JP4530630B2 - Method for producing porous film and porous film - Google Patents

Method for producing porous film and porous film Download PDF

Info

Publication number
JP4530630B2
JP4530630B2 JP2003283862A JP2003283862A JP4530630B2 JP 4530630 B2 JP4530630 B2 JP 4530630B2 JP 2003283862 A JP2003283862 A JP 2003283862A JP 2003283862 A JP2003283862 A JP 2003283862A JP 4530630 B2 JP4530630 B2 JP 4530630B2
Authority
JP
Japan
Prior art keywords
film
polymer
porous film
average
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003283862A
Other languages
Japanese (ja)
Other versions
JP2004175104A (en
Inventor
美智男 露本
洋 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2003283862A priority Critical patent/JP4530630B2/en
Publication of JP2004175104A publication Critical patent/JP2004175104A/en
Application granted granted Critical
Publication of JP4530630B2 publication Critical patent/JP4530630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、表面に実質的にスキン層(緻密層)を有さず、連続微小孔が多数形成された多孔性フィルムに関する。この多孔性フィルムは、精密濾過、分離濃縮等の膜分離技術や、その空孔特性をそのまま利用したり、または空孔を機能性材料で充填することにより、電池用セパレーター、電解コンデンサー、回路用基板等、広範囲な基板材料としての利用が可能である。   The present invention relates to a porous film that has substantially no skin layer (dense layer) on the surface and has a large number of continuous micropores. This porous film can be used for separators for batteries, electrolytic capacitors, circuits by utilizing membrane separation technologies such as microfiltration and separation / concentration, and the characteristics of the pores as they are, or by filling the pores with functional materials. It can be used as a wide range of substrate materials such as substrates.

従来、多孔性フィルムを構成する素材として、アミドイミド系ポリマーやイミド系ポリマー、スルホン系ポリマー、フッ素系ポリマー、オレフィン系ポリマーなどの高分子化合物が知られている。このような素材からなる多孔性フィルムを製造する方法として、例えば、上記高分子化合物を含む混合液をフィルム状に流延した後に凝固液に導く方法(相転換法)が知られている。しかし、上記高分子化合物を素材として前記方法により製造したフィルム表面にはスキン層(緻密層)が存在し、実質的な開孔部が存在しなかったり、また存在してもその開孔率が低かった。例えば、イミド系ポリマーを素材とした多孔性フィルムとして、ポリイミドからなる多孔膜やその製造方法が開示されているが(例えば、特許文献1〜3参照。)、これらは表面に孔を開けるために溶媒置換速度調整材を介して製造することが必要なために、その製造工程が複雑である上、充分な開孔率と透過性を有するものではないという不具合があった。   Conventionally, polymer compounds such as an amideimide polymer, an imide polymer, a sulfone polymer, a fluorine polymer, and an olefin polymer are known as materials constituting the porous film. As a method for producing a porous film made of such a material, for example, a method (phase change method) in which a mixed solution containing the above polymer compound is cast into a film and then led to a coagulating solution is known. However, there is a skin layer (dense layer) on the surface of the film produced by the above method using the above-mentioned polymer compound as a raw material, and there is no substantial opening portion, or even if it exists, the opening ratio is low. It was low. For example, as a porous film made of an imide-based polymer, a porous film made of polyimide and a method for producing the same have been disclosed (for example, refer to Patent Documents 1 to 3). Since it is necessary to manufacture via a solvent substitution rate adjusting material, the manufacturing process is complicated, and there is a problem that it does not have a sufficient porosity and permeability.

特開2001−67643号公報JP 2001-67643 A 特開2001−145826号公報JP 2001-145826 A 特開2000−319442号公報JP 2000-319442 A

本発明の目的は、フィルム表面の開孔率が高く、且つフィルムの表面から内部にかけて均質な微小孔を有する多孔性フィルムを提供することにある。
本発明の他の目的は、上記多孔性フィルムを簡便に製造できる方法を提供することにある。
An object of the present invention is to provide a porous film having a high porosity on the film surface and having uniform micropores from the surface to the inside of the film.
Another object of the present invention is to provide a method by which the porous film can be easily produced.

本発明者らは、上記目的を達成するため鋭意検討した結果、高分子の表面張力と基板の表面張力との差が特定値以上である高分子及び基板を用いて、該高分子を含む混合溶液を該基板上へフィルム状に流延し相転換させることにより、基板に接触していた側のフィルム表面にも高い開孔率で均質な微小孔を有する多孔性フィルムが得られることを見いだし、本発明を完成した。   As a result of diligent investigations to achieve the above object, the inventors of the present invention have used a polymer and a substrate in which the difference between the surface tension of the polymer and the surface tension of the substrate is a specific value or more, and a mixture containing the polymer. It has been found that a porous film having uniform micropores with a high open area can be obtained on the film surface on the side in contact with the substrate by casting the solution on the substrate in the form of a film and performing phase conversion. The present invention has been completed.

すなわち、本発明は、素材がアミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子であり、連通性を有する微小孔が多数存在する多孔性フィルムであって、該フィルムの厚みが20〜200μm、透気度を表すガーレー値が0.2〜29秒/100ccであり、フィルムの両表面について、表面の平均孔径が0.05〜10μm、表面の平均開孔率が48%以上、表面の平均孔径Aと内部の平均孔径Bとの比率A/Bが0.3〜3、且つ表面の平均開孔率Cと内部の平均開孔率Dとの比率C/Dが0.7〜1.5であることを特徴とする多孔性フィルムを提供する。
本発明は、また、素材がアミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子であり、連通性を有する微小孔が多数存在する多孔性フィルムであって、該フィルムの厚みが20〜200μm、透気度を表すガーレー値が0.2〜29秒/100ccであり、フィルムの両面の平均孔径A 1 ,A 2 が何れも0.05〜10μm、フィルムの両面の平均開孔率C 1 ,C 2 が何れも48%以上であり、且つ一方の表面の平均孔径A 1 と他方の表面の平均孔径A 2 との比率A 1 /A 2 が0.3〜3、一方の表面の平均開孔率C 1 と他方の表面の平均開孔率C 2 との比率C 1 /C 2 が0.7〜1.5であることを特徴とする多孔性フィルムを提供する。
That is, the present invention is a porous film whose material is at least one polymer selected from an amide-imide polymer and an imide-based polymer, and in which a large number of micropores having communication exists, and the thickness of the film is 20 to 200 μm, Gurley value representing air permeability is 0.2 to 29 seconds / 100 cc, the average surface pore diameter is 0.05 to 10 μm, and the average surface area porosity is 48% or more for both surfaces of the film The ratio A / B of the surface average pore diameter A to the internal average pore diameter B is 0.3 to 3, and the ratio C / D of the surface average pore ratio C to the internal average pore ratio D is 0. The porous film is characterized by being 7 to 1.5.
The present invention is also a porous film in which the material is at least one polymer selected from an amide-imide polymer and an imide-based polymer, and there are a large number of micropores having connectivity, and the thickness of the film is 20 to 200 μm, Gurley value representing air permeability is 0.2 to 29 seconds / 100 cc, average pore diameters A 1 and A 2 on both sides of the film are both 0.05 to 10 μm, average aperture on both sides of the film The ratios C 1 and C 2 are both 48% or more, and the ratio A 1 / A 2 between the average pore diameter A 1 on one surface and the average pore diameter A 2 on the other surface is 0.3-3, the ratio C 1 / C 2 between the average porosity C 2 having an average porosity C 1 and the other surface of the surface to provide a porous film which is characterized in that 0.7 to 1.5.

本発明は、さらに、前記の多孔性フィルムの製造方法であって、アミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造するに際し、該多孔性フィルムを構成する高分子の表面張力Sa[mN/m]と基板の表面張力Sb[mN/m]との差(Sa−Sb)が−10以上となる高分子及び基板を用い、多孔性フィルムを構成する素材となる高分子成分8〜25重量%、水溶性ポリマー10〜50重量%、水0〜10重量%、水溶性極性溶媒30〜82重量%からなる混合溶液を高分子溶液として基板上へフィルム状に流延したのち凝固液に導き、相転換させて多孔性フィルムを得る多孔性フィルムの製造方法を提供する。
本発明は、さらにまた、前記の多孔性フィルムの製造方法であって、アミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造するに際し、該多孔性フィルムを構成する高分子の表面張力Sa[mN/m]と基板の表面張力Sb[mN/m]との差(Sa−Sb)が−10以上となる高分子及び基板を用い、多孔性フィルムを構成する高分子を水溶性極性溶媒に溶解した高分子溶液を基板上へフィルム状に流延する際に、該フィルムを相対湿度70〜100%、温度15〜90℃からなる雰囲気下に0.2〜15分間保持した後、高分子成分の非溶剤からなる凝固液に導く工程を含む多孔性フィルムの製造方法を提供する。
本発明は、また、前記の多孔性フィルムの製造方法であって、アミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造するに際し、該多孔性フィルムを構成する高分子の表面張力Sa[mN/m]と基板の表面張力Sb[mN/m]との差(Sa−Sb)が−10以上となる高分子及び基板を用い、多孔性フィルムを構成する素材となる高分子成分8〜25重量%、水溶性ポリマー10〜50重量%、水0〜10重量%、水溶性極性溶媒30〜82重量%からなる混合溶液を高分子溶液として基板上へフィルム状に流延する際に、該フィルムを相対湿度70〜100%、温度15〜90℃からなる雰囲気下に0.2〜15分間保持した後、高分子成分の非溶剤からなる凝固液に導き、相転換させて多孔性フィルムを得る多孔性フィルムの製造方法を提供する。
The present invention further relates to a method for producing the porous film, wherein a polymer solution containing at least one polymer component selected from an amideimide polymer and an imide polymer is cast on a substrate in the form of a film. In producing a porous film by the phase change method, the difference between the surface tension Sa [mN / m] of the polymer constituting the porous film and the surface tension Sb [mN / m] of the substrate (Sa−Sb) ) Is a polymer and a substrate of -10 or more, the polymer component 8-25% by weight, water-soluble polymer 10-50% by weight, water 0-10% by weight, water-soluble Provided is a method for producing a porous film in which a mixed solution composed of 30 to 82% by weight of a polar solvent is cast as a polymer solution onto a substrate in the form of a film, guided to a coagulating liquid, and phase-converted to obtain a porous film. .
The present invention further provides a method for producing the porous film, wherein a polymer solution containing at least one polymer component selected from an amide-imide polymer and an imide-based polymer is flown onto a substrate in the form of a film. When the porous film is produced by the phase change method, the difference between the surface tension Sa [mN / m] of the polymer constituting the porous film and the surface tension Sb [mN / m] of the substrate (Sa− When a polymer solution in which the polymer constituting the porous film is dissolved in a water-soluble polar solvent using a polymer and a substrate in which Sb) is −10 or more is cast onto the substrate in the form of a film, Provided is a method for producing a porous film comprising a step of holding in an atmosphere composed of a relative humidity of 70 to 100% and a temperature of 15 to 90 ° C. for 0.2 to 15 minutes, and then leading to a coagulating liquid composed of a non-solvent of a polymer component You .
The present invention is also a method for producing the above porous film, in which a polymer solution containing at least one polymer component selected from an amideimide polymer and an imide polymer is cast into a film on a substrate. In producing a porous film by the phase change method, the difference between the surface tension Sa [mN / m] of the polymer constituting the porous film and the surface tension Sb [mN / m] of the substrate (Sa−Sb) ) Is a polymer and a substrate of -10 or more, the polymer component 8-25% by weight, water-soluble polymer 10-50% by weight, water 0-10% by weight, water-soluble When a mixed solution composed of 30 to 82% by weight of a polar solvent is cast as a polymer solution onto a substrate in the form of a film, the film is placed in an atmosphere having a relative humidity of 70 to 100% and a temperature of 15 to 90 ° C. 2 to After holding for 5 minutes, it introduced into a coagulating liquid made of a non-solvent for the polymer component, to provide a method of manufacturing a porous film to obtain a porous film by phase inversion.

