a、及び、固定ベース65に間接的に固定された(固定ベース65との位置関係が変化しない)エンコーダヘッド42bを含んで構成される。スケール42aには、原点位置が画定されている。エンコーダヘッド42bは、スケール42aの揺動に伴う原点位置の変位を読み取ることで、ミラー51の回転位置を検出することができる。
図1(B)は、図1(A)の1B−1B線に沿う断面図である。
シャフト52の長さ方向の中心付近は、たとえば円筒の一部を、中心軸(揺動軸C)に沿って、切り口が平面となるように、切り取った形状を有する。したがって、この位置におけるシャフト52の断面は、円から弧の一部を弦状に切り取った形状を有する。シャフト52の切り取られた平面部分上には、ミラー51が直接固定される。
ミラー51が配置された側とは、径方向に反対側のシャフト52の円筒側面には、相互に同形、同特性の永久磁石53a、53bが固着される。永久磁石53a、53bは、シャフト52の回転方向に並ぶように配置され、シャフト52の径方向に磁化された一対の永久磁石である。
永久磁石53a、53bは、S極とN極とが相互に逆向きに配置される。たとえば、永久磁石53aは、シャフト52側にS極、突極形ヨーク62側にN極を向けて配置され、永久磁石53bは、シャフト52側にN極、突極形ヨーク62側にS極を向けて配置される。
また、永久磁石53a、53bは、シャフト52の中心軸(揺動軸C)に平行に形成される。更に、シャフト52の中心軸(揺動軸C)を含み、かつ、平面ミラー51と垂直に交わる仮想平面P(仮想平面Pはシャフト52に固定され、シャフト52とともに揺動軸Cの周囲を揺動する仮想平面である。)に関して、対称に配置される。なお、平面ミラー51及びシャフト52も仮想平面Pに関して、自己対称である。
図示するようにXYZ座標系を画定する。鉛直方向をZ方向とし、XY平面に平行な面内に固定ベース65を配置するとき、シャフト52は、中心軸(揺動軸C)がY方向と平行となるように配置される。
突極形ヨーク62は、シャフト52の側面の、周方向に関して一部の領域に対向するように配置される。突極形ヨーク62には、たとえば揺動軸Cを中心軸にもつ半円筒形のくりぬきが形成されており、くりぬき面(シャフト52の側面に対向する面)には、シャフト52側(永久磁石53a、53b側)に向かって垂直に突き出した凸部であるスロット66a〜dが形成されている。たとえばスロット66a〜dは、それぞれ相互に同形である。スロット66a〜dは、シャフト52の側面との間に間隙を画定し、シャフト52の回転方向に並ぶように配置される。
スロット66a〜dは、たとえばY軸と平行、すなわち揺動軸Cと平行に、一定間隔に形成される。また、揺動軸Cを含み、YZ平面に平行な平面(中立平面、図1(B)においては、仮想平面Pと一致する平面)に関して対称な関係となるように配置される。スロット66aとスロット66dとは対称な位置に形成され、スロット66bとスロット66cとは対称な位置に形成される。
スロット66a〜dには、それぞれコイル61a〜dが巻かれている。
前述したように、実施例によるガルバノスキャナは、ミラー51が直接シャフト52に固着される。ミラー51をシャフト52に取り付ける際に、たとえばミラー51を保持するミラー枠を用いることがないため、剛性を高くすることができる。これにより、ミラー51の曲げ変形による共振と、シャフト52の捩れ変形による共振を抑止し、ミラー51を高速、高精度で位置決めすることが可能となる。
また、コイル61a〜dは、ヨーク62(スロット66a〜d)に配設され、シャフト52側には配置されない。したがって、コイル61a〜dで発生した熱が、ミラー51に伝導することで生じる、レーザビーム(ミラー51で反射されるレーザビーム)の形状の劣化や、位置決め精度の低下を防止することができる。
図1(C)を参照して、動力源の構造と動作を説明する。なお、本図に示すのは、コイルに通電せず、永久磁石53a、53bの磁力を考慮しないときの平衡位置(中立位置)に、シャフト52が回転方向に関して静止している状態である。
突極形ヨーク62のスロット66a〜dはシャフト52の中心軸(揺動軸C)に向かって垂直に立ち上がっている。このため、各スロット66a〜dの中心線は、揺動軸Cに向かって伸びている。
永久磁石53a、53bは、シャフト52の、突極形ヨーク62側を向く側面に固定され、中立平面に関して相互に対称の関係になる幾何学的形状を有する。
永久磁石53a、53bは、シャフト52の回転方向に相互に隣り合う2つのスロットの間に配置される。実施例1においては、永久磁石53aは、スロット66aの中心線と、スロット66bの中心線との間に配置され、永久磁石53bは、スロット66cの中心線と、スロット66dの中心線との間に配置される。永久磁石53a、53bの断面形状は、ともに、揺動軸Cを中心とする扇形から、シャフト52を除いた形状である。
スロット66a〜dには、それぞれ同一の巻き数で、コイル61a〜dが形成されている。コイルは、中立平面に関して対称な位置に配置されるスロット(スロット66aと66d、スロット66bと66c)のシャフト52側端部(スロットの先端部)が同一極性に励磁されるように巻かれている。コイル61aとコイル61dの巻き方向は等しく、コイル61bとコイル61cの巻き方向は等しい。
一方向に電流を流したとき、スロット66aとスロット66dには、同一方向の磁極が形成される。また、一方向に電流を流したとき、スロット66bとスロット66cには、同一方向の磁極が形成される。そして、スロット66a、66dの磁極の向きと、スロット66b、66cの磁極の向きとは反対向きである。
たとえば図の「電流方向」の矢印に沿って電流を流したとき、スロット66a、66dについては、中心(揺動軸C)方向端部にN極が形成され、スロット66b、66cについては、中心(揺動軸C)方向端部にS極が形成される。
本図には、ガルバノスキャナ内に形成される磁力線を、閉曲線に矢印を付して示した。永久磁石53a、スロット66b(コイル61b)、突極形ヨーク62、スロット66d(コイル61d)、永久磁石53b、シャフト52、永久磁石53aの向きに磁気回路が形成される。
図に示すような磁極が形成された状態において、永久磁石53aとスロット66aとの間には反発力、永久磁石53aとスロット66bとの間には吸引力が働く。また、永久磁石53bとスロット66cとの間には反発力、永久磁石53bとスロット66dとの間には吸引力が作用する。
これらの吸引力及び反発力によって、可動部(シャフト52、ミラー51、永久磁石53a、53b、及びスケール42a)を揺動軸Cの周囲に揺動させる回転トルク(本図に示す場合においては、反時計回りの向き)が発生する。
第1実施例によるガルバノスキャナおいては、永久磁石53a、53bを、S極とN極を相互に逆向きにして配置したが、同一磁極をともに突極形ヨーク62に向かう半径方向に向けてもよい。この場合、スロット66aとスロット66cに同一方向磁極が発生し、スロット66bとスロット66dに、それとは逆の同一方向磁極が発生するように、コイル61a〜dを配設する。
図2は、第2実施例によるガルバノスキャナの動力源近傍を示す概略的な断面図であり、図1(C)に対応する図である。第2の実施例によるガルバノスキャナは、動力源の構成において、第1の実施例によるガルバノスキャナと異なる。なお、本図に示すのは、コイルに通電せず、永久磁石53a、53bの磁力を考慮しないときの平衡位置(中立位置)に、シャフト52が回転方向に関して静止している状態である。
第2実施例においては、突極形ヨーク62に3つのスロット66a〜cが形成されている。スロット66aとスロット66cとは、中立平面(図2においては、仮想平面Pと一致する平面)に関して、対称な位置に形成される。また、スロット66bは、中心線が、中立平面内にあるように形成される。このように、第2実施例によるガルバノスキャナは、スロットの1つが中立平面上に配置され、かつ、スロットが中立平面に関して対称な幾何学的形状を有している点において、第1の実施例と異なる。スロット66a〜cには、それぞれコイル61a〜cが配設されている。
永久磁石53a、53bは、S極とN極を相互に逆向きにして配置される。たとえば、永久磁石53aは、シャフト52側にS極、突極形ヨーク62側にN極を向けて配置され、永久磁石53bは、シャフト52側にN極、突極形ヨーク62側にS極を向けて配置される。また、永久磁石53aは、スロット66aの中心線と、スロット66bの中心線との間に配置され、永久磁石53bは、スロット66bの中心線と、スロット66cの中心線との間に配置される。
スロット66a〜cには、コイル61a〜cが形成されている。コイル61aとコイル61cの巻き方向は等しく、コイル61bの巻き方向は、それとは逆向きである。また、コイル61aとコイル61cの巻き数は等しく、コイル61bの巻き数の1/2である。
このため、一方向に電流を流したとき、スロット66aとスロット66cには、同一方向の磁極が形成され、スロット66bには、それとは逆向きの磁極が形成される。
たとえば図の「電流方向」の矢印に沿って電流を流したとき、スロット66a、66cについては、中心(揺動軸C)方向端部にN極が形成され、スロット66bについては、中心(揺動軸C)方向端部にS極が形成される。
ガルバノスキャナ内に形成される磁力線を、閉曲線に矢印を付して示した。永久磁石53a、スロット66b(コイル61b)、突極形ヨーク62、スロット66c(コイル61c)、永久磁石53b、シャフト52、永久磁石53aの向きに磁気回路が形成される。