本発明の製造方法によれば、高分子成分を含む混合溶液が基板上で良好な相分離構造をとるため、基板側表面の開孔率が向上し、均質な微小孔が形成された多孔性フィルムを簡便に得ることができる。このため、本発明の多孔性フィルムは、精密濾過、分離濃縮等の膜分離技術に利用できるほか、その空孔を機能性材料で充填することにより、電池用セパレータ、電解コンデンサー、回路用基板等、広範囲な基板材料としての利用が可能である。   According to the production method of the present invention, since the mixed solution containing the polymer component has a good phase separation structure on the substrate, the porosity on the substrate side surface is improved, and the porosity in which homogeneous micropores are formed is formed. A film can be easily obtained. For this reason, the porous film of the present invention can be used for membrane separation techniques such as microfiltration and separation / concentration, and by filling the pores with functional materials, battery separators, electrolytic capacitors, circuit boards, etc. It can be used as a wide range of substrate materials.

本発明の製造方法では、多孔性フィルムを構成する素材となる高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造する。   In the production method of the present invention, a polymer solution containing a polymer component as a material constituting the porous film is cast onto a substrate in the form of a film, and the porous film is produced by a phase change method.

高分子成分としては、例えば、アミドイミド系ポリマー、イミド系ポリマー、アミド系ポリマー、スルホン系ポリマー、セルロース系ポリマー、アクリル系ポリマー、フッ素系ポリマー、オレフィン系ポリマーなどのポリマーが挙げられるがこれらに限定されるものではない。好ましくは、水溶性の極性溶媒に溶解性を有し相転換法によりフィルムを形成しうるものが用いられる。具体的には、アミドイミド系ポリマー、イミド系ポリマー、ポリエーテルスルホン、ポリスルホン、アクリル系ポリマー、セルロースアセテート等が好適である。これらの高分子成分は単独又は2種以上組み合わせて用いることも可能である。   Examples of the polymer component include, but are not limited to, polymers such as amideimide polymers, imide polymers, amide polymers, sulfone polymers, cellulose polymers, acrylic polymers, fluorine polymers, and olefin polymers. It is not something. Preferably, those having solubility in a water-soluble polar solvent and capable of forming a film by a phase change method are used. Specifically, amidoimide polymers, imide polymers, polyethersulfone, polysulfone, acrylic polymers, cellulose acetate, and the like are suitable. These polymer components can be used alone or in combination of two or more.

基板としては、例えば、ガラス板;ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系樹脂、ナイロン、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート、スチレン系樹脂、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)等のフッ素系樹脂、塩化ビニル樹脂、その他の樹脂からなるプラスチックシート;ステンレス板、アルミニウム板等の金属板などが挙げられる。なお、表面素材と内部素材とを違うもので組み合わせた複合板でもよい。   Examples of the substrate include glass plates; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyesters such as nylon and polyethylene terephthalate (PET); polycarbonates, styrene resins, PTFE (polytetrafluoroethylene), and PVDF (polypropylene). A plastic sheet made of a fluororesin such as vinylidene chloride), a vinyl chloride resin, or other resin; a metal plate such as a stainless steel plate or an aluminum plate. In addition, the composite board which combined the surface material and the internal material with a different thing may be sufficient.

本発明の主な特徴は、多孔性フィルムを構成する高分子の表面張力Sa[mN/m(=dyn/cm)]と基板の表面張力Sb[mN/m(=dyn/cm)]との差(Sa−Sb)が−10以上となる高分子と基板とを用いて多孔性フィルムを製造する点にある。なお、基板が、表面素材と内部素材が異なった複合板である場合は、前記高分子との接触面を形成する素材の表面張力が上記関係を満たしていればよい。前記(Sa−Sb)が−10未満の場合には、高分子と基板の界面に高分子が凝集して緻密相が形成されるため、表面開孔率が低く実用に耐えないフィルムとなる。   The main features of the present invention are the surface tension Sa [mN / m (= dyn / cm)] of the polymer constituting the porous film and the surface tension Sb [mN / m (= dyn / cm)] of the substrate. A porous film is manufactured using a polymer and a substrate having a difference (Sa−Sb) of −10 or more. When the substrate is a composite plate having a different surface material and internal material, the surface tension of the material forming the contact surface with the polymer should satisfy the above relationship. When (Sa-Sb) is less than -10, the polymer aggregates at the interface between the polymer and the substrate to form a dense phase, so that the surface porosity is low and the film cannot be used practically.

上記条件を満たす高分子と基板を用いることにより、流延時には該高分子を含む混合溶液が該基板上で海−島構造を有する相分離を生じ、これがフィルムの微小孔の発生源となる。このため、特に、フィルムの基板と接触している側の表面(「フィルムの基板側表面」と称する場合がある)の開孔率が高い多孔性フィルムを得ることができる。特に、前記(Sa−Sb)が0を超える場合には、相転換法により凝集した高分子が基板の表面を濡らすことができずはじかれるため、より効果的に開孔することができる点で好ましく、より好ましくは3以上、さらに好ましくは7以上であり、13以上が最も好適である。(Sa−Sb)の値の上限は特に制限されず、例えば100程度であってもよい。   By using a polymer and a substrate satisfying the above conditions, a mixed solution containing the polymer causes phase separation having a sea-island structure on the substrate during casting, which becomes a source of micropores in the film. For this reason, in particular, a porous film having a high porosity on the surface of the film in contact with the substrate (sometimes referred to as “film substrate-side surface”) can be obtained. In particular, when (Sa-Sb) exceeds 0, the polymer aggregated by the phase conversion method cannot repel the surface of the substrate and is repelled, so that the holes can be more effectively opened. Preferably, it is 3 or more, more preferably 7 or more, and most preferably 13 or more. The upper limit of the value of (Sa−Sb) is not particularly limited, and may be about 100, for example.

本発明において、流延に付す高分子溶液としては、例えば、多孔性フィルムを構成する素材となる高分子成分8〜25重量%、水溶性ポリマー10〜50重量%、水0〜10重量%、水溶性極性溶媒30〜82重量%からなる混合溶液などが好ましい。この際に、高分子成分の濃度が低すぎるとフィルムの強度が弱くなり、また高すぎると空孔率が小さくなる。水溶性ポリマーは、フィルム内部を均質なスポンジ状の多孔構造にするために添加するが、この際に濃度が低すぎるとフィルム内部に10μmを超えるような巨大ボイドが発生し均質性が低下する。また水溶性ポリマーの濃度が高すぎると溶解性が悪くなる他、50重量%を超える場合には、フィルム強度が弱くなるなどの不具合が生じやすい。   In the present invention, the polymer solution to be cast is, for example, 8 to 25% by weight of a polymer component as a material constituting the porous film, 10 to 50% by weight of a water-soluble polymer, 0 to 10% by weight of water, A mixed solution composed of 30 to 82% by weight of a water-soluble polar solvent is preferred. At this time, if the concentration of the polymer component is too low, the strength of the film becomes weak, and if it is too high, the porosity becomes small. The water-soluble polymer is added to make the inside of the film a uniform sponge-like porous structure. If the concentration is too low at this time, a huge void exceeding 10 μm is generated inside the film and the homogeneity is lowered. In addition, if the concentration of the water-soluble polymer is too high, the solubility becomes worse, and if it exceeds 50% by weight, problems such as weak film strength tend to occur.