図に示すような磁極が形成された状態において、永久磁石53aとスロット66aとの間には反発力、永久磁石53aとスロット66bとの間には吸引力が働く。また、永久磁石53bとスロット66bとの間には反発力、永久磁石53bとスロット66cとの間には吸引力が作用する。
これらの吸引力及び反発力によって、可動部を揺動軸Cの周囲に揺動させる回転トルクが、本図に示す場合においては、反時計回りの向きに発生する。
第1及び第2実施例によるガルバノスキャナは、大ミラーの高速駆動に充分な、大きいトルクを発生させることができる。また、ミラーの曲げ変形や、シャフトの捩れ変形による共振を抑え、ミラーを高速、安定に位置決めすることができる。更に、コイルの発熱量が小さく、永久磁石の減磁が生じにくい。実施例によるガルバノスキャナは、大ミラーを用いた場合であっても、高速、高精度な動作を実現することができる。
図3(A)は、先の出願に係るビームスキャナの第1及び第2実施例(ガルバノスキャナ)のコギングトルク特性を示すグラフである。
グラフの横軸は、0°位置(O点位置)からの回転角を単位「度(°)」で示し、縦軸は、相対的なコギングトルクを、単位「%」で示した。ここで0°位置(O点位置)とは、コイルに電流を流さず、永久磁石の磁力を考慮しない場合の可動部の平衡位置(中立位置)であり、図1(C)及び図2に図示されているように、仮想平面Pが中立平面と一致する位置のことをいう。
可動部が揺動したとき、中立平面と仮想平面Pとのなす角を回転角と定義した。また、図1(C)及び図2において、仮想平面Pが0°位置(O点位置)から反時計回りに回転したとき、回転角を正と定義し、時計回りに回転したとき、回転角を負と定義した。
更に、図1(C)及び図2において、シャフト(仮想平面)を反時計回りに回転させようとするコギングトルクを正、時計回りに回転させようとするコギングトルクを負と定義した。
曲線aは、第1実施例によるガルバノスキャナについての、回転角とコギングトルクとの関係を示し、曲線bは、第2実施例によるガルバノスキャナについての両者の関係を示す。
グラフの0°位置(O点位置)近傍を参照する。
曲線a、bの双方において、回転角が0°のとき、コギングトルクは0である。したがって、コイルへの非通電時において、0°位置(O点位置)にあるシャフトは、理想的には、その位置を保ち続ける。
しかし、曲線aにおいても、曲線bにおいても、回転角が正のとき、0°位置(O点位置)から約15°位置(A点位置)までの範囲においては、コギングトルクは正の値を示す。したがって、シャフト(仮想平面)が、0°位置(O点位置)から反時計回りに回転したとき、それが約15°位置(A点位置)までの範囲であれば、シャフトには、シャフト(仮想平面)を反時計回りに回転させようとするトルクが加わる。このため、0°位置(O点位置)から反時計回りに回転したシャフトは、一層反時計回りに回転し、0°位置(O点位置)から離れることになる。
一方、曲線a、b双方において、回転角が負のとき、0°位置(O点位置)から約−15°位置(B点位置)までの範囲においては、コギングトルクは負の値を示す。したがって、シャフト(仮想平面)が、0°位置(O点位置)から時計回りに回転したとき、それが約−15°位置(B点位置)までの範囲であれば、シャフトには、シャフト(仮想平面)を時計回りに回転させようとするトルクが加わる。このため、0°位置(O点位置)から時計回りに回転したシャフトは、一層時計回りに回転し、0°位置(O点位置)から離れることになる。
したがって、0°位置(O点位置)は、不安定な平衡位置であることがわかる。
次に、グラフの約15°位置(A点位置)近傍を参照する。
曲線a、bの双方において、シャフト(仮想平面)が約15°位置(A点位置)にあるとき、コギングトルクは0である。したがって、コイルへの非通電時において、約15°位置(A点位置)にあるシャフトは、その位置を保ち続ける。
曲線aにおいても、曲線bにおいても、約15°位置(A点位置)よりも回転角が大きな値をとるとき、すなわち約15°位置(A点位置)を基準として、反時計回りに回転角が増加したときは、コギングトルクは負の値を示す。したがって、シャフト(仮想平面)が、約15°位置(A点位置)から反時計回りに回転したとき、シャフトには、シャフト(仮想平面)を時計回りに回転させようとするトルクが加わる。このため、約15°位置(A点位置)から反時計回りに回転したシャフトは、時計回りに回転し、約15°位置(A点位置)に引き戻されることになる。