水溶性極性溶媒としては、例えば、ジメチルスルホキシド,N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、2−ピロリドン及びこれらの混合物などが挙げられ、前記高分子成分として使用するポリマーの化学骨格に応じて溶解性を有するもの(高分子成分の良溶媒)を使用することができる。これらの溶媒は単独又は2種以上組み合わせて用いることもできる。   Examples of the water-soluble polar solvent include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 2-pyrrolidone, and mixtures thereof. In addition, those having solubility (good solvent for the polymer component) can be used according to the chemical skeleton of the polymer used as the polymer component. These solvents can be used alone or in combination of two or more.

また、膜構造をスポンジ状に多孔化するためには、水溶性ポリマーや水を加えて、流延時の相分離構造を制御することが効果がある。水溶性ポリマーとしては、例えば、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリル酸、多糖類等やその誘導体などが挙げられる。これらの水溶性ポリマーは単独で又は2種以上を組み合わせて使用できる。これらの中でも、フィルムに存在する微小孔の連通性の点から、ポリビニルピロリドンが特に好ましい。多孔化のためには、水溶性ポリマーの分子量は1000以上が良く、好ましくは5000以上、特に好ましくは1万以上(例えば、1万〜20万程度)である。水の添加量はボイド径の調整に用いることができ、添加量を増やすことで径を大きくすることが可能となる。   In order to make the membrane structure porous like a sponge, it is effective to add a water-soluble polymer or water to control the phase separation structure during casting. Examples of the water-soluble polymer include polyethylene glycol, polyvinyl pyrrolidone, polyethylene oxide, polyvinyl alcohol, polyacrylic acid, polysaccharides, and derivatives thereof. These water-soluble polymers can be used alone or in combination of two or more. Among these, polyvinylpyrrolidone is particularly preferable from the viewpoint of the connectivity of the micropores present in the film. For porosity formation, the molecular weight of the water-soluble polymer is preferably 1000 or more, preferably 5000 or more, particularly preferably 10,000 or more (for example, about 10,000 to 200,000). The added amount of water can be used to adjust the void diameter, and the diameter can be increased by increasing the added amount.

上記のような組成を有する混合溶液を高分子溶液として用い、これを基板上へフィルム状に流延したのち凝固液に導き、相転換させることにより微小孔を均質に形成することができる。   By using a mixed solution having the above composition as a polymer solution, casting it in a film form on a substrate, guiding it to a coagulating liquid, and performing phase conversion, micropores can be formed uniformly.

本発明においては、高分子溶液をフィルム状に流延する際に、該フィルムを相対湿度70〜100%、温度15〜90℃からなる雰囲気下に0.2〜15分間保持した後、高分子成分の非溶剤からなる凝固液に導くのが望ましい。より好ましい条件としては、相対湿度90〜100%、温度30〜80℃、特に好ましい条件は、相対湿度約100%(例えば、95〜100%)、温度40〜70℃である。空気中の水分量がこれよりも少ない場合は、フィルムの開孔率が充分でなくなる不具合がある。   In the present invention, when the polymer solution is cast into a film, the film is held for 0.2 to 15 minutes in an atmosphere composed of a relative humidity of 70 to 100% and a temperature of 15 to 90 ° C. It is desirable to lead to a coagulating liquid consisting of non-solvent components. More preferable conditions are a relative humidity of 90 to 100% and a temperature of 30 to 80 ° C, and particularly preferable conditions are a relative humidity of about 100% (for example, 95 to 100%) and a temperature of 40 to 70 ° C. When the amount of moisture in the air is less than this, there is a problem that the aperture ratio of the film is not sufficient.

流延後のフィルムを上記条件におくことにより、特に、該フィルムの基板側表面の反対の表面(「フィルムの空気側表面」と称する場合がある)の開孔率を向上させることができる。開孔率が向上する理由としては、加湿下に置くことにより水分がフィルム表面から内部へと侵入し、混合溶液の相分離を効率的に促進するためと考えられる。   By setting the film after casting to the above-mentioned conditions, it is possible to improve the aperture ratio of the surface opposite to the substrate side surface of the film (sometimes referred to as “the air side surface of the film”). The reason why the open area ratio is improved is considered to be that moisture is infiltrated from the surface of the film into the interior by placing it under humidification, thereby effectively promoting phase separation of the mixed solution.

相転換法に用いる凝固液としては、高分子成分を凝固させる溶剤であればよく、高分子成分として使用するポリマーの種類によって適宜選択されるが、例えば、水;メタノール、エタノール等の1価アルコール、グリセリン等の多価アルコールなどのアルコール;ポリエチレングリコール等の水溶性高分子;これらの混合物などが使用できる。   The coagulation liquid used in the phase conversion method may be any solvent that coagulates the polymer component, and is appropriately selected depending on the type of polymer used as the polymer component. For example, water; monohydric alcohols such as methanol and ethanol And alcohols such as polyhydric alcohols such as glycerin; water-soluble polymers such as polyethylene glycol; and mixtures thereof.

本発明の製造方法によれば、開孔率が高く、しかも均質な微小孔が形成された多孔質フィルムを得ることができる。以下に、本発明の製造方法により得られる多孔性フィルムについて説明する。   According to the production method of the present invention, it is possible to obtain a porous film having a high aperture ratio and in which uniform micropores are formed. Below, the porous film obtained by the manufacturing method of this invention is demonstrated.

多孔性フィルムの厚みは、例えば5〜200μm、好ましくは10〜100μm、さらに好ましくは20〜80μmである。厚みが薄くなりすぎるとフィルムの機械強度が充分でなくなり、一方厚すぎる場合には孔径分布を均一に制御することが困難となる。   The thickness of the porous film is, for example, 5 to 200 μm, preferably 10 to 100 μm, and more preferably 20 to 80 μm. If the thickness is too thin, the mechanical strength of the film will be insufficient, while if it is too thick, it will be difficult to control the pore size distribution uniformly.

多孔性フィルムに存在する微小孔の平均孔径(=フィルム表面の平均孔径)は、その用途により好適なサイズが異なるが、通常0.01〜10μmであり、好ましくは0.05〜5μmである。サイズが小さすぎる場合には透過性能が劣り、大きすぎる場合は分離濃縮の効率が落ちるなどの不具合がある。また多孔部に機能性材料を充填する場合にはサブミクロン〜ミクロン単位の分解能で充填できることが好ましいことから、上述の平均孔径が好ましく、小さすぎると機能性材料を充填できないなどの不具合が生じたり、一方、大きすぎるとサブミクロン〜ミクロン単位の制御が困難となる。また、フィルム表面の最大孔径は15μm以下が好ましい。   The average pore diameter of the micropores present in the porous film (= average pore diameter on the film surface) varies depending on the application, but is usually from 0.01 to 10 μm, preferably from 0.05 to 5 μm. If the size is too small, the permeation performance is inferior, and if it is too large, the separation and concentration efficiency is reduced. In addition, when the porous material is filled with a functional material, it is preferable that the porous material can be filled with submicron to micron resolution, so that the average pore diameter described above is preferable, and if it is too small, the functional material cannot be filled. On the other hand, if it is too large, control in submicron to micron units becomes difficult. The maximum pore diameter on the film surface is preferably 15 μm or less.

多孔性フィルムの内部の平均開孔率(空孔率)は、例えば30〜80%であり、好ましくは40〜80%、さらに好ましくは45〜80%である。空孔率が低すぎると、透過性能が十分でなかったり、機能性材料を充填しても機能が発揮できないことがある。一方、空孔率が高すぎると、機能的強度に劣る可能性がある。また、フィルムの表面の平均開孔率(表面開孔率)は、例えば48%以上(例えば48〜80%)であり、好ましくは60〜80%程度である。表面開孔率が低すぎると透過性能が十分でなかったり、機能性材料を充填してもその機能が充分に発揮できないことがある。一方、表面開孔率が高すぎると機械的強度が低下しやすくなる。   The average open area ratio (porosity) inside the porous film is, for example, 30 to 80%, preferably 40 to 80%, and more preferably 45 to 80%. If the porosity is too low, the permeation performance may not be sufficient, or the function may not be exhibited even if a functional material is filled. On the other hand, if the porosity is too high, the functional strength may be inferior. Moreover, the average open area ratio (surface open area ratio) of the surface of a film is 48% or more (for example, 48-80%), for example, Preferably it is about 60-80%. If the surface area ratio is too low, the permeation performance may not be sufficient, or the function may not be sufficiently exhibited even if a functional material is filled. On the other hand, if the surface area ratio is too high, the mechanical strength tends to decrease.

また、フィルムに存在する微小孔の連通性は、例えば透気度を表すガーレー値、及び純水透過速度などを指標とすることができる。多孔性フィルムのガーレー値は、例えば0.2〜29秒/100cc、好ましくは1〜25秒/100cc、特に好ましくは1〜18秒/100ccである。これよりも数値が大きいと、実用上の透過性能が十分でなかったり、機能性材料を十分に充填できないためにその機能が発揮できないことがある。一方、数値がこれよりも小さいと、機械的強度に劣る可能性がある。また、純水透過速度は、例えば1.3×10-9〜1.1×10-7m・sec-1・Pa-1[=8〜700リットル/(m2・min・atm)]、好ましくは3.3×10-9〜1.1×10-7m・sec-1・Pa-1[=20〜700リットル/(m2・min・atm)]であり、さらに好ましくは4.9×10-9〜8.2×10-8m・sec-1・Pa-1[=30〜500リットル/(m2・min・atm)]である。これよりも純水透過速度が低いと、実用上の透過性能が充分でなかったり、機能性材料を充分に充填できないためにその機能が発揮できないことがある。一方、数値がこれよりも大きいと、機械的強度に劣る可能性がある。 Further, the connectivity of the micropores present in the film can be determined by using, for example, a Gurley value representing air permeability and a pure water permeation rate. The Gurley value of the porous film is, for example, 0.2 to 29 seconds / 100 cc, preferably 1 to 25 seconds / 100 cc, particularly preferably 1 to 18 seconds / 100 cc. If the numerical value is larger than this, the practical permeation performance may not be sufficient, or the functional material may not be sufficiently filled and the function may not be exhibited. On the other hand, if the numerical value is smaller than this, the mechanical strength may be inferior. The pure water permeation rate is, for example, 1.3 × 10 −9 to 1.1 × 10 −7 m · sec −1 · Pa −1 [= 8 to 700 liters / (m 2 · min · atm)], It is preferably 3.3 × 10 −9 to 1.1 × 10 −7 m · sec −1 · Pa −1 [= 20 to 700 liters / (m 2 · min · atm)], more preferably 4. 9 × 10 −9 to 8.2 × 10 −8 m · sec −1 · Pa −1 [= 30 to 500 liters / (m 2 · min · atm)]. If the pure water permeation rate is lower than this, the practical permeation performance may not be sufficient, or the functional material may not be sufficiently filled, and the function may not be exhibited. On the other hand, if the value is larger than this, the mechanical strength may be inferior.