一方、曲線a、bの双方において、約15°位置(A点位置)よりも回転角が小さな値をとるとき、すなわち約15°位置(A点位置)を基準として、シャフトが時計回りに回転したときは、それが0°位置(O点位置)までの範囲であれば、コギングトルクは正の値を示す。したがって、シャフト(仮想平面)が、約15°位置(A点位置)から時計回りに回転したとき、シャフトには、シャフト(仮想平面)を反時計回りに回転させようとするトルクが加わる。このため、約15°位置(A点位置)から時計回りに回転したシャフトは、反時計回りに回転し、約15°位置(A点位置)に引き戻されることになる。
したがって、約15°位置(A点位置)は、安定な平衡位置であることがわかる。
また、約−15°位置(B点位置)も、安定な平衡位置である。約15°位置(A点位置)と同様に、曲線が右下がりになっているためである。
図3(B)は、先の出願に係るビームスキャナの第1実施例(ガルバノスキャナ)の可動部が、0°位置(O点位置、中立位置)にあるときの断面を示す概略図である。
先に述べたように、可動部は、0°位置(O点位置、中立位置)にあれば、理想的には、その位置にとどまろうとする。しかし、たとえば0°位置(O点位置、中立位置)から反時計回りに10°回転した場合、可動部は、0°位置(O点位置、中立位置)に引き戻されず、約15°位置(A点位置)に向かって移動する。
図3(C)は、先の出願に係るビームスキャナの第1実施例(ガルバノスキャナ)の可動部が、約15°位置(A点位置)にあるときの断面を示す概略図である。
可動部は、約15°位置(A点位置)において安定する。これは、図中に矢印で示したように、永久磁石53a、スロット66b、突極形ヨーク62、スロット66d、永久磁石53b、シャフト52、永久磁石53aの向きに磁気回路が形成され、永久磁石53aとスロット66bとの間、及び、永久磁石53bとスロット66dとの間に吸引力が働くためである。
なお、たとえば可動部が0°位置(O点位置、中立位置)から時計回りに10°回転した場合、可動部は、0°位置(O点位置、中立位置)に引き戻されず、約−15°位置(B点位置)に向かって移動し、約−15°位置(B点位置)において安定する。
図3(D)は、先の出願に係るビームスキャナの第2実施例(ガルバノスキャナ)の可動部が、0°位置(O点位置、中立位置)にあるときの断面を示す概略図である。
第1実施例と同様に、可動部は、0°位置(O点位置、中立位置)にあれば、理想的には、その位置にとどまろうとする。しかし、たとえば0°位置(O点位置、中立位置)から反時計回りに5°回転した場合、可動部は、0°位置(O点位置、中立位置)に引き戻されず、約15°位置(A点位置)に向かって移動する。
図3(E)は、第2実施例の可動部が、約15°位置(A点位置)にあるときの断面を示す概略図である。
可動部は、約15°位置(A点位置)において安定する。これは、図中に矢印で示したように、永久磁石53a、スロット66b、突極形ヨーク62、スロット66c、永久磁石53b、シャフト52、永久磁石53aの向きに磁気回路が形成され、永久磁石53aとスロット66bとの間、及び、永久磁石53bとスロット66cとの間に吸引力が働くためである。
なお、たとえば可動部が0°位置(O点位置、中立位置)から時計回りに5°回転した場合、可動部は、0°位置(O点位置、中立位置)に引き戻されず、約−15°位置(B点位置)に向かって移動し、約−15°位置(B点位置)において安定する。
以上説明したように、先の出願に係るビームスキャナ(ガルバノスキャナ)は、0°位置(O点位置、中立位置)において引き戻しトルクが作用しないため、0°位置(O点位置、中立位置)で安定せず、約15°位置(A点位置)または約−15°位置(B点位置)で安定する場合がある。
以下、本願発明者らが、先の出願に係るビームスキャナ(ガルバノスキャナ)に改良を加えて作製したビームスキャナ(ガルバノスキャナ)について説明する。
図4(A)及び(B)は、本発明の第1の実施例によるガルバノスキャナの特徴部分(動力源)を示す概略的な断面図である。本発明の第1の実施例は、先の出願に係るビームスキャナ(ガルバノスキャナ)の第1実施例に対応し、図4(A)及び(B)は、図1(C)に対応する。
図4(A)を参照する。本発明の第1の実施例は、図1(C)に示した先の出願の第1実施例に、ポール67a、67bが付加されている点において異なる。
ポール67a、67bは、突極形ヨーク62のくりぬき面に形成され、シャフト52側に向かって垂直に突き出す凸部である。ポール67a、67bは、シャフト52が回転方向に関して中立位置に静止しているとき、それぞれ永久磁石53a、53bに対向するように配置される。たとえばポール67a、67bは、相互に同形であり、シャフト52の側面との間に間隙を画定する。また、シャフト52の回転方向に並ぶように配置される。