好ましい多孔性フィルムは、連通性を有する微小孔が多数存在する多孔性フィルムであって、該フィルムの厚みが5〜200μmであり、フィルムの両表面について、表面の平均孔径が0.01〜10μm、表面の平均孔径Aと内部の平均孔径Bとの比率A/Bが0.3〜3、且つ表面の平均開孔率Cと内部の平均開孔率Dとの比率C/Dが0.7〜1.5であることを特徴とする多孔性フィルムである。   A preferred porous film is a porous film in which a large number of micropores having communication properties exist, the thickness of the film is 5 to 200 μm, and the average pore diameter of the surface is 0.01 to 10 μm on both surfaces of the film. The ratio A / B of the surface average pore diameter A to the internal average pore diameter B is 0.3 to 3, and the ratio C / D of the surface average pore ratio C to the internal average pore ratio D is 0. It is 7-1.5, It is a porous film characterized by the above-mentioned.

表面の平均孔径Aと内部の平均孔径Bとの比率A/B、及び表面の平均開孔率Cと内部の平均開孔率Dとの比率C/Dは、好ましくはA/Bが0.5〜2であってC/Dが0.75〜1.4、より好ましくはA/Bが0.6〜1.5であってC/Dが0.8〜1.3である。これらの比率が小さすぎる場合は、透過性能が劣ったり、機能性材料を十分に充填できない場合がある。また、大きすぎる場合には、分離特性に劣ったり、機能性材料の充填が不均一になるなどの不都合が発生する可能性がある。   The ratio A / B between the average pore diameter A on the surface and the average average pore diameter B and the ratio C / D between the average average aperture ratio C on the surface and the average average aperture ratio D on the surface are preferably set so that A / B is 0.00. 5 to 2, C / D is 0.75 to 1.4, more preferably A / B is 0.6 to 1.5, and C / D is 0.8 to 1.3. When these ratios are too small, the transmission performance may be inferior or the functional material may not be sufficiently filled. On the other hand, if it is too large, there is a possibility that inconveniences such as inferior separation characteristics and non-uniform filling of the functional material may occur.

好ましい多孔性フィルムの他の態様は、連通性を有する微小孔が多数存在する多孔性フィルムであって、該フィルムの厚みが5〜200μm、フィルムの両面の平均孔径A1,A2が何れも0.01〜10μm、フィルムの両面の平均開孔率C1,C2が何れも48%以上であり、且つ一方の表面(例えば基板側表面)の平均孔径A1と他方の表面(例えば空気側表面)の平均孔径A2との比率A1/A2が0.3〜3、一方の表面の平均開孔率C1と他方の表面の平均開孔率C2との比率C1/C2が0.7〜1.5である。 Another aspect of the preferred porous film is a porous film in which a large number of communicating micropores are present, the thickness of the film being 5 to 200 μm, and the average pore diameters A 1 and A 2 on both sides of the film are both 0.01 to 10 μm, the average open area ratios C 1 and C 2 on both sides of the film are 48% or more, and the average pore diameter A 1 on one surface (for example, substrate side surface) and the other surface (for example, air) The ratio A 1 / A 2 to the average pore diameter A 2 of the side surface) is 0.3 to 3, and the ratio C 1 / of the average aperture ratio C 1 of one surface to the average aperture ratio C 2 of the other surface C 2 is 0.7 to 1.5.

一方の表面の平均孔径A1と他方の表面の平均孔径A2との比率A1/A2、及び一方の表面の平均開孔率C1と他方の表面の平均開孔率C2との比率C1/C2は、好ましくはA1/A2が0.5〜2であってC1/C2が0.75〜1.4、より好ましくはA1/A2が0.6〜1.5であってC1/C2が0.8〜1.3である。これらの比率が小さすぎる場合は、透過性能が劣ったり、機能性材料を十分に充填できない場合がある。また、大きすぎる場合には、分離特性に劣ったり、機能性材料の充填が不均一になるなどの不都合が発生する可能性がある。 The ratio A 1 / A 2 between the average pore diameter A 1 of one surface and the average pore diameter A 2 of the other surface, and the average aperture ratio C 1 of one surface and the average aperture ratio C 2 of the other surface The ratio C 1 / C 2 is preferably such that A 1 / A 2 is 0.5 to 2 and C 1 / C 2 is 0.75 to 1.4, more preferably A 1 / A 2 is 0.6. a 1.5 by C 1 / C 2 is 0.8 to 1.3. When these ratios are too small, the transmission performance may be inferior or the functional material may not be sufficiently filled. On the other hand, if it is too large, there is a possibility that inconveniences such as inferior separation characteristics and non-uniform filling of the functional material may occur.

多孔性フィルムの微小孔の径、空孔率、透気度、開孔率は、上記のように、用いる基板、水溶性ポリマーの種類や量、水の使用量、流延時の湿度、温度及び時間などを適宜選択することにより所望の値に調整することができる。   As described above, the micropore diameter, porosity, air permeability, and porosity of the porous film are the substrate used, the type and amount of the water-soluble polymer, the amount of water used, the humidity during casting, the temperature, and It can be adjusted to a desired value by appropriately selecting time and the like.

本発明の方法によれば、特に、平均孔径及び平均開孔率について、表面と内部との比率や基板側表面と空気側表面との比率が上記範囲内であるという特性を有する多孔性フィルムを容易に得ることができる。   According to the method of the present invention, a porous film having the characteristics that the ratio of the surface to the inside and the ratio of the substrate side surface to the air side surface are within the above ranges, particularly with respect to the average pore diameter and the average porosity. Can be easily obtained.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表面張力の測定、及び得られたフィルムの評価は次のようにして行った。これらの結果を表1に示す。表1中、「Sa-Sb」は、フィルムを構成する高分子の表面張力Saと基板の表面張力Sbとの差を示している。また、「−」は、微小孔が不定形なため算出不能であったことを示している。なお、実施例4〜5は参考例として記載する。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the measurement of surface tension and evaluation of the obtained film were performed as follows. These results are shown in Table 1. In Table 1, “Sa-Sb” indicates the difference between the surface tension Sa of the polymer constituting the film and the surface tension Sb of the substrate. Further, “−” indicates that the calculation is impossible because the micropore is indefinite. Examples 4 to 5 are described as reference examples.

表面張力
POLYMER HANDBOOK (THIRD EDITION, JOHN WILEY&SONS)、化学工学便覧(改訂五版、丸善株式会社)に掲載されている値を使用した。この本に記載されていない物質については、ポリマー単体(又はポリマーブレンド)の均一フィルムを作成し、JIS K6768に準じて測定した。実施例中、後者の方法により測定した表面張力を示す場合には「:測定値」と付記した。
surface tension
The values listed in POLYMER HANDBOOK (THIRD EDITION, JOHN WILEY & SONS) and Chemical Engineering Handbook (5th revised edition, Maruzen Co., Ltd.) were used. For substances not described in this book, a uniform film of polymer alone (or polymer blend) was prepared and measured according to JIS K6768. In Examples, when the surface tension measured by the latter method is shown, “: measured value” is added.

透気度
YOSHIMITSU社製のGurley's Densometerを用い、JIS P8117に準じて測定した。但し、測定面積が標準の1/10の装置を使用したので、JIS P8117の付属書1に準じて標準のガーレー値に換算して求めた。
Air permeability
Measurement was performed according to JIS P8117 using a Gurley's Densometer manufactured by YOSHIMITSU. However, since an apparatus having a measurement area of 1/10 of the standard was used, the standard Gurley value was calculated according to Appendix 1 of JIS P8117.

純水透過速度
Amicon社製のSTIRRED ULTRAFILTRATION CELLS MODELS 8200の平膜用濾過器を用いて評価した。透過面積は28.7cm2であった。なお、評価の際に、透過側には濾紙をスペーサー代わりに配置し、透過側の抵抗をできるだけ排除した。圧力は0.5kg/cm2で測定し換算した。測定温度は25℃である。
Pure water transmission rate
Evaluation was carried out using a STIRRED ULTRAFILTRATION CELLS MODELS 8200 flat membrane filter manufactured by Amicon. Permeation area was 28.7 cm 2. In the evaluation, a filter paper was arranged on the permeate side instead of a spacer, and resistance on the permeate side was eliminated as much as possible. The pressure was measured and converted at 0.5 kg / cm 2 . The measurement temperature is 25 ° C.

表面の平均孔径A
電子顕微鏡写真から、フィルム表面の任意の30点以上の孔についてその面積を測定し、まずその平均値を平均孔面積Saveとした。次に、次式からその孔が真円であると仮定した時の孔径に換算し、その値を平均孔径とした。ここでπは円周率を表す。
表面の平均孔径A=2×(Save/π)1/2
Surface average pore size A
From the electron micrograph, the area of any 30 or more holes on the film surface was measured, and the average value was first defined as the average hole area Save . Next, it converted into the hole diameter when it assumed that the hole was a perfect circle from the following formula, and the value was made into the average hole diameter. Here, π represents a circumference ratio.
Surface average pore diameter A = 2 × (S ave / π) 1/2

内部の平均孔径B
まず、フィルムを液体窒素温度で破断してフィルム断面を露出させた。該方法によりフィルムが破断できない場合には、あらかじめフィルムを水により湿潤にした状態で液体窒素温度で破断させてフィルム断面を露出させた。得られたフィルム断面を電子顕微鏡用サンプルとして、上述の表面の平均孔径の求め方と同様の方法を用いて平均孔径を求めた。
Internal average pore diameter B
First, the film was broken at liquid nitrogen temperature to expose the film cross section. When the film could not be broken by this method, the film was previously wetted with water and was broken at liquid nitrogen temperature to expose the film cross section. Using the obtained film cross section as an electron microscope sample, the average pore diameter was determined using the same method as the above-described method for determining the average pore diameter of the surface.

表面の最大孔径
フィルム表面の電子顕微鏡写真から、任意の20×20μmの面積を5箇所選び、その中に存在する孔を真円であると仮定したときの孔径に換算し、その中で最も大きくなるものを最大孔径とした。なお、換算には次式を使用した。ここでSmaxは観察された孔のうちで最大面積を有するものの値である。πは円周率を表す。
孔径=2×(Smax/π)1/2
Maximum pore diameter on the surface From the electron micrograph of the film surface, select an arbitrary 20 × 20 μm area, convert it to the hole diameter when assuming that the hole existing in it is a perfect circle, and the largest among them This was the maximum pore size. The following formula was used for conversion. Here, Smax is the value of the observed hole having the largest area. π represents the circumference ratio.
Pore size = 2 × (Smax / π) 1/2

内部の最大孔径
まず、フィルムを液体窒素温度で破断してフィルム断面を露出させた。該方法によりフィルムが破断できない場合には、あらかじめフィルムを水により湿潤にした状態で液体窒素温度で破断させてフィルム断面を露出させた。得られたフィルム断面を電子顕微鏡用サンプルとして、上述の表面の最大孔径の求め方と同様の方法を用いて最大孔径を求めた。
Internal maximum pore diameter First, the film was broken at liquid nitrogen temperature to expose the film cross section. When the film could not be broken by this method, the film was previously wetted with water and was broken at liquid nitrogen temperature to expose the film cross section. Using the obtained film cross section as a sample for an electron microscope, the maximum pore diameter was determined using the same method as the above-described method for determining the maximum pore diameter on the surface.

表面の平均開孔率C
表面の平均開孔率は、フィルム表面の電子顕微鏡写真から、任意の20×20μmの面積を選び、その中に存在する孔の合計面積が全体に占める比率を算出した。この操作を任意の5箇所について実施し平均値を求めた。
Average surface area C
For the average surface area porosity, an arbitrary 20 × 20 μm area was selected from an electron micrograph of the film surface, and the ratio of the total area of the pores present therein to the whole was calculated. This operation was carried out at any five locations and the average value was determined.

内部の平均開孔率D(=空孔率)
フィルムの内部の平均開孔率は次式より求めた。ここでVはフィルムの体積、Wはフィルムの重量、ρはフィルム素材の密度であり、ポリアミドイミドの密度は1.45(g/cm3)、ポリエーテルスルホンの密度は1.37(g/cm3)、後述の実施例6に用いたポリアミドイミドとポリエーテルスルホンとのブレンド品の密度は1.43(g/cm3)とした。
内部の平均開孔率D(%)=100−100×W/(ρ・V)
Internal average open area ratio D (= porosity)
The average aperture ratio inside the film was determined from the following equation. Here, V is the volume of the film, W is the weight of the film, ρ is the density of the film material, the density of polyamideimide is 1.45 (g / cm 3 ), and the density of polyethersulfone is 1.37 (g / cm 3 ), the density of the blend of polyamideimide and polyethersulfone used in Example 6 described later was 1.43 (g / cm 3 ).
Internal average open area ratio D (%) = 100-100 × W / (ρ · V)

なお、上記評価方法における平均孔径、最大孔径、及び平均開孔率は、電子顕微鏡写真の最も手前に見えている微小孔のみを対象として求められており、写真奥に見えている微小孔は対象外とした。   The average pore size, maximum pore size, and average open area ratio in the above evaluation method are obtained only for the micropores that are visible in the foreground of the electron micrograph, and the micropores that are visible in the back of the photo are the targets. It was outside.

実施例1
東洋紡績社製の商品名「バイロマックスHR11NN」(アミドイミド系ポリマー、ポリマー単体の表面張力42mN/m(=dyn/cm):測定値、固形分濃度15重量%、溶剤NMP、溶液粘度20dPa・s/25℃)を使用し、この溶液100重量部に対し、水溶性ポリマーとしてポリビニルピロリドン(分子量5万)を30重量部加えて製膜用の原液とした。この原液を25℃とし、フィルムアプリケーターを使用してテフロン(登録商標)製の基板上(表面張力24mN/m(=dyn/cm))にキャストした。キャストは30℃、80%RH雰囲気で実施し、キャスト後速やかに湿度約100%、温度45℃の容器中に4分間保持した。その後、水中に浸漬して凝固させ、次いで乾燥することによって多孔性フィルムを得た。この操作ではキャスト時のフィルムプリケーターとテフロン(登録商標)基板とのギャップは127μmとし、得られたフィルムの厚みは約50μmとなった。
得られたフィルムの膜構造を観察したところ、キャスト時に基板と接触していたフィルム表面(フィルムの基板側表面)に存在する孔の平均孔径A1は約0.9μm、最大孔径は2.5μmで平均開孔率C1は約65%、キャスト時に基板と接触していなかったフィルム表面(フィルムの空気側表面)に存在する孔の平均孔径A2は約1.1μm、最大孔径は2.7μmで平均開孔率C2は約70%、フィルム内部はほぼ均質で、全域に亘って平均孔径B約1.0μm、最大孔径1.8μmの連通性を持つ微小孔が存在していた。また、フィルムの内部の平均開孔率Dは70%であった。透過性能を測定したところ、ガーレー透気度で9.5秒、純水透過速度で9.8×10-9m・sec-1・Pa-1[=60リットル/(m2・min・atm at 25℃)]という優れた性能を示した。
Example 1
Trade name “Vilomax HR11NN” manufactured by Toyobo Co., Ltd. (amideimide polymer, surface tension of polymer alone 42 mN / m (= dyn / cm): measured value, solid content concentration 15% by weight, solvent NMP, solution viscosity 20 dPa · s And 25 parts by weight of polyvinyl pyrrolidone (molecular weight 50,000) as a water-soluble polymer was added to 100 parts by weight of this solution to form a stock solution for film formation. The stock solution was brought to 25 ° C. and cast on a Teflon (registered trademark) substrate (surface tension 24 mN / m (= dyn / cm)) using a film applicator. The casting was carried out in an atmosphere of 30 ° C. and 80% RH, and immediately after the casting, it was kept in a container having a humidity of about 100% and a temperature of 45 ° C. for 4 minutes. Then, the porous film was obtained by being immersed in water, solidifying, and then drying. In this operation, the gap between the film precursor at the time of casting and the Teflon (registered trademark) substrate was 127 μm, and the thickness of the obtained film was about 50 μm.
When the film structure of the obtained film was observed, the average hole diameter A 1 of the holes present on the film surface (the substrate side surface of the film) that was in contact with the substrate at the time of casting was about 0.9 μm, and the maximum hole diameter was 2.5 μm. The average hole area ratio C 1 is about 65%, the average hole diameter A 2 of the holes existing on the film surface (the air side surface of the film) that is not in contact with the substrate at the time of casting is about 1.1 μm, and the maximum hole diameter is 2. At 7 μm, the average aperture ratio C 2 was about 70%, the inside of the film was almost homogeneous, and micropores having an average pore diameter B of about 1.0 μm and a maximum pore diameter of 1.8 μm existed over the entire area. Moreover, the average opening ratio D inside the film was 70%. When the permeation performance was measured, the Gurley air permeability was 9.5 seconds, and the pure water permeation rate was 9.8 × 10 −9 m · sec −1 · Pa −1 [= 60 liters / (m 2 · min · atm. at 25 ° C.)].

実施例2
実施例1において、キャスト用基板として、テフロン(登録商標)製基板の代わりにポリプロピレン製の基板(表面張力29mN/m(=dyn/cm))を用いた以外は、実施例1と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約0.7μm、最大孔径は1.8μmで平均開孔率C1は約50%、フィルムの空気側表面に存在する孔の平均孔径A2は約1.0μm、最大孔径は2.5μmで平均開孔率C2は約70%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約1.0μm、最大孔径2.0μmの連通性を持つ微小孔が存在していた。また、フィルムの内部の平均開孔率Dは約70%であった。透過性能を測定したところ、ガーレー透気度で10.0秒、純水透過速度で9.0×10-9m・sec-1・Pa-1[=55リットル/(m2・min・atm at 25℃)]という優れた性能を示した。
Example 2
In Example 1, the same operation as in Example 1 was used except that a polypropylene substrate (surface tension 29 mN / m (= dyn / cm)) was used instead of the Teflon (registered trademark) substrate as the casting substrate. To obtain a film.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 0.7 μm, the maximum pore diameter was 1.8 μm, and the average aperture ratio C 1 was about 50%. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 1.0 μm, the maximum pore diameter is 2.5 μm, the average aperture ratio C 2 is about 70%, the inside of the film is almost homogeneous, and the average over the entire area There were micropores having a pore size B of about 1.0 μm and a maximum pore size of 2.0 μm. The average opening ratio D inside the film was about 70%. When the permeation performance was measured, the Gurley air permeability was 10.0 seconds, and the pure water permeation rate was 9.0 × 10 −9 m · sec −1 · Pa −1 [= 55 liters / (m 2 · min · atm. at 25 ° C.)].