ポール67a、及び、ポール67bは、中立平面に関して対称な関係となるように配置される。たとえば図示するように、ポール67aは、スロット66aとスロット66bのちょうど中間に配置され、ポール67bは、スロット66cとスロット66dのちょうど中間に配置される。
スロット66a〜dに巻かれたコイル61a〜dに電流を流したときの動作は、先の出願の第1実施例の場合と同様である。
図の「電流方向」の矢印に沿って電流を流したとき、スロット66a、66dについては、中心(揺動軸C)方向端部にN極が形成され、スロット66b、66cについては、中心(揺動軸C)方向端部にS極が形成される。それに伴って、永久磁石53a、スロット66b(コイル61b)、突極形ヨーク62、スロット66d(コイル61d)、永久磁石53b、シャフト52、永久磁石53aの向きに磁気回路が形成される。
永久磁石53aとスロット66aとの間には反発力、永久磁石53aとスロット66bとの間には吸引力が働く。また、永久磁石53bとスロット66cとの間には反発力、永久磁石53bとスロット66dとの間には吸引力が作用する。これらの吸引力及び反発力によって、可動部は揺動軸Cの周囲に、反時計回りに回転する。
図4(B)を参照して、非通電時の状態について説明する。
コイルに電流を流さないとき、スロット66a〜dは励磁されないため、磁気回路は、図示するように、永久磁石53a、ポール67a、突極形ヨーク62、ポール67b、永久磁石53b、シャフト52、永久磁石53aの向きに形成され、永久磁石53aとポール67aとの間、及び、永久磁石53bとポール67bとの間に吸引力が働く。これらの吸引力により、可動部は、非通電時、中立位置で安定する。
図5(A)及び(B)は、本発明の第2の実施例によるガルバノスキャナの特徴部分(動力源)を示す概略的な断面図である。本発明の第2の実施例は、先の出願に係るビームスキャナ(ガルバノスキャナ)の第2実施例に対応し、図5(A)及び(B)は、図2に対応する。
図5(A)を参照する。本発明の第2の実施例は、図2に示した先の出願の第2実施例に、ポール67a、67bが付加されている点において異なる。
ポール67a、及び、ポール67bは、第1の実施例と同様に、中立平面に関して対称な関係となるように配置される。たとえば図示するように、ポール67aは、スロット66aとスロット66bのちょうど中間に配置され、ポール67bは、スロット66bとスロット66cのちょうど中間に配置される。
スロット66a〜cに巻かれたコイル61a〜cに電流を流したときの動作は、先の出願の第2実施例の場合と同様である。
図の「電流方向」の矢印に沿って電流を流したとき、永久磁石53a、スロット66b(コイル61b)、突極形ヨーク62、スロット66c(コイル61c)、永久磁石53b、シャフト52、永久磁石53aの向きに磁気回路が形成される。
永久磁石53aとスロット66aとの間には反発力、永久磁石53aとスロット66bとの間には吸引力が働き、永久磁石53bとスロット66bとの間には反発力、永久磁石53bとスロット66cとの間には吸引力が作用する。これらの吸引力及び反発力によって、可動部は揺動軸Cの周囲に、反時計回りに回転する。
図5(B)を参照して、非通電時の状態について説明する。
コイルに電流を流さないとき、スロット66a〜cは励磁されないため、磁気回路は、図示するように、永久磁石53a、ポール67a、突極形ヨーク62、ポール67b、永久磁石53b、シャフト52、永久磁石53aの向きに形成され、永久磁石53aとポール67aとの間、及び、永久磁石53bとポール67bとの間に吸引力が働く。これらの吸引力により、可動部は、非通電時、中立位置で安定する。
このように第1及び第2の実施例によるガルバノスキャナは、非通電時において、0°位置に引き戻しトルクを有する、安定性の高いガルバノスキャナである。このため、実施例によるガルバノスキャナを用いると、高精度で位置決め制御を行うことができる。
図6(A)は、本発明の第1の実施例と、先の出願の第1実施例のコギングトルク特性を比較して示すグラフである。
グラフの縦軸及び横軸の意味するところは、図3(A)におけるそれらと同じである。
曲線cは、第1の実施例によるガルバノスキャナについての、回転角とコギングトルクとの関係を示し、曲線dは、先の出願の第1実施例によるガルバノスキャナについての両者の関係を示す。
グラフの0°位置近傍を参照する。
曲線dが、0°位置でコギングトルクが0となる右上がりの曲線であるのに対し、曲線cは、0°位置でコギングトルクが0となる右下がりの曲線である。すなわち第1の実施例によるガルバノスキャナ(曲線c)は、非通電時、コギングトルクを、0°位置への引き戻しトルク(保持トルク)として作用させる、安定性の高いガルバノスキャナである。
また、本発明の第1の実施例(曲線c)は、先の出願の第1実施例(曲線d)と比較した場合、たとえば回転角が−10°〜+10°の範囲で、明らかにコギングトルクの大きさが小さい。