実施例3
実施例1において、キャスト用基板として、テフロン(登録商標)製基板の代わりに帝人デュポン社製PETシート(Sタイプ、表面張力39mN/m(=dyn/cm):測定値)を用いた以外は、実施例1と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約0.9μm、最大孔径は2.5μmで平均開孔率C1は約70%、フィルムの空気側表面に存在する孔の平均孔径A2は約1.0μm、最大孔径は2.7μmで平均開孔率C2は約70%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約1.0μm、最大孔径2.0μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。透過性能を測定したところ、ガーレー透気度で10.0秒、純水透過速度で9.0×10-9m・sec-1・Pa-1[=55リットル/(m2・min・atm at 25℃)]という優れた性能を示した。
Example 3
In Example 1, a Teijin DuPont PET sheet (S type, surface tension 39 mN / m (= dyn / cm): measured value) was used as the casting substrate instead of the Teflon (registered trademark) substrate. The same operation as in Example 1 was performed to obtain a film.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 0.9 μm, the maximum pore diameter was 2.5 μm, and the average aperture ratio C 1 was about 70%. The average hole diameter A 2 of the holes present on the air side surface of the film is about 1.0 μm, the maximum hole diameter is 2.7 μm, the average opening ratio C 2 is about 70%, the inside of the film is almost homogeneous, and the average over the entire area There were micropores having a pore size B of about 1.0 μm and a maximum pore size of 2.0 μm. The average opening ratio D inside the film was about 70%. When the permeation performance was measured, the Gurley air permeability was 10.0 seconds, and the pure water permeation rate was 9.0 × 10 −9 m · sec −1 · Pa −1 [= 55 liters / (m 2 · min · atm. at 25 ° C.)].

実施例4
実施例2において、製膜用の原液として、ポリエーテルスルホン(住友化学社製、商品名「5200P」;表面張力46mN/m(=dyn/cm):測定値)15重量部に、ポリビニルピロリドン(分子量36万)10重量部、及びNMP75重量部を加えたものを用いた以外は、実施例2と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約1.3μm、最大孔径は2.5μmで平均開孔率C1は約65%、フィルムの空気側表面に存在する孔の平均孔径A2は約0.8μmで、最大孔径は1.7μmで平均開孔率C2は約50%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約2.0μm、最大孔径3.0μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。透過性能を測定したところ、ガーレー透気度で29秒、純水透過速度で3.3×10-9m・sec-1・Pa-1[=20リットル/(m2・min・atm at 25℃)]という優れた性能を示した。
Example 4
In Example 2, as a stock solution for forming a film, 15 parts by weight of polyethersulfone (manufactured by Sumitomo Chemical Co., Ltd., trade name “5200P”; surface tension 46 mN / m (= dyn / cm): measured value) A film was obtained in the same manner as in Example 2 except that 10 parts by weight of molecular weight 360,000) and 75 parts by weight of NMP were used.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 1.3 μm, the maximum pore diameter was 2.5 μm, and the average aperture ratio C 1 was about 65%. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 0.8 μm, the maximum pore diameter is 1.7 μm, the average aperture ratio C 2 is about 50%, and the inside of the film is almost homogeneous and covers the entire area. Micropores having an average pore diameter B of about 2.0 μm and a maximum pore diameter of 3.0 μm were present. The average opening ratio D inside the film was about 70%. When the permeation performance was measured, the Gurley air permeability was 29 seconds, and the pure water permeation rate was 3.3 × 10 −9 m · sec −1 · Pa −1 [= 20 liters / (m 2 · min · atm at 25 C))].

実施例5
実施例4において、キャスト用基板として、ポリプロピレン製基板の代わりに帝人デュポン社製PETシート(Sタイプ、表面張力39mN/m(=dyn/cm):測定値)を用いた以外は、実施例4と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約2.3μm、最大孔径は3.6μmで平均開孔率C1は約65%、フィルムの空気側表面に存在する孔の平均孔径A2は約0.8μm、最大孔径1.7μmで平均開孔率C2は約50%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約2.0μm、最大孔径5.1μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。透過性能を測定したところ、ガーレー透気度で27秒、純水透過性能で3.9×10-9m・sec-1・Pa-1[=24リットル/(m2・min・atm at 25℃)]という優れた性能を示した。
Example 5
In Example 4, a PET sheet (S type, surface tension 39 mN / m (= dyn / cm): measured value) manufactured by Teijin DuPont was used instead of the polypropylene substrate as the casting substrate. The same operation was performed to obtain a film.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 2.3 μm, the maximum pore diameter was 3.6 μm, and the average aperture ratio C 1 was about 65%. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 0.8 μm, the maximum pore diameter is 1.7 μm, the average aperture ratio C 2 is about 50%, the inside of the film is almost homogeneous, and the average pore diameter over the entire area. There existed micropores having a communication capacity of about 2.0 μm B and a maximum pore size of 5.1 μm. The average opening ratio D inside the film was about 70%. When the permeation performance was measured, the Gurley permeability was 27 seconds, and the pure water permeation performance was 3.9 × 10 −9 m · sec −1 · Pa −1 [= 24 liters / (m 2 · min · atm at 25 C))].

実施例6
ポリアミドイミド(東洋紡績社製、商品名「バイロマックスHR11NN」、表面張力42mN/m(=dyn/cm):測定値、固形分濃度15重量%、溶剤NMP、溶液粘度20dPa・s/25℃)100重量部に、ポリビニルピロリドン(分子量5万)25重量部を加えたものをA液とした。ポリエーテルスルホン(住友化学社製、商品名「5200P」;表面張力46mN/m(=dyn/cm):測定値)15重量部にNMP85重量部を加えて得られた混合液100重量部に、ポリビニルピロリドン(分子量5万)25重量部を加えたものをB液とした。
実施例2において、製膜用の原液として、ポリアミドイミドとポリエーテルスルホン(A液:B液=3:1(重量比);ポリアミドイミド:ポリエーテルスルホン=3:1(重量比))との混合液(ブレンドポリマーの表面張力45mN/m(=dyn/cm):測定値)を用いた以外は、実施例2と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約0.9μm、最大孔径は1.8μmで平均開孔率C1は約70%、フィルムの空気側表面に存在する孔の平均孔径A2は約2.0μmで、最大孔径は4.4μmで平均開孔率C2は約70%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約2.0μm、最大孔径3.0μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。透過性能を測定したところ、ガーレー透気度で9.3秒、純水透過速度で1.1×10-8m・sec-1・Pa-1[=65リットル/(m2・min・atm at 25℃)]という優れた性能を示した。
Example 6
Polyamideimide (Toyobo Co., Ltd., trade name “Vilomax HR11NN”, surface tension 42 mN / m (= dyn / cm): measured value, solid content concentration 15% by weight, solvent NMP, solution viscosity 20 dPa · s / 25 ° C.) A solution obtained by adding 25 parts by weight of polyvinyl pyrrolidone (molecular weight: 50,000) to 100 parts by weight was used as Liquid A. To 100 parts by weight of a mixture obtained by adding 85 parts by weight of NMP to 15 parts by weight of polyethersulfone (trade name “5200P” manufactured by Sumitomo Chemical Co., Ltd .; surface tension 46 mN / m (= dyn / cm): measured value) Liquid B was prepared by adding 25 parts by weight of polyvinylpyrrolidone (molecular weight 50,000).
In Example 2, as a stock solution for film formation, polyamideimide and polyethersulfone (A solution: B solution = 3: 1 (weight ratio); polyamideimide: polyethersulfone = 3: 1 (weight ratio)) A film was obtained in the same manner as in Example 2 except that the mixed liquid (blend polymer surface tension 45 mN / m (= dyn / cm): measured value) was used.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 0.9 μm, the maximum pore diameter was 1.8 μm, and the average aperture ratio C 1 was about 70%. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 2.0 μm, the maximum pore diameter is 4.4 μm, the average aperture ratio C 2 is about 70%, and the inside of the film is almost homogeneous and covers the entire area. Micropores having an average pore diameter B of about 2.0 μm and a maximum pore diameter of 3.0 μm were present. The average opening ratio D inside the film was about 70%. When the permeation performance was measured, the Gurley air permeability was 9.3 seconds, and the pure water permeation rate was 1.1 × 10 −8 m · sec −1 · Pa −1 [= 65 liters / (m 2 · min · atm. at 25 ° C.)].

比較例1
実施例1において、キャスト用基板として、テフロン(登録商標)製基板の代わりにガラス製基板(表面張力100mN/m(=dyn/cm))を用いた以外は、実施例1と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約0.3μm、最大孔径は0.6μmで平均開孔率C1は約40%、フィルムの空気側表面に存在する孔の平均孔径A2は約1.0μm、最大孔径は2.5μmで平均開孔率C2は約70%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約1.0μm、最大孔径2.0μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。以上より、フィルムの基板側表面に存在する微小孔は、フィルムの空気側表面及び内部に存在する微小孔と比較して小さく、且つ開孔率が低く、フィルム全体としての均質性に欠けていた。
Comparative Example 1
In Example 1, the same operation as in Example 1 was performed except that a glass substrate (surface tension 100 mN / m (= dyn / cm)) was used instead of the Teflon (registered trademark) substrate as the casting substrate. A film was obtained.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 0.3 μm, the maximum pore diameter was 0.6 μm, and the average aperture ratio C 1 was about 40%. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 1.0 μm, the maximum pore diameter is 2.5 μm, the average aperture ratio C 2 is about 70%, the inside of the film is almost homogeneous, and the average over the entire area There were micropores having a pore size B of about 1.0 μm and a maximum pore size of 2.0 μm. The average opening ratio D inside the film was about 70%. From the above, the micropores present on the substrate side surface of the film were small compared to the micropores present on the air side surface and inside of the film, and the aperture ratio was low, and the film as a whole lacked homogeneity. .