図6(B)は、本発明の第2の実施例と、先の出願の第2実施例のコギングトルク特性を比較して示すグラフである。
グラフの縦軸及び横軸の意味するところは、図3(A)におけるそれらと同じである。
曲線eは、第2の実施例によるガルバノスキャナについての、回転角とコギングトルクとの関係を示し、曲線fは、先の出願の第2実施例によるガルバノスキャナについての両者の関係を示す。
グラフの0°位置近傍を参照する。
図6(A)を参照して行った説明と同様の説明が可能である。第2の実施例によるガルバノスキャナも、非通電時、コギングトルクを、0°位置への引き戻しトルク(保持トルク)として作用させる、安定性の高いガルバノスキャナであり、また、先の出願の第2実施例と比較した場合、たとえば回転角が−8°〜+8°の範囲で、明らかにコギングトルクの大きさが小さい。
図7(A)は、本発明の第1の実施例と、先の出願の第1実施例の出力トルク特性を比較して示すグラフである。
グラフの横軸の意味するところは、図3(A)におけるそれと同じである。縦軸は、相対的な出力トルクを単位「%」で示す。本図においては、0°位置を基準(100%)とした相対的な出力トルクを示した。
曲線gは、第1の実施例によるガルバノスキャナについての、回転角と出力トルクとの関係を示し、曲線hは、先の出願の第1実施例によるガルバノスキャナについての両者の関係を示す。
第1の実施例によるガルバノスキャナ(曲線g)は、先の出願の第1実施例によるガルバノスキャナ(曲線h)と比較した場合、−15°以下の回転角(時計回りに15°以上の回転角)において、トルク変動が小さい。
図7(B)は、本発明の第2の実施例と、先の出願の第2実施例の出力トルク特性を比較して示すグラフである。
グラフの縦軸及び横軸の意味するところは、図7(A)におけるそれらと同じである。
曲線iは、第2の実施例によるガルバノスキャナについての、回転角と出力トルクとの関係を示し、曲線jは、先の出願の第2実施例によるガルバノスキャナについての両者の関係を示す。
第2の実施例によるガルバノスキャナ(曲線i)は、先の出願の第2実施例によるガルバノスキャナ(曲線j)と比較した場合、ほぼすべての回転角においてトルク変動が小さい。
本願発明の実施例によるガルバノスキャナは、コギングトルクを小さくするとともに、コギングトルクを可動部を0°位置で安定させる保持トルクとして作用させることができる。また、トルク変動が小さく、大ミラーの高速駆動に充分な大トルクを得ることができる。このため、大ミラーを使用した場合であっても、高速、高精度、高安定の駆動を実現することができる。
以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。
たとえば、実施例を示す図においては、シャフトが中立位置に静止しているとき、永久磁石が、シャフトの回転方向に関して、相互に隣り合う2つのスロットにまたがるように配置されているが、永久磁石は、相互に隣り合う2つのスロットの間に配置されていてもよい。
その他、種々の変更、改良、組み合わせ等が可能なことは当業者には自明であろう。
レーザ加工及びレーザ加工装置一般に利用することができる。殊に、高速、高精度、高安定のビーム走査が必要とされる、たとえばレーザ穴開け加工やレーザマーキング加工等のレーザ加工、及び、それらのレーザ加工を行う装置に好適に利用される。また、大ミラーが好適に用いられるレーザ加工、及び、レーザ加工装置に利用される。
(A)〜(C)は、先の出願の第1実施例によるガルバノスキャナを示す概略的な断面図である。 第2実施例によるガルバノスキャナの動力源近傍を示す概略的な断面図であり、図1(C)に対応する図である。 (A)は、先の出願に係るビームスキャナの第1及び第2実施例(ガルバノスキャナ)のコギングトルク特性を示すグラフであり、(B)は、先の出願に係るビームスキャナの第1実施例(ガルバノスキャナ)の可動部が、0°位置(O点位置、中立位置)にあるときの断面を示す概略図であり、(C)は、先の出願に係るビームスキャナの第1実施例(ガルバノスキャナ)の可動部が、約15°位置(A点位置)にあるときの断面を示す概略図であり、(D)は、先の出願に係るビームスキャナの第2実施例(ガルバノスキャナ)の可動部が、0°位置(O点位置、中立位置)にあるときの断面を示す概略図であり、(E)は、第2実施例の可動部が、約15°位置(A点位置)にあるときの断面を示す概略図である。 (A)及び(B)は、本発明の第1の実施例によるガルバノスキャナの特徴部分(動力源)を示す概略的な断面図である。 (A)及び(B)は、本発明の第2の実施例によるガルバノスキャナの特徴部分(動力源)を示す概略的な断面図である。 (A)は、本発明の第1の実施例と、先の出願の第1実施例のコギングトルク特性を比較して示すグラフであり、(B)は、本発明の第2の実施例と、先の出願の第2実施例のコギングトルク特性を比較して示すグラフである。 (A)は、本発明の第1の実施例と、先の出願の第1実施例の出力トルク特性を比較して示すグラフであり、(B)は、本発明の第2の実施例と、先の出願の第2実施例の出力トルク特性を比較して示すグラフである。 ガルバノスキャナを含むレーザ加工装置の概略図である。 ムービングコイル式ガルバノスキャナの概略を示す断面図である。