比較例2
実施例1において、キャスト用基板として、テフロン(登録商標)製基板の代わりにアルミニウム製基板(表面張力914mN/m(=dyn/cm))を用いた以外は、実施例1と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔は平均孔径A1を算出するのは困難であるほど不定形であった。また、その平均開孔率C1は10%以下と推定された。フィルムの空気側表面に存在する孔の平均孔径A2は約1.3μm、最大孔径は2.7μmで平均開孔率C2は約70%、フィルム内部はほぼ均質であり全域に亘って平均孔径B約1.2μm、最大孔径2.2μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。以上より、フィルムの空気側表面及び内部と比較して、フィルムの基板側表面は開孔率が低く、且つ特異な様相を呈しており、フィルム全体としての均質性に欠けていた。
Comparative Example 2
In Example 1, the same operation as in Example 1 was performed except that an aluminum substrate (surface tension 914 mN / m (= dyn / cm)) was used instead of the Teflon (registered trademark) substrate as the casting substrate. A film was obtained.
When the film structure of the obtained film was observed, the holes present on the substrate side surface of the film were so irregular that it was difficult to calculate the average hole diameter A 1 . Further, the average opening ratio C 1 was estimated to be 10% or less. The average hole diameter A 2 of the holes present on the air side surface of the film is about 1.3 μm, the maximum hole diameter is 2.7 μm, the average opening ratio C 2 is about 70%, the inside of the film is almost homogeneous, and the average over the entire area There existed micropores having a pore size B of about 1.2 μm and a maximum pore size of 2.2 μm. The average opening ratio D inside the film was about 70%. From the above, the substrate-side surface of the film has a low porosity and exhibits a unique aspect as compared with the air-side surface and the inside of the film, and lacks uniformity as a whole film.

比較例3
実施例4において、キャスト用基板としてガラス製基板(表面張力100mN/m(=dyn/cm))を用いた以外は、実施例4と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔の平均孔径A1は約1.2μm、最大孔径は2.0μmで平均開孔率C1は10%以下、フィルムの空気側表面に存在する孔の平均孔径A2は約0.8μm、最大孔径は1.9μmで平均開孔率C2は約50%、フィルム内部は全域に亘って平均孔径B約2.0μm、最大孔径3.5μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。以上より、フィルムの基板側表面は、開孔率が低く、フィルム全体としての均質性に欠けていた。
Comparative Example 3
In Example 4, a film was obtained by performing the same operation as in Example 4 except that a glass substrate (surface tension 100 mN / m (= dyn / cm)) was used as the casting substrate.
When the film structure of the obtained film was observed, the average pore diameter A 1 of the holes present on the substrate side surface of the film was about 1.2 μm, the maximum pore diameter was 2.0 μm, and the average aperture ratio C 1 was 10% or less. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 0.8 μm, the maximum pore diameter is 1.9 μm, the average aperture ratio C 2 is about 50%, and the average pore diameter B is about 2 over the entire area inside the film. There were micropores having a communication capacity of 0.0 μm and a maximum pore diameter of 3.5 μm. The average opening ratio D inside the film was about 70%. From the above, the substrate-side surface of the film had a low hole area ratio and lacked homogeneity as a whole film.

比較例4
実施例4において、キャスト用基板としてアルミニウム製基板(表面張力914mN/m(=dyn/cm))を用いた以外は、実施例4と同様の操作を行ってフィルムを得た。
得られたフィルムの膜構造を観察したところ、フィルムの基板側表面に存在する孔は平均孔径A1を算出するのは困難であるほど不定形であった。また、その平均開孔率C1は10%以下と推定された。フィルムの空気側表面に存在する孔の平均孔径A2は約0.9μm、最大孔径は2.1μmで平均開孔率C2は約50%、フィルム内部は全域に亘って平均孔径B約2.2μm、最大孔径3.6μmの連通性を持つ微小孔が存在していた。また、フィルム内部の平均開孔率Dは約70%であった。以上より、フィルムの空気側表面及び内部と比較して、フィルムの基板側表面は開孔率が低く、且つ特異な様相を呈しており、フィルム全体としての均質性に欠けていた。
Comparative Example 4
In Example 4, except for using the A aluminum-made substrate (surface tension 914mN / m (= dyn / cm )) as a casting substrate to obtain a film by performing the same operations as in Example 4.
When the film structure of the obtained film was observed, the holes present on the substrate side surface of the film were so irregular that it was difficult to calculate the average hole diameter A 1 . Further, the average opening ratio C 1 was estimated to be 10% or less. The average pore diameter A 2 of the pores existing on the air side surface of the film is about 0.9 μm, the maximum pore diameter is 2.1 μm, the average aperture ratio C 2 is about 50%, and the inside of the film has an average pore diameter B of about 2 over the entire area. There were micropores having a communication capacity of 0.2 μm and a maximum pore size of 3.6 μm. The average opening ratio D inside the film was about 70%. From the above, the substrate-side surface of the film has a low porosity and exhibits a unique aspect as compared with the air-side surface and the inside of the film, and lacks uniformity as a whole film.

Figure 0004530630
Figure 0004530630

本発明の多孔性フィルムは、精密濾過、分離濃縮等の膜分離技術に利用できるほか、その空孔を機能性材料で充填することにより、電池用セパレータ、電解コンデンサー、回路用基板等、広範囲な基板材料として利用できる。   The porous film of the present invention can be used for membrane separation techniques such as microfiltration and separation / concentration, and by filling the pores with functional materials, a wide range of battery separators, electrolytic capacitors, circuit boards, etc. It can be used as a substrate material.

Claims (5)

素材がアミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子であり、連通性を有する微小孔が多数存在する多孔性フィルムであって、該フィルムの厚みが20〜200μm、透気度を表すガーレー値が0.2〜29秒/100ccであり、フィルムの両表面について、表面の平均孔径が0.05〜10μm、表面の平均開孔率が48%以上、表面の平均孔径Aと内部の平均孔径Bとの比率A/Bが0.3〜3、且つ表面の平均開孔率Cと内部の平均開孔率Dとの比率C/Dが0.7〜1.5であることを特徴とする多孔性フィルム。 The material is at least one polymer selected from an amide-imide polymer and an imide-based polymer, and is a porous film having a large number of communicating micropores, the film having a thickness of 20 to 200 μm, air permeability The Gurley value representing the degree is 0.2 to 29 seconds / 100 cc, the surface average pore diameter is 0.05 to 10 μm, the surface average hole area ratio is 48% or more, and the surface average pore diameter A is about both surfaces of the film. The ratio A / B between the average pore diameter B and the internal average pore diameter B is 0.3 to 3, and the ratio C / D between the average average aperture ratio C of the surface and the average average aperture ratio D is 0.7 to 1.5. A porous film characterized by being. 素材がアミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子であり、連通性を有する微小孔が多数存在する多孔性フィルムであって、該フィルムの厚みが20〜200μm、透気度を表すガーレー値が0.2〜29秒/100ccであり、フィルムの両面の平均孔径A1,A2が何れも0.05〜10μm、フィルムの両面の平均開孔率C1,C2が何れも48%以上であり、且つ一方の表面の平均孔径A1と他方の表面の平均孔径A2との比率A1/A2が0.3〜3、一方の表面の平均開孔率C1と他方の表面の平均開孔率C2との比率C1/C2が0.7〜1.5であることを特徴とする多孔性フィルム。 The material is at least one polymer selected from an amide-imide polymer and an imide-based polymer, and is a porous film having a large number of communicating micropores, the film having a thickness of 20 to 200 μm, air permeability The Gurley value representing the degree is 0.2 to 29 seconds / 100 cc, the average pore diameters A 1 and A 2 on both sides of the film are both 0.05 to 10 μm, and the average opening ratios C 1 and C 2 on both sides of the film Is 48% or more, and the ratio A 1 / A 2 between the average pore diameter A 1 on one surface and the average pore diameter A 2 on the other surface is 0.3 to 3, and the average open area ratio on one surface A porous film, wherein a ratio C 1 / C 2 between C 1 and the average open area ratio C 2 of the other surface is 0.7 to 1.5. 請求項1又は2記載の多孔性フィルムの製造方法であって、アミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造するに際し、該多孔性フィルムを構成する高分子の表面張力Sa[mN/m]と基板の表面張力Sb[mN/m]との差(Sa−Sb)が−10以上となる高分子及び基板を用い、多孔性フィルムを構成する素材となる高分子成分8〜25重量%、水溶性ポリマー10〜50重量%、水0〜10重量%、水溶性極性溶媒30〜82重量%からなる混合溶液を高分子溶液として基板上へフィルム状に流延したのち凝固液に導き、相転換させて多孔性フィルムを得る多孔性フィルムの製造方法。 3. The method for producing a porous film according to claim 1, wherein a polymer solution containing at least one polymer component selected from an amideimide polymer and an imide polymer is cast into a film on a substrate. , phase upon transformation method by producing a porous film, the difference of the multi surface tension Sa of porous film constituting the polymer [mN / m] and the substrate surface tension Sb [mN / m] (Sa -Sb) Using a polymer and a substrate having a -10 or more, a polymer component 8 to 25% by weight, a water-soluble polymer 10 to 50% by weight, water 0 to 10% by weight, and a water-soluble polarity A method for producing a porous film, in which a mixed solution composed of 30 to 82% by weight of a solvent is cast as a polymer solution onto a substrate in the form of a film, then led to a coagulating liquid and phase-converted to obtain a porous film. 請求項1又は2記載の多孔性フィルムの製造方法であって、アミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造するに際し、該多孔性フィルムを構成する高分子の表面張力Sa[mN/m]と基板の表面張力Sb[mN/m]との差(Sa−Sb)が−10以上となる高分子及び基板を用い、多孔性フィルムを構成する高分子を水溶性極性溶媒に溶解した高分子溶液を基板上へフィルム状に流延する際に、該フィルムを相対湿度70〜100%、温度15〜90℃からなる雰囲気下に0.2〜15分間保持した後、高分子成分の非溶剤からなる凝固液に導く工程を含む多孔性フィルムの製造方法。 3. The method for producing a porous film according to claim 1, wherein a polymer solution containing at least one polymer component selected from an amideimide polymer and an imide polymer is cast into a film on a substrate. , phase upon transformation method by producing a porous film, the difference of the multi surface tension Sa of porous film constituting the polymer [mN / m] and the substrate surface tension Sb [mN / m] (Sa -Sb) When a polymer solution in which the polymer constituting the porous film is dissolved in a water-soluble polar solvent is cast into a film on the substrate, the relative humidity A method for producing a porous film, comprising a step of holding in an atmosphere composed of 70 to 100% and a temperature of 15 to 90 ° C. for 0.2 to 15 minutes, and then leading to a coagulating liquid composed of a non-solvent of a polymer component. 請求項1又は2記載の多孔性フィルムの製造方法であって、アミドイミド系ポリマー及びイミド系ポリマーから選択された少なくとも1種の高分子成分を含む高分子溶液を基板上へフィルム状に流延し、相転換法により多孔性フィルムを製造するに際し、該多孔性フィルムを構成する高分子の表面張力Sa[mN/m]と基板の表面張力Sb[mN/m]との差(Sa−Sb)が−10以上となる高分子及び基板を用い、多孔性フィルムを構成する素材となる高分子成分8〜25重量%、水溶性ポリマー10〜50重量%、水0〜10重量%、水溶性極性溶媒30〜82重量%からなる混合溶液を高分子溶液として基板上へフィルム状に流延する際に、該フィルムを相対湿度70〜100%、温度15〜90℃からなる雰囲気下に0.2〜15分間保持した後、高分子成分の非溶剤からなる凝固液に導き、相転換させて多孔性フィルムを得る多孔性フィルムの製造方法。 3. The method for producing a porous film according to claim 1, wherein a polymer solution containing at least one polymer component selected from an amideimide polymer and an imide polymer is cast into a film on a substrate. , phase upon transformation method by producing a porous film, the difference of the multi surface tension Sa of porous film constituting the polymer [mN / m] and the substrate surface tension Sb [mN / m] (Sa -Sb) Using a polymer and a substrate having a -10 or more, a polymer component 8 to 25% by weight, a water-soluble polymer 10 to 50% by weight, water 0 to 10% by weight, and a water-soluble polarity When a mixed solution consisting of 30 to 82% by weight of solvent is cast as a polymer solution onto a substrate in the form of a film, the film is 0.2% in an atmosphere consisting of a relative humidity of 70 to 100% and a temperature of 15 to 90 ° C. ~ 1 After holding minutes, introduced into a coagulating liquid made of a non-solvent for the polymer component, the manufacturing method of the porous film to obtain a porous film by phase inversion.
JP2003283862A 2002-11-12 2003-07-31 Method for producing porous film and porous film Expired - Lifetime JP4530630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283862A JP4530630B2 (en) 2002-11-12 2003-07-31 Method for producing porous film and porous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002328586 2002-11-12
JP2003283862A JP4530630B2 (en) 2002-11-12 2003-07-31 Method for producing porous film and porous film

Publications (2)

Publication Number Publication Date
JP2004175104A JP2004175104A (en) 2004-06-24
JP4530630B2 true JP4530630B2 (en) 2010-08-25

Family

ID=32716158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283862A Expired - Lifetime JP4530630B2 (en) 2002-11-12 2003-07-31 Method for producing porous film and porous film

Country Status (1)

Country Link
JP (1) JP4530630B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749741B2 (en) * 2005-03-04 2011-08-17 富士フイルム株式会社 Tenta dryer and solution casting method
JP2006289657A (en) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp Multilayered porous film
JP4969192B2 (en) * 2005-10-04 2012-07-04 株式会社ダイセル Porous film and method for producing the same
EP1995053B1 (en) 2006-02-20 2013-05-01 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
JP4841985B2 (en) * 2006-03-23 2011-12-21 国立大学法人群馬大学 Method for producing polyamide porous membrane
TWI323541B (en) * 2006-12-18 2010-04-11 Prologium Technology Co Ltd Electricity supply system
JP5430249B2 (en) 2009-06-23 2014-02-26 キヤノン株式会社 Method for producing porous polymer membrane and porous polymer membrane produced by the production method
US20130020117A1 (en) 2009-12-14 2013-01-24 Daicel Corporation Laminated body comprising porous layer and functional laminate using same
CN102341937B (en) 2010-03-04 2015-02-11 松下电器产业株式会社 Separator for battery, battery using same and method for producing battery
CN102569840B (en) * 2010-12-10 2014-04-09 大连融科储能技术发展有限公司 Use of poriferous separation membrane in liquid flow energy-storage cell
JP6137523B2 (en) * 2012-11-01 2017-05-31 三菱ケミカル株式会社 Method for producing laminated porous film, laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6395144B2 (en) * 2014-04-09 2018-09-26 ユニチカ株式会社 Polyimide resin porous body and method for producing the same
JP6719970B2 (en) * 2016-05-12 2020-07-08 オルガノ株式会社 Membrane filtration system and membrane filtration method
JP6655104B2 (en) * 2017-03-31 2020-02-26 セーレン株式会社 Composite membranes and materials
CN114345138B (en) * 2022-01-12 2022-10-25 苏州名列膜材料有限公司 Casting solution of asymmetric flat microporous membrane and preparation method of PVDF flat microporous membrane

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243911A (en) * 1988-08-02 1990-02-14 Mitsubishi Rayon Co Ltd Gas filter
JPH05148383A (en) * 1991-10-03 1993-06-15 Mitsubishi Rayon Co Ltd Polysulfone-based porous film and its preparation
JPH09169867A (en) * 1995-10-17 1997-06-30 Asahi Chem Ind Co Ltd Microporous film and its production
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JP2000260413A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Separator for battery and battery using it
JP2000327809A (en) * 1999-05-21 2000-11-28 Asahi Glass Co Ltd Preparation of ion exchange membrane
WO2001019906A1 (en) * 1999-09-13 2001-03-22 Teijin Limited Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
JP2002037905A (en) * 2000-07-21 2002-02-06 Nitto Denko Corp Porous film for prepreg and prepreg for circuit board
JP2002208781A (en) * 2001-01-10 2002-07-26 Nitto Denko Corp Wiring board prepreg and its manufacturing method
JP2003313356A (en) * 2002-04-22 2003-11-06 Daicel Chem Ind Ltd Porous film and its manufacturing method
JP2005527694A (en) * 2002-05-29 2005-09-15 スリーエム イノベイティブ プロパティズ カンパニー Liquid repellent microporous material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243911A (en) * 1988-08-02 1990-02-14 Mitsubishi Rayon Co Ltd Gas filter
JPH05148383A (en) * 1991-10-03 1993-06-15 Mitsubishi Rayon Co Ltd Polysulfone-based porous film and its preparation
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH09169867A (en) * 1995-10-17 1997-06-30 Asahi Chem Ind Co Ltd Microporous film and its production
JP2000260413A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Separator for battery and battery using it
JP2000327809A (en) * 1999-05-21 2000-11-28 Asahi Glass Co Ltd Preparation of ion exchange membrane
WO2001019906A1 (en) * 1999-09-13 2001-03-22 Teijin Limited Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
JP2002037905A (en) * 2000-07-21 2002-02-06 Nitto Denko Corp Porous film for prepreg and prepreg for circuit board
JP2002208781A (en) * 2001-01-10 2002-07-26 Nitto Denko Corp Wiring board prepreg and its manufacturing method
JP2003313356A (en) * 2002-04-22 2003-11-06 Daicel Chem Ind Ltd Porous film and its manufacturing method
JP2005527694A (en) * 2002-05-29 2005-09-15 スリーエム イノベイティブ プロパティズ カンパニー Liquid repellent microporous material

Also Published As

Publication number Publication date
JP2004175104A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
KR100937077B1 (en) Process for producing porous film and porous film
JP4530630B2 (en) Method for producing porous film and porous film
JP5057419B2 (en) Composite microporous membrane, production method and use thereof
EP3159163B1 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
US10056595B2 (en) Battery separator, and method for producing same
US10256450B2 (en) Laminated porous membrane, process for manufacturing same and separator for battery
JP2006289657A (en) Multilayered porous film
WO2018168871A1 (en) Polyolefin microporous membrane
US10549243B2 (en) Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use
JP2003317729A (en) Fuel cell electrode using porous graphite film, film- electrode bonded body and fuel cell
JP2013194153A (en) Method for producing modified polyolefin microporous membrane
JP3963765B2 (en) Porous film and method for producing the same
WO2003036655A1 (en) Polymer electrolyte solution for manufacturing electrode for fuel cell
CN112023716A (en) Nano-pore graphene separation membrane and preparation method thereof
WO2017014130A1 (en) Porous membrane, water treatment membrane and method for producing porous membrane
JP4530652B2 (en) Polyamideimide porous film with excellent chemical resistance and method for producing the same
JP2007246876A (en) Porous film and method for producing the same
JP4969192B2 (en) Porous film and method for producing the same
JP2004164854A (en) Polymer electrolyte solution for forming electrode for fuel cell
JP3752235B2 (en) Separator for electronic parts
WO2021235118A1 (en) Porous film laminate, filter element, and production method for porous film laminate
CN116960565A (en) Nonwoven fabric composite membrane and preparation method thereof, lithium battery diaphragm, lithium battery and liquid separation membrane
CN115253726A (en) Polyvinylidene fluoride/polyethylene filter element and preparation method thereof
JPS5846826B2 (en) Manufacturing method of separator for alkaline batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term