符号の説明
6 fθレンズ
8 ステージ
10 加工対象物
12 レーザ発振器
14 レーザビーム
20 第1ガルバノスキャナ
20a 回転ミラー
24 第2ガルバノスキャナ
24a 回転ミラー
30 回転軸
31 第1軸受
32 第2軸受
33 回転ミラー
34 コイル
35 永久磁石
36 ヨーク
37 角度センサ
42 角度センサ
42a スケール
42b エンコーダヘッド
51 ミラー
52 シャフト
53、53a、53b 永久磁石
54a、54b 軸受け
55 ストッパ
61、61a〜d コイル
62 突極形ヨーク
63 ストッパホルダ
64a、64b 軸受けホルダ
65 固定ベース
66a〜d スロット
67a、67b ポール
C 揺動軸
P 仮想平面

Claims (3)

  1. 固定ベースと、
    前記固定ベースに、回転中心となる仮想直線の周囲に回転可能に支持されたシャフトであって、円筒を前記仮想直線に沿って、切り口が平面となるように切り取った形状部分を備えるシャフトと、
    前記シャフトの側面の、周方向に関して一部の領域に対向するように配置され、前記固定ベースに固定されたヨークであって、該シャフトの側面に対向する面から前記シャフトに向かって突出し、該シャフトの側面との間に間隙を画定し、該シャフトの回転方向に並ぶように配置された複数の磁極、及び、複数の凸部を含むヨークと、
    前記シャフトの切り取られた平面部分上に固定された反射鏡と、
    前記シャフトが回転方向に関して中立位置に静止しているとき、前記ヨーク側を向く前記シャフトの円筒側面に固定され、回転方向に並ぶように配置され、該シャフトの径方向に磁化された一対の永久磁石と、
    前記複数の磁極の各々に巻かれたコイルと
    を有し、
    前記複数の磁極は、それぞれ前記シャフトの回転中心となる仮想直線を含む中立平面に関して対称の関係になるように配置されており、
    前記複数の凸部は、それぞれ前記シャフトの回転中心となる仮想直線を含む中立平面に関して対称の関係になるように、かつ、前記シャフトが回転方向に関して中立位置に静止しているとき、前記永久磁石に対向するように配置され、更に、複数の前記凸部の各々は、回転方向に関して、相互に隣り合う2つの前記磁極の間に配置され、
    前記一対の永久磁石は、前記シャフトが中立位置に静止しているときに、前記中立平面に関して相互に対称の関係になるように配置されており、極性が相互に反対向きであり、
    前記コイルは、前記中立平面に関して対称の位置に配置される複数の前記磁極の前記シャフト側の端部が同一極性に励磁され、かつ、前記中立平面の一方の側に配置された、相互に隣り合う前記磁極の前記シャフト側の端部が反対極性に励磁されるように巻かれているビームスキャナ。
  2. 前記シャフトが中立位置に静止しているときに、前記永久磁石が、回転方向に関して、相互に隣り合う2つの前記磁極の間に、または、またがるように配置される請求項1に記載のビームスキャナ。
  3. 前記複数の磁極のうち1つの磁極が、前記中立平面上に配置されており、該中立平面に関して対称な幾何学的形状を有する請求項1または2に記載のビームスキャナ。
JP2006223126A 2006-08-18 2006-08-18 ビームスキャナ Expired - Fee Related JP4531022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223126A JP4531022B2 (ja) 2006-08-18 2006-08-18 ビームスキャナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223126A JP4531022B2 (ja) 2006-08-18 2006-08-18 ビームスキャナ

Publications (2)

Publication Number Publication Date
JP2008046460A JP2008046460A (ja) 2008-02-28
JP4531022B2 true JP4531022B2 (ja) 2010-08-25

Family

ID=39180243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223126A Expired - Fee Related JP4531022B2 (ja) 2006-08-18 2006-08-18 ビームスキャナ

Country Status (1)

Country Link
JP (1) JP4531022B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153719B2 (ja) * 2009-04-28 2013-02-27 三菱電機株式会社 ガルバノスキャナ
JP5744330B2 (ja) * 2012-06-08 2015-07-08 三菱電機株式会社 ガルバノスキャナおよびレーザ加工機
JP5875546B2 (ja) * 2013-03-18 2016-03-02 三菱電機株式会社 ガルバノスキャナ
KR102439918B1 (ko) * 2018-01-26 2022-09-02 미쓰비시덴키 가부시키가이샤 갈바노 스캐너 및 레이저 가공기
US11543652B2 (en) * 2020-04-20 2023-01-03 Luminar, Llc Imaging system having coil on mirror actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140055A (ja) * 1990-09-29 1992-05-14 Aisin Seiki Co Ltd ロータリ・アクチュエータ
JPH07123681A (ja) * 1993-10-29 1995-05-12 Toyota Motor Corp 揺動モータ
JP2000081588A (ja) * 1998-09-04 2000-03-21 Canon Inc ガルバノミラーアクチュエータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140055A (ja) * 1990-09-29 1992-05-14 Aisin Seiki Co Ltd ロータリ・アクチュエータ
JPH07123681A (ja) * 1993-10-29 1995-05-12 Toyota Motor Corp 揺動モータ
JP2000081588A (ja) * 1998-09-04 2000-03-21 Canon Inc ガルバノミラーアクチュエータ

Also Published As

Publication number Publication date
JP2008046460A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
JP4727509B2 (ja) ビームスキャナ
JP4531022B2 (ja) ビームスキャナ
JP6367924B2 (ja) スキャナ装置
JP7421140B2 (ja) 回転往復駆動アクチュエータ
JP7140980B2 (ja) 回転往復駆動アクチュエーター
JP5744330B2 (ja) ガルバノスキャナおよびレーザ加工機
JP3974068B2 (ja) プレーナー型電磁アクチュエータ
JP2016033593A (ja) スキャナ装置
US20110205602A1 (en) Optical scanner and image forming apparatus
KR100291500B1 (ko) 리니어모우터와 이것을 사용한 스테이지장치 및 노광장치
JP4680133B2 (ja) ビームスキャナ
JPH0682711A (ja) 走査ミラーの駆動装置
JP2004020956A (ja) ビームスキャナ
JP2007256474A (ja) ビームスキャナ
JP2003043405A (ja) スキャナ装置
JP2003344797A (ja) 光走査装置
JP5388948B2 (ja) ガルバノスキャナ、及びレーザ加工装置
JP2005084571A (ja) 光スキャナ装置
JP2515945B2 (ja) 揺動ブラシレスアクチュエ−タ
JPH05284714A (ja) 揺動ブラシレスアクチュエ−タ
JP4920950B2 (ja) 駆動装置
JP3780313B2 (ja) 2軸アクチュエータ及びその駆動回路及びその駆動方法
JP2014071160A (ja) 2軸型ガルバノミラーデバイス
JP4723329B2 (ja) ステップモーター
WO2023084586A1 (ja) 揺動モータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